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ABSTRACT

Let P = {p1, p2,..., pn} and Q = {q1, q2,..., qm} be two simple polygons monotonic in
directions θ and ϕ, respectively. It is shown that P and Q are separable with a single
translation in at least one of the directions: θ + π / 2, ϕ + π / 2. Furthermore, a direction
for carrying out such a translation can be determined in O(m + n) time. This procedure
is of use in solving the FIND-PATH problem in robotics.

1.  Introduction

Spurred by developments is spatial planning in robotics, computer graphics and VLSI layout,
considerable attention has been devoted recently to the problem of moving polygons in the plane
without collision.1-11 A typical problem in robotics is the FIND-PATH problem,12 where a robot
must determine if an object, modeled as a polygon in the plane, can be moved from a starting po-
sition to a goal state without collisions occurring between the object being moved and the obsta-
cles. Much work has been done on the problem of hypothesizing channels through free space when
the obstacles are convex polygons.13 For nonconvex objects the problem is bypassed by consider-
ing the convex hulls of the objects to be the objects themselves. Thus a crucial aspect of robotics
for the geometric modeling needed for spatial reasoning and spatial planning is the representation
and recognition of the possible types of movements allowed by different non-convex shapes.14

This paper is a first step in this direction and shows two objects of a certain type of shape, namely
monotone polygons, can never interlock. Thus a robot can always separate two such objects with-
out collisions. In fact, this can be done with only a single translation, and the paper presents a sim-
ple linear time algorithm for finding a direction for such a motion.

We consider the movable separability of polygons. We say that two polygons P and Q are
movably separable if one of them can be moved to infinity without colliding with the other. In this
paper the motion being considered is a single translation. We say that a collision occurs if at some
instant in time during the motion the interiors of P and Q intersect. As an example consider the two
polygons P and Q in Figure 1. The two convex polygons in Figure 1(a) are movably separable since
Q can be translated in any direction excluded by the wedge α. The simple polygons in Figure 1(b)
on the other hand are not movably separable, i.e. they are interlocked. In fact, they are interlocked
under all displacements, not just translations. One can consider convex and simple polygons as ex-
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tremes among a hierarchy of polygons of varying “complexity” and the pattern recognition
literature20 is filled with problems dealing with classes of polygons which are more complex than
convex and yet more structured than arbitrary simple polygons. Two of the most well known class-
es of polygons are star-shaped and monotone polygons. A polygon P is said to be star-shaped if
there exists a a region K in P, termed the kernel of P, such that for all x ∈ K and all y ∈ P the line
segment joining them lies in P. A polygon P is monotone if there exists a direction θ such that the
two opposite extreme vertices in direction θ partition the polygon into two polygonal chains each
of which, when traversed, yields a monotonically increasing projection onto a line in direction θ.

When considering more than two polygons an interesting question concerning the movable
separability of the set is: can one of the polygons always be translated to infinity without disturbing
the others? For the case of convex polygons Guibas and Yao1 showed that the answer is in the af-
firmative. For star-shaped and monotone polygons Toussaint3 gave a counterexample with only
three polygons as illustrated in Figure 2. Note that the polygons in Figure 2 are both star-shaped
and monotonic. The obvious question is: can two such polygons interlock? It was proven in ref. 3
that two star-shaped polygons are movably separable with a single translation. More specifically it
was shown that if θ is a direction determined by a line which traverses both kernels of the polygons
then one polygon can be translated in direction θ while holding the other fixed. This result was in-
dependently proven in a more general form by Dawson8 who showed that the polygons could also
be separated by translating them simultaneously with respect to a third fixed point on the plane.

αP Q

P Q

Fig. 1. (a) Two movably separable convex polygons. (b) Two interlocking simple polygons.
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In this paper we settle the question of the separability of two monotone polygons. In section
2 we introduce some notation and definitions. In section 3 we prove that if P and Q are two simple
polygons monotonic in directions θ and ϕ, respectively, then P and Q can be separated with a single
translation in at least one of the two directions: θ + π / 2, ϕ + π / 2. Furthermore, such a direction
can be determined in linear time. Some concluding remarks are made in section 4.

