THaE JOURNAL OF SyMBOLIC LoGic
Volume 34, Number 4, Dec. 1969

AN ABSTRACT FORM OF THE CHURCH-ROSSER THEOREM., I

R. HINDLEY

One of the basic results in the theory of A-conversion is the Church-Rosser
Theorem, which says that, using certain rules for conversion and reduction of
A-formulae, any two interconvertible formulae can both be reduced to one formula.
(I will not explain this in detail, as A-conversion is described fully in Church’s [2],
where the Church-Rosser Theorem is Theorem 7 XXVII; see also Chapter 4 of
Curry and Feys’ [3].) The first part of the present paper contains an abstract form
of this theorem.

In the second part the abstract result will be applied to prove the Church-Rosser
Theorem for A-reduction, and for any reduction defined as a series of replacements
of parts of formulae (satisfying certain conditions); this covers Church’s §-reduc-
tion, and Curry’s weak reduction in combinatory logic (with or without extra
arithmetical combinators, and with or without type-restrictions), but does not
cover strong reduction [3, §6F] or Curry’s A — %-reduction [3, §4D].!

At the end of Part II a simple abstract theorem will be proved which extends
the Church-Rosser Theorem to include A — n-reduction; this seems to be simpler
than the extension proof in [3, Chapter 4].

Abstract forms of the Church-Rosser Theorem have already been proved by
Newman in [4] and Curry in [1], but Rosser and Schroer pointed out in [5] that
they do not cover the original theorem as a special case. In [6], Schroer has proved
an abstract result which does cover the original one; however his methods are quite
different from those used here, and I do not think his result covers, or is covered by,
the result in the present paper. Part of Curry’s proof of the Church-Rosser Theorem
in [3, Chapter 4] is in an abstract setting, though the assumptions he uses are
slightly more restrictive than the ones used here.

I am very grateful to R. Harrop for his help and supervision during the work for
this paper (which is part of my thesis at the University of Newcastle upon Tyne),
and to the Northern Ireland Ministry of Education, who financed it through a
Research Studentship.

§1. Primitive ideas. Most of the following notation is from Curry’s [1], with
some from Schroer [6].

There is assumed to be a set of objects called points; these may be interpreted as
A-formulae (more precisely, as equivalence classes with respect to change of bound
variable), and they will be denoted by capital letters.

There are also certain cells; to each cell is associated two points, its start and its
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terminus, and the cell is said to be from its start fo its terminus. Cells will be denoted
by “£”, “n”, “L”, and in A-conversion a cell is a single contraction [2, p. 14].

Every set of cells considered here will be coinizial; that is, all its members have
the same start; “«”, “B°* will denote such sets, and “{£,, - - -, £&,}”° will denote the
set whose only members are £, - - -, &, and the empty set & when n = 0. Unless
stated otherwise it will be assumed that in a set {£,, - - -, £,} members with distinct
indices are distinct. One-member sets will not be distinguished from their sole
members. For any sets «;, - « -, &, of cells, all coinitial, “{e;, - - -, &,}”" will denote
the union of «;, - - -, ¢, and will be empty when n = 0.

Instead of the relation J in [1], I shall assume that a binary relation < has been
defined to hold between certain pairs of coinitial cells. (In A-conversion if ¢ and 5
are cells starting at X, and ¢ is the contraction of a part P of X, and 7 is the con-
traction of Q, then ¢ < % will mean that P is part of Q.) “£ 4 7" is defined to
mean that ¢ and v are coinitial and not ¢ < .

The derivative, ¢[n, of & with respect to 7, is a set assumed to be associated with
each ordered pair £, % of coinitial cells. If it is not empty, its members (the residuals
of ¢ with respect to n) are assumed to be cells starting at the terminus of 4. (For
A-conversion, residuals are defined in [2, p. 18].)

A reduction from A to Bis a sequence &,, - - -, &, Of cells (called steps of the reduc-
tion) such that £, starts at A4, each &, , starts at the terminus of £, and £, terminates
at B. 4 and B are called the start and terminus of the reduction and m is the length
of the reduction. Letters “p”, “¢”, “+” will denote reductions; if m = 1, the
reduction will not be distinguished from its one step. For each point A4 there is a
null reduction from A to A, with length O; all null reductions will be called *“0”.

The sum, p + o, of a reduction p and a reduction ¢ which starts at the terminus
of p, is the result of putting the steps of ¢ in order after the steps of p; also p + 0
and 0 + p are defined to be p.

