
Robotica (1994) volume 12, pp 115-125. © 1994 Cambridge University Press

Trajectory generation and control for automatic manipulation
Vincent Hayward, Laeeque Daneshmend and Ajit Nilakantan
McGill Research Center for Intelligent Machines, McGill University, Montreal Quebec (Canada) H3A 2A7

SUMMARY
A method is described to convert information available
at manipulator programming level into trajectories which
are suitable for tracking by a servo control system. This
process generates trajectories in real time which comply
with general dynamic and kinematic constraints.
Tracking accuracy will depend mainly on the acceleration
demand of the nominal trajectory setpoints - the
actuator output demands, in particular, must remain
bounded. Our scheme takes into consideration at the
trajectory computation level the dynamics of the
underlying system, dynamically available information
acquired through sensors, and various types of
constraints, such as manipulators. It has been developed
in the context of a multi-manipulator programming and
control system called Kali and developed at McGill
University.

KEYWORDS: Automatic manipulation; Trajectory control;
Kali system.

1. INTRODUCTION
In robot manipulator control systems, the trajectory
generation process can be viewed as a process to convert
information available at the programming level into a
trajectory suitable to be tracked by a feed-back
controller. A two level decomposition of the system is
thus achieved. Although alternative approaches have
been proposed,1 we will adopt this framework in this
paper. We shall discuss here a novel method which
attempts to minimize the amount of information which
has to be recorded ahead of time and which takes into
account various constraints about the task, the robot,
and the environment. Thus the design of this trajectory
generator differs radically from these developed for
off-line applications and which attempt to globally
optimize such criteria as trajectory completion time,2

joint wear, energy expenditure and other objective
functions such as path error3 often discussed in trajectory
generation.

The traditional technique is to compute individual path
segments, often straight lines, which correspond to
elementary motions and to join them together using
polynomial fit applied during transition periods.45 If
the velocity constraints may be relaxed, then the period
between transitions may be disposed of entirely and the
path may be constantly recomputed as a polynomial fit to
the next goal position.6

A robot program consists of a task description given in
terms of combinations of desired positions, velocities,
arrival times, accuracies. (Force specifications are not

discussed in this paper.) The trajectory necessarily
contains the same kinds of information as in the task
description, but in a much more detailed fashion because
it consists of the position complete time history. In
addition to meeting the constraints dictated by the task,
it should also meet that of the robot itself, chiefly among
them, the torques limits at the joints.

Ideally we would require a system that could take into
account all constraints at all times, and constantly update
its behavior. Since this is very difficult to achieve, we
propose a strategy that takes some steps in this direction
and that we believe can cover a large range of
applications while using currently available computing
technology. The methods described in this paper have
been implemented in the framework of a multi-robot
controller described elsewhere,7 a successor to RCCL.8

2. DESIGN APPROACH
For any problem, there are many possible solutions. In
this section, we justify the basic design choices we have
made.

In most instances, we wish to reduce the programming
of a task to the specification of the motion of particular
coordinate frames, for example, frames rigidly attached
to tools and end-effectors. We observe that the essence
of manipulator programming consists of the removal of
details from the specifications of the control.9 The
detailed dynamical properties of the underlying system is
precisely what should be hidden from the programmer by
the trajectory calculator. On the other hand, we wish to
give to the programmer, human or automated, the
means to describe very accurately the resulting
trajectory, an essential element for the accomplishment
of a task. How this can be accomplished is discussed
next.

2.1 Splitting the problem
At programming time, a task may be viewed as the
motion of coordinate frames without explicit regard to
the dynamics of the underlying system, at the trajectory
level, the task should be viewed as the trajectory of a
point in the position sub-space restricted by the dynamics
in a fashion that allows the servoing to track the
trajectory. In other terms, tasks in general are specified
in terms of desired positions, times, and velocities - it is
up to the trajectory generator to verify, modify and/or
produce path segments that are kinematically and
dynamically realizable: dynamic constraints (accelera-
tion) are tackled during transitions, while kinematic
constraints (velocities) are tackled during path
segments.

116 Automatic manipulation

If one is willing to accept that a large class of tasks can
be described in terms of path segments connected by
transitions, the problem breaks down into two-sub-
problems. During path segments, the variable of concern
is velocity. In order to meet the dynamical or kinematic
limitations of the system,, we may want to select or
adjust the speed along the trajectory, which is easily
achieved by adjusting the time scale of an interpolator.
In contrast, during transitions, the variable of concern is
acceleration, which will usually conflict with path
accuracy or timing constraints. Thus during transitions,
we will rather compute trajectory profiles satisfying
general task requirements and then adjust their length so
as to minimize their duration.

