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AN ABSTRACT FORM OF THE CHURCH-ROSSER THEOREM. I 

R. HINDLEY 

One of the basic results in the theory of A-conversion is the Church-Rosser 
Theorem, which says that, using certain rules for conversion and reduction of 
A-formulae, any two interconvertible formulae can both be reduced to one formula. 
(I will not explain this in detail, as A-conversion is described fully in Church's [2], 
where the Church-Rosser Theorem is Theorem 7 XXVII; see also Chapter 4 of 
Curry and Feys' [3].) The first part of the present paper contains an abstract form 
of this theorem. 

In the second part the abstract result will be applied to prove the Church-Rosser 
Theorem for A-reduction, and for any reduction defined as a series of replacements 
of parts of formulae (satisfying certain conditions); this covers Church's S-reduc-
tion, and Curry's weak reduction in combinatory logic (with or without extra 
arithmetical combinators, and with or without type-restrictions), but does not 
cover strong reduction [3, §6F] or Curry's A — 17-reduction [3, §4D].* 

At the end of Part II a simple abstract theorem will be proved which extends 
the Church-Rosser Theorem to include A — ^-reduction; this seems to be simpler 
than the extension proof in [3, Chapter 4]. 

Abstract forms of the Church-Rosser Theorem have already been proved by 
Newman in [4] and Curry in [1], but Rosser and Schroer pointed out in [5] that 
they do not cover the original theorem as a special case. In [6], Schroer has proved 
an abstract result which does cover the original one; however his methods are quite 
different from those used here, and I do not think his result covers^ or is covered by, 
the result in the present paper. Part of Curry's proof of the Church-Rosser Theorem 
in [3, Chapter 4] is in an abstract setting, though the assumptions he uses are 
slightly more restrictive than the ones used here. 

I am very grateful to R. Harrop for his help and supervision during the work for 
this paper (which is part of my thesis at the University of Newcastle upon Tyne), 
and to the Northern Ireland Ministry of Education, who financed it through a 
Research Studentship. 

§1. Primitive ideas. Most of the following notation is from Curry's [1], with 
some from Schroer [6]. 

There is assumed to be a set of objects called points; these may be interpreted as 
A-formulae (more precisely, as equivalence classes with respect to change of bound 
variable), and they will be denoted by capital letters. 

There are also certain cells; to each cell is associated two points, its start and its 

Received May 16, 1967. 
1 Part II is to be published later. 
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terminus, and the cell is said to be from its start to its terminus. Cells will be denoted 
by " I " , " V , " S ' \ and in A-conversion a cell is a single contraction [2, p. 14]. 

Every set of cells considered here will be coinitial; that is, all its members have 
the same start; "a", "j8" will denote such sets, and "{ft, •• •, ft,}" will denote the 
set whose only members are ft, • • •, ft,, and the empty set 0 when n = 0. Unless 
stated otherwise it will be assumed that in a set {ft, • • •, ft,} members with distinct 
indices are distinct. One-member sets will not be distinguished from their sole 
members. For any sets au • • •, a„ of cells, all coinitial, "{alt • • •, an}" will denote 
the union of o ,̂ • • •, an, and will be empty when n = 0. 

Instead of the relation J in [1], I shall assume that a binary relation -< has been 
defined to hold between certain pairs of coinitial cells. (In A-conversion if f and 17 
are cells starting at X, and £ is the contraction of a part P of X, and i? is the con­
traction of Q, then £ < -q will mean that P is part of Q.) "£ K V *s defined to 
mean that £ and 17 are coinitial and not £ -< 77. 

The derivative, £/r), of £ with respect to 17, is a set assumed to be associated with 
each ordered pair f, 17 of coinitial cells. If it is not empty, its members (the residuals 
of £ with respect to 17) are assumed to be cells starting at the terminus of 17. (For 
A-conversion, residuals are defined in [2, p. 18].) 

A reduction from A to Bis a. sequence &,•••,&, of cells (called steps of the reduc­
tion) such that & starts at A, each £,+1 starts at the terminus of ft, and ft, terminates 
at 5. A and 5 are called the start and terminus of the reduction and «i is the length 
of the reduction. Letters "p"» "tf", " T " will denote reductions; if m = 1, the 
reduction will not be distinguished from its one step. For each point A there is a 
null reduction from A to A, with length 0; all null reductions will be called "0" . 

The sum, p + a, of a reduction p and a reduction a which starts at the terminus 
of p, is the result of putting the steps of Q in order after the steps of p; also p + 0 
and 0 + p are defined to be p. 