The derivative, /p, of £ with respect to a reduction p coinitial with ¢, is defined
by induction thus:

£0=¢
¢/(p + m) = union of all ¢/n for ¢ in ¢/p.
For a set «, afp is the union of all ¢/p for all £ in c.
Notice the following properties of sums and derivatives:

p+@+D)=(p+0)+r
e/(p + o) = («/p)/o,
Slp= 0.
A development of a set « is a reduction &,,..., &, such that £, is in « and for
each i,
Sarisine/(§ + -+ + £&).
Such a development is complete just when
of(ér+ -+ &) = 2.
It can be seen that if p is a development of «, and o starts at the terminus of p,
then o + o is a (complete) development of « if and only if ¢ is a (complete) develop-
ment of «/p.
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For reductions p and o, the equivalence
P ~ o
is defined to mean that p has the same start and terminus as ¢. Then for all ; and
7'2:
poc=>p+m~o+7 and T3+ p~ 73+ 0.

Two points A and B are connected if there is a sequence A,, - - -, A, of points
such that 4, = A4, 4, = B, and for each i there is a cell from A4,_, to A4, or from
A, to A;_,. For example in Figure 1, A, and A4g are connected, there being cells
from A, to Ay, A; to Ay, A3 to A,, and so on.

FIGURE 1

One of the main tools used in this paper is the concept of Minimal Complete
Development® which will now be defined; it is very like a concept used by Curry
and Feys in part of their proof of the Church-Rosser Theorem in [3, §4C3]. A
cell ¢ is minimal in a set 8 of cells if £ € 8 and

neB and n# E=>nKE

A complete development, £, + - - - 4 &, of a set o of cells is an MCD of « if for
each i, £,,, is minimal in o/(¢; + - -+ + £).

Finally, “ ¢/{ &K 9/ is defined to mean that there do not exist ¢ in £/{ and
in 5/ such that & < %, so in particular it is true if either £/{ or /{ is empty.

§2. Main theorem. The Church-Rosser property is the abstract analogue of the
conclusion of the Church-Rosser Theorem; it says that for any connected points
A and B, there exist reductions p and o starting at 4 and B respectively, with a
common terminus. (See Figure 2.)

FIGURE 2
3 Called “MCD” for short.
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This property can fairly easily [3, Chapter 4, Theorems 3 and 4] be proved equiva-
lent to the following:

(C) If a reduction p and a cell ¢ are coinitial, then there exist reductions ¢ and ©
such that p + o ~ ¢ + 7. (See Figure 3.)

FiGure 3

THEOREM 1. Property (C) is implied by the conjunction of the following eight
assumptions:
(AD). £<n=>9K¢E
(A2). é<n&n<{=>§¢<L
(A3). If ¢ K =, then &y has no more than one member.
(Ad). /¢ = 2.
(AS). m K €and g Kna = m/§ K nafé.
(A6). If ny< ¢ for i= 1, ---,n, then there exists k such that for all j # k,
75 K e and 7,/€ K /€.
(A7). If ¢ and v are coinitial, then there exist an MCD p of ¢/n and an MCD o
of n/&, such that £ + o ~ n + p.
(AB). If (A7) is true and { is any cell coinitial with ¢ and v, then {[(§é + o) =
L/(n + p) in the following two cases:
() (K éand LK,
(i) n < ¢éand { < ¢ and { K n and {[¢ K 7/¢.

§3. Proof of the main theorem. For any coinitial cells £ and %, £//y is defined to
be the MCD p whose existence is assumed in (A7), If £/ has just one member, then
that member will be called “£/4”, and so using this convention, £/n = £/ in
this case.

Before (C) is derived, the following Lemmas 1-8 will be deduced from
(Al),-- -, (AB): first notice that by (A1), £ K £ for all £.

LemMmA 1. (C) is implied by the following property:

(C). Ifacell £ and an MCD p are coinitial, then there exist MCDs T and o such
thatp + o ~ § + 7.

The proof is by induction on the length of p, using in the basis the fact that any
single cell is an MCD of the set consisting of itself alone, by (A4).

LEMMA 2. Any finite nonempty set of coinitial cells has a minimal member
(by (A2) and (A1)). ,

LemMMmA 3. By (Al),---, (Ad), every finite set of cells has an MCD; in fact, to
each minimal member of the set corresponds an MCD whose first cell is that member.