2.2 Controlling transitions
As an example, consider the case of an object to be lifted
from a surface and brought on top of a step as shown on
Figure l(a). A standard approach to programming this
task would be to record three positions: the initial
position A, an intermediate position B, and the final
position C. Because the traditional approach to
trajectory generation is to apply a fixed polynomial fit
which "cuts the corner", so to speak, the B position will
be programmed at some distance from the upper corner
of the step to prevent a collision. The robot program
may work for a given velocity, but may also fail if the
velocity is increased requiring a longer transition.
Clearly, the program suffers from unspecified side-
effects. Instead, we may want to create a program which
would be robust to such changes. This can be
accomplished by giving the programmer control over the
allowable shapes of the transition. In other terms, the
program has to contain explicit constraints about the

(a)

(b)

(c)

Fig. 1. In (a), the task may fail depending on the fit. In (b), all
trajectory adjustments are performed before the intermediate
point B. In (c), the shaded portion of space is not intruded.

shape of the trajectory. In the scheme about to be
described, two approaches are possible. Either the
programmer can require that all velocity adjustments be
done before the transition point B as in Figure l(b), or
that certain portions of space be not intruded as in l(c).
Explicit use of the dynamic properties of the system for
on-line path generation time affords a great deal of
independence with respect to the underlying hardware.1"

2.3 Keeping it general
The trajectory generator must also provide the flexibility
that in some conditions, it may be permissible to relax
certain task constraints so that other constraints dictated
by the robot itself may be satisfied: e.g. kinematic
singularities, joint limits, and the conditioning of the
robot in general, in order to lead to efficient motions
with respect to time, energy, wear, etc. Thus we want to
preserve the possibility to replace or supplement the
standard trajectory interpolator with a specialized one
without having to reconsider the overall organization of
the system.

2. 4 Calculating all path transitions in Cartesian space
In the foregoing discussion the question of which
coordinates should be used to interpolate motions has
not been yet considered, should they be joint coordinate,
Cartesian coordinate or yet some other coordinates? We
have chosen the following option: a nominal Cartesian
coordinates interpolator is provided by our system,
however, the user is free to choose some other
interpolation scheme for the duration of one or several
path segments. All that is required is that the result of
this interpolation can be mapped back in Cartesian
coordinates. For example, if one chooses to interpolate
trajectories in joint coordinates, a Cartesian coordinate
trajectory can always be reconstructed using the
manipulator forward kinematic map.

We have found preferable to compute all trajectory
transitions in Cartesian coordinates, even though paths
may be interpolated some other coordinates, because
that is where the task constraints are generally defined.
As an example, Figure 2 illustrates the Cartesian
coordinates trajectory of a manipulator (Puma) brought
to rest using a polynomial transition applied in joint
space, which displays an obviously undesirable behavior.
An additional benefit of our approach results from better
defined motion specification primitives which will no
longer depend on the mechanical structure of the
manipulator. Another motivation of that approach is the
need to provide for the coordinated programming of
cooperating manipulators.

2.5 On-line trajectory modification
On-line path modifications are required for a number of
reasons: motion accommodations due to uncertainties in
the task model resolved at run time by sensors;
compliant motions, accommodate kinematic constraints
such as nearing singular positions, and the like. On-line
trajectory generation will require some anticipation
about the constraints lying ahead of the trajectory point

Automatic manipulation 117

\ l transition

transition ends T

Joint I

begins

•

transition begins f\

i transition ends
i- I

Fig. 2. In the left frame, the trajectory of joint 2 is plotted as the end-effector moves in a straight line. In the right frame, the
corresponding trajectory is plotted in Cartesian coordinates.

currently being sent to the tracking controller. In order
to reduce the dependence of these constraints, the
amount of time that the trajectory generator requires to
preview these constraints needs to be minimized. This is
what is accomplished by the scheme about to be
described: during path segments, the trajectory can be
of any nature provided that it can be tracked while the
duration of the transitions is minimized and permanently
re-computed. Because of the transition computation
strategy via blending, the trajectory is always computed
at the very last moment.

2 6 Interfacing to the servo level
The servoing system can always be assumed to accept
task space setpoints, for example those proposed in
references 11 & 12 do so. If this would not be the case,
the kinematic map may always be inverted to provide
setpoints to a decentralized joint level servos scheme.
This accomplishes the same goal as far the the system's
structure is concerned.

