Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T00:55:15.600Z Has data issue: false hasContentIssue false

Robotic assembly: a synthesizing overview

Published online by Cambridge University Press:  09 March 2009

Summary

Robotic assembly systems offer tremendous promise for the flexible assembly automation but present a variety of complex research issues due to the positioning inaccuracy of the manipulator, dimensional variation of mating parts and their physical interactions. This paper provides an up-to-date survey of researches in robotic assembly with emphasis on parts mating technology. Depending upon the mating strategy, presently available methods of performing precision assembly operations are classified and their advantages and limitations are discussed from the view points of the system complexity, adaptability and reliability. The performance variables such as the mating speed, positioning error absorbing capability and applicability are compared in some details for various assembly methods.

Type
Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Watson, D. C., “Remote Center Compliance System” U.S. Patent No. 4,098,001 (fielded 10 13 1976).Google Scholar
2.Nevins, J. L. and Whitney, D.E., “Research on Advanced Automation” Computer 2439 (12, 1977).CrossRefGoogle Scholar
3.Watson, P. C.,“The remote center compliance system and its application to high speed robot assemblies” SME paper No. AD77–718 (1977).Google Scholar
4.Drake, S. H., Watson, P.C. and Simunovic, S.N., “High speed robot assembly of precision parts using compliance instead of sensory feedbackProc. 7th Int. Symp. on Industrial Robot,Tokyo, Japan8798 (1977).Google Scholar
5.Whitney, D. E. and Nevins, J.L., “What is the RCC and what can it do?Proc. 7th Int. Symp. on Industrial Robots,Washington, B.C. U.S.A.135152 (1979).Google Scholar
6.Nevins, J. L. and Whitney, D.E., “Assembly ResearchAutomatica 16, 595 (1980).CrossRefGoogle Scholar
7.Lane, J. D., “Evaluation of a remote center compliance deviceAssembly Automation 1, No. 1, 3646 (1980).Google Scholar
8.Rebman, J., “Compliance for robotic assembly using elastomeric technology” In: 9th Intern. Symp. Ind. Robots (SME, Dearborn, USA, 1979) pp. 153166.Google Scholar
9.McCallion, H., Johnson, G.R. and Pham, D.T., “A compliant device for inserting a peg in a hole” The industrial Robot 8187 (1979).CrossRefGoogle Scholar
10.McCallion, H., Alexander, K.V. and Pham, D.T., “Aid for automatic assembly” 1st Int. Conf, on Assembly Automation, March, U.K. 313323 (1980).Google Scholar
11.Cutkosky, M. R. and Wright, P.K., “Position sensing wrists for industrial manipulatorsProc. 11th International Symposium on Industrial Robots,Tokyo, Japan427434 (1981).Google Scholar
12.Romiti, A., Belforte, G., D'Alfio, N., Quagliott, F. and diTorino, P., “A passive assembly device for the speedy assembly of pegs in holes” Assembly Automation 156160. (05, 1981).Google Scholar
13.Belforte, G., D'Alfio, N., and Romiti, A., “A self-adaptive guided assembler (SAGA) Proc. Robot VI 544551 (1982).Google Scholar
14.Haaf, D., “Sensorgeführte Industrieroboter mit nachgiebiger AufhängungMaschinenmarkt 85, 14221425 (1979).Google Scholar
15.Haff, D., “Greifersystem mit taktillen sensoren zum Fügen mit IndustrieroboternVerbindungstechnik 13, 2328 (1981).Google Scholar
16.Automatic assembly of prismatic componentsMaschinenbau und Fertigungstechnik der UdSSR(9) Folge 91, 121 (1970).Google Scholar
17.Arai, T. and Kinoshita, N., “The part mating forces that arise when using a worktable with compliance” Assembly Automation 204210 (08, 1981).Google Scholar
18.McCallion, H., Wong, P.C., “Some thoughts on the Automatic Assembly of a Peg and a HoleThe Industrial Robot 2, No. 4, 141146 (1977).Google Scholar
19.Simunovic, S. N.'s, “An information approach to parts mating” DSc. Thesis (MIT, 1979).Google Scholar
