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SUMMARY

Assembly problems require that a robot with fewer
actuated degrees of freedom manipulate an environment
containing a greater number of unactuated degrees of
frredom. From the perspective of control theory, these
problems hold considerable interest because they are
characterized by the presence of non-holonomic
constraints that preclude the possibility of feedback
stabilization. In this sense they necessitate the introduc-
tion of a hierarchical controller. This paper explores
these issues in the simple instance when all of the pieces
to be assembled are constrained to lie on a line. A
hierarchical controller is devised for this problem and is
shown to be correct: the closed loop system achieves any
desired final assembly from all initial configurations that
lie in its connected component in configuration space;
the generated sequence of motions never causes
collisions between two pieces. Further examination of
this approach interprets the controller’s mediation of
conflicting subgoals as promoting an M-player game
amongst the pieces to be assembled.

KEYWORDS: Autonomous assembly; Robots; Hierarchical
controller; Closed loop system.
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L INTRODUCTION .
A general problem of widely acknowledged importance
in robotics concerns the coordination of multiple degrees
of freedom in the face of an environment possessed of
fewer. Whether formulated as the “redundant man-
ipulator” problem, the “cooperating robots” problem, or
the “grasping” problem, many researchers have at-
tempted to deploy underconstrained and actuated joints
to gain better performance than could have otherwise
obtained.! Consider, however, how commonly the
Opposite situation prevails. The paradigm of the monkey
and banana quickly comes to mind. A hungry monkey
ftares at a ripe banana hanging over its head out of
feach. On the ground at its feet lies a scattered
issortment of sturdy boxes. The monkey quickly realizes
It can stack up the boxes, climb the pile, and yank the
banana off the limb. The banana and boxes each possess
(at least) six degrees of unactuated freedom. The
Ltuated joints that the monkey can bring to bear on the
Problem are far fewer but it engages its environment in a
Planned sequence of manipulations that achieves the

*This work was supported in part by the National Science
Oundation under grant DMC-8505160, and, in part by a
Tesidential Young Investigator Award.

desired goal state: banana-in-mouth. This is an example
of an assembly problem.

This paper explores robot assembly in a much more
prosaic setting: we command a force actuated ‘“‘bead”
robot on a wire to move a collection of unactuated
“beads” on a parallel wire into some desired final
configuration from arbitrary initial conditions. This
problem is simple enough to admit a complete and
provably correct solution but, upon a more than cursory
examination, not nearly so trivial as might initially seem
when we require the task to be planned and executed by
a feedback controller. One degree of freedom assembly
tasks, although uninteresting in their own right, seem to
incorporate to a significant extent the same features that
make the more general problems truly confounding - a
combination of holonomic and nonholonomi¢ con-
straints. This paper is offered, then, in the spirit of an
extended simple example of a complex general problem.
The solution and methods of analysis it introduces hold
the promise of generalization across the horizon of the
general case where the pieces have higher degrees of
freedom,?> where the pieces are truly dynamical (rather
than governed by generalized damper dynamics as in this
paper,® and where the robot is itself located within the
same cluttered workspace as the pieces.*

Roughly speaking, there are two ideas at work. First, a
refined notion of artificial potential functions® that we
have termed navigation functions® is employed to encode
the subgoals characterizing the participation of each
piece in a completed assembly. A standard method of
deriving stable feedback controllers for mechanical
systems from potential fields’ is then used to associate a
correct closed loop with each of the encoded subgoals.
Since, as will be demonstrated, no single closed loop can
result in a completed assembly, one requires some
“higher level” organizing principle to switch between the
alternative closed loops. This second idea, autonomous
scheduling of conflicting subgoals, is motivated in large
measure by independent work in robot juggling that we
have pursued over the last few years.*® A straightfor-
ward encoding of “urgency” is used to select the most
deserving lower level alternative. The discrete time
closed loop dynamics presented by the higher level
switching process can be shown to converge by appeal to
standard ideas of nonlinear programming. In summary,
the present approach to assembly might be characterized
as “juggling a navigation function.”

The paper is organized as follows. This introduction
concludes with a more detailed overview of the problem
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setting, related literature, and present contribution.
Section 2 examines carefully and presents a feedback
controller that correctly solves the “unit” assembly
problem wherein there is only one bead for the robot to
place. This solution is successively generalized to
incorporate two and general multi-body one degree of
freedom assemblies in Section 3. The paper concludes
with a brief discussion concerning the larger prospects
for generalization of these ideas. An appendix presents
certain constructive techniques from our previous work,
along with the computational details required to make
them fit here.

1.1 Assembly: manipulating many using few degrees of
freedom

Loosely speaking, say that a robotic task involves an
assembly problem if the environment to be manipulated
possesses more degrees of (unactuated) freedom than are
available to the (actuated) robot system, and the
specified goal state is to be achieved starting from
arbitrary initial configurations (that is, all unactuated
degrees of freedom must be exercised, in general, to
complete that task). The unavailability of actuated
degrees of freedom might result from limitations
inherent in the robot’s design (e.g., the PUMA has only
six joints and the widget has twenty parts) or as a
function of natural constraints imposed by the environ-
ment (e.g., the monkey’s twenty degree of freedom hand
has no bearing upon the banana’s six degree of freedom
state unless there is contact). A successful assembly plan
must develop a sequence of manipulations none of whose
single steps can achiéve the goal yet each of whose
concluding states brings the environment to a more
favorable situation than the prior.

Surely, any reasonably interesting task to be carried
out in the real (unstructured) world by a solitary robot
will have the character of an™assembly problem. For
example, this paradigm underlies the warehouseman’s
problem:'’ in a large hall filled to the ceiling with storage
crates lies (in the far corner under a pile of heavy
cartons) a box of back issues of Robotica; the task is to
retrieve a copy of the issue. It appears reasonable,
moreover, to represent the exacavation problem —e.g.,
“robot bulldozer, go clear out the following dimensioned
cavity so that the foundation robot can pour in the
footings” — as a version of the warehouseman’s problem
that incorporates some independent dynamics in the
workspace. Undersea or outerspace robot assembly
operations will add still stronger a dynamical character to
the environment. But even in the most structured factory
setting, it is hard to imagine that “design for
manufacturability’” will obviate the need to assemble
widgets with more parts than agents to manipulate them.

There is, of course, a large and growing assembly
literature, Perhaps most notable has been that generated
by the ‘“handey” project of Lozano-Perez and
colleagues,'' — arguably the first integrated system
capable ot perceiving, planning, and controlling a
general class of objects within a reasonably complex
unstructured environment in support of arbitrary user
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specified pick and place operations. Subsequent wy
Kak and colleagues has focussed experimenty!
analytical® attention upon integrating sensing see
manipulation strategies in a similarly unstry
environment. In contrast to these very important ¢
advances in managing the full spectrum of problemg}
confront robots in realistic settings, the not
assembly addressed in the present paper includes
narrower range of issues having to do with the plé‘
and implementation of motions. For example, de MIH4R
and Sanderson have recently reported progress in
oping an effective representation' and computat
apparatus”® for enumerating all correct binary
sequences toward a specified composite object,
work represents a substantial contribution ¢
assembly reasoning literature. In comparison, this pa
addresses the problem of generating merely one ¢
sequence for each initial arrangement of parts. Howe
here, by “correct sequence” is meant an algorithm
generating an explicit profile of actuator torques |
forces that result in physical robot and object mo
Thus, within the more focussed arena of assembly
branch of motion planning, the work reported
might be said to bridge the ground between rea
and control.
A second literature that has strong bearing on j
present work concerns the control of nonhglonom
constrained mechanical systems. Fine tutorials descri
how such considerations arise in problems of mo
robotics,'® fingered manipulation,'” or robotic sp
craft'® are readily available. That such issues arise
present setting is implicit in the work of Dorst'
Laumond’ and their colleagues. Techniques for gene
ing dynamical plans — open loop controllers — in the
of nonholonomic constraints generally appeal to
optimality criterion in order to achieve a computationdl
well posed problem and may be implemented usi
established numerical procedures.” In contrast, ;
construction of feedback laws - closed loop controlle;
for this class of nonlinear dynamical systems is ingg
infancy. While this paper derives great advantage fig
certain general results in the surrounding nonli
stabilizability literature, there are only a few of
authors who have attempted the actual construction
feedback controllers for nonholonomically constraly
mechanical systems.?”*! As it turns out, the non-anali§
nature of the nonholonomic constraints arising
assembly problems further distinguishes the present Wi
from any previously considered to the best of
author’s knowledge. '