The derivative, ftp, of f with respect to a reduction p coinitial with ft is defined 
by induction thus: 

ftO = ft 
£/(p + v) — union of all ft/77 for ft in ftp. 

For a set a, a/p is the union of all ftp for all £ in a. 
Notice the following properties of sums and derivatives: 

P + (a + T) = (p + o) + T, 

"/(P + <r) = (a/pVc, 
0/p = 0 . 

J4 development of a set a is a reduction ft ft, such that ft is in a and for 
each /, 

ft+1isin«/(ft + ••• + ft). 
Such a development is complete just when 

«/(ft +• • • + ft)= 0 . 
It can be seen that if p is a development of a, and o starts at the terminus of p, 
then p + a is a (complete) development of a if and only if a is a (complete) develop­
ment of a/p. 
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For reductions p and a, the equivalence 
p ~ a 

is defined to mean that p has the same start and terminus as a. Then for all rx and 
T 2 : 

p~a=>p + r1~a + r1 and Ta + p ~ T2 + a. 

Two points A and 5 are connected if there is a sequence A0, • • •, An of points 
such that A0 = A, An = B, and for each i there is a cell from AK-X to /*, or from 
^, to ^(_i. For example in Figure 1, A0 and -46 are connected, there being cells 
from A0 to Alt A± to Aa, A3 to ^42, and so on. 

FIGURE 1 

One of the main tools used in this paper is the concept of Minimal Complete 
Development2 which will now be defined; it is very like a concept used by Curry 
and Feys in part of their proof of the Church-Rosser Theorem in [3, §4C3]. A 
cell | is minimal in a set jS of cells if £ e j8 and 

r) e jS and -q ¥= f => i? K £ 

A complete development, & + ••• + £„» of a set a of cells is an MCD of a if for 
each /, f<+1 is minimal in a/(£j + • • • + f,). 

Finally, "£/£ K V£" is defined to mean that there do not exist (' in |/£ and •>?' 
in 17/C such that | ' -< i?'> so in particular it is true if either £/£ or rj/C is empty. 

§2. Main theorem. The Church-Rosser property is the abstract analogue of the 
conclusion of the Church-Rosser Theorem; it says that for any connected points 
A and B, there exist reductions p and 0 starting at A and B respectively, with a 
common terminus. (See Figure 2.) 

FIGURE 2 

a Called "MCD" for short. 
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This property can fairly easily [3, Chapter 4, Theorems 3 and 4] be proved equiva­
lent to the following: 

(C) If a reduction p and a cell f are coinitial, then there exist reductions o and r 
such that p + a ~ i + r. (See Figure 3.) 

FIGURE 3 

THEOREM 1. Property (C) is implied by the conjunction of the following eight 
assumptions: 

(Al). i<v=>r,K(. 
(A2). t<r)&v<t~$<l 
(A3). If^K't, then £\t\ has no more than one member. 
(A4). m = 0-
(A5). i?! K £ and *h K *72 => "nilIK Wf• 
(A6). If %< $ for i = 1, •• -,n, then there exists k such that for all j / k, 

•q, K Vk and i?,/f K W£-
(A7). If ( and rj are coinitial, then there exist an MCD p of if-q and an MCD a 

of-qjl, such that f + a ~ -q + p. 
(A8). If (A7) is true and £ is any cell coinitial with £ and rj, then £/(f + a) = 

(.fry + p) in the following two cases: 
(i) CKiandCKv, 
(ii) v < £ and (,< £ and (,Kr) and £/£ Ky/i. 

§3. Proof of the main theorem. For any coinitial cells £ and 17, f//?? is defined to 
be the MCD p whose existence is assumed in (A7). If £A? has just one member, then 
that member will be called "£/V\ and so using this convention, £//ij = f/17 in 
this case. 

Before (C) is derived, the following Lemmas 1-8 will be deduced from 
(Al), • • •, (A8): first notice that by (Al), £ K £ for all £ 

LEMMA 1. (C) is implied by the following property: 
(Cj). If a cell f and an MCD p are coinitial, then there exist MCDs r and a such 

that p + a ~ £ + r. 
The proof is by induction on the length of p, using in the basis the fact that any 

single cell is an MCD of the set consisting of itself alone, by (A4). 
LEMMA 2. Any finite nonempty set of coinitial cells has a minimal member 

(by (A2) and (Al)). 
LEMMA 3. By (Al), • • •, (A4), every finite set of cells has an MCD; in fact, to 

each minimal member of the set corresponds an MCD whose first cell is that member. 
The proof is by induction on the number of members in the set, using Lemma 2. 
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LEMMA 4. To every MCD p corresponds a finite set a of cells, of which p is an 
MCD. 