20.Simunovic, S. N., “Part mating theory for robot assemblyProc. 9th Int. Symp. on Industrial Robots,Washington, D.C. U.S.A.183193 (1979).Google Scholar
21.Nevins, J. L., Defazio, T.L., Consales, E.J., Ford, J.B., Gustavson, R.E., D. Killoran, Padavano, J.F., Roderick, R.C., Seltzer, D.S., Selvage, C.C., Simunovic, S.N. and Whitney, D.E., “Exploratory research in industrial assembly part mating” The Charles Stark Draper Laboratory Inc., Cambridge, MA, Seventh Progress Report for the National Science Foundation (02, 1980).Google Scholar
22.Ohwovoriole, M. S., Hill, J.W. and Roth, B., “On the theory of single and multiple insertions in industrial assembly” Proc. 10th Int. Symp. on Industrial Robots, Milia, Italy 545558 (1980).Google Scholar
23.Whitney, D. E., “Quasi-static assembly of compliantly supported rigid partsTrans. ASME 104, 6577 (1982).Google Scholar
24.Hennessey, M. P., “Compliant part mating & minimum energy chamfer design”, Proc. 13th Int. Sym. on Industrial Robots Chicago,U.S.A. (14)-79–92 (1983).Google Scholar
25.Merlet, J. P., “A new method for inserting a peg in a hole using a robot” 4th Int. Conf, on Assembly Automation 400403 (1983).Google Scholar
26.Stepourjine, R. and Rouget, J.P., “Automatic insertion module for light modules” Developments in Robotics (IFS Publications, Bedford, 1983) pp. 197204.Google Scholar
27.Bazerghi, A. A. and Goldenberg, A.A., “Simulation model of insertion processes” Robot 8, 6–8;4–96 (1985).Google Scholar
28.Merlet, J. P., “Part mating through non-linear minimization method5th Int. Conf, on Assembly Automation,France127131 (1984).Google Scholar
29.Caillot, F. and Kerlidou, M., “Air stream compliance”, 5th Int. Conf, on Assembly Automation,Paris, France225233 (1984).Google Scholar
30.Mashinostroeniya, V., “Vacuum method of automatic assemblyRussian Eng. 57, Issue 1, 6162 (1977).Google Scholar
31.Yakhimovich, V. A. et al. , “Automatic assembly of components by the jet methodRussian Engineering J. 50, No. 6, 5863 (1970).Google Scholar
32.Ganovski, V. S., Neshkov, T.D. and Boyadjiev, I.K., “Some possibilities on increasing the industrial robot application in automatic assembly” 1st Int. Conf. Assembly Automation 287294 (1980).Google Scholar
33.Hesse, S., “Positionieren in der HandhabetechnikSozialistische Rationalisierung 9, 204207 (1980).Google Scholar
34.Mashinostroeniya, V., “Assembling joints by magnetic methods of orientationRussian Engineering J. 56, No. 4, 6871 (1976).Google Scholar
35.Mashinostroeniya, V., “Using a rotating magnetic field for the grippers of industrial robotsRussian Engineering J. 57, No. 6, 4345 (1977).Google Scholar
36.Kaczanowski, St. and Aderek, A., “Adaptive robot performed assembly” 4th CISM-IFTOMM Symp. on “Theorie und Praxis der Roboter und Manipulatoren” Warsaw (1981).Google Scholar
37.Jacobi, P., “Figemechanismen für die automatisierte montage mit industrierobotern The Karl-Marx-Stadt. VEB Kongre rund Werbedruck Oberlungwitz 5368 (1982).Google Scholar
38.Hoffman, B. D., Pollack, H. and Weissman, B., “Vibratory insertion process: A new approach to non-standard component insertionRobot 8, 8–1–10 (1985).Google Scholar
39.Ohishi, M., Kakinuma, T. and Yokoyama, S., “One procedure concerning the peg-hole insertion of the assembly process” Proc. 15th. Int. Symp. on Industrial Robots Tokyo, Japan 811817 (1985).Google Scholar
40.Goto, T., Onoyama, T. and Takeyasu, K., “Precise insert operation by tactile controlled robot HI-T-HAND Expert 2” Proc. 4th International Symposium on Industrial Robots Tokyo, Japan 154160 (1974).Google Scholar
41.Takeyasu, K., Goto, T., Inoyama, T., “Precision insertion control robot and its application ASME J. Engineering for Industry 13131318 (11, 1976).Google Scholar