1.2 Contributions of this paper
This paper poses the multi-body one degree of freeCqg
assembly problem. Because of the insistence U
feedback controllers, the solution entails a neces
appeal to a hierarchical controller. The proper ch
from a family of low-level force policies by a high-l
scheduling algorithm results in convergence to the 28
state.
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Autonomous assembly

1.2.1 Statement of the problem. The problem setting
(see Figure 1) presents a collection of rigid bodies (let us
say M of them), each constrained to translate along the
same horizontal axis. Each body has a specified goal
jocation. This ensemble of specified goals comprises the
completed assembly. None of the bodies can move
independently. No two bodies can overlap. A body’s
motion in response to external forces is modeled as a
ugeneralized damper:” all motion ceases when the
external force is removed. A nearby parallel axis
constrains a single rigid body robot. The robot has a
desired nest position along the axis of motion. It is
actuated by a source of bounded but instantaneous force
and obeys Newton’s laws of motion. It has a gripper as
well which, when closed upon a body, is capable of
exerting forces upon it. Most critically, the robot can
exert no force on any body not proximal to it.

The problem is now as follows. We are required to
find a feedback controller, that is, a policy for asserting
bounded actuator forces and gripper positions as a
function of the robot’s and bodies’ positions and
velocities, which causes the robot to eventually reach its
nest position after first bringing the collection of bodies
into the desired assembly. The robot is not permitted to
let any two bodies touch each other (although an initial
configuration where some are touching is legal) during
the manipulations.* The robot must end in its nest
configuration. The bodies may be left in a disassembled
state if and only if reaching the fully assembled
configuration would entail passing one through the other.

1.2.2 Motivation: planning "via feedback. Why closed
loop controllers? In a recent paper,” the author reviews
the principles underlying a program of robotics research
that seeks to develop autonomous planning and control
procedures by recourse to dynamical systems theory.
Since physical machines (whether™ operating in a
dynamical or a quasi-state .environme?lt) are ultimately
force or torque controlled dynamical systems, the
specification of input torques must result in certain
classes of vector fields. In this light, it makes sense to
specify plans in the form of appropriately constructed
sensor based feedback controllers whenever possible.
Such specifications make explicit the resulting (closed
loop) dynamical system, and afford the application of
well developed mathematical analysis when attempting
proofs of correctness. Moreover, feedback controllers,
unlike open loop plans, are designed to work over large
classes of initial configurations (tolerance to state
Uncertainty) and often succeed even when the underlying
dynamics are imperfectly modeled (tolerance to para-
metric uncertainty).”® Further, this approach to planning
€ncourages the design of ‘“‘canonical” procedures for

*

m:het)presumpgion here is that a desired assembly with contact

e Y be approximated to wntl}m any required degree of sensory
Solution by a close but slightly separated configuration. In

gomt of fact, in order to obtain convergence in finite time we
00se in Section 3 the expedient (but not necessary) course of

Te 7 . . .. .
la}‘lng_ the termination condition in favor of an “e-close”
Tealization .

139

“model” problems which may then be instantiated in
particular settings by a change of coordinates.**
Finally, if the robot’s execution of a task in a specified
environment may be represented as a dynamical system
on an appropriate space, and if the criterion of success is
the achievement of some distinguished goal set in that
space, one is in a position to assess the ‘“autonomy” of
the resulting behavior with respect to standard ideas
from dynamical systems theory. Namely, if autonomy
connotes an ability to contend with the full spectrum of
logically possible circumstances that arise in completion

- of a task, systems whose goal states are globally

attracting represent autonomous behavior.?

1.2.3 Nature of the solution. The proposed controller
begins with a navigation function® on each of the disjoint
connected components (corresponding to the possible
orderings of the M bodies) of the M-dimensional
configuration space. If the pieces were ‘“‘animated’ — that
is, if each body were equipped with its own individual
actuator — then assigning a force law to each degree of
freedom defined by the corresponding entry in the
gradient vector field induced by the navigation function
would result in the bodies converging toward the desired
final assembly with no collisions along the way. This
animated choreography would cease short of the desired
final assembly if and only if the goal lay in a component
of configuration space disjoint from the initial conditions.
The particular navigation function takes a form
presented in Appendix A below which also presents the
bulk of the computational details required to prove that
it is indeed a navigation function.

Since the pieces are not animated, at most only one
may move at any time. The controller operates in
principle by moving each piece down the corresponding
component of the navigation function gradient evaluated
with all the other variables held fixed. The piece is halted
at a relative minimum and the next piece to move is
chosen by virtue of having the largest component of the
navigation function gradient at the point in question. The
global convergence of this component-wise descent
procedure is established in Section 3. In practice, the
robot is ‘“summoned” to approach and grasp the
designated next piece. Once grasped, the piece is
controlled toward the intermediate goal point by a
nonlinear version of proportional-derivative control. This
intermediate maneuver is described and its correctness
demonstrated in the context of a single body assembly in
Section 2.

1.2.4 Implications: hierarchical feedback control. How
can such a seemingly trivial problem give rise to such a
welter of symbols and formulae as are to be found in the
next two sections? Despite their virtues, feedback
controllers have inherent limitations. There is an

important distinction between attraction — convergence
to a limit set—and stability — informally, the ability to
effectively resist small but arbitrary disturbances away
from the limit set. Conventionally, feedback is designed
to achieve asymptotic stability — the coincidence of both




140

properties — with respect to a specified goal set. In the
present case this is not possible and the reasoning in the
sequel is complicated accordingly.

It is intuitively clear that one robot, since it cannot
possibly be in two places at the same time, cannot
simultaneously defeat arbitrary disturbances acting on
multiple distributed objects. That this introduces real
planning difficulties in a dynamical environment (e.g.
undersea or in space) is self-evident. It is perhaps less
clear but will be shown below, that this precludes the
possibility of achieving asymptotic stability with respect
to isolated goal points. Thus, even within the static
generalized damper model adopted for ease of exposition
in this paper, the absence of stability precludes the
possibility of making monotone “progress” (as measured
by any scalar means with respect to arbitrary initial
conditions) toward the goal.

Such a situation necessitates the introduction of a
hierarchy of control action. One can at best introduce a
family of feedback laws that stabilize with respect to
some corresponding family of subgoals. If properly
conceived, the intersection of these ‘“‘subgoals” cor-
responds to the desired goal (e.g. each piece of an
assembly knows its own desired destination and regards
the other pieces as merely so many obstacles). The
subgoals will at times conflict (e.g. piece 1 might need to
move away from its destination in order to give piece 2
enough room to get out of the way of piece 1’s progress
toward that destmation)* The family members must be
sequentially deployed online according to the judgement
of a higher level switching algorithm in such a fashion as
to cause convergence. The basis for this judgement must
be some *“‘coarsened” measure of progress.

In the present context, the subgoals are encoded by
the coordinate slice of the navigation function cor-
responding to each piece. The mass of formal statements
in the sequel simply shows how ti‘aversmg each slice in
turn leads to progress in the hlgher level sense without
compromising the boundedness or safety (obstacle
avoidance) properties of the lower level at any step. The
generality of this straightforward but detailed scheduling
policy appears to be sufficient that it should work in the
general case. Thus, given a general n-degree of freedom
multibody static assembly problem, it seems to be the
case that the only ingredient of the solution missing from
this paper is a navigation function.** The generality of
the present solution seems sufficient, moreover, that
slight modifications seem to yield similar results for
dynamical environments.® Finally, if, as in ref. 4 the
robot is more realistically placed within the workspace

* But, note, unfortunately, it is a central trivializing feature of
the one degree of freedom problem engaged here that any
conflict that can be resolved (i.e., the goal is reachable from
the present configuration) involves at least one of the pieces
making direct progress toward its goal. This obviously need not
be the case in higher degrees of freedom,” and is arguably one
way of thinking about why the navigation function that arise
will not be convex as they are in the present paper.