2 7 Relationship with preview control
Although the trajectory planning approach outlined in
this paper is based on preview of trajectory, it utilizes
this information is a very different manner from dynamic
control schemes which rely on preview. Preview
controllers typically are based on a linear-quadratic
design which selects the gains and structure of the
preview control based solely on the plant dynamics and
cost-function which is to be optimized.13 Judicious
selection of the cost function results in preview
controllers with excellent trajectory tracking characteris-
tics in theory, but does not take into account the
constraints due to actuator torque saturation. In practice,
this means that an LQ-designed preview controller may
have very high bandwidth, but can only achieve this
bandwidth for very low amplitude motions, since for:
d = Asinct)t, the dependency of the acceleration is
\6\<xAw2, and the maximum achievable acceleration is
directly proportional to the deliverable torque (to a first
approximation): |0mux|«|Tmax| . Hence, achievable band-
width is dependent on the torque constraint of the

actuator and the amplitude of the trajectory co2
rnux<x

rmJA.
In contrast, our trajectory planning scheme modifies

the trajectory to ensure that such constraints are not
violated.

3. TRAJECTORY COMPUTATION
Trajectories are viewed as a string of path segments
connected by transitions. The velocity of the manipulator
is assumed to be slowly varying, along the path
segments. During the transitions, there are spurts of
acceleration, causing the manipulator to move along the
next path segment with a new velocity and direction.
During path segments, the positional and velocity
accuracy is maintained, whereas during the transitions,
one allows the manipulator to deviate off the ideal
course. We can further relax certain positional
constraints which in turn allow us to minimize the
accelerations - there is an obvious trade-off here.

These trajectories must be computed with respect to
coordinate frames that can vary with time, for example
in tracking moving objects. Also, needless to say, the
trajectory must be computed online since the path may
vary dynamically, subject to sensory information and
thus may contain noise. Such cases cause the final
trajectory to appear bent in absolute coordinates. The
situation is depicted in Figure 3.

Fig. 3. Trajectory path x, is blended in x2.

118 Automatic manipulation

The problem can then be posed in the following
terms: Let *,(r) and x2(t) represent the nominal
trajectories during path segments AT, and AT2. The
functions x, and x2 are obtained by interpolation
between "via points." These trajectories may contain
noise resulting from sensor measurements or compliant
motions. Also, the via points may vary with time and
the interpolation superimposed with unknown path
modifications. However, the resulting overall velocity
changes due to these effects remains small.

Because of the consideration of sensory information,
the future of these functions at give time tc contains
uncertainty. While the history of these functions can be
recorded, the derivatives at time tc can only poorly be
known because of the noisy nature of the trajectory, and
spurious delays would be introduced by estimation and
filtering techniques. The time at which a desired velocity
change is desired, corresponding to a "via point" or
segment intersection, is known with a given preview AP
which depends upon circumstances and upon the desired
behavior.

The problem is then to construct x(tc) in order to
smoothly connect ,r,(f) to x2(t) while using *i(fc) and
x2(tc) only, minimizing the transition time, satisfying
path wander constraints, and bounding actuator demand
that will eventually result from the tracking of the
trajectory.

Acceleration demand is estimated by assuming
quasi-linearly of the trajectories during transitions.
Recall that in our framework, transition time periods are
short with respect to the segment duration, which means
that the curvature of trajectories as well as velocities
should be very high in order to violate our assumption in
a significant way. This would in turn contradict our
hypothesis of the task being decomposed into distinct
phases. Furthermore, the acceleration demand estimate
will not be used to determine the overall shape of the
transition, but its duration.

3.1 Transitions via blending
This trajectory generator uses 'blending' instead of
'spline fitting' during the transitons. Hence, the
knowledge of the derivatives of the path segments at the
boundaries is not required. We use polynomial blending
functions. Replacing time by a dimensionless parameter
s e [0, 1], the trajectory from xi to x2 is given by:

= a{s)x2(s) (1)

is short:

The above is the general expression of a Coon's patch in
one dimension.14 In the most general form, the blending
function a{s) can be any continuous function that goes
from 0 to 1 in the interval [0,1]. Examples are given with
a first order blending function which matches the
position and velocity at the transition. However, higher
order functions can be used to match higher order
derivatives at the expense of longer transition times.
Below we give the first order blending polynomial as well

as the general term to match any derivative order.

a{s) = -2s3 + 3s2, s e [0, 1]; for n = 1

[s"-{\-s)"ds
a(s) = —| , for order n.

\ s" -{\-s)n

A)

(3)

(4)
ds

This expression is derived from these observations: First,
5" is a function that is null and as well as its first n - 1
derivatives null for 5 = 0, (1-5)" has the same
properties for 5 = 1. Hence the function 5"(1 -5)" is null
and has its first n — 1 derivatives null for both 5 = 0 and
5 = 1. We integrate and normalize the above expression,
and obtain n null derivatives. Also since s"(l—s)" is
positive for s in [0,1], the blending function a(s) is
monotonically increasing.