42.Goto, T., Inoyama, T. and Takeyasu, K., “Precise insert operation by tactile controlled Robot” The Industrial Robot 210213 (06, 1980).Google Scholar
43.Goto, Tatsuo, Takeyasu, Kiyoo & Inoyama, T., “Control algorithm of precision insertion operation robotsIEEE Trans. SMC– 10, No. 1, 1925 (1980).Google Scholar
44.Van Brussel, H. and Simons, J., “Automatic assembly by active force feedback accommodationProc. The 8th Int. Symp. on Industrial Robots Stuttgart,West Germany181193 (1978).Google Scholar
45.Van Brussel, H. and Simons, J., “Robot assembly by active force feedback accommodationAnnals CIRP 28, pp. 397401 (1979).Google Scholar
46.Brussel, H. Van and Simons, J., “The adaptable or compliance concept and its use for automatic assembly by active force feedback accommodations” Proc. 9th Int. Symp. on Industrial Robots Washington, D.C. 167181 (1979).Google Scholar
47.Van Brussel, H., Thielemans, H., Simons, J., “Further developments of the active adaptive compliant wrist (AACW) for robot assembly” Proc. llth Int. Symp. on Industrial Robots Tokyo, Japan 377384 (1981).Google Scholar
48.Van Brussel, H. and Simons, J., “A self-learning robot for automatic assemblyProc. 1st Int. Conf, on Assembly Automation,U.K.295308 (1980).Google Scholar
49.Van Brussel, H. and Simons, J., Adaptive Assembly In: Procs. 4th BRA Annual Conf. (IFS,Kempston, U.K., 1983) pp. 95106.Google Scholar
50.Hirzinger, G. and Brunet, U., “Fast and self-improving compliance using digital force-Torque control” 4th Int. Conf, on Assembly Automation 268281 (1983).Google Scholar
51.Kasai, M. and Takeyasu, K., “Trainable assembly system with an active sensory table processing 6 axes” Proc. 11th Int. Symp. on Industrial Robots Tokyo, Japan 210212 (1981).Google Scholar
52.Cutkosky, M. R. and Wright, P.K., Active Control of a Compliant Wrist in Manufacturing Tasks pp. 517528.Google Scholar
53.Lee, C. S. G. and Smith, R.H., “Force feedback control in insertion processes using pattern analysis techniqueAmer. Control Conference,San Diego, U.S.A.3944 (1984).Google Scholar
54.Artique, F. and Francois, C., “Automatic assembly by reference searching and position adjustment before insertion”, In: Procs. of Ro Mansy (Morecki, et al. , eds.) (Kogan Page, London, 1985) pp 431438.Google Scholar
55.Nevins, J. L. and Whitney, P.E., “The force vector assembly concept”, Proc. 1st CISM Symp. Udine, Italy, II, 111118 (1973).Google Scholar
56.Inoue, H., “Force feedback in precise assembly task”, Memo No. 308, (M.I.T., Artificial Intelligence Lab., 1974).Google Scholar
57.Simunovic, S. N., “Force information in assembly processesProc. 5th Int. Symp. on Industrial Robots Chicago,U.S.A.415431 (1975).Google Scholar
58.Paul, R., “Compliance and Control” Proc. Joint American Control Conference 694701 (1976).Google Scholar
59.Gerelle, E. G. R., “Force feedback control” Proc. 8th Int. Symp. on Industrial Robots Stuttgart, West Germany 194205 (1978).Google Scholar
60.Stokić, D. and Vukobratović, M., “Simulation and Control Synthesis of manipulator in assemblying technical partsTrans. A.S.M.E. 101, 332338 (12, 1979).Google Scholar
61.Hill, J. W., “Force Controlled Assembler” Industrial Robots Vol. 2, Applications (Tanner, W.R., ed.) (ASME Publ., Dearborn, 1981).Google Scholar
62.Kulakov, P. M., “On the ways of robot control in assembling operations” Proc. 12th Int. Symp. on Industrial Robots 385392 (1982).Google Scholar
63.Simons, J., Van Brussel, H., De Schutter, J. and Verhaert, J.A self-learning automation with variable resolution for high precision assembly by industrial robotsIEEE Trans. Automatic Control Ac-27, No. 5, 11091113 (1982).Google Scholar
64.Merlet, J. P., “Some considerations on feedback strategy for assembly robot” 4th Int. Conf, on Assembly Automation 9095 (1983).Google Scholar