The proof is by induction on the number of members in the set, using Lemma 2.
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LemMMA 4. To every MCD p corresponds a finite set « of cells, of which p is an
MCD.

Proor. If p is an MCD of B, take « to be the set of all the cells in B whose
derivatives actually occur in p. '

LemMA 5. If p is a development of «, and ¢ &K 7 for all n € «, then &/p has at
most one member, and ¢[p K n/p for all € .

The proof is by induction on the length of p, using (AS5) and (A3).

LEMMA 6. If 91,5 Nm &1, & are mutually coinitial, p is an MCD of
M, ympand EE Ky foralli=1,... . mandj=1,---,n, then

p + any MCD of {&/p, -+, &u/p}
isan MCD of {0y, M €1, - +» &a)-

The proof is by induction on », using Lemma 5.
LeMMA 7. If &, - - -, én are mutually coinitial, and
i>i=§KE
then the reduction {; + - - - + [, defined by letting [, ., be the (sole) member of the
Jfirst of (8/(Ly + - 4+ L))+ -+ (éal(Cy + + - + &) which is not empty, is an
MCD of {£,,- -+, ém}®

The proof is by Lemma 6 (with n = 1), used at most m times.

LemMA 8. Ifpandoare MCDs of {ny, s}, and EKn fori=1, ..., n, then

p~oc and E&lp = Elo.

ProorF. Induction on 7 is used.

When n = 0: the only possible MCD is null.

When n = 1: the only MCD is 7, itself.

When n > 1: 9,,- -+, 1, can be relabelled so that the first cell of p is »,.

Then p=1; + p’, where p' is an MCD of the fewer-than-n cells in
{na/n1, -+ + 5 Mafny}. If o starts with the same cell as p, then ¢ = %, + o, where ¢’ is
an MCD of {ns/9;, -+, 7./m}. By the induction-hypothesis, p’ ~ o', and hence
p =~ o. Also £/n, has at most one member, ¢, and by (AS), ¢ K /9, for each
i=2,--+,n So again by the induction-hypothesis, ¢'/p’ = &' /o’ and therefore
€lp = &fo.

Now suppose that the first cell of ¢ is not 5,; then 7,, - - -, 4, can be relabelled
so that the first cell of o is 75, and so 0 = %, + ¢, where o’ is an MCD of the fewer-
than-n cells in {5;/9s, - - -, 7a/72}. The induction-step now breaks into two stages.

Stage 1. By definition of p and o as MCDs, 5, &K ny for all i # 1, and 5, &K 9,
for all j # 2. Therefore by (AS), fori =3,..-,n.

n/m K N2/
If /7, is not empty, then it must have at most one member, by (A3), and by above
and Lemma 3 there exists an MCD of {na/n,, - -, 9./7:} whose first cell is 95/7;.
(See Figure 4.) Suppose this MCD is (33//9,) + p"; then p” is an MCD of

{(3/1)/(m2lm), « - - » () (alfn1)}

which is the same, by definition, as
alCny + m2m), + - 1al(ns + affmi)}.
8 7, is defined to be £o.
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By the induction-hypothesis, p’ =~ (n3//n1) + p", because both reductions are
MCDs of {na/n1, -, Mafn1}. If na/n1 is empty, define p” to be p’. Then (na/n,)

+p" =0+ p" = p'.

FIGURE 4

Residuals of ¢. If € = o for some i, then £/o = £/p = 0 by definition of
complete development. From now on, assume that § £, for i=1,---,n By
(A3), &/x, either is empty or contains only one cell, &'. If £/n, is empty, then £/p
and £/(n; + (n2//n1) + p") are both empty. If ¢/, contains only £, then by (AS),
€ RKypyfn for i=2,..-,n Hence &/p’ = &/((n2)n) + p7) by the induction-
hypothesis applied to p’, (72/11) + p”, €. Also, by (A3) £€/(n4//n,) has at most one
member. Therefore

€lp = Eltns + ¢) = &1 = E[((alms) + p7) = E/(ny + (raffn0) + 7).

Summarizing: whether 7,3/, is empty or not, (41 + (n2/7,) + p") is an MCD of
{n1, - - -, 3.} with the same terminus as p, and the derivatives of ¢ are the same with
tespect to both reductions. Similarly, if o” is an MCD of

{na/(a + n1/n2)s - - - s Mal(nz + Ma/ma)}
then (ng + (1/fn2) + o) is an MCD of {x;, - - -, 7.} with the same terminus and
derivative of ¢ as o has. (See Figure 5.)