PROOF. If p is an MCD of /?, take a to be the set of all the cells in /J whose 
derivatives actually occur in p. 

LEMMA 5. If p is a development of a, and f K v for all 17 e a, then Up has at 
most one member, and $/p K yip for all 17 e a. 

The proof is by induction on the length of p, using (A5) and (A3). 
LEMMA 6. If vu'"> Vm f i» • • •, in are mutually coinitial, p is an MCD of 

faii • • •. Vm} and £, K yjfor all i = \,--,m andj = 1, • • •, n, then 

P + any MCD of{£JP, •••, £,/>} 
is an MCD offa, • • •, t]m, &, • • •, £,}. 

The proof is by induction on n, using Lemma 5. 
LEMMA 7. If f lt • • •, fffl are mutually coinitial, and 

j>i~£,K it 

then the reduction Ci + • • • + £» defined by letting £fc+1 be the (sole) member of the 
first of (iJ(Ci + • • • + tic)), •••,(£m/(k + • • • + Ck)) which is not empty, is an 
MCD of{iu •••, U-3 

The proof is by Lemma 6 (with n — 1), used at most m times. 
LEMMA 8. If p and a are MCDs o/fai, • • •, 17J, and f K Vifor i — 1, • • •, n, then 

p ~ a and Up = tj/o. 
PROOF. Induction on n is used. 
When n = 0: the only possible MCD is null. 
When n = 1: the only MCD is i?i itself. 
When n > 1: ijlt • • •, rjn can be relabelled so that the first cell of p is %. 
Then p = ^ + p, where p is an MCD of the fewer-than-« cells in 

(W^i. •••> Vnhi)- If ° starts with the same cell as p, then a = ^ + a, where </ is 
an MCD of fahi, • • •» Vnhi}- By the induction-hypothesis, p 21 a, and hence 
p ~ o. Also g/r)! has at most one member, £', and by (A5), i' K W^i f°r e a c n 

i = 2, • • •, n. So again by the induction-hypothesis, i'/p' = i'ja and therefore 

Now suppose that the first cell of a is not y\x; then i)a,"-,v* can be relabelled 
so that the first cell of or is T?2, and soa = i)2 + a', where a' is an MCD of the fewer-
than-n cells in fai/r?2. • • •»Vnhii- The induction-step now breaks into two stages. 

Stage 1. By definition of p and a as MCDs, 17, K *7i for all 1 ^ 1, and 17, +< ija 

for ally =£ 2. Therefore by (A5), for i = 3, • • •, n. 

If W^i ' s n o t empty, then it must have at most one member, by (A3), and by above 
and Lemma 3 there exists an MCD of {172/17!, • • •, W^i} whose first cell is W^i-
(See Figure 4.) Suppose this MCD is (^//fyi) + p">tnen p" is an MCD of 

{(vaMKva/hi), ••> (vnhiVivihi)} 
which is the same, by definition, as 

faa/fai + WA?i)> • • •»Wfai + WA?i)}-
3 (0 is defined to be (0. 
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By the induction-hypothesis, p' ~ (WA?i) + P*> because both reductions are 
MCDs of {172/771,• • •,rjjrjj). If rjihi is empty, define p" to be p. Then (WAh) 
+ p" =0 + P" = p\ 

FIGURE 4 

Residuals of (. If I = 17, for some /, then g/o = £/p = 0 by definition of 
complete development. From now on, assume that f ^ ij4 for i = 1, • • •, n. By 
(A3), !/i?i either is empty or contains only one cell, £'. If 1/17! is empty, then f/p 
and £/(T7! + (T/2//771) + p") are both empty. If l/^j. contains only (', then by (A5), 
£' K171/171 for 1 = 2, • • •, n. Hence f /p ' = f/((W/fi) + P*) by the induction-
hypothesis applied to p', (W/171) + p"> £'• Also, by (A3) £'/(W/ih) bas at most one 
member. Therefore 

€IP = tKvi + p) = f//>' - f/((W/ii) + /»•)- £/0?i + (W/ii) + P*). 
Summarizing: whether 173/17! is empty or not, (17! + (172//171) + p") is an MCD of 

foi. • • •»i?n} with the same terminus as p, and the derivatives of £ are the same with 
respect to both reductions. Similarly, if a" is an MCD of 

{W0?a + Vi/hd, ••-, W0?2 + Vilha)} 
then (17a + (W/^a) + °") is an MCD of {r)U • • •, 17,,} with the same terminus and 
derivative of £ as a has. (See Figure 5.) 