2.  Notation and Definitions

Let P = {p1, p2,..., pn} and Q = {q1, q2,..., qm} be two simple polygons, i.e. we are given the
lists of their vertices, in clockwise order, along with their cartesian coordinates. We assume the
polygons are in standard form, i.e. the vertices are distinct and no three consecutive vertices are
collinear. A pair of vertices, say pipi+1, defines the ith edge of P. The sequence of vertices and edges
forming the boundary of a polygon P, and denoted by bd(P), partitions the plane into two open re-
gions: one bounded, termed the interior of P and denoted by int(P), and the other the unbounded
exterior of P and denoted by ext(P). Let P and Q be monotonic in direction θ and φ, respectively,
such that int(P) does not intersect int(Q).

Definition: Given a simple polygon R and a direction Θ, the visibility hull of R in direction Θ,
denoted by VH(R, Θ), is the union of R and the closed line segments [a,b] parallel to the direction
Θ such that a and b ∈ R as illustrated in Figure 3. The visibility hull of R in direction Θ can be
interpreted as the portions of R visible from ±∞ in direction Θ. Note that VH(R, Θ) is monotonic
with respect to the direction orthogonal to Θ.

Let Θ be the direction of the x-axis. The visibility hull VH(R, Θ) determines four types of
pockets: left-top, left-bottom, right-top, and right-bottom. If the lid of a pocket lies above the pock-
et, then it is a top pocket. Otherwise, it is a bottom pocket. If the lid of a pocket is visible from x =
-∞, then the pocket is left. Otherwise, it is a right pocket. These four types of pockets are illustrated
in FIgure 4.

P1

P2 P3

Fig. 2. Three interlocking star-shaped monotone polygons
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Definition: Let R be a simple polygon illuminated by a light at ∞ travelling in direction Θ. The
shadow of Q in direction Θ, denoted by SH(Q, Θ), is defined as the unbounded region of the plane
not illuminated along with its boundary. (see Figure 5.)

Definition: The convex hull of a polygon R, denoted by CH(R), is the minimum-area convex
polygon containing R. The convex deficiency is the set-difference between CH(R) and R and con-
sists of a set of polygons termed convex-hull pockets.

pocket

lid

Fig. 3. Illustrating the visibility hull of a polygon.
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Fig. 4. Four types of pockets.
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3.  Results

We begin this section by proving some preliminary lemmas.

Lemma 3.1: Two polygons monotone in a common direction θ are movably separable with a sin-
gle translation in direction θ + π / 2.

Proof: Let P and Q be two polygons monotonic with respect to θ. Without loss of generality as-
sume θ is the x-axis. (Refer to Figure 6.) Let pmin and pmax (qmin and qmax) be the vertices of
P(Q) with minimum and maximum x coordinates, respectively. If pmax ≤ qmin or qmax ≤ pmax
then Q can be translated in the ±y directions without colliding with P. Assume that pmax >
qmin and qmax > pmin and let z ∈ Q be a point such that pmax > xz > pmin, where xz is the x
coordinate of z. Clearly z must lie in some triangle of Q determined by three vertices of Q,
say . Draw the half-lines Lz and Uz in the -y and +y directions, respective-
ly. One of these half-lines must intersect the interior of P. Assume that Lz intersects int(P).
We claim that z can move in the +y direction. To see this assume z cannot move in the +y
direction. This implies that the half-line Uz must intersect int(P). But z ∈ ∈ Q and P and
Q do not intersect. Therefore both the lines Lz and Uz intersect int(P), a contradiction since P
is monotonic in the x direction. Now, if z cannot move downwards we must show that all
points in Q can move upwards. Let y be any other point in Q. (See Figure 7.) Without loss of
generality, assume that xy is less than xz. Assume that y cannot move upwards. Then Uy must
intersect int(P). But Ly intersects int(P), again a contradiction due to the monotonicity of P
with respect to the x direction.

Lemma 3.2: If P is a polygon monotonic in direction θ and R is a simple polygon contained in
exactly one convex-hull pocket of P, then P and R can be separated with a single translation in di-
rection θ + π/2.