FiGuRre §
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Stage 2. By (A7), 71 + (n2/m1) = n2 + (m1//2) and by (A8) part (i) the deriva-
tives of £ and of 7, - - -, 7, are the same with respect to either reduction (from
Stage 1, each derivative can be seen to have at most one member). Hence applying
the induction-hypothesis to p”, 0" and £/(n; + 7./,) (which is the same as
£/(na + m1/lnz)) shows that p” ~ ¢” and

E[(n1 + (2/m1) + p7) = &/(n + (nalfny) + 07) = €/(na + (n/nz) + o).
Therefore, using Stage 1,

P =0+ (affn) + p7) = (1 + (alfn) + ") = (na + (ufn2) + ¢") > o,

and £/p = £/o, as required.

DeFiNiTION 1. For any mutually coinitial cells £, 5y,--+, 7, & £&MCD of
{n1,*+, 1} is @ minimal complete reduction constructed according to the follow-
ing rules.*

If n = 0, define the &-MCD to be 0. Otherwise, first renumber the cells 95, - - -, 94
so that for some number m:

fori=1,.--,m, § K nand £ # n,; (if there are no such =;, set m = 0),

fori=m+1),---,mé<noré=nm,.

Also, using Lemma 2, number 7,41, -, 7, so that

h >j=> 77m+hK’7m+I

and if £ = 5., for some k, arrange the cells so that k = 1. (This is possible
because by (A1) and the definition of m, ¢ would be minimal in {gp+1, "+, 7n}.)
Notice that 9y, &Ky for i=1,---,m and j=1,..., (n — m) because other-
wise, either £ < yp.; < OF € = np4y; <, Which both imply ¢ < 7, contrary
to the definition of i. Hence by Lemma 6, if p is any MCD of {n,, - -, 7} and o
is any MCD of {n,+1/p, -, 7a/p}, then p + o will be an MCD of {n,,---, 1.}
To define a §-MCD, it remains to give rules for constructing p and a.

Define p to be the last member of a sequence py, p4, - - - of reductions constructed
as follows. Choose p, = 0. To construct p; ., notice first that if p, is constructed
and is part of an MCD of {»;, - -, 7}, then by Lemma 5, &/p, & n,/p; for i =
1,---, m, and ¢/p, has at most one member £'. Also the proof of Lemma 3 shows
that each 7,/p, has at most one member %; (for i = 1, - ., m) since p, is part of an
MCD.

(i) If {53, - - -, nn} is empty, that is p, is a complete reduction of {ny,-- -, 7m},
end the sequence at p,.

Gi) If {n},- -+, 7} is not empty but there are no 5} < ¢, choose any cell {
minimal in {3, - - -, 95} and define p, .1 = p, + L.

(iii) If there are some %; < &', choose £ to be the one of these 7 given by (A6)
and define p,.; = p,. + {. { is minimal in {5}, - - -, 7},} because for those 7; < &,
(A6) implies that n; & ¢, and for those 7; &K &', (A2) and the fact that { < £ imply
that 7; K £.

4 In terms of A-reduction, a ¢-MCD is an MCD in which contractions in £ are done first (in
a certain order), then contractions which do not overlap ¢, and finally contractions of parts
containing ¢.
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For the second part, o, of the {-MCD, notice that by Lemma 5, 7,,.,/p has at
most one member np 44, for j = 1,--«, (n — m). Also by Lemma 5,

h>j=>nnn/p K Mmssle

since p is a development (perhaps not complete) of {91, « * = , My N+ 53 AN Py &K 7
fori=1,---,mand for i = m + j. In other words,

h>j=men K meg
so the reduction of {1, - - -, 75} defined as in Lemma 7 will be an MCD. Choose
o to be this reduction, but if m = n, choose o to be 0.

It can be seen from the definition that any set {»,, - - - , 7,} Will have at least one
£-MCD for each £ coinitial with the set.

With the tools now built up, the main part of the proof of the theorem can begin.
By Lemma 1 it is enough to prove (C,), which says that if a cell £ and an MCD p
are coinitial, then there exist MCDs = and o such that p + ¢ ~ § + 7. Let
{n1, - - -, 7.} be a finite set of cells of which p is an MCD, and let p* be a &--MCD
of {ny, - -+, 1,}. By Lemma 8, p* ~ p, so, replacing p by p* in (C,), it is enough to
prove

(Co). If & myy- -+, mg are mutually coinitial and p is a &MCD of {1, , 7}y
then there exist an MCD, 1, of {9:/€,- - -, 1,/€} and an MCD, o, such that p + ¢ ~
f + 7.