65.Ozaki, H., Mohri, A. and Takata, M., “On the force feedback control of a manipulator with a compliant wrist force sensorMechanism and Machine Theory Vol. 18, No. 1, 5762 (1983).Google Scholar
66.Sanderson, A. C. and Perry, G., “Sensor-based robotic assembly system: Research and applications in electronic manufacturingProc. IEEE 71, No. 7, 856871 (1983).Google Scholar
67.King, R. I. and Allderdice, F.B., “Development and performance of an aerospace flexible automated electronic component assembly cellAnals. CIRP 33 /1, 283286 (1984).CrossRefGoogle Scholar
68.Asano, T., Maeda, S. & Murai, T., “Vision system of an automatic inserter for printed circuit board assembly” 2nd Int. Conf, on Robot Vision & Sensory Control, Stuttgart, W. Germany 6372 (1982).Google Scholar
69.Murai, T., Asano, T. and Kawana, T., “Automatic insertion of electronic components by optical detection of lead positions” 4th Int. Conf. on Assembly Automation 390399 (1983).Google Scholar
70. T. Asano, Maeda, S. and Murai, T., “Vision system aligns lead for automatic component insertion” Assembly Automation 3235 (02 1983).Google Scholar
71.Warnecke, H. J. et al. , “An adaptive programmable assembly system using compliance and visual feedback Proc. 10th Int. Symp. Industrial Robots, Milan, Italy 481490 (1980).Google Scholar
72.Baird, H. S. and Lurie, Michael, “Precise robotic assembly using vision in the hand3rd Int. Conference on Robot Vision & Sensory Control,Cambridge, U.S.A.533539 (1983).Google Scholar
73.Shivarov, N., Geortehev, V., Zahariev, R., Tomov, K. and Belov, K., “Using Coordinated Visual and force feedback to control an assembly robot” 4th Int. Conf. on Assembly Automation 145157 (1983).Google Scholar
74.Saraga, P. et al. , “Unpacking and mounting TV deflection units using visually controlled robots3rd. Int. Conf. on Robot Vision & Sensory Control,Cambridge, U.S.A.541548 (1983).Google Scholar
75.Takahashi, M. and Kohno, M., “An assembly robot system with twin arms and vision” Proc. 12th Int. Sym. on Industrial Robot 111120 (1982).Google Scholar
76.Hill, J. J., Burgess, D.C. and Pugh, A., “The vision-guided assembly of high-power semiconductor diodes” Proc. 14th, Int. Symp. on Industrial Robots Gothenburg, Sweden 119460 (1984).Google Scholar
77.Caloud, P. and Durand, P., “Automatic insertion on non-standard electronic components” Proc. 15th Int. Symp. on Industrial Robots Tokyo, Japan 787794 (1985).Google Scholar
78.Gill, A., Paul, R. and Scheinman, V., “Computer manipulator control, visual feedback and related problemFirst CISM-IFTOMM Symp. II, 3150 (1974).Google Scholar
79.Tsuboi, Y. and Inoue, T. “Robot assembly system using TV camera” Proc. 6th Int. Symp. on Industrial Robot, University of Nottingham U.K. B3–21–B3–32 (1976).Google Scholar
80.Agin, G. J., “Servoing with visual feedbackProc. 7th Int. Symp. on Industrial Robots Tokyo,Japan551560 (1977).Google Scholar
81.Kashioka, S. et al. , “An approach to the integrated intelligent robot with multiple sensory feedback: visual recognition techniqueProc. 7th Int. Symp. on Industrial Robots Tokyo,Japan, 531538 (1977).Google Scholar
82.Tani, K. et al. , “High precision manipulator with visual senseProc. 7th Int. Symp. on Industrial Robots Tokyo,Japan561568 (1977).Google Scholar
83.Geschke, C. C., “A system for programming and controlling sensor-based robot manipulatorsIEEE Trans. Pattern Analysis and Machine Intelligence PAM– 5, No. 1, 17 (1983).Google Scholar
84.Atkinson, B. M., “Some applications of on-line vision sensing in industry3rd Int. Conf. on Robot Vision & Sensory Control Cambridge,U.S.A.503508 (1983).Google Scholar
85.Sanderson, A. C. and Weiss, L.E., “Adaptive visual servo control of robots” In: (Pugh, Alan, ed.) Robot Vision (IFS publications, Bedford, 1983).Google Scholar
86.Sternberg, S. R., “Vision-guided robot for automotive assembly” Proc. 2nd IEEE Conf. on Robotics 686690 (1985).Google Scholar