Δijk qi q j qk, ,( )=

Δijk

SH(Q, θ)

Q

θ

Fig. 5. Illustrating the "shadow" of a polygon.
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Proof: Let P’ be the convex hull pocket of P containing R. Without loss of generality, let θ be
the direction of the y-axis and P’ be a right pocket. From the monotonicity of P it follows that
every half-line in the direction of the positive x-axis starting from bd(P) dies not intersect
int(P). Therefore the pocket P can be translated to∞ in the +x direction. But R lies in P’. The-
refore, P can also be so translated.

Lemma 3.3: If P is a polygon monotonic in direction θ and R is a simple polygon that does not
intersect the interior of SH(P, θ + π/2), then P and R are separable with a single translation in di-
rection θ + π/2.

P

Q
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Fig. 6. Two polygons with θ as the x-axis.
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Fig. 7. Another (y) in Q.
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Proof: Let θ be the y-axis and consider the shadow of P in the -x direction. (see Figure 8.) The
vertices of P with maximum and minimum y coordinates (pymax and pymin) partition bd(P)
into two polygonal chains: the left chain and the right chain. Since R does not intersect inte-
rior of SH(P, -x), it follows that the left chain of P can be translated in the -x direction. Now
consider the convex hull pockets of P on the right chain. The intersection of R with CH(P)
may yield a set of polygons R1, R2,..., Rr. Let R’ denote the part of R not intersecting CH(P).
Since R’ intersects neither CH(P) nor SH(P, -x) it follows that R’ can be translated in the +x
direction. Furthermore, it follows from lemma 3.2 that each Ri, i = 1, 2,..., r can also be trans-
lated in the +x direction. Therefore, R itself can be so translated. It follows that the right chain
of P, and therefore P itself, can be translated in the -x direction without colliding with R.

Lemma 3.4: Let P and Q be two polygons monotonic in direction θ and ϕ, respectively. Then P
cannot intersect the interior of more than one pocket of VH(Q, θ + π/2).

Proof: Let θ be the y-axis. Since P is monotonic in the direction of y-axis, the y coordinate of a
point traveling the bd(P) can have at most two local extrema. From the definition of a pocket,
it follows that if P intersect the interior of more than one pocket of VH(Q, θ + π/2) we will
have more than two local extrema, a contradiction.

We are now ready to present the main result of the paper.

Theorem 3.1: Given two polygons P and Q monotonic in directions θ and ϕ, respectively, then P
and Q are separable with a single translation in at least one of the two directions θ + π/2, ϕ + π/2.

Proof: Without loss of generality we assume θ to be the y axis. Now construct the visibility hull
of Q in the x direction, VH(Q, θ + π/2). (Refer to Figure 9.)

Two cases arise:

θ

P R

Py min

Py max

Fig. 8. Shadow of P in the -x direction.
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Case 1: P does not intersect the interior of VH(Q, θ + π/2). In this case, since VH(Q, θ + π/
2) is a polygon monotonic in direction θ, we have two polygons, the interiors of which do not
intersect, with a common direction of monotonicity θ. Therefore, by lemma 3.1, they can be
separated by a single translation in direction θ + π/2.

Case 2: P does intersect the interior of VH(Q, θ + π/2). By lemma 3.4, P can only intersect
one pocket of VH(Q, θ + π/2). There are four types of pockets but we need consider only one.
For if P intersects a top-left pocket of VH(Q, θ + π/2), by mirror-symmetry transformations
of the plane about the x and y axes we obtain the three other types of pockets without chang-
ing either the monotonicity direction θ of P or the separability of P and Q. Therefore, assume
that P intersects the interior of a top-left pocket of VH(Q, θ + π/2). (Refer to Figure 9.)