The proof of this property will be split into several parts, according to the
relationships between 7,,: -+, 7, and &.

LeMMA 9. (C,) is true if either

(@) fori=1,---,n K nand £ # n, 0r

(ii) for some i, £ = 7.

Furthermore, in these two cases o is an MCD of the set &lp, and if { is any cell
coinitial with £ such that L& and L L pfori=1,--- ,n, thenlfp + o = {/¢ + =.

The proof is by induction on n; the clause about { has been put in just to make the
induction-step work.

Basis. When #n =0 and so p = 0: choose + =0 and ¢ = £ Then ~ is an
MCD of the empty set and ¢ is an MCD of the set {£} which is the same as £/p.

Case (1) of the induction-step. Assume that n > 0 and that the lemma is true in
both cases (i) and (ii) for ali n” < n — 1; suppose that &, »,,- -+, 1, p and { satisfy
the assumptions in the lemma, and that éK» and £ #£ 9, for i=1,---,n
Renumber the 7, - - -, 7, so that the first cell of p is 5, ; this cell will be called 4

FIGURE 6
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for short. Then p =  + p’ for some reduction p’. By (A3), /4 has at most one
member, and by (A7), ¢ + n/é ~ n + &/n. (See Figure 6.)

Also ,
(l) ‘m/fK"?/f fori=2,---,n.

Proor. Since pis an MCD, n, K pfori = 2,---,n.

If n; K £, then by (A5), n,/€ K 9/€.

If 7, < £, then by the assumption that p is a &-MCD, » must have been chosen
by clause (iii) of Definition 1. Hence 7,/¢ & /¢ by (A6).

Hence
)] (€ + 2/§) = n/(n + &fn) fori=2,---,n.

Proor. Asfor (1), Knfori=2,---,n.

If 7, &K €, then use (A8) part (i).

If 9y < £, then as for (1), » must have been chosen by Definition 1(iii), and
hence 7 < £. Now use part (ii) of (A8), together with (1).

Further, by part (i) of (A8)

3 L(E + ) = L + &)

Now by (A3) there are no more than #n — 1 members of {nz/n, : - -, 9a/9}. If any
of &/m, {{n, nafn, -+, Mafn is not empty, suppose its sole member is ¢, ¢, 95, -,
or 7, respectively. By (A5) applied three times; for i = 2,..-,n,

@ UnRomn, &K mfns Ln K &

The proof now splits up into two subcases, according as £/y is empty or not.

Subcase (1) (see Figure 7). When £/q is not empty, then its sole member is £'.
By Definition 1 there exists a ¢-MCD, p", of {53, - -, 75}. By Lemma 8 and (4),
p=p’s €l =E1" e’ = Em)p"
By (4), the induction-hypothesis can be applied to &, {', {na,---, 9.} and p".
(Case (ii) of the induction-hypothesis is applied if ¢ = »; for some i, otherwise
Case (i) is used.) Hence there exist an MCD, 7', of {n3/¢’, -+, 74/€'} and an MCD,
o, of £/p” such that p* 4+ o =~ ¢ + ' and {'/(p” + o) = {'/(¢' + 7).

FIGURE 7
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Define = to be (//£) + . Hence
§+ =6+ @O+ T 2+ + T2+ p  Foxg+p +o=p+o.
Now by (2), if 5,/ is not empty,

wE = (mI(EM) = 0/t + £lm) = n/(€ + /)
so 7’ is an MCD of {no/(¢ + 9/€), - - -, m/(§ + 1//€)}; hence by (1) and Lemma 6,
7 is an MCD of {,/¢, - - -, 9,/£}, as required. Also
El" =Elp" = EMp" =&l + p) = Elp
so o is an MCD of £/p.
For the derivatives of {: if /4 is not empty, then
U+ o)=L+ p +0)=T/(p + o) =T[(p" + o)
= ['/(¢ + ') by the induction-hypothesis applied to p”
= [/ + &)+ = /(€ + 0/é)[~" by (3)
= [/(¢ + 7) as required.
If ¢/y is empty, then {/(n + £//7) will be empty, and by (2), so will {/(¢ + 5/&).
Therefore {/(¢ + 7) will be empty; {/(p + o) will also be empty because it is the
same as ({/m)/(p’ + o).
Subcase (II) (see Figure 8). When §¢/n is empty, then so is £/p. Therefore
}7 =1 +20 =7+ §lfn = £ + 9//§ and by (2), 7/(§ + 1f/€) = n/Ca + &£/n) = ndn
ori=2,---,n.