**One is always guaranteed to exist.® Their construction for
particular classes of configuration spaces is in progress.>**
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with the pieces, then there is some hope that resyjyg
noncooperative game theory when added to thig:
may provide a solution to that class of problems g

2 THE ONE DEGREE OF FREEDOM UNjy
ASSEMBLY PROBLEM :
To reduce the problem to simplest terms, conside
situation depicted in Figure 1.

A rigid body of length p is restricted to 3 it
horizontal axis of motion, b € 8= R. A unit masg
moves along a parallel horizontal axis, re #=R:
robot must start from an arbitrary location, relocat,
body, and then return to a specified nest location, 5
We require an autonomous feedback control strategy’
the robot that will enable it to move toward the
“grab it”, and place it in the arbitrarily designated ni
location, and proceed to its nest. Somewhat surprisin
this is not as easy as it sounds. The problem is entigd
trivial if open loop strategies are permitted (a two |
example is offered below in Paragraph 2.12.a
motivated by the discussion in the introduction, a clo
loop strategy is desired, then the situation chan
dramatically: now, rather than being trivial, the probl

is unsolvable in the traditional sense.
In Section 2.1 we will show that the nature of .

nonholonomic constraints that characterize this probl
preclude feedback stabilization. That is to say, if a clo
loop controller results in convergence to a pair,

nest-goal locations that are not nearby each other tha@ loop s
that configuration cannot comprise a stable equilibriy@l power:
state of the closed loop system. The impossibility time

asymptotic stability has two implications —one pract] attract
and one theoretical. Speaking practically, the for matter
result simply confirms the obvious fact that sn for “¢

neighb
be sin
within
we adc

perturbations of the object’s location will req
extensive efforts from the actuators in order to be &g
right if the object is not within reach. Speak
theoretically, this result precludes the possibility of €
using Lyapunov methods directly as a guide :
constructing feedback laws: no controller whose clos

loop system admits a Lyapunov function can result a 21 A
convergence to an arbitrary (n, d) pair; no controllg constre
that does result in convergence can admit a Lyapu W 1 For P
function. This is particularly unfortunate since Lyapu i Q}lallta
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Fig. 1. A one degree of freedom unit assembly problem-',




us assembly '

‘esults frop’ &
) this work: -
ms as well.- |

JNIT
onsider the :

to a single
mass robot :
=R, Thes [
~elocate the
tion, ne R,
strategy for

1 the puck,:
gnated new
surprisingly, -
1 18 entirely
(a two line’’
n.1.2.a). If i
Jn, a closed

on changes |
‘he problem:: )

ture of the:
‘his problem.,
", if a closed:
a pair of;
other then
equilibrium:
ossibility of -
ne practical |
the formal:
that small -
vill - require’;
:r to be set’;
Speaking
ility of ever
guide for
“hose closed -
an result in
o controller

iy

X

Goal

_— R
' problem.

Autonomous assembly

In Section 2.2 we take advantage of the present
roblem’s utter simplicity to develop a successful
feedback controller. When the robot is not required to
pest then the formal obstruction to feedback stabilization
;s removed, and a modified proportional-derivative
controller brings the robot to the body and the
robot-body pair to the goal. When the robot is not
required to manipulate the body then a standard
roportional-derivative controller brings the robot to its
nest. Clearly, the successive application of these two
controllers results in the completed assembly. Moreover,
just as clearly, the conditions under which the switch
from the first to the second should occur can be
expressed entirely as a function of state: apply the first
anless the body is at its goal position. This defines a two
level feedback controller whose generalization in the
next section constitutes the central contribution of the
paper.

Evidently, there is a technical problem concerning
time of convergence here. The limit set of a smooth
vector field is never reached in finite time, thus the
switching scheme proposed above requires ‘“‘two
infinities” of time to converge as matters presently stand.
Two remedies come to mind. First, one might adjust the
low level algorithms to give finite time convergence. For
example, Kawski is developing a systematic theory of

Hélder Continuous feedback controllers (they are in fact -

smooth away from the limit sets) whose resulting closed
loop systems satisfy J.yapunov functions with fractional
powers.”® Such systems have unique solutions forward in
time even though their trajectories arrive at the
attracting states in finite time. Second, as a practical
matter, one might relax the switching criterion and settle
for “g-approximate” convergence to within some small
neighborhood of the nominal switching set. Since it can
be simply shown that this results in convergence to
within a small neighborhood of the désired final assembly
we adopt the latter remedy at present.

-

2.1. Assembly: another source of nonholonomic
constraints

For purposes of the present investigation into the
qualitative control properties of the situation depicted in
Figure 1 it seems preferable to adopt as unconstrained a
model of contact as possible. The coupling force, c,
between the body and the robot will be modeled as some
f}mction of their relative position and the ‘“gripper
tightness,” considered as a command input and denoted
U,. The least we require of c(r — b, u,), is that it satisfy
the following assumptions:

Coupling: ¢(0, 1) #0

Releasing: c(x, 0)=0 forall xeR

Proximity: [x|=p implies c(x,u)=0, forall ueR.
.Rouﬂ'lly speaking, these conditions assure that man-
1p“|a§10n is possible (Coupling) if and only if the robot is
Sufficiently close to the body (Proximity) and the gripper

S engaged (Releasing). To avoid any technical difficulties
With existence or uniqueness of solutions, it is expedient
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to let the coupling law be smooth, ¢ € C*[R? R]. The
only regularization that cannot be introduced without
destroying the essence of the problem at hand is to let ¢
be analytic. This would violate the Proximity
assumption, allowing the robot to “beckon” the object
from arbitrarily far away (with however small a force). In
the next section, when attention turns to the problem of
actually constructing feedback controllers, it will prove
useful to adopt a more concrete instance of this large
class of possible coupling rules.

2.1.1 A dynamical model. In order to write down the
control system this problem presents we require a
dynamical model of the robot and its environment.
Assume that the robot is controlled by a force we are
free to command, u,, and its motion is governed by
Newton’s laws, ¥=u,. In contrast, for the sake of
simplicity, assume the body is governed instead by
“generalized damper” dynamics®’ as is common in the
assembly planning literature.”® That is, assume
sufficiently large friction forces are present that
externally applied forces applied to this point mass will
result in proportional changes in velocity. In particular,
zero applied force is associated with zero velocity. It is
worth emphasizing that these trivial dynamics represent a
convenient vehicle for the present exposition —all the
results obtained in Section 2.1.2 below continue, to hold
under analogously loose assumptions when the body is
posited to have Newtonian dynamics.?

Denoting by ¢ =[r, b]” € 2= R x B the configuration
space vector, our control system now takes the form of a
dynamical model along with an algebraic constraint,

M(q)§ = Bu,
J(q, u2)§=0.
This is a common structure that characterizes many
problems in physics and engineering,” and arises as well
in important aspects of robotic manipulation as discussed
in Section 1.1. Here, M is the constant (diagonal) mass
matrix, B =[1,0]" denotes the fact that all controlled

forces act upon the body only through the robot, and J
expresses the operating constraints:

J(q’ u2) = [c(r —-b, uZ): —1]

i.e., the puck can be moved by the robot if and only if
they are “touching” each other and the gripper is
engaged.

The general structure of this model conforms to the
well known but still poorly understood class of
mechanical systems with nonholonomic constraints. Such
systems impose constraints upon the state variables
which are non-integrable, that is, the constraints can only
be expressed in terms of the velocity variables of the
problem. To best appreciate what this means intuitively,
we follow Bloch and McClamroch,” and consider the
“reduced” state space representation of this system

Uy
p=f(Pru) f(p’u)= 141
c(p2—ps, u2)p:
where p=(F, r,b)e =R x 2, and u e R%

)
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qgel

ga=cq)

Fig. 2. The nonholonomic nature of system (1).