In order to estimate the necessary acceleration at the
transition, we use the quasi-linearity assumption about x,
and x2, and use linear estimates i , and x2:

There is no reason to keep the transiton symmetrical
about the transition point and it is convenient to
reformulate x as follows:

with

if

and

. . dcf „ A (• dcf r c

Aa =Q2-au A& = Q2-Qt,

= aAx+xu (6)

(7)

(8)

(9)

The n parameter is called the preview factor because it
conveys the amount of look ahead before the scheduled
transition point B, as shown on Figure 3. The n
parameter, can be derived from the task requirements. A
value of n set to zero, conveys the idea that the moment
the transition is initiated, the motion is where we want it
to be. Of course, it will have to overshoot. A value set
to 1 means that we can anticipate velocity change in the
future of at least a transition time period, and that we
want the motion to have the exact required velocity at
that time. A default value can be set to 0.5 which
corresponds to a symmetrical transition.

Indeed, the trajectory always passes through the via
point with constrained velocity and arrival time. This
may desirable or even necessary in certain applications -
for example in quickly snatching an object and moving
away. On the other hand, this also causes an an extra
amount of acceleration. We can introduce a correction
term to cancel out the extra acceleration. Doing so, we
shall have to relax the constraint of passing through the
via point, cutting the corner, so to speak. The
polynomial

0 = 54-2s3 + 52; 56[0, 1] (10)

P = sn+l-(l-s)"+l, for order n. (11)

Automatic manipulation 119

has the required properties. The superimposition of)3 on
the blended motion with a proper scaling factor, causes
the acceleration to remain constant during transition.
This leads to the following form of the blended
transition:

We can

with

rewrite i as

x = Ag(c4

1 a Ax

54 + C

C4 =

c3 = 3

+ x, + 2*Adj8.

3J3 + C25
2 + C|J+C0),

2(jr-l).

+ 2n - 4JC,

(12)

(13)

(14)

(15)

c2 = 2K - "in, (16)

c, =gJAg, (17)

and

co = bx/Ag. (18)
We shall call JC the acceleration compensation factor,
which allows us to adjust path wander. It is interesting
to notice that when ^ = 0.5 and JC = 1, we obtain an
ordinary quartic transition. Note that the amplitude of
the correction term is proportional to the overall velocity
change Ag which can be estimated by local
differentiation and smoothing because an accurate value
is unimportant. Finally, the actual trajectory x is
computed as:

(19)

3.2 Shape control
We now demonstrate the effect of the two parameters n
(preview) and K (acceleration compensation) in the four
cases shown below. The behavior of the path under
various parameters settings is illustrated by Figures 4, 5,
and 6. As it can be seen, the intrusion of the path into
various portions of space can be controlled, and the
various dimensional constraints can be numerically
related. The effect on the final path shape is illustrated
for two coordinates and for various values of the shape
parameters.

3.3 Time scaling
We stated earlier that the purpose of transitions was to
limit the acceleration so as to keep forces within
actuator and object bounded. In our scheme, we would
like to determine the duration of a transition. The
polynomials are functions of a dimensionless parameter
s. If AT is the transiton time, we shall use A, a transition
stretch factor, and compute:

s = Xt, A = I/AT. (20)

For any differentiate time function q, velocities are
scaled by A and accelerations by A2. For all kinematic
chains under consideration, the forces generated by
velocity and acceleration terms, however, are both scaled
by a A2 factor.15

We want to find a AT such that for each link in the
closed kinematic chain that defines the manipulator

position, the sum of the applied forces does not exceed
the maximum allowable force expressed in that frame.
The applied forces are those generated by acceleration,
velocity and gravity as well as user-specified bias internal
forces when active force control is utilized. The
maximum allowable forces are determined either by the
maximum power (torque) that the robot actuators can
provide, or by user-specified maximum tolerable forces
for an object.

All kinematic relationships of all frames of interest are
known to our system. We begin by assigning a nominal
value to the transition time (e.g. one 'clock tick') to the
transition time, AT. We also calculate the maximum
acceleration, based on this transition time and using the
blending profile expressed by equation (12), which
maximizes acceleration for s = 0, s = 1, or s = -c3/4c4.
We then start at the drive frame, since that is where the
blending is being done, and proceed back towards the
manipulator frame. At each link, we accumulate the
forces generated by the object associated with the frame
(if one does exist). We compare these forces with that
maximum desired/possible forces for that frame.

If the total force at one link is greater than the
maximum allowable force then we reduce the former by
increasing the transition time AT. Scaling AT up by a
factor of A scales the inertial and velocity forces down by
a factor of A2. Thus we increase AT enough so that
every component of the total force at that link is less
than the maximum allowable force. Finally, we map back
the resulting total force into the previous frame so that
the procedure can be repeated until we arrive at the
manipulator.

In the case of manipulators, the dynamic forces may
be formulated in joint space and the equations of
motions are captured by the well known equation as
follows

(21)

In this case, the relevant terms can be very efficiently
mapped in Cartesian coordinates using the inverse
Jacobian transposed, /~1 T.1 6 The same terms can be
directly derived in Cartesian coordinates." The maxi-
mum allowable forces for a manipulator, given the joint
ratings, are:

Fmajt = . r 1 7 " w (22)

In the case of rigid bodies, the dynamic forces are
calculated using the laws of Newton and Euler:

f=my,

ia) + ft) x

(23)

(24)

where/is the translational component, n is the rotational
component of the generalized force, y is the
translational velocity, and w is the rotational velocity of
the object. Finally, m and / are, respectively, the mass
and inertia of the rigid body.

These calculations can be performed by a low priority
task, because it is expected that the computed
parameters change slowly with respect to other task
parameters. We feel that the transition calculation

120 Automatic manipulation

1

) .

1

-

I

}
B

K — .0 K =

Fig. 4. Shape control for n = 0, corresponding to a "last minute decision" leading to an overshoot. Variations in K represent a
trade-off between acceleration and transition duration.

procedure should be an integral feature of the system
because the inertial properties of manipulator systems,
including their loads, may change dramatically during
task execution. It is also essential to perform this
calculation periodically on-line since a path may be
altered dynamically at any time.

In summary, to compute a transiton, we need:
• Xi(s) and £2(5), (and not their derivatives), obtained

from task specifications interpolation and sensor data;
• the overall change in velocity, computed either locally

or globally;
• the desired n and K parameters, obtained from the

task specification, to control the transitional behavior;
• the maximum allowable forces, obtained either from

the dynamic force and torque ratings of the
manipulators, or from task specifications;

• the dynamic force due to acceleration, velocity, and
gravity terms, obtained from the manipulator's
dynamic models and rigid bodies inertial properties.

3.4 Algorithm
In practice, we have extended the force limitation
mechanism to arbitrary kinematic loops using the
following algorithm:
• A small transition time is picked. Knowing the

transition time, the blending parameters, n and K, and
estimates of the slope at either end of the transition,
we know the resulting transition profile and can

Automatic manipulation 121

#c = .5 K = 1

Fig. 5. Shape control for jr = 0.5, corresponding to a symmetrical transition. Note, when K = 0, the left inferior quadrant is not
intruded. The motion goes through the via point at the schedule time, leading to more acceleration and therefore a longer transition
time.

calculate the acceleration that will result in the drive
transform frame.
Next, we start at the drive transform and work our
way back to the manipulator, mapping back
accumulated forces. Resulting from the
position/velocity/acceleration at that frame. Frames
such as those associated with the drive transform are
imaginary, reference frames and have no real forces
associated with them. The accumulated forces in them
are simply mapped back into the previous frame. On
the other hand, a frame associated with a manipulator
or with a held object would contain forces due to
inertia, velocity and gravity terms of the dynamic

model. In addition, one can specify the internal force
that can be expected to be applied to the object at
that frame (for instance, in squeezing or stretching) as
well as the force limits (which corresponds to the
maximum force that a manipulator can provide as well
as the maximum forces that an object can withstand).

• In mapping back the forces, we compare, term by
term, the accumulated forces at a link against the
maximum allowable forces. If any terms exceed the
maximum forces then we increase the transition time.
Increasing the transiton time by a factor A decreases
the inertial and velocity terms by a factor A2.

• In load sharing situations, when more than one robot

122 Automatic manipulation

= 0

Fig. 6. Shape control for n = 1 causes a long preview period so that the via point is passed through with the right velocity and no
error. Variations in K represent a trade-off between acceleration and transition duration.

contribute to holding an object, the user is responsible
for providing a load sharing factor, and values
propagated in all kinematic loops involved.

• This process is repeated until we arrive at the
manipulator where we now have a scaled-up transition
time.

• we repeat this for all the loops are involved in this
particular motion and take the worst case (i.e. highest
transition time).

3.5 Rotation interpolation
The straight line interpolation of path segments poses no
problem for the positional part of the motion. A number
of schemes are however possible for the interpolation of

rotations. We have developed a scheme based on
quaternions. This allows us to treat rotations are vector
quantities, thus are made amenable to the same
blending methods just described.

Quaternions are defined by four scalar parameters.
The first scalar parameter (the real part) accounts for the
magnitude of the rotation, the three other ones, forming
a vector (the imaginary part), accounting for the
direction. While quaternions are not very computation-
ally efficient because they observe a quadratic depend-
ence with the rotation term,17 they are more robust
than linear invariants. This makes them particularly
suitable for the interpolation of rotations. However,
Mnear interpolation between quaternions does not lead to

Automatic manipulation 123

Dahc = Blend (Cc' O W).

(30)

(31)

Fig. 7. Rotation interpolation during a transition between two
straight line motions.

rotation of a constant velocity around a fixed axis. This is
because the 4-unit sphere constitutes a metric for
rotations with great circles distances giving the
measure.18 Linearly interpolated quaternions do not stay
on the 4-unit sphere, but "cut through". Thus, we need
to interpolate along great arcs on that sphere.

During straight line motions, the spherical linear
function is used. During transitions, we blend the two
quaternions, using the scheme described above, while
renormalizing as we go along. Since transitions must be
small, this method only causes second order errors as
depicted Figure 7. The mathematics of quaternions as
relevant to this paper are given in Appendix A.

4. MOTION COMPUTATION
We now have most of the elements in place. In the
following, boldface letters denote homogeneous trans-
formations and superscripts indicate that the transform is
scaled by the corresponding variable. Having considered
several alternative schemes, we have found not only
computationally efficient, but also more convenient, to
represent all frame transformations using homogeneous
transformations and to perform rotation scaled by
mapping the transforms' rotational part into a quaternion
representation, spherically interpolate, then convert it
back to the 3 x 3 orthogonal matrix rotation
representation.

The task consists of a sequence of motion described
by:

MA = CATA, MB = CflT6, M c = C C T O

To move from A to B, we compute:

M = • = CB
UDABTB,

with the initial value of "drive transform" being:

The motions are generated during straight parts as:

v = - ^ f - , M.<fl, = CB"DABTB.
'A ~ '8

During blended transitons:

(25)

(26)

(27)

(28)

(2 9)

During transitions, two distinct paths are evaluated and
the actual trajectory obtained by blending. This may not
seem very efficient. Practice shows several benefits to our
approach. The computer code is easier to write because
the process that computes each path segment does not
have to worry about its neighbors: only proper
sequencing of overlaps has to be taken care of as shown
in the next section. Furthermore, it is easy to set upper
bounds on the computational needs for arbitrary cases.
Note that this procedure, in either case, only costs two
matrix multiplies plus the blending operation.

5. PATH ACCOMMODATION
As described in the section 2, the purpose of an
accommodation or optimization procedure is to modify
the nominal linear Cartesian coordinates trajectory in
order to better suit the manipulator, or some arbitrary
design criterion. This may be achieved in two different
and possibly combined ways. Either interpolation along
the path is produced using a non-linear time scale factor,
causing the manipulator to accelerate and decelerate
according to the demand, or the path is modified. In
most cases, we shall attempt to satisfy the manipulator
constraints: actuator torque and range bounds, or obtain
motions that minimize energy, consumption, wear,
etc . . . A variety indexes can be exploited.19

In the first case, the user has the possibility to specify
an arbitrary time scale function. In the second case, the
transform equations describing the motions as in
equation (22) can be written M;O, = C,T,. In these
equations, the O,'s stand for path modifiers.

As far as the main path planning process is concerned,
the only requirement is that the quasi-linearity
hypothesis remains valid, i.e., the path modifications are
not too drastic. A simple example of the optimizer
module would be to calculate a deviation such as the
joint variables move linearly. This method produces
"joint mode" motions while not requiring the handling
of special cases in the trajectory generation code. This is
particularly useful in the context of multi-manipulator
systems for which the intuitive notion of efficient "joint
mode" motion breaks down.

Similarly, during compliant motions, such accom-
modation procedure have the purpose to take into
account, the discrepancies between the programmed
trajectory and the actual trajectory as a result of the
geometrical constraints.

This procedure can be used to handle singularities. For
example, the configuration of the manipulator may be
observed from a kinematic view point. If the manipulator
moves next to or close to a singular point, the concerned
joint or joints is or are brought to rest. The resulting
path discrepancy is then included in the position
equation. Thus this procedure allows the arm to move
gracefully through points of singularity.

124 Automatic manipulation

6. CONCLUSION
In this paper, we have developed a model-based
trajectory planning scheme for robot manipulators.

Strings of path segments during which the velocity is of
primary concern are computed in real-time, and
connected together by mean of blending transitions.
During the transitions, attention is paid to path errors
and system dynamics, and accelerations are adjusted by
mean of time scaling leading to well constrained
trajectories resulting from accuracy and timing require-
ments. During path segments, nominal straight line
motions are generated by interpolating down to nil the
discrepancy exiting between the initial location of the
controlled frame and where it is supposed to move. To
that end, quaternions prove to be a very convenient
mathematical tool to deal with the interpolation of
rotations. Sensory information can be easily integrated
into the path planning process because the scheme does
not require a knowledge of the boundary conditions.
Thus, well defined guarded motions and tracking tasks
can be programmed.

As stated earlier, our scheme adapts to the dynamics
of the manipulator, external constraints acquired through
sensors, and constraints due to the manipulator itself. In
the process of developing this scheme, we have put
forward structured relationships existing between
systems dynamics, preview information, and path
accuracy. For example, there exists a clear trade-off
between preview information and path error.

The algorithm described here has been embodied in a
piece of computer code written in the C language which
forms the core of the Kali robot programming system.
Detail about motions timing and synchronization are
available in reference 20.

There are many instances for which the described
technique is readily applicable. One example can be
found in tele-robotics when programmed control of
manipulators is used in conjunction with manual control.
The path blending technique allows to address in a
structured manner the problem of mixing human
produced reference trajectories with programmed ones,
whether the control is traded or shared. One other
application is found in the case of sensor-based collision
avoidance which requires nominal trajectories to be
modified on-line subject to sensor information.

The goal was not to obtain an optimal behavior from
a robot in a well defined set of cases, but rather a "good"
performance in a large number of cases which, we
believe, corresponds better to the definition of a robotic
device, rather than to one of a automatic machine.

ACKNOWLEDGMENTS
This paper benefited from the help of John Lloyd and
comments from Bill Fisher, and Alberto Izaguirre. The
encouragements of Samad Hayati are also gratefully
acknowledged.

The research described in this paper has been initially
funded by the Jet Propulsion Laboratory under contract
with the National Aeronautics and Space administration,

and by the Natural Science and Engineering Research
Council of Canada.

References
1. O. Khatib, "Real-time obstacle avoidance for manipulators

and mobile robots" Int. J. Robotics Research 5, No. 1,
90-98 (Spring, 1986).

2. J. Bobrow, S. Dubowsky and J. Gibson, "Time-Optimal
Control of Robot Manipulators" Int. J. Robotics Research
4, No. 3, 18-34 (1985).

3. Kang G. Shin and Neil D. McKay, "Minimum-Time
Trajectory Planning for Industrial Robots with General
Torque Constraints" IEEE Conference on Robotics and
Automation, San Fransisco (1986) pp. 412-417.

4. R.P. Paul, Robot Manipulators: Mathematics Programming
and Control (MIT Press, Cambridge, Mass., 1981).

5. R.H. Taylor, "Planning and Execution of Straight Line
Manipulator Trajectories" IBM J Res. Develop. 23, No. 4,
424-436 (1979).

6. R.L. Andersson, "Aggressive Trajectory Generator for a
Robot Ping-Pong Player" IEEE Conference on Robotics
and Automation, Philadelphia, Pa., (April 24-29, 1988)
pp. 188-193.

7. V. Hayward, L.K. Daneshmend and S. Hayati, "An
Overview of Kali: a System to Program and Control
Cooperative Manipulators" Fourth International Con-
ference on Advanced Robotics (ICAR) (Waldron, Ed.)
(Springer Verlag, Berlin 1989) pp. 547-558.

8. V. Hayward and R.P. Paul, "Robot Manipulator Control
under Unix: RCCL a Robot Control ' C Library" Int. J.
Robotic Research 5, No. 4, 94-111 (1986).

9. V. Hayward, "Aspects of the Control of Complex
Mechanical Systems with Time-varying Topologies" 8th
World Congress on the Theory of Machines and
Mechanisms, IFToMM, Prague (August, 1991) pp. 23-29.

10. T. Yoshikawa, "Analysis and design of articulated robot
arms from the viewpoint of dynamic manipulability" Third
International Symposium on Robotics Research (O.
Faugeras and G. Giralt, Editors) (MIT Press, Cambridge,
Mass., 1986) pp. 273-280.

11. O. Khatib and J. Burdick, "Motion and Force Control of
Robot Manipulators" IEEE International Conference on
Robotics and Automation (1986) pp. 1381-1386.

12. S. Hayati, "Hybrid Position/Force Control of Multi-Arm
Cooperating Robots" IEEE International Conference on
Robotics and Automation (1986) pp. 82-89.

13. M. Tomizuka and D. Janczak, "Linear Quadratic Design
of Decoupled Preview Controllers for Robotic Arms" Int.
J. Robotics Research 4, No. 1, 67-79 (1985).

14. I.D. Faux and M.J. Pratt, Computational Geometry for
Design and Manufacture (Ellis Horwood Publishers,
Chichester, UK, 1979).

15. J.M. Hollerbach, "Dynamic scaling of manipulator
trajectories" ASME J. Dynamic Systems, Measurement,
and Control 106, 102-106 (1984).

16. J.E. Lloyd and V. Hayward, "Kinematics of Common
Industrial Robots" Robotics 4, No. 2, 169-192 (1988).

17. K.W. Spring, "Euler Parameters and the Use of
Quaternions Algebra in the Manipulation of Finite
Rotations: A Review" Mechanisms and Machine Theory
21, No. 5, 365-373 (1986).

18. K. Shoemake, "Animating Rotation with Quaternion
Curves" ACM Computer Graphics Conference 19, No. 3,
245-254 (1985).

19. C.A. Klein and B.E. Blaho, "Dexterity Measures for the
Design and Control of Kinematically Redundant Manipu-
lators" Int. J. Robotic Research 6, No. 2, 72-83 (1987).

20. A. Nilakantan and V. Hayward, "The Synchronization of
Multiple Manipulators in Kali" Robotics and Autonomous
Systems 5, No. 3, 345-358 (1990).

Automatic manipulation 125

APPENDIX A: SUMMARY OF QUATERNION
ALGEBRA1718

Let q a quaternion, and let w and k its real and
imaginary parts, q can be expressed as the sum of its
parts:

q = w + k. (32)

The addition, which is associative and commutative, has
no physical interpretation:

qi + q2 = (wi + w2) + (kl+k2). (33)

The multiplication, interpreted as the composition of
rotations, is associative but of course not commutative
except when the vector part are parallel, which is easily
verified from:

(34)

(35)

(36)

(37)

(38)

{yvxw2 — k, • k2) + wxkt + w2k2 + kt x k2,

and takes 24 flops to compute.
The conjugate q of a quaternion q defined as:

q = w - k,

allows us to define the norm:

|<7|2 = qq = qq = ww - k • k,

which in turn allows to define the inverse of q:

so that the following property is verified:

Hence, the inverse of unit quaternion is equal to its
inverse.

It can be shown that a unit quaternion can be
expressed in terms of the angle 8 and unit vector n
representing a finite rotation:

6 . 0
q = cos — + sin —. (39)

If v is a vector of E3, taken as a quaternion with a null
real part, the following operation is defined:

qv = -k • v + (k X v + wv). (40)

Now, if R is a rotation matrix, it is shown that a rotation
operation applied to v (or a rigid body) can be expressed
as in terms of the unit quaternion q:

Rv = qvq, (41)

which relates quaternions to rotation matrices. Compos-
ite rotations can be obtained by multiplying quaternions:

(42)

i (43)

(44)
hence

qAc = qAaqBc. (45)

The relationship between angular velocity and the
quaternion time derivative is:

co = 2qq. (46)

Finally the relationships between rotations matrices and
quaternions can be expressed as follows:

R = (w
2- kTk)k + 2kkT + 2wqx.

which can be worked out to give if k = [ktk2k3]
T:

'l-2k2
2- 2k\2k, k2 + 2wk32k tk3-2wk2

2kxk2- 2wk3\ - 2k\ - 2k\2klki + 2wkx

(47)

R =

_2ktk3 + 2wk22k2k3 - 2wJfc,l - 2k] - 2k\ J
(48)

which takes 24 flops to compute. The inverse relationship
maps q or —q to the same rotation and can be expressed
with the indices Inm such that the Levi-Civita alternating
tensor e'm" = 1. First the magnitudes are computed:

R,, + Rmm + Rnn, (49)

|fc,| = Wl + R,,-Rmn,-Rm. (50)

Then, the largest magnitude parameter is picked in order
to compute in a numerically stable fashion the remaining
ones using three of:

kmkn = l(Rnm + Rmn), (51)

»k, = {{Rnm- Rmn), (52)

the sign of all four parameter being arbitrarily chosen to
be identical. This takes 16 flops and one square root to
compute.

5pherical /inear interpolations maintain unit mag-
nitude and are achieved by using the 'Slerp' function:

S\erp{quq2, u)=-
sin 6

sin ud

sin0
(53)

This function degenerates when q, is a unit quaternion,
the neutral element of rotations, to the 'Slic' (spherical
/inear scaling) scaling function, if w is the scalar part and
k the vector part of q

. „ sin«0
She (q, u) = cos ud + — k,

sin 6
w = cos 6. (54)