FIGURE 5 
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Stage 2. By (AT), 171 + (ijj^) ^ v* + (vi/hs) and by (A8) part (i) the deriva­
tives of f and of ij3, • • •, t}n are the same with respect to either reduction (from 
Stage 1, each derivative can be seen to have at most one member). Hence applying 
the induction-hypothesis to p", a" and £/(•>?! + 772//??!) (which is the same as 
£/072 + vJlva)) shows that p" ~ o" and 

ildi + (W/ii) + pi = Slim + (WAh) + O = f/fa + (V1I/V2) + O . 

Therefore, using Stage 1, 

p^(vi + (WA?i) + P! - (vi + (WAh) + O * fa + (WA?2) + O - °> 
and £//> = f/<r, as required. 

DEFINITION 1. For any mutually coinitial cells | , t)U • • •, ij„, a f-MCD of 
inu •' •»Vn} is a minimal complete reduction constructed according to the follow­
ing rules.4 

If n = 0, define the f-MCD to be 0. Otherwise, first renumber the cells iji, • • •, ij» 
so that for some number m: 

for i = 1, • • •, m, f K ii and f # 77, ; (if there are no such ij,, set m = 0), 
for i = (m + 1), • • •, n, £ < Vi or £ = 77,. 

Also, using Lemma 2, number i?m+i, • • •, ??„ so that 

and if I = i?m+fc for some k, arrange the cells so that k = 1. (This is possible 
because by (Al) and the definition of m, £ would be minimal in {r)m+1, • • •, ij,,}.) 
Notice that r)m+) K % for i = 1, • • •, m and j — \,--- ,(n — m) because other­
wise, either £ -< Vm+i < Vt ° r £ = Vm+i < Vu which both imply | -< 17,, contrary 
to the definition of 1. Hence by Lemma 6, if p is any MCD of {171, • • •, i?m} and a 
is any MCD of {r)m+i/p, • • •, W/>}» t n e n P + a wiU ° e a n MCD of {??!, • • •, 17,,}. 
To define a £-MCD, it remains to give rules for constructing /> and a. 

Define p to be the last member of a sequence p0, pi, • • • of reductions constructed 
as follows. Choose p0 = 0. To construct pk+1, notice first that if pk is constructed 
and is part of an MCD of {i^, • • •, *?m}> then by Lemma 5, £/pk K WP* for ' = 
1, • • •, m, and $/pk has at most one member £'. Also the proof of Lemma 3 shows 
that each ij,//jfc has at most one member 77,' (for / = 1, • • •, m) since pk is part of an 
MCD. 

(i) If {i?i, • • •, ijm) is empty, that is pk is a complete reduction of fa, • • •, i)m), 
end the sequence at pk. 

(ii) If fa, • • •, 17m} is not empty but there are no IJ{ -< f, choose any cell £ 
minimal in {77̂  •• • ,r]'m} and define pfc+1 = pk + £. 

(iii) If there are some 77,' -< £', choose £ to be the one of these 77J given by (A6) 
and define pk+1 = pk + £. £ is minimal in {iji, • • •, 77̂ } because for those ij(' -< f, 
(A6) implies that ift K £, and for those 77,' K £', (A2) and the fact that £ < (' imply 
that 77,'K£. 

* In terms of A-reduction, a (-MCD is an MCD in which contractions in ( are done first (in 
a certain order), then contractions which do not overlap {, and finally contractions of parts 
containing (. 
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For the second part, a, of the £-MCD, notice that by Lemma 5, ijm+>/p has at 
most one member r)'n+t, for j = I, • • •, (n — MI). Also by Lemma 5, 

h > J => Vm+hlp K Vm+i/p 
since p is a development (perhaps not complete) of {17!, • • •, ijm, *7m+,} and rjn+h K ^ 
for i = 1, • • •, m and for i = m + j . In other words, 

h >j=>y'm+hKv'm+f 
so the reduction of {ijj,+i, • • •, 17̂} defined as in Lemma 7 will be an MCD. Choose 
a to be this reduction, but if m = n, choose a to be 0. 

It can be seen from the definition that any set fa, • • •, 17J will have at least one 
f-MCD for each £ coinitial with the set. 