Figure 2 depicts the nature of the nonholonomy
operating here. While the configuration space has two
degrees of freedom, the infinitesimal motions — that is,
the instantaneous velocity vectors available at any
configuration — are constrained in a configuration de-
pendent manner. Denoting the “‘contact” set by

€2 {(r,b)e2:|r—b|<p},

we note that the system is limited to ‘horizontal”
velocities (robot motion) away from contact, g ¢ € and
“diagonal” or “horizontal” velocities in contact g € €.
This figure necessarily resembles closely those found in
Laumond’s assembly work.*

2.1.2 Qualitative properties. We are now ready to
‘present and justify the observation that even though
assembly control systems are completely controllable,
they fail to be stabilizable. This observation follows from
Paragraph 2.1.2.a, Paragraph *2.1.2.b, and Paragraph
2.1.2.c, below. For convenience of presentation, it is first
worth introducing some notation and recalling a few
definitions from the control and dynamical systems
literature.

Given a general system of the form (1), and a control
input, u(f), denote the solution at time ¢ to the initial
condition problem p, by fi(pe). Although more
restricted definitions are sometimes profitable, it is
traditional to allow as an admissible control input any
Lebesgue integrable function of time that takes values in
some bounded set of controls.* We simply assume here
that the existence of solutions with respect to the notion
of admissible controls has been assured so that f,(-) is
always well defined. If for every pair of initial and final
states, pgo, p1, there exists an admissible input « such that
p.=fi(py) for some time ¢ then the system is completely
controllable.® A feedback controller is a rule for

determining a control input as a function of the present.

state of the system: u(t) =g(p(f)). We will denote the
“closed loop™ trajectories resulting from application of
this control input by f(-). Consider now the steady state
properties of some closed loop system, f,(-). Denote by
XN(p) an open neighborhood of some point, p. An
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equilibrium state, p, is attracting if it is the limit g
some encompassing open neighborhood,

p= limf;(N (p))-

It is stable if every neighborhood, N(p) contams
smaller A'(p) < N(p) such that trajectories origina
in & remain within &, :

N S N,

It is asymptotically stable if it is attracting and stable
control system is (continuously) stabilizable at p if th
can be found a (continuous) feedback controller whofg
resulting closed loop system p is an asymptotically sta
equilibrium state.

Paragraph 2.1.2.a indicates that system (1)
completely controllable. Every completely controllabj
linear system is smoothly stabilizable, but the same is ng
at all true for nonlinear systems. Brockett launched w :
has become a thriving literature on nonlinear st
lizability properties by offering one of the early example
of a nicely controllable but not continuously stabilizal
system.*? It is now understood that the nonholonomic
constrained mechanical systems fail Brockett’s test,* aj
thus fail to admit continuous stabilizing feedbaf
controliers. This holds true in the present case accor
to Paragraph 2.1.2.b.

Yet the conclusion of Paragraph 2.1.2.c regardmg
1mp0551b111ty of any stabilizing feedback has not be
reached in any classical nonholonomic setting to the b
of the author’s knowledge. If for all initial conditior
Po, the set of reachable states from p, in time 5,

R,(po) & U Uf::(Po)

contains p, in its interior for all s >0, then the syste
small time locally controllable. This property is know
be desirable from the point of view of stabilizatig
theory. For example, Kawski has recently shown that.
large class of planar systems which enjoy this propet
are “almost” smoothly stabilizable.® Bloch -
McClamroch have shown that the analytic nd
holonomically constrained systems arising in ce
space-craft and common robotic  manipul
problems?'** satisfy this property. They have constru
discontinuous stabilizing feedback controllers in s
instances. It is perhaps symptomatic of the non-clas
nature of assembly constraints that according
Paragraph 2.1.2.a system (1) does not enjoy the §
time local controllability property

In summary, system (1), is completely control
(Paragraph 2.1.2.a) but not continuously stab
(Paragraph 2.1.2.b) as is the case in the “class
nonholonomically constrained mechanical systems Wi
include all of the robotic control problems examin®
date. In contrast to these, the non-analyticity of
nonholonomy exhibited by (1) results in a robot (
problem which is not stabilizable in any sense (Paragré

2.1.2.c).
2.1.2.a Controllability The one degree of freedom |
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sembly system (1) is completely controllable but not
all time locally controllable. From any initial
nfiguration, po= (7o, 70, bo), there exists a control
licy (u:(¢), u,(t)) that brings the system to the desired
al configuration, p,=(0, n, g). Such an open loop
licy might be rendered as follows. Open the gripper,
d move the robot (which, having the dynamics of a
andard double integrator, is completely controllable) to
the zero velocity position r = b,. Now, close the gripper
and move the robot to the zero velocity position
4y =d - the body must follow according to the coupling

[ aple. Finally, open the gripper, and move the robot to its
4 ' pest position, r = n, also at zero velocity.

s+ This system fails, however, to be small time locally
controllable. Since admissible inputs are bounded,
iR,(po) must lie in smaller and smaller balls around p,, as

A gets smaller. Thus, taking a non-contact configuration,

“(n, bo) € €, we may assume that Rs)ro, ry, by) N € =9.
But this implies b — b, for all (7, r, b) € R,(p,). In other
words, R,(po) has an empty interior,
2.1.2.b Stability The one degree of freedom unit
-assembly system (1) is not continuously stabilizable
since, as an example, (0, 0, £) is not in the image of f for
any £ #0, and the system fails Brockett’s test.?234 *
2.1.2.c Convergence implies instability If a non-contact
goal g, ¢ € is an attracting equilibrium state, then it
cannot be stable in the sense of Lyapunov.

If (0, n, d) € ? is an attracting equilibrium state then it
comprises the limit set of all initial conditions in
arbitrarily small neighborhoods, (7, ro, bg) € ¥(0, n, d).
If (0, n, d) is a sufficiently small neighborhood then it
has an empty intersection with the contact set, €. It
follows that all trajectories from initial conditions in
N(0, n, d) with by # d must leave that neighborhood.

2.2 Feedback controllers for unit assembly

To permit a discussion of concrete erdback controllers
we now add the following assumptions to our list of
attributes of c: -

Passivity: 0<c=<1

Gripping: There exists a smooth function c'(x, cy)
such that c¢,=c(x, c'(x, cp)), for all c,€l0, 1],

x €0, p].
Note that consistency with Proximity above, requires
0< P <p, which is now assumed. Roughly speaking,
these additional assumptions guarantee that the gripper
Cannot by itself accelerate the body to be going more
quickly or in the opposite direction from the robot
(Passivity) and that eventually after the robot has come
into range of the body it has available the full scope of
coupling strengths (Gripping). This latter assumption is
Teally added for convenience to stay within the category

*This result seems to depend in some measure upon the
Ynamical model introduced above. For example, when the
POdy’s dynamics are Newtonian and the grasping model
volves an exchange of forces between the robot and body

;hm(éhse system fails Brockett’s test only away from the contact
et, €.
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of smooth vector fields so that all discontinuities are seen
to arise from the control policy. One might more simply
hypothesize a Boolean “glue” model of coupling
whereby c=1if and only if r —b < p and u,=1 (e.g. as
in [4]). However, the chosen prescription might be said
to add a slightly greater touch of reality to the model of
force interaction since it admits the possibility of the
body slowly (or quickly) slipping away from too weak a
robot’s grasp as their common motion is opposed by the
frictional forces of the environment. Note that the
“glue” model can be recovered by letting p approach p.

As an example, let o be a scalar function that
smoothly interpolates the values:

ox) = {(1)/Umax

x|<p
lx|>p

where Uy, represents the full scale of the gripper input
range, u, € [0, U,.]. Then we might have

c(r—b, uy) =o(r — b)uy;
¢'(r — b, cy) = co/ a(r — b).

2.2.1. Stabilization to a submanifold Suppose it is
merely desired that the robot come to rest in an arbitrary
location after placing the body at some goal point, d.
None of the foregoing theoretical obstructions to
stabilizability apply in principle in this case since the
requirement is for convergence to a submanifold —a
smooth continuum of points (that is in fact a linear
subspace in this situation) — rather than an isolated
equilibrinm state. However, straightforward application
of the task encoding methods outlined in Appendix A
lead to a goal specification taking the form of an isolated
point. Thus, as dictated by Paragraph 2.1.2.b, we are left
with a discontinuous controller (note that there is no
contradiction with Paragraph 2.1.2.c since the goal is in
€). In later sections of this paper that treat multi-body
assembly problems the same encoding gives rise to a true
continuum of goal states. Although we will continue to
use the controller devised here in those situations, it is
not clear whether some more effective encoding might
result in a continuous feedback law.