87.Shirai, Y. and Inoue, H., “Guiding a robot by visual feedback in assembly tasksPattern Recognition 5, 98108 (1971).Google Scholar
88.Agrawal, A. and Epstein, M., “Robot Eye-In-Hand using Fiber Optics” In: Procs. 3rd Intern. Conf. on Robot Vision (Rooks, B., ed.) (IFS, Kempston, U.K., 1983) pp. 257262.Google Scholar
89.Butcher, A. and Fehrenbach, P., “A computer controlled reconfigurable gripper” 15th-CIRP Int. Seminar on Manufacturing Systems, Assembly Automation, U. of Massachusetts 156172 (06, 1983).Google Scholar
90.Fehrenbach, P. A., “Optical alignment of dual-in-line components for assembly3rd Int. Conf. on Robot Vision & Sensory Control,Cambridge, U.S.A.549555 (1983).Google Scholar
91.Jacksch, M. and Schmalwasser, H., “Optoelektronisher für DIE Montage von Erzeugnissen des optischen Gerätebaus” Feingerätetechnik 29, 498501 (1980).Google Scholar
92.Jacksch, M., “Einsatz von Industrierobotern bei der Montage von optischen ErzeugnissenFeingerätetechnik 30, 78 (1981).Google Scholar
93.Rebman, J. and Morris, K. A., “A tactile sensor with electrooptical tranduction34d Int. Conf. on Robot Vision & Sensory Control,Cambridge, U.S.A.341347 (1983).Google Scholar
94.Brussel, H. V. and Thielemans, H., “Laser guided robot assembly of printed circuit boards5th Int. Conf. Assembly Automation,Paris, France7583 (1984).Google Scholar
95.Hanafusa, H. and Asada, H., “An adaptive control of robot hand equipped with pneumatic proximity sensors” Proc. 6th Int. Symp. on Industrial Robots U.K. D4–31–42 (1976).Google Scholar
96.Volmer, J., Jocobi, P., Schwarz, A. and Zachan, H., “Positionionierung von Montagegreifern und Werkzeugen durch industrierobotor Fertigungstechnik und Betrieb, Berlin 32, 742747 (1982).Google Scholar
97.Drazan, P. J. and Hopkins, S.H., “Semi autonomous systems for automatic assemblyAnnals CIRP 33, 291294 (1984).Google Scholar
98.De Fazio, T. L.Displacement-state monitoring for the remote center compliance (RCC)-Realizations and ApplicationProc. 10th International Symp. on Industrial Robots,Milia, Italy559560 (1980).Google Scholar
99.Seltzer, D. S., “Tactile sensory feedback for difficult robot tasksRobot VI, 467478 (1983).Google Scholar
100.Schweizer, M., “Taktile sensoren für programmierbare handhabungsgerate” Doctoral Dissertation, IPA, W. Germany (1978).Google Scholar
101.Cho, H. S. and Gho, K.C., “The development of a flexible and sensible robot wrist for assembly processesKorean Society of Mechanical Engineers 8, No. 5, 488497 (1984).Google Scholar
102.Ko, B. K. and Cho, H.S., “Active force feedback control for assembly processes using a flexible and sensible robot wrist”, 8th Int. Conf. on Production Research,Stuttgart, W. Germany875892 (1985).Google Scholar
103.Liegeois, A., Dombre, E. and Borrel, P., “Learning and Control for a compliant computer-controlled manipulatorIEEE Trans. Automatic Control AC–25, No. 6, 10971102 (1980).Google Scholar
104.Liegeois, A., Fournier, A., Aldon, M.J., “Software for automatic manipulation and assembly with a compliant manipulator” The Industrial Robot 116119, (06, 180).Google Scholar
105.Uchiyama, T. et al. , “A small articulated robot with high positioning resolution” Proc. 12th Int. Symp. on Industrial Robot 231240 (1982).Google Scholar
106.Ishida, T. and Kuroki, Y., “SRX, A new high-speed assembly robotProc. 15th Int. Symp. on Industrial Robots Tokyo,Japan795802 (1985).Google Scholar
107.D'Auria, A. and Salmon, M., “sigma-An integrated general purpose system for automatic manipulationProc. 5th Int. Symp. on Industrial RobotsChicago, Ill., U.S.A.185202 (1975).Google Scholar
108.Dunne, A. J., “An advanced assembly robot” SME Technical Paper Ms 77755 (1977).Google Scholar
109.Makino, H. and Furuya, N., “Selective compliance assembly robot arm1st Int. Conf. on Assembly Automation,Brighton, U.K.7786 (1980).Google Scholar