Let Q’ denote the top-left pocket of Q in question. Let qs denote the first vertex of Q encoun-
tered when we traverse bd(Q) in a clockwise manner starting at a vertex in Q’ such that no
other vertex of Q has y coordinate greater than qs. Let ql denote the first vertex of Q encoun-
tered when we traverse bd(Q) in a counterclockwise manner starting at a vertex Q’ such that
ql lies on the lid of the pocket Q’. Then ql and qs partition Q into two polygonal chains Qls =
(ql,..., qs) and Qsl = (qs,..., ql). Let Ls denote the half-line in the +x direction emanating from
qs and let Ll be the half-line in the -x direction emanating from ql. The half-lines Ll and Ls
together with the chain Qsl partition the plane into two unbounded regions. Let R be the re-
gion not containing int(Q). First we note that P cannot intersect int(R). This follows from ar-
guments similar to those of lemma 3.4. Now consider the direction of monotonicity ϕ of Q.
Q cannot be monotonic in the y direction since then VH(Q, θ + π/2) would not contain any
pockets. It is easy to see that for any other direction ϕ, the shadow SH(Q, ϕ + π/2) always
lies in R. Furthermore, since P cannot intersect int(R), it can never intersect the interior of
SH(Q, ϕ + π/2). It follows from lemma 3.3 that in this case P and Q can be separated with a
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Fig. 9. Visibility Hull of Q.
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single translation in direction ϕ + π/2.

This theorem immediately suggests the following algorithm for determining a direction of se-
parability for two monotone polygons.

Algorithm SEPARATE

Input. Two non-intersecting monotone polygons P = (p1, p2,..., pn) and Q = (q1, q2,..., qn).

Output. A direction ψ for separating P and Q.

BEGIN

Step 1: Compute the directions of monotonicity for P and Q.

Step 2: If P and Q have a common direction of monotonicity ζ, then EXIT with ψ <-- ζ + π/2.

Step 3: Pick two directions of monotonicity for P and Q, say θ and ϕ respectively.

Step 4: Compute VH(Q, θ + π/2).

Step 5: If P intersects VH(Q, θ + π/2)

then EXIT with ψ <-- ϕ + π/2

else EXIT with ψ <-- θ + π/2

END

Theorem 3.2: Algorithm SEPARATE determines a direction of separability for two monotone
polygons P and Q in O(n + m) time.

Proof: The correctness of the algorithm follows from theorem 3.1. Thus we turn to complexity.
Steps 1-3 can be performed in O(n + m) time using the algorithm in ref. 15 by Preparata and
Supowit. Computing the visibility hull of Q in step 4 can be done in O(m) time with a variety
of hidden line algorithms.16,17 Finally, step 5 can be performed in O(n + m) time using a sim-
ple modification of the slab method of Shamos and Hoey18 for intersecting two convex poly-
gons. This follows from the fact that P and VH(Q, θ + π/2) are two monotonic polygons in
direction θ and therefore their intersection can only contain a linear number of pieces. See,
for example, Guibas and Stolfi.19

4.  Concluding Remarks

We have shown that two monotone polygons in the plane are movably separable with a single
translation and that a direction for translation can be found in linear time. Thus monotone polygons
and star-shaped polygons share this movable separability property. Dawson8 has shown that al-
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though a finite collection of star-shaped polygons can interlock, in the sense that it may be possible
to translate one polygon to ∞ without disturbing the others, the collection can nevertheless be sep-
arated by simultaneous translations. It is an open problem whether this is true for monotone poly-
gons.

Similar problems in three dimensions are being explored. The definition of star-shaped poly-
gons can be extended to three dimensions and the previous results of Dawson8 apply there too.
Thus two star-shaped polyhedra are separable with a single translation. The notion of monotonicity
is not straightforwardly extended to three dimensions. One common definition of a monotone poly-
gon is as follows: a polygon P is monotonic in direction θ if every line orthogonal to θ that inter-
sects the interior of P yields a line segment as the intersection. Extending this definition to three
dimensional space yields a family of polyhedra termed weakly-monotonic polyhedra,20 where a
polyhedron P is weakly monotonic in direction θ if every plane orthogonal to θ that intersects the
interior of P yields a simple polygon. By restricting the class of simple polygons obtained in the
intersection, we obtain subclasses of polyhedra. Note that, unlike star-shaped polyhedra, even
weakly-monotonic polyhedra with convex intersections need not be separable under translations.
One example is provided by constructing two such polyhedra in the form of the double helix. The
only way to separate these monotonic polyhedra is with a screw motion, i.e. a simultaneous trans-
lation and rotation.
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