Since there are no obstacles in the present setting, it is
straightforward to devise a cost function that encodes
this task. We simultaneously require /*=0 and
@a(b)2(b—d)*=0. According to the Proximity
assumption, the latter will not be possible unless the
system is brought into the contact region, €, a condition
that is obviously encoded by making (r —b)® small.
Thus, the task at hand is readily encoded as the zero set
of the scalar valued function,

b 24P+ (b) +5(r = b)" @)

Since there is no a priori obstruction to stabilization
around the zero level set of v,, we follow Bloch and
McClamroch® and attempt to final a feedback

controller, g, with respect to those closed loop system,
2(*), the positive definite function v, is a Lyapunov
function. The time derivative of v, along the motion of
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the system (the inner product of the gradient of v, with
the vector field f (1)),
#4=Dv, - f =F[u) + Dggc + (r —b)(1 - ),
can be made negative semi-definite by choosing
u &~ =~ Dgac = (r=b)1-¢), ®)
since this results in
'Dd =—F 2.

According to LaSalle’s invariance principle,® the limit
set of the resulting closed loop is contained within the
largest positive invariant set lying in 0, = 0 - that is, the
plane 7= 0. But the closed loop vector field restricted to
this set,

Flmo=] ’

=07 | _Dguc—(r—b)1- c)]

is only tangent when the second entry is zero. Thus,
Dac(r—b,u) +(r=b)[1—c(r—b,u)]=0 (4)

specifies the candidate limit set of the control policy
as presently defined. According to the Proximity
assumption, the tangent condition (4) is never satisfied
outside the contact region, (r,b)¢ 6. It remains to
specify a gripper policy inside € that results in
convergence of the robot to the goal, d.
This is readily accomplished, for example, by adopting
the particular 'gripper rule, c,, that acts as follows
{0 [r—bi>p
Uy = tfoe
ct(r=>b, c r, b)) Ir—bl=p
Ir = bl [1+ (D@a)’]
ID@al +Ir = bl [1+ (D@a)’]
According to the Gripping assumption one may
substitute ¢, for ¢ in (4) undex, this policy to get

Dg; _(r—b)
D@4l Ir—bl’

and this can only hold true when Dg, =0 in which case
(r, d) = (d, d). Thus, the controller causes the body to
come to rest at the desired goal location. It may be noted
that (5) is discontinuous at configurations where
|[r—bl=p.

We wi’il denote the feedback controller defined by
equations (3) and (5) by the symbol g, in the sequel and
summarize its effect upon the resulting closed loop
system by reiterating that (0,d, d) is an asymptotically
stable equilibrium state whose domain of attraction is
global,

©)

cs(r —b) £

(1+D¢2)

lim £2,(%) = 0, . d). ©)

2.2.2 Convergence to a point. Now consider the full one
degree of freedom assembly problem that requires the
robot to relocate the body at the goal point, d, and then
return to its “nest” position, n. According to Paragraph
2.1.2.b, no controller that accomplishes this task can be
smooth. Moreover, according to Paragraph 2.1.2.c, there
is no single Lyapunov function that can play a role here

Autonomous asser,

f:
analogous to that of (2) in the partial version of'i
assembly problem: Lyapunov theory only works? i
stable equilibrium states. i £

The obvious answer is to adopt a disconting i
two-stage control policy that switches from &
manipulation task over to nesting task when the fors
is completed. This can be done perfectly well} Fo
feedback, since the conditions to be tested have to: o
with the geometry of state space. .

The manipulation task is accomplished via
controller g;, above. It is a consequence of stand
linear systems theory that the controller

w(p)a[-F-C-m]

gn(p) = [ 1 :| é [ T

u2(p) 0 g

yields a globally attracting stable submanifold,
lim fL(r, 7, b) = (0, m, b), e

o

that corresponds to the desired nesting behavior. s
Assume now that some “higher level” automatg
designed to schedule o

u= {gd Q4> E
8n (pd’<‘£ ;

It is clear that this “hierarchical” controller result
approximate (“g-close”) convergence to the desired.;
state from all initial conditions, and as £—0, result
exact convergence albeit after longer and IQ;
transients.* Note for future reference that since thef
only one possible outcome (that is, the goal is aly
reachable), the switching logic tests the value .ofj
directly. g

3 A HIERARCHICAL CONTROL SYSTEM F(
SCALAR ASSEMBLIES
In the previous section it was established that there;
contradiction between convergence and stability, ;
assembly problems. However the force of this contrs ?
tion may have seemed somewhat tagent to the matte G
hand since, in the case of a single body, one migh
satisfied to let the robot “hover” around waiting to
perturbations (stability) rather than retire to its:
(convergence). The contradiction is sharpened b}
examination of the multiple body case. Here, the
cannot possibly “hover” around all the bodies, and
is no stable means of bringing all of them to
destinations and keeping them there. This necessitg}“
hierarchical controller. The present section gener3
and expands upon these insights.
Section 3.1 treats the two body assembly pro
which adds to the nonholonomic constraints exp
previously the holonomic constraints arising fro ’
prohibition against collisions. Two low-level feed
laws are developed that result in the robot bringing
or the other body to an intermediate subgoal lo¢
without collision. A notion of assembly stage is propy

* Refer to the discussion in the beginning of this ¢
concerning the alternatives to e-close finite time converge
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| jlong with termination cond.itipns. A proposed high level
scheduler that operates 'w1thm these stages alternates
petween the two competing lower level controllers and
assigns gains to th_e selected alternative based upon the
resent configuration of the bodies. Its gain assignment
Y strategy guarantees a uniform upper bound on input
magnitudes over all possible stages. The scheduler brings
the robot tO its nest state only if both the low level laws
would result in “negligible” progress.

Section 3.2 passes to the general case of M bodies and
i demonstrates that the high level scheduler developed
1 previously imposes what amounts to a standard
aumerical descent technique with respect to the
pavigation function from which the lower level
controllers are formed. Convergence is seen to result
from well known principles of nonlinear programming.
Thus, interaction of the two levels solves the scalar
| multi-body assembly problem. From arbitrary initial
conditions of the robot and body, the algorithm causes
the robot (i) to nest after having brought each body to its
designated goal; and (ii) to stop short of the specified
task if and only if the goal is unachievable.

In Section 3.3, the higher level scheduling decisions
are re-interpreted in the context of game theory. The
present scheme represents a purely cooperative game
3| played by the pieces. More realistic assembly settings
7| wherein the robot is itself included in the workspace
in' occupied by the pieces will require a non-cooperative
and longérig game formulation. A, simple non-cooperative game is
ince there i proposed for the two body problem. While graphical
»al is always% analysis shows that the resulting hierarchical control
value of ¢;f] scheme works better than tHe previously proposed and

+8] provably correct version, the formal convergence

properties of general non-cooperative M-player games in

3 the absence of strict convexity assumptions remains
unclear.

~,

Y
-

1at there is a_
stability .in .

iis contradic] 31 The one degree of freedoiu dual assembly problem

‘he matter af;;: Consider the problem depicted in Figure 3 where there

me might be'| ¢ two bodies, by, b, that the robot is required to place

iting to resist at two distinct desired goal locations, d,, d,. The only

:

. to its nesty Mew feature we introduce now is a stricture against
rened by 2 collisions: whatever else the robot may do to the two
te, the robot bodies it may not attempt to make them overlap or even
es, and there’ allow them to touch except, possibly, at zero relative

em to thejry) Yelocity.
recessitates 4d 2-34 Dynamics and qualitative properties. The con-
i guration space is now 2 = R X B c R?, where the legal
body configurations are comprised of two disjoint

bly proble

nts explof
2l ~A
' () s
Body 1 U/ Goal 1 Goal 2
Body 2
; Nest

e is prop S5 bi

—

Robot

o
f this sectio]

kK
convergence: '8-3. A one degree of freedom dual assembly problem.
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components, =R, LI B_,

B, L {(b1, b)) € B:by— b = p1 +p};
B_2£ {(by, by) € B: by~ b= ~(p, +p)}.

Thus the present configuration space and has a more com-
plicated topology than that in Section 2, since it has been
disconnected by the “%®-obstacle”, O=R*— B, — B_.

We adopt as the dynamical model the obvious
extension of (1) from Section 2.1.1,

U

14
, s 9
ci(p2— P3, U2)p: ©)

P2 —pa, U2)p,

p=f(p,u) f(p,u)=

where p=(f,r, b, b,) e =R x 2. Here, ¢; smoothly
satisfies the Coupling, Releasing, and Passivity
assumptions introduced in Section 2 with respect to its
two arguments, obeys the Proximity assumption with
respect to p;, and the Gripping assumption with respect
to p;. It is apparent that this problem inherits the same
nonholonomic constraints depicted in Figure 2: velocities
are limited to be parallel to the x-axis unless the
configuration lies in the “free” contact set, €, 24N €,
where

€=%6U%; ‘@é{(r,bl, b2)€R33 Ir — bl <p;}

The only novelty lies in the addition of a holonomic
constraint arising from the configuration space
obstacle, 2.

3.1.1.a A controllable and unstabilizable system Sys-
tem (9) is completely controllable but an isolated
attracting equilibrium state resulting from any feedback
control policy is unstable.

The controllability argument of Paragraph 2.1.2.a is
only slightly complicated by the presence of 2. It is
intuitively obvious (and follows formally, for example,
from the arguments in [6]) that a completely controllable
mechanical system can be brought to any interior point
of its configuration space from any source point in the
same connected component without leaving that
component (that is, with no collisions with any
boundary). Supposing, for example, that g € %,, as in
Figure 3, then be %, implies that either b,>g, or
b, <g, (the situation in the Figure), thus one of the
bodies is in the component of R connected to its goal
point, and the arguments of Paragraph 2.1.2.a show that
it may be brought there directly by an appropriate
control that incurs no collision with the other. The
remaining body must now also be in the component of R
connected to its goal point, to which it is just as readily
transferred. On the other hand, if b ¢ 3, then there is
no way of bringing both bodies to their goals without one
passing through the other. Clearly, then, (9) is
completely controllable on either of its two disjoint
components.

Paragraph 2.1.2.b carries over directly in the present
case. The more restrictive result of Paragraph 2.1.2.c
holds more practical significance now. First, note that no
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pa=(F,n, g1, 8)¢R X (6, N %) (that is, a phase char-
acterized by some robot velocity at a nest state in a
situation where the two bodies are not touching) can be
both attracting the stable. For example, supposing for all
t>0, fi(po) ¢R X %,, we have [0,0,0,1]" f =0, thus
fulpo)— ps implies b, = g,. The argument now proceeds
as in Paragraph 2.1.2.c. In contrast to that situation,
notice next that 2N €, N €, =@ - that is, there can be
found no feedback controller that will stabilize any valid
configuration.

3.1.2 Convergence to a point via a hierarchical
controller. Consider the objective function

16 — aj
1= by — (01 + o) (10)

defined on the disjoint half planes, @B, B_. It will be
demonstrated in greater generality in Paragraph 3.2.2.b
that @, is convex (and strictly convex when b #d)
whenever k& >5/2, which we now assume to be the case.
As a consequence, @, has exactly two extrema - one
minimum in each of the two disjoint components,
B, B_.. If, as we now assume, deB,, then

straightforward computation indicates that the other
minimum in %_ is

@4(b) =

O ] (A

* [_11}\/(‘1' = dy)* + 4k(k - 1)(p, + p2)2>.

Now define the “squashed” version of this function to be

—d b é (pc]ilk(b)
PO T )™

a composition of ¢, with 0,(x) as discussed in Appendix
A. Since 0, is a smooth bijection Between (0, ) and
(0, 1) whose inverse is alsp smooth with respect to the
intervals in question it is straightforward to show that @,
takes exactly the same extrema in % as does @,.° The
essential difference between the two functions is that @,
is defined on the boundary of the obstacle, 30=
{lb; — b = py + p,} where it attains its maximal value of
unity. From these observations, it follows that @, is a
navigation function with respect to d on %, and with
respect to d on B_.

The two different “encodings” of the same task,
@4, P2 Will be used in the definition and analysis of the
two different levels of control to be introduced below.
The navigation function, ¢, is an ‘“admissible
function”®’ and can be turned to purposes of low level
control directly as shown in Paragraph 3.1.2.a. Since it
fails to be convex, however, we find it most simple to use
the variant @, in the analysis of Paragraph 3.2.2.c.

Paragraph 3.1.2.a concerns the use of one or the other
“coordinate slice” of @, as an encoding of where and
how to move one body while the other remains fixed.
The robot will approach the designated body, grasp it,
and eventually reach a relative minimum (Convergence)
without ever colliding with the other body (Safety). The
largest force required along the way is bounded as a

Autonomous assemb; 8 sutonon
function of initial conditions (Boundedness). While‘t To st
form of the proposed feedback controller is analogou; anbound
that developed in Section 2.2.1, and .the stabilitg§l yell. Th
arguments are identical, the collision avmdange arg; wherein
ments represent a line of reasoning develped in s above by
generality in ref. 7.* substituti
3.1.2.a A bounded, safe and convergent “low level® his maj
controller Denote by @, the function defined % domain,

letting @, vary over its first variable, b, as b, is h§

fixed. Letting y be a constant scalar gain, denote by Simila:
Controlle
8aleP) in th
| == YDy @appbr)cr — (r=b)(1-cy) (N Theaq
= 0 if |r—b)> 91} i a higher
{c*(r—bl, calr, by)) if lr—bil=p 3 the two
. ... 98 definea.
the feedback controller resulting from a substitution at a time
Y®as, for @, in equations (3) and (5). Then e g wit
Convergence:
fim £, P) = (0, di(b2), di(b2), b2)
e IE‘— 5
where R | Define s.
. 2 stage foll
d(by) £arg min  @,(x, b)Uarg min @a(x, b? B has no i
(x,b2)e%B_ (x, by)eB, . Wlth a

Safety: There exists a function, vy, P—R* such ;.:,. terminat
¥ > Ugp,(Po) implies A
Baof by (Po)<1- forall ¢>0.

9 and
e

Boundedness: ||g4(5,°f g1, (Pl = Go° Uajp,(Po) for so

continuous monotone scalar function G. ;

4 These
Proof: Since 4, N 6, ¢ 2 and r ¢ 6, implies U= 0, f events t!
is, since the gripper is open when the robo't is withl@® control n
reach of the second body, it is clear that b, is cons? the low
along the trajectories of the closed loop syst“ § There ai

s N analysis
Substituting = “corftact
. Al = 16, 2 b
Valo,(F, 7, by, b2) 2377 + 1y @ap, + 3(r = b1)’ low level

for v, in (2) shows that v, is a Lyapunov function ¥ that the 1

B final con!
t . o

f 3d|"z( ), hence, . is found

lim £%,,(#) < 025,(0) the first

o 3.2.2.

= {(0’ X, X, b2) € @: Dh|¢d|bz(x) = 0}’ '\ ; Paragr

as argued in Section 2.2.1. Since @ is strict—ly conve‘ gf tte tri
B — d, @a)p, must be convex as well, hence Palp, h.as J“ ack anc
two extrema — one minimum in both of the disjoint 4§ | correspol
infinite intervals on which it is defined — and the ,.H“‘ form a ¢
conclusion follows. - ‘ N :I(J)d-th/:t] t{

Because v, is a Lyapunov function for the ‘Et | one § o.
loop system and is at least as great as Its consti in e;

 th
term, YQq\p,, W€ may conclude that evzniecgll
@a°f i'.m.z(Po) = @aln,°f ‘Htl|h;l(p0) v. Section -
Valn(Po) P >0, ; nests if
=< —————Y , forall p,e@, (Termin..
. occur at
from which the Safety conclusion follows. fime i

* Readers who find this too abbreviated a discussion Qs required
arguments supporting Paragraph 3.1.2a too cursory 0 I 312.p
might wish to consult that more leisurely reference.
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To show Boundedness note that ¢, is radially
mbounded (see Paragraph 3.2.2.b), hence v,,, is as
well. Thus, the trajectory remains in a compact set
wherein Vs, (P) <Vajp,(Po). Now |lgy,,|| is bounded

¢ | sbove by a continuous function (formed, for instance by

qbstituting 1 for ¢;). The sup norm magnitude, G,, of
this majorizing function grows with the extent of its
domain, vajs,(Po) as claimed. O

¢ Gimilarly, we may define a second Low Level
{,cOntroller, 8a4fp, in an analogous fashion to (11) and

obtain the corresponding conclusions.