FIGURE 8

Choose 7 to be (//£€) + p’ and o to be 0. The rest of the reasoning is the same as in
Subcase (I), replacing £’ by 0 and +' by p’, and letting p* = p'.

Case (ii) of the induction-step. Assuming the lemma, in both cases, for all
n' < n — 1, suppose that £, 7,,:++, 7, p and { satisfy the assumptions in the
lemma, and that ¢ = 5, for some i. Then ¢ = 9,4, where m is defined in the con-
struction of p by Definition 1. By this construction, there exist a £-MCD, p’, of
{71, > 1m} and an MCD, p”, such that

if £/p’ contains only one cell ¢, then p = p’ + ¢ + p” and

if £/p’ is empty, then p = p’ + 0 + p”. (See Figure 9.)
Now m < n — 1, so applying Case (i) of the induction-hypothesis to {5, - - -, 7a},
£ and p’, gives an MCD # of {n,/¢, -+ -, 7/€} and an MCD o’ of £/p’ such that

©) E+ 7 xp +0 and M€+ T) =¥ + 7)
for every cell {* such that {* & 7, for i = 1,- -+, m and {* K £.
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FIGURE 9

Since £/p’ has at most one member, £, the MCD o’ must be either 0 or ¢’ according
as £/p’ is empty or not. Therefore by a previous remark, p = p’ + o’ + p”. Also,
by its definition, p” is an MCD of {9n+2/(p’ + &), -, 7./(p’ + &')}. Choose = to
be (7' + p") and o to be 0. Then
4 r=f+ 7 +p 2p+d +p " =p=p+0=p+o.

Also ¢ is an MCD of £/p, because £/p = 7m 41/p Which is empty, since p is a com-
plete development.

The reduction = is an MCD of {n,/¢, - - -, 7./£}.

Proor. The second part of 7 is p”, which is an MCD of

{’7m+2/(P' +0'),: -, "lu/(P’ + a’)}'
Now forj=2,---,(n — m),
Nm+s/(p" + 0°) = nmas /(€ + 7') by (5) with 9y, as ¥,
= (Mm+4/E)/7".

Also 9y €K pféfori=1,.-., mby (AS). Hence by Lemma 6, = is an MCD of
/€« s mlé Dmaal€, -+ - s 1a/€}, Which is the same as {n,/§, - - -, 7./€} by (Ad),
‘ince NMm+1 = f.

As for the derivatives of {;

E+n)=lE+ 7 +p) = + o + p") by (5 with { as the (¥,
= {lp = {/(p + o),

as required.

LemMMmA 10. (Cp)istrueif < € and o, # £ for i = 1,. .-, n. Further, o is an
MCD of a subset of ¢/p, and if { is any cell coinitial with & such that { K ¢ and

CK "hfo" i= 1’ e, Ny then Z/(P + G) = :/(f + ‘r)'
The proof is by induction on #; notice that ¢ might not be an MCD of the whole

of ¢/p.8

5 But if all derivative sets are finite, o can be made an MCD of the whole set.
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Basis,. Whenn =0:letr =0and o = ¢

Induction-step. When n > 0: if there are no », with £ < %, use Case (i) of
Lemma 9. Otherwise, using Definition 1, p = p’ + p*, where p’ is a ¢{-MCD of
{n1, -+, na-1}, and p* is either 0 or ' according as %,/p’ is empty or has one
member 4. Also § <%, and 5, &K n for i = 1,.--,(n — 1), by Definition 1.
Call 9, ““n” for short.

By the induction-hypothesis applied to £, p' and {n;, - - -, 7,-1}, there exist an
MCD 7' of {n,/£, -« +, 7n-1/€}, and an MCD ¢’ of a subset of £/p’ such that

©® £+ 7 =p +0 and ¥+ ) =" + o)
for any cell {* such that {* < £ and {* K o fori = 1,---, n — 1. (See Figure 10.)

FIGURE 10

Now 7 K £ since £ < 7, so by (6) applied to 5;

)] (€ + 7) =/ + o).
If n/p’ is empty, then p = p’; in this case define o = o’ and » = +". Hence { + 7 ~
p + oand /(£ + 1) = {/(p + o) by (6). Also ¢ is an MCD of a subset of £/p’,
which is the same as £/p. Finally, » would be an MCD of {n,/¢, - - -, 7./ €} if (0./O)]7
were empty and at each stage v* of =, (n,/€)/7* K (n/&)/7*. (A stage of ~ is any
reduction 7* such that » = +* + 7, for some 7,.) The former is true because
n/(p’ + o') is empty and by (7) is the same as n/(¢ + 7), which is (1,/£)/r. The latter
is true by Lemma 5, since 5,/¢ & n,/¢ by (A5).

From now on, assume that 5/p’ is not empty. Then

®) /e’ K élp' and Ifp"' Ku/p' and I/p" K €&/p'.

ProOF. p' is an MCD of {9, --,7,-1} and hence is a development of
{6, 11, -y Mu-1}- Since n K fand n K, fori = 1,---,n — 1, Lemma 5 implies
that 9/p’ &K &/p’. Similarly {/p’ &K £/p’. p' is also a development of {n, s, -+, Pa-1}
so by Lemma 5, {/p’ K 5/p’.

Let {&5,---, &} (h 2 0) be the members of £/p’ whose derivatives are the cells
of o' (Lemma 4 ensures that such a finite set does exist); then ¢’ is an MCD of
{£1,- -, £x}. Also let 7' be the sole member of /p’, and {' be the sole member of
{/p’ if that set is not empty. By (8), " &K ¢, and ('K § for i = 1,---, h, and
U K 9 (if £ exists).
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Now by Definition 1 there exists an 5"-MCD, o*, of {£,, - - -, £}, and by Lemma
8, o' ~ o* and %'Jo* = %’[d’, because n' K § for i = 1,---, h. Similarly {'/e* =
{'/o’. (See Figure 11.)

FIGURE 11

Lemma 9 can be applied to ', %, {1, - -, &} and o* (using Case (ii) or (i)
according as %’ is or is not one of &,---, §,) to obtain an MCD, +”, of
{&i/n's - - -, &/n'} and an MCD, o”, of %'/o* such that
©) o*+o" ~y + 7 and If(o* + ") = U'[(y' + =) if {’ exists.

Define 7 to be 7" + ¢" and o to be +". Then o is an MCD of {£,/v',---, &/1'},
which is a subset of (£/p")/n’, which is ¢{/p. By Lemma 6, = will be an MCD of
lé, -, nal€} if a/E K y/éfori=1,---,n — 1and ¢" is an MCD of (n./§)/7".
But the former is true by (AS5), and for the latter, ¢” is an MCD of 5’/o* which is
the same as 7/(§ + 7') because y'/o* = y'[d’ = (9/p))o’ = 3/(p’ + &) = /(£ + T')
by (7). So 7is an MCD of {,/£, - - -, 7,/£}. Also
Et+tr=F+7T+e)>2( +d +3
2+t +d)x(p+7 +7)=p+o
It remains to show that the derivatives of { are the same with respect to ¢ +
and p + o. If {/p’ is empty, then so will be {/(p + o). Also {/(p’ + ¢’) and hence by
(6), L/(¢ + *7), will be empty. Therefore {/(¢ + 7) will be empty too. Finally, if
{/p’ is not empty, and (' is its sole member, then
Yo+ o) =" + 7' + o) =¥/(n" + 6) = ['/(c* + o") by (9), since o = +*
= ({'/o*)]o" = ({'[o")]o” = {'/(0’ + ¢") = {[(p" + o’ + o)
={/(¢ + + + ") by(6),
= {(§ + 7),
completing the proof of Lemma 10.
LemMMma 11, (Cpistrueif E £ pfori=1,--- n.
PrROOF. Suppose that &, {,---, 7.} and p are as in (C;). Then since p is a
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£-MCD, Definition 1 gives a number m, a &-MCD p’ of {1, - -, 7}, and an MCD
p" of {nus1/p’s*++, ma/p’} such that p = p’ + p". Also, by definition of m, ¢ &K 9,
and K pyfori=1,---,mandj=1,-.-,(n — m), so there must be at most
one member in each of £/p’ and 7,.,y/p’, by Lemma 5. Further, by a proof like
that of (8), with 7, instead of 7;

(10) Tmeslp’ K Elp'.
(Here, 9,45 &K £ because ¢ < 1, ; by definition of m.)

(7’1’ ree, nm’ nm-l»l’ ----ﬂn)

FIGURE 12

Lemma 9(i) applied to £, 7y, - - -, 7, and p’ gives an MCD, =, of {m/£, - - -, 1/€)
and an MCD, ¢, of £/p’ such that

(11) P ~é+e and I + o) = [H(E + )

for any cell {* such that {* & £ and {* K 5, for i = 1,.-., m. (See Figure 12.)
Now %, +; satisfies the conditions of (11), so

(12) Mm+il(p" + &) = msf(€ + 7).

Define np 41, + 5 7n, £ to be the sole members of 9y 1/p’s - -, 7afp’, é/p’ respec-
tively, for each of these sets which is not empty. Since ¢’ is an MCD of ¢/p’, ¢’
must be 0 or & according as £/p’ is or is not empty.

Case 1. Suppose that ¢/p’ is not empty. Then by Definition 1 there exists a
£-MCD, p*, of {nn+1,-*+, 7.} and by Lemma 8, p* ~ p". By (10), 4., &K & for
j=1+.+,(n — m). Therefore, Lemma 10 (or Lemma 9(ii) if & is one of
Tm+1s s M) €an be applied to &', np.1,- -+, 7r and p* to give an MCD, 77, of
{mm+1/E, -, mu/€} and an MCD, o, of a subset of ¢'/p* such that & + +" ~
p* + o. (See Figure 13.)

Define ~ to be 7' + +". Now +" is an MCD of {(n+1/6)/7, - - -, (9./€)/7"} because
forj=1,---,n —m, s

Mm+sl€ = Mmssl(p’ + &) = m+s/(§ + 7) by (12), since ¢’ = ¢';
= (’7m+!/§)/7'°
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FIGURE 13

Alsofori=1,---,mandj=1,-+-,n — m, 9y +,;/¢ &K n,/¢ by (AS), so by Lemma
6, is an MCD of {n,/¢, - - -, n,/£}. Finally,

E+r=E+T+) (@ +0 +1)
2+ &+ )2+ +) 2+ to)=p+to.
Case 2. Suppose that ¢/p’ is empty. In this case, o' = 0; define o to be 0 and
T to be ' + p". (See Figure 14.)

FIGURE 14

The rest of the reasoning is the same as in Case 1, replacing ¢’ by 0 and =" by p”,
and letting p* be p".

Now Lemmas 11 and 9(ii) together imply that (C,) is true in all possible cases,
so the proof of Theorem 1 is complete.

§4. Relation of Theorem 1 to Chapter 4 of [3]. In [3, Chapter 4], Curry deduced
the Church-Rosser property from certain properties (Hp),---, (H,). By inter-
preting the relation “<* as Curry’s relation “f” it can be shown that any system
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satisfying (H,), - - - , (H) also satisfies (Al),---, (A8). Also a system which satis-
fies (Al), - - -, (A8) but not (Hy), - - -, (H;) can be constructed, using the fact that
(H_) is more restrictive than the corresponding assumption (A3). However, Curry
actually deduced more than the Church-Rosser property from his assumptions:
he showed that any two developments of a finite coinitial set of cells have the same
terminus. I have not been able to deduce this from (Al), -, (A8).

REFERENCES

[1] H. B. CUrrY, A new proof of the Church-Rosser Theorem, Koninklijke Nederlandse
Akademie van Wetenschappen. Proceedings. Series A, vol. 55 (1952), pp. 16-22.

[2] A. CuURCH, The calculi of Lambda-conversion, Princeton Univ. Press, Princeton, N.J.,
1941.

[3] H. B. Curry and R. Feys, Combinatory logic, North-Holland, Amsterdam, 1958.

[4] M. H. A. NEWMAN, On theories with a combinatorial definition of *‘ equivalence’’, Annals
of mathematics, vol. 43 (1942), pp. 223-243.

[5] J. B. ROSSER, Review of *‘A new proof of the Church-Rosser theorem,” this JOURNAL,
vol. 21 (1956), p. 377.

[6] D. E. SCHROER, The Church-Rosser theorem, Ph.D. thesis, University of Illinois, Urbana,
IlL., 1965.

UNIVERSITY OF BRISTOL

https://doi.org/10.2307/2270849 Published online by Cambridge University Press


https://doi.org/10.2307/2270849