With the tools now built up, the main part of the proof of the theorem can begin. 
By Lemma 1 it is enough to prove (Ci), which says that if a cell f and an MCD p 
are coinitial, then there exist MCDs T and a such that p + a ~ | + T. Let 
fa, • • •. Vn) be a finite set of cells of which p is an MCD, and let />* be a f-MCD 
of {171, • • •, T?„}. By Lemma 8, p* 2; p, so, replacing p by p* in (Q), it is enough to 
prove 

(C2). If I, iji,'- • •, tjn are mutually coinitial and p is a £-MCD of fa, • • •, 77,,}, 
then there exist an MCD, r, offals, • • •, rjjg} and an MCD, a, such that p + <x ~ 
t+r. 

The proof of this property will be split into several parts, according to the 
relationships between iji, • • •, ijB

 aQd £• 
LEMMA 9. (C2) is true if either 
(i) for i = 1, • • •, n, i K Vt and f ^ rj, or 
(ii) for some i, $ = 171. 

Furthermore, in these two cases a is an MCD of the set £/p, and if I is any cell 
coinitial with £ such that J K $ and I K Vxfor i = 1, • • •, n, then (,/p + a = £/£ + T. 

The proof is by induction on n; the clause about £ has been put in just to make the 
induction-step work. 

BASIS. When n = 0 and so p = 0: choose T = 0 and a = (. Then r is an 
MCD of the empty set and a is an MCD of the set {£} which is the same as £/p. 

Case (i) of the induction-step. Assume that n > 0 and that the lemma is true in 
both cases (i) and (ii) for all ri <* n — 1; suppose that $, rjX, • • •, -qn, p and £ satisfy 
the assumptions in the lemma, and that fK>!i and £ *£ 17, for i = 1, • • •, n. 
Renumber the 171, • • •, ijn so that the first cell of p is 771; this cell will be called 17 

FIGURE 6 
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for short. Then p — i\ + p' for some reduction p. By (A3), f/17 has at most one 
member, and by (A7), $ + 77//£ ~ 17 + £//ij. (See Figure 6.) 

Also 

(1) ml$Kvl£ fori = 2,•••,«. 
PROOF. Since p is an MCD, 17, K y for i = 2, • • •, n. 
If , , K i, then by (A5), *?,/£ K Vf • 
If Vi "< f>t n e n by the assumption that /> is a f-MCD, 97 must have been chosen 

by clause (iii) of Definition 1. Hence 7j,/| K y/£ by (A6). 
Hence 

(2) Wtf + V/6 = WO? + ifa) for/ = 2,---,n. 
PROOF. As for (1), 17, K17 for 1 = 2, • • • , n. 

If i?i K & then use (A8) part (i). 
If rjt -< f, then as for (1), *? must have been chosen by Definition l(iii), and 

hence 17 -< £. Now use part (ii) of (A8), together with (1). 
Further, by part (i) of (A8) 

(3) C/tf + v/10 = £/fo + f//i). 
Now by (A3) there are no more than n — 1 members of {172/17, • • •, i)nh}- If anY 
of £/»7, £A?, i72/»7, • • •, W1? is not empty, suppose its sole member is £', £', 172, • • •, 
or 17̂  respectively. By (A5) applied three times; for / = 2, • • •, n, 

(4) CfoKW* t/vKvih, ChKih-
The proof now splits up into two subcases, according as f/17 is empty or not. 

Subcase (I) (see Figure 7). When $/-q is not empty, then its sole member is £'. 
By Definition 1 there exists a £'-MCD, p", of {rj'2> • • •, 17̂ ,}. By Lemma 8 and (4), 

P'~p\ f/p' = r//, m/p-m/p". 
By (4), the induction-hypothesis can be applied to £', £', {173, • • •, rj'n} and p". 
(Case (ii) of the induction-hypothesis is applied if f' = 17,' for some i, otherwise 
Case (i) is used.) Hence there exist an MCD, r, of {q'Ji', • • •, ^ / f } and an MCD, 
<r, of £'/p" such that / + a ~ f + T' and £'/(/ + a) = £'/(£' + T'). 

FIGURE 7 
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Define T to be (17//1) + T'. Hence 
f + T = f + (ij//£) + T ' ~ i ? + f + T ' ~ r ? + p* + a ~ 7 ? + />' + or = p + a. 

Now by (2), if -q^-q is not empty, 

vilt' = (Wi)/(f/i) = vJ(v + ih) = Wtf + vllO 
so T' is an MCD of {i?2/(f + q//£), • • •, ij„/(f + ij//^)}; hence by (1) and Lemma 6, 
Tis an MCD of {QJZ,•••, W£}» a s required. Also 

f// = f /P' = (f/,)/P' = f/(, + P0 - f/P 

so or is an MCD of £/p. 
For the derivatives of £: if £/*? is not empty, then 

£/(p + a) = {/(, + p' + o) = ?l(p' + a) - C7(p' + a) 
= £'/(£' + T') by the induction-hypothesis applied to p* 
= tt/fo + ^ ) ) / T ' = (£/« + ^//0)/r' by (3) 
= £/(£ + T) as required. 