The question now at hand concerns the construction of
a higher level scheduling algorithm to mediate between
the two strategies. Given an initial condition, Po€E P,
define a stage as a new contact event: an event beginning
at a time s around which there is some open interval,

“| se # with the property

12)

, Pa(x, bz)é‘gf

3* such thif
Fe

1e) for some

Uy = O, that
yot is within

fp)eRXE forall ted, r=s;
fe(P)¢R X € forall ted t=<s.

Define 5920 and let s, denote the time of the next

» stage following that which begain at ¢ =s,. Since ¢, N ¢,

has no intersection with 2, each stage, s, is associated

with a particular index, I(k)e <{1,2}. A stage
. . A ..

terminates at time ¢ = s; under the condition

0<k(k) £ 3i%(si) <k(k - 1),
and 4

(14)
0< (k) 2 3pu(b(s)) < @(k ~ 1)

. These definitions form the "basis of a series of discrete
events that take place on the contact set, €, whose
control may now be effected by appropriately scheduling

5 is constaiit § the low level algorithms treated by Paragraph 3.1.2.a.
»op system’ | There are two important questions to address in the

- b1)2)

function for

a4 b
1)

=0}, (1)
y convex on
'ajs, has only
disjoint half

[y

the Stability ;
36

t the closed
constituent

ussion or |
ory to foll
€.

l, T TN

analysis of the ‘“‘high level” schedulei First, does the
“contact schedule” generate an admissible sequence of
low level feedback controllers? Second, can it be shown
that the resulting “contact schedule” achieves the desired
final configuration, or terminates when that configuration
is found to be unreachable? Paragraph 3.1.2.b addresses
;he first question. The second will be treated in Section

2.2,

Paragraph 3.1.2.b defines a straightforward extension
of the trivial schedule (8). A high level scheme alternates
back and forth between the low level controllers (11)
torresponding to the two bodies at each stage until they
orm a configuration which is d-close to an extremum of
9a- At this point, the robot is directed to nest according
o the low level controller (7). Since @, has only minima,
¢ in each component of %, it is intuitively clear that

¢ the second question has an affirmative answer. In any
 Event, this will be demonstrated in greater generality in

Section 3.2.2. Paragraph 3.1.2.b assures that the robot

fests if and only if a global extremum has been reached

T'El'mination), that no collisions between the bodies may
Ycur at any stage (Gain), and that there will never be a
lme  when arbitrarily large input magnitudes are

A quired (Growth).

1.2.b An admissible contact schedule Consider the
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scheduler that chooses a controller, g,, at time s
according to the rule

80 = 8adlb,
g, it
8dlby, if
with gain, v, chosen as
vk +1) £ [k(k) + RO + @(k)].
where R(k) is chosen so that @,(b) < ¢(k) implies*
211bIP + py + pa <R(K).

Do @a(b(si))il = &

8r+1 ={ 1De@a(b(si))I| > &

Then

Termination: g, ., # g, implies s;,, <o
Gain: y(k +1) > vy, (p(si))
Growth: (|g, || = G, for some G, <

Proof: Termination follows directly from Stability of
Paragraph 3.1.2.a according to condition (14). Stability
also implies g(s;) € €, which gives
(r(s&) = brany(s1))* < (r(sk) — biey(s))?
+ (bra+n(sk) = bry(si))?

=pi+p2+2||blI><R(k),
and, in turn, Gain, since

Udlbl(k-ﬂl(p (SI:)) ©
y(k +1)
- k(k) + %(r(sllc) - bl(k+l)(slz))2 +iv(k + D) @a(si)
y(k+1)
- K(k) +3(r(s0) — biwsy(s8))* (k)
[x(k) +R(O)[1 + (k)] 1+ (k)
<1.

To reach the Growth conclusion note that since
@(k + 1) = p(k) we have R(k +1) = R(k), hence (recall
from (14) that the robot’s kinetic energy decreases at
each termination),

K(k+1)+R(k+1) _x(k) +R(k) _

e e TR TR e A

thus 4
Valbon(P(84)) < K(K) + py + p2 + y(k + D)@ (k)
11+ @(k)) <x(0) + py + p2 + ¥(0)@(0)/(1 + @(0)) £ G,
On the other hand, since y(k)>p,+p,>0 by
construction, we have
Valoe n(P(8)) > 37(0) + (01 + p2) @u(b(D)).

Thus, for all time ¢ > 0 we have p(¢) contained within the
compact set wherein

F(t) + (01 + p2) @u(b()) < G,
and

(r(®) = b1(0))* + (r(1) — bx(0))* <2(R(0) + G)).
But ||g«|] is bounded above by the continuous function
71+ vy(0) 1D@all + Ir = by| + |r — by,

*The existence of such a bound follows from the radial
unboundedness of @, - see Paragraph 3.2.2.b.
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which is itself bounded according to the Boundedness
conclusion of Paragraph 3.1.2.a. O

According to Paragraph 3.1.2.a Safety, g5, preserves
each connected component of @. Thus, f,,,(-) chooses a
distinguished member of the set d;(b;) corresponding to
the component of % within which it began, and in this
sense (that is, under the agreement to consider a
particular component) we may abuse notation and
consider d; to be a function. In this sense the contact
schedule of Paragraph 3.1.2.b represents an approxima-
tion to the difference equation

bi(j + 1) = di(b2()))
b(j+1)= dyodi(ba)))-

Since @y, Puip,> Palp, 2T all convex (and strictly convex
when b #d) the dynamics of this difference equation
specifies a contraction on both components of %, and
must converge to the unique fixed points of each
component, for example by application of Li and Basar’s
contraction arguments® (Thm. 1). Paragraph 3.2.2.c will
show that the approximate algorithm discussed here

works as well.

3.2 General one degree of freedom assemblies

Suppose there are M bodies, each with a radius p;>0,
located at b=[b,,...,by]" €RY, and a desired goal
state state, d=[dy, ..., dul" € R™, toward which it is
desired to move all the pieces. As before, we impose the
restriction against two bodies colliding, and ask for a
feedback controller to bring arbitrary initial conditions to
the desired goal or terminate if the goal is not reachable.

3.2.1 Qualitative properties. Each of the qgE MM -
1)/2 functions,

(bi— b;')2 — o + Pj)z

vanishes twice — when body i touches body j on the left
and when it touches body j on the right — defining two
disconnected open half-spaces in R™ where the factor is
positive. These correspond to the two different orderings
of the two bodies in R. There are 27 different mutually
disjoint subsets of R™ whereon each of these is positive
that together comprise the free configuration space, %.
Since it is defined by the finite intersection of convex sets
(in this case, the g different open half-spaces), 9 is open
and convex. Only g! of these convex components are
physically meaningful in the sense that they represent a
valid ordering of the M bodies. We now assume that d is
located in one of these — the domain, %.. It follows that
there are gq!— 1 other possible orderings of the bodies
from which the goal is not reachable.

The dynamical model is the obvious extension of (9)
and it is clear tha the arguments of Paragraph 3.1.1.a
carry over directly. That is, there is no possibility of a
closed loop algorithm that would stabilize any isolated
desired goal.