If £/i? is empty, then £/(T) + |//ij) will be empty, and by (2), so will £/(£ + r^f). 
Therefore £/(£ + T) will be empty; £/(p 4- o) will also be empty because it is the 
same as (Ch)Kp + ")• 

Subcase (II) (see Figure 8). When £/ij is empty, then so is f/p. Therefore 
,, = v + o = v + il/r, ~ f + ,//£ and by (2), ̂ ( f + V/f) = ,,/fo + £//*?) = Wl 
for i = 2, • • •, n. 

FIGURE 8 

Choose T to be (V/f) + p' and a to be 0. The rest of the reasoning is the same as in 
Subcase (I), replacing (' by 0 and r by p', and letting p" = p. 

Case (ii) of the induction-step. Assuming the lemma, in both cases, for all 
«' < n — 1, suppose that f, i?i, • • •, ij», p and £ satisfy the assumptions in the 
lemma, and that f = 7?( for some /. Then f = ijm+1, where m is defined in the con­
struction of p by Definition 1. By this construction, there exist a £-MCD, p', of 
0?i, • • •»W and an MCD, p", such that 

if f/p' contains only one cell £', then p = p' + £' + p" and 
if f/p' is empty, then p = p' + 0 + p". (See Figure 9.) 

Now m £ n — 1, so applying Case (i) of the induction-hypothesis to {ijx, • • •, i;,,}, 
| and p', gives an MCD r of {*;i/£, • • •, W£} and an MCD a of f/p' such that 
(5) | + T' ~ p' + o' and £*/(£ + T') = £*/0»' + O 
for every cell £* such that £* K *̂ for i = 1, • • •, m and t* K £. 
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f or 0 

FIGURE 9 

Since f//>' has at most one member, f', the MCD a' must be either 0 or f' according 
as Sip' is empty or not. Therefore by a previous remark, p = />' + a + p". Also, 
by its definition, p" is an MCD of {i?m+2/(p' + </), • • •»vJ(p' + a')}- Choose r to 
be (T' + />") and a to be 0. Then 

g + T=£ + T' + p"~p' + <j' + p' = p = p + 0 = p + a. 
Also a is an MCD of Up, because f//> = r)m+1fp which is empty, since /> is a com­
plete development. 

The reduction r is an MCD of {rjjg, •••, r)Jg}. 
PROOF. The second part of T is p", which is an MCD of 

{%,+2/0>' + <O,-- - ,W0>'+ *')}. 
Now for./ = 2, •••,(« — m), 

1«+//0>' + °) - *?«+>/(* + T') by (5) with i?m+, as {*, 

Also rim+j/£ K Wf for / = 1, • • •, m by (A5). Hence by Lemma 6, T is an MCD of 
{nJ£,•••,vJS,Vm+ilS,•••,•nJS}, which is the same as {VJ$,• • •,yj® by (A4), 
since r)m+1 = f. 

As for the derivatives of £; 
£/(f + T) = {/(£ + r' + /,') = {/(,' + a' + P") by (5) with { as the t*, 

= C/P = £/0» + a), 
as required. 

LEMMA 10. (C2) is true i f ^ K J and % # f/or j = 1, • • •, n. Further, a is an 
MCD of a subset of £/p, and if £ is any cell coinitial with £ such that £ K f and 
l K mfor i - 1, • • •, n, then £/0> + or) = £/(£ + T). 

The proof is by induction on n; notice that o- might not be an MCD of the whole 
off/p.8 

5 But if all derivative sets are finite, a can be made an MCD of the whole set. 
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BASIS. When n = 0: let T = 0 and a = f. 
Induction-step. When « > 0: if there are no 77, with f -< 77,, use Case (i) of 

Lemma 9. Otherwise, using Definition 1, p = p + p*, where p' is a f-MCD of 
Oh.••• >Vn-i}> and p* is either 0 or 77' according as W/»' is empty or has one 
member •>?'• Also £ < -qn and ijn K Vt f°r ' = *> • • • » ( « — 0» by Definition 1. 
Call ^ " r j " for short. 

By the induction-hypothesis applied to £, p' and {TJJ, • • •, r?B-i}. there exist an 
MCD T' of (W& • • •, i)n-il£}> and an MCD a' of a subset of f/p' such that 
(6) £ + T'~P' + O' and £*/(£ + O = £*/(/>' + O 
for any cell £* such that £* K f and £* K *7i for i = 1, • • •, n — 1. (See Figure 10.) 

FIGURE 10 

Now ij K f since f -< 77, so by (6) applied to 17; 

(7) vKt + T') = V(p' + o0. 
If 77/p' is empty, then p = p';in this case define a = </ and T = T'. Hence f + T ~ 
P + a and £/(f + T) = £/(p + <T) by (6). Also o- is an MCD of a subset of f/p\ 
which is the same as f/p. Finally, T would be an MCD of (Wf> • • •»WO lHvJ0lT 

were empty and at each stage T* of T, (W£) / T * K (Wf)/T*- (A stage of T is any 
reduction T* such that T = T* + TX for some TX.) The former is true because 
T)/(p' + or') is empty and by (7) is the same as rjftg + T), which is (W0/T- The latter 
is true by Lemma 5, since Wf K W£ by (A5). 

From now on, assume that 77/p' is not empty. Then 

(8) VIP'K£IP' and i/p'KW and C / P ' K I / P ' . 

PROOF, p' is an MCD of {171,•••,•»?«-1} and hence is a development of 
{£ *h> • • •, ^n-i}- Since 77 K f and 17 K *?i for / = 1, • • •, « — 1, Lemma 5 implies 
that 77/p' K f/p'- Similarly £/p' K Up- p is also a development of {rj, i i , • • •, i»n-i} 
so by Lemma 5, £/p' K »?//»'• 

Let {f i, • • •, in} (h > 0) be the members of f/p' whose derivatives are the cells 
of a' (Lemma 4 ensures that such a finite set does exist); then a' is an MCD of 
{li» • • •» £n}- Also let 17' be the sole member of 77/p', and £' be the sole member of 
Up' if that set is not empty. By (8), 77' K 6 and £' K & for 1 = 1, • • •, h, and 
C K v' (if C exists). 
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Now by Definition 1 there exists an ij'-MCD, o-*, of {f u • • •, $h}, and by Lemma 
8, a' ~ a* and r)'/o* = r)'/a, because V K 6 for i = 1, • • • ,h. Similarly £'/o* = 
{'/a'. (See Figure 11.) 

FIGURE 11 

Lemma 9 can be applied to £', V, {&» •••>&} and a* (using Case (ii) or (i) 
according as r[ is or is not one of £lf • • •, ffc) to obtain an MCD, T", of 
{£i/V> • • •» Lh'} and an MCD, a", of r?'/** such that 
(9) a* + a' ~ , ' + r" and {'/(o* + o-*) = {'/(,' + T*) if £' exists. 
Define T to be T + a* and a to be T*. Then a is an MCD of {f J17', • • •, f*/V}> 
which is a subset of (£/p')/V. which is f/p. By Lemma 6, T will be an MCD of 
MS, ••-, Vnl& if vJi K Vf for / - 1, • • •, B - 1 and a- is an MCD of(vJi)/r. 
But the former is true by (A5), and for the latter, a" is an MCD of rj'/a* which is 
the same as ij/(f + T') because rj'/a* = V/°"' = (i?//>')/°r' = '?/(/>' + <"') = l/(f + T') 
by (7). So T is an MCD of fo/f. • • •, -qjt). Also 

I + T = (f + T' + a") ~ (p' + a' + a") 
££ (p' + o-* + a") ~ {p + r,' + T") = p + or. 

It remains to show that the derivatives of £ are the same with respect to £ + T 
and p + a. If £/p' is empty, then so will be £/(p + o). Also £/(p' + a') and hence by 
(6), £/(f + T'), will be empty. Therefore £/(£ + T) will be empty too. Finally, if 
Up is not empty, and £' is its sole member, then 
Hip + a) = £/(p' + , ' + «•) = {'/(,' + a) = {'/(«• + a") by (9), since 

- «'/o*)/a" = « » ' = C7K + O - £/(p' + a' + a") 
- { / t f + r' + O by (6), 
= «/(£ + T), 

completing the proof of Lemma 10. 
LEMMA 11. (C2) is true if £ # yifor i = 1, • • •, n. 
PROOF. Suppose that f, {ijx, • • •, 17J and p are as in (Qj). Then since p is a 
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£-MCD, Definition 1 gives a number m, a £-MCD />' of {171, • • •, r)m}, and an MCD 
p" of {nm+Jp', •••, rjjp'} such that p - p + p". Also, by definition of m, f K % 
and ijm+y K »?i for i = 1, • • •, m andy* = 1, • • •, (n — m), so there must be at most 
one member in each of £//>' and rjm+iJp, by Lemma 5. Further, by a proof like 
that of (8), with rjm+j instead of 17; 

(10) W P ' K £//>'• 

(Here, ijm+y K I because £ -< r)m+i by definition of m.) 