3.2.2 Nonlinear programming. We mnow describe a
relaxation method for numerical minimization that goes
back at least as far as Gauss and has been particularly
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attractive to those employing hand computation i
descent steps.”’” Namely, given a scalar valued

function, @ that is to be minimized, one chooses at v
point the most promising coordinate direction in w C
to move and performs a scalar search for the - e
minimum. We follow Luenberger in referring to thig (u
the Gauss—Southwell Descent Algorithm.* - mlm
Suppose, now, the existence of a cost functi The;
@: R¥—>R*. Adopt the notation E P
- 3 A
b,‘=[bl,...,b,'._],b,-_‘.,,-..,bM]T, 3.2-1

to denote the projection of b onto the M — 1 dimen
subspace on which its ith component vanishes. Dendf = |
by is co

(pdll;i(x) 2 (pd(blr L) bi—]x X, bi+l! cay bM)
the restriction of @, to the one dimensional :
subspaces of R* that this (M —1) dimensional subsp in W
parametrizes — that is, all the lines parallel to its no =
so that D@y3(b;) = Ds@u(b)- Associated with this
function is the low level controller gu)s, defined exactly
in (11), and the closed loop trajectory fean(P)- We
interested in generalizing the higher level schedu
algorithm. The only new problem is to decide w
the best piece to move next after a previous piece’
come to rest near a relative local minimum. Let !/
an index valued function with the property

I(b) e arg max |D;@(b)l,
i=M
that is, a function which picks out a component

whose direction of descent with respect to @ is gr
Using this notation, define now a transform:

of R )
T([’Zl(h)]) - [al(b_)(b«b)].
bl(b) bl(b) ’

al(b)(l;l(b)) 4 arg min (Pd|5,m(x )

that leaves M — 1 components unchanged, and bringsg
component whose gradient with respect to @, is
to its minimum relative to the other fixed compon
Again, disregarding the abuse of notation,
understood that T leaves invariant the disjoint
around the various minima of @, so that it is 2,
defined function on each component of .
While T represents the ideal higher level beh
the scheduling algorithm, concrete implementat
the kind we are concerned with in the present pape,
as described in Paragraph 3.1.2.a can provide of
approximation of this scheme. In consideration
departure from the ideal we will consider amts
family of algorithms within which T takes it
Paragraph 3.2.2.a is essentially a re-statement
discrete version of LaSalle’s Invariance Princ!
(Thm. L.7.9]. ,
322.a A convergence criterion Suppose t
discrete dynamical system

bus1=T(bn)
defined by the map T: B— B has bounded tra]
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and €njoys the two properties .
(i) psisa Lyapunov function for 7, that is

A‘PdéipﬂT—(Pa

p
‘a s never positive .
(ii) the fixed points of T are exactly the isolated local

minima of @,.
Then the minima of @, are asymptotically stable with

respect to the iterates of (16).
r 32.2.b A convex function The objective function,

(Zlﬂil (bl - di)z)k
M T e (B = b)) = (i + )
is convex on its domain, %, when
k>(M(M-1)+1)/2,

@.(b) &

17k

Pa
[1 + (pd]l/k
is a navigation function on each of the 2% disconnected
components of .

~ A
Qu=

—

* Proof. Since @ is the composition, nekoa of n2 v/
and
Yo x?

2

h(x, y) = [H‘L.y?—c

[3 with the injective affine map,
Al

ot []

(where V e R9*™ is appropriately defined), it has a
positive definite matrix of second derivatives (for b #d)
as long as

o k> (2q +1)/2,

according to Corollary 3 and Lemma 3 in Appendix B
(this relationship between k and M will be assumed
throughout the paper). It follows that ¢, is a strictly
convex function on the domain B—d and every
extremum must be a minimum. Moreover, since the
» Hessian matrix is full rank except at b =d, there can be
0 more than one extremum in any connected

| component on which @, is defined. The function is

fadially unbounded as well, that is lim,, . @.(b) =,
according to the assumption relating k and M, so that

Br2 (beB: p,(b)<R)}

'S compact. Thus, each component of % contains one
Mimmum of ¢, and no other extrema. In particular, d is

onnected component of @. O

Cogsider the scheduler of Paragraph 3.1.2.b with

‘ 8k=ng5,(k) where the index, I(k)£ [(b(s})) is chosen
aCQOYC!lng to the Gauss—Southwell logic (15) and the
LSWltchmg tolerance, & is to be chosen below. Under this
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contact schedule the robot must at some finite time
approach its nest asymptotically. Moreover, for any £ >0
there can be found a 6 >0 such that

lb—dl=e,

unless the initial condition was disconnected from the
goal b, ¢ 4,.

Proof: Paragraph 3.1.2.b defines a discrete dynamical
system (16) on @& that is allowed to iterate on % — J,
where J; 2 {b e RB: |Dp,(b)| < 6}. Paragraph 3.2.2.b
shows that ||Dg,|| is a positive definite function on &
with respect to the isolated compact set argmin @,.
Thus, for any £ >0 there can be found a >0 such that
| Dy @a(bo)ll < 6 implies
inf
bearg min @4

Ibo—bli<e

and J; is the disjoint union of arbitrarily small
neighborhoods of the minima of the convex function, ¢,.
Thus, if the conditions of Paragraph 3.2.2.a are met,
every iterate of (16) reaches 7, at some finite time and
the result follows.

Condition (ii) obtains from (15).

Since @, is radially unbounded,

Br2 {beB: p,(b)<R},

is a compact set. It is positive invariant, T(%Bg) @ Be,
since ¢, is a Lyapunov function. It follows that every
trajectory 7"(b,) remains in the bounded set B, e,
Paragraph 3.2.2.a now implies that the minima of ¢, are
asymptotically stable.

The compact positive invariant set, %Bg, being the
inverse image of a convex function, is also convex™
(Thm. 1.4.6]. Since, ¢, is a convex function on @B (and
has a positive definite Hessian matrix everywhere expect
b=d) it has one and only one extremum-a
minimum - on each component of that set. Thus, the
minima of ¢, constitute the forward limit set of the
entire system, lim,_,.. T“(%®) = arg min @,.

According to Paragraph 3.1.2.b Termination the low
level closed loop system ‘“‘computes another iterate” of T
in finite time unless | D,@.(by)]]<6. But since
arg min ¢, is a globally attracting asymptotically stable
set of fixed points, that condition must be reached at
some finite state. [

3.3 Assembly as a game of its pieces
By interpreting

@é [(pd|5|’ ceey (pd[l;M]T
as a vector of “payoff functions” that describe the
individual objectives of each of the M pieces to be
assembled, we may interpret the high level automaton
whose convergence was demonstrated in Paragraph
3.2.2.c as refereeing an M-player game. Since each
component of © is a coordinate slice of the same global
function, this is a purely cooperative game. It is perhaps
unsurprising in this light that the assembly procedure
developed above succeeds.
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3.3.1 Non-cooperative games arising from more realistic
settings. The game interpretation is much more than an
intellectual digression. In the most relevant settings of
the assembly problem it wuickly becomes clear that
purely cooperative games will not suffice to solve the
problem. For example, the essential difference between
the problem considered by Laumond and colleagues* and
those treated above lies in the separation of the robot
from the environment to be manipulated. Once the robot
is included as a body with physical extent within the
workplace, the “obstacles” presented by the ungrasped
pieces will have a very different configuration space
geometry and even topology depending upon which
piece the robot is grasping. To mention an extreme case,
suppose one robot-piece mating forms a spherically
symmetric shape in the workplace and a second mating
does not. The first mating gives rise to a configuration
space which is a simple cross product of a punctured
Euclidean vector space with the full set of rotations. The
second mating gives rise to a configuration space wherein
different rotations might or might not cause a collision at
the same relative point of translation. This situation does
not arise in one degree of freedom problems, since
without a “pushing” model, a robot on the same wire as
the beads can manipulate only the two closest beads and
the configuration space is trivial.

One way to proceed in the more general situation is to
assign a new vector of payoffs,

e = [‘plr Tt (PM]T,

where, for example, the obstacles encoded by ¢,
correspond to the configuration space boundary formed
with respect to the M —1 motionless pieces that confront
the mated robot-piece-number-one partial assembly. The
low level control procedure would work exactly as in
Paragraph 3.1.2.a. But it is nef clear how to measure
progress — that is, there is mo longer an obvious
termination conditien for the high level scheduler
corresponding to (14).

3.2.2 The one degree of freedom dual assembly problem
revisited. Although a non-cooperative version of the one
degree of freedom “assembly game