FIGURE 12 

Lemma 9(i) applied to £, i?i, • • •, i?m and />' gives an MCD, T', of {iji/f, • • •» W£} 
and an MCD, a', of £//>' such that 

(11) P' + O'~£ + T' and £*/(/>' + <0 = «*/« + O 

for any cell £* such that J * K I and £* K Vt f°r ' — 1» • • • f»». (See Figure 12.) 
Now ijm+y satisfies the conditions of (11), so 

(12) W f o ' + </) = W ( f + T')-

Define i?J,+i,• • •,rj'„, £' to be the sole members of ijffl+1/p',• • •,rjjp, £/p' respec­
tively, for each of these sets which is not empty. Since </ is an MCD of Up', a' 
must be 0 or f' according as g/p' is or is not empty. 

Case 1. Suppose that £/p' is not empty. Then by Definition 1 there exists a 
f-MCD, />*, of {v'm+1, • • •, v'n) and by Lemma 8, />* ~ P". By (10), 7,'m+i K f for 
7 = 1, • • •, (n — rri). Therefore, Lemma 10 (or Lemma 9(ii) if (' is one of 
i?m+i, • • •, v'n) can be applied to f, r/'m+1, • • •, 17; and p* to give an MCD, T", of 
fom+i/f, • • •, i?n/l'} and an MCD, a, of a subset of f/>* such that f + r" ~ 
P* + a. (See Figure 13.) 

Define T to be r + T". Now T* is an MCD of{(r)m+1/£)/T', •••, ( W ^ M because 
forj = 1, •••,« — m, 

iji+y/f = vm+l/(p' + O = *)»+,/(£ + r) by (12), since a' = f; 
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FIGURE 13 

Also for / = 1, • • •, m and./ = 1, • • •, n — m, rjm-uli K yji by (AS), so by Lemma 
6, T is an MCD of {qjg, ••-, yji}. Finally, 
£ + r = (* + r' + T') ~ (p' + a' + r") 

~ (/>' + f + T") ~ 0>' + p* + or) ~ (j>' + p" + a) = p + a. 

Case 2. Suppose that $/p' is empty. In this case, V = 0; define a to be 0 and 
T to be r + p". (See Figure 14.) 

FIGURE 14 

The rest of the reasoning is the same as in Case 1, replacing £' by 0 and T" by />", 
and letting p* be p". 

Now Lemmas 11 and 9(ii) together imply that (C2) is true in all possible cases, 
so the proof of Theorem 1 is complete. 

§4. Relation of Theorem 1 to Chapter 4 of [3]. In [3, Chapter 4], Curry deduced 
the Church-Rosser property from certain properties (/70)> • • •, (H7). By inter­
preting the relation "-<" as Curry's relation "f" it can be shown that any system 
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satisfying (H0),•••,(/77) also satisfies (Al),• • •,(A8). Also a system which satis­
fies (Al), • • •, (A8) but not (//<,), • • •, (H7) can be constructed, using the fact that 
(H2) is more restrictive than the corresponding assumption (A3). However, Curry 
actually deduced more than the Church-Rosser property from his assumptions: 
he showed that any two developments of a finite coinitial set of cells have the same 
terminus. I have not been able to deduce this from (Al), • • •, (A8). 

REFERENCES 

[1] H. B. CURRY, A new proof of the Church-Rosser Theorem, Koninklijke Nederlandse 
Akademie van Wetenschappen. Proceedings. Series A, vol. 55 (1952), pp. 16-22. 

[2] A. CHURCH, The calculi of Lambda-conversion, Princeton Univ. Press, Princeton, N.J., 
1941. 

[3] H. B. CURRY and R. FEYS, Combinatory logic, North-Holland, Amsterdam, 1958. 
[4] M. H. A. NEWMAN, On theories with a combinatorial definition of "equivalence", Annals 

of mathematics, vol. 43 (1942), pp. 223-243. 
[5] J. B. ROSSER, Review of "A new proof of the Church-Rosser theorem," this JOURNAL, 

vol. 21 (1956), p. 377. 
[6] D. E. SCHROER, The Church-Rosser theorem, Ph.D. thesis, University of Illinois, Urbana, 

111., 1965. 

UNIVERSITY OF BRISTOL 

https://doi.org/10.2307/2270849 Published online by Cambridge University Press

https://doi.org/10.2307/2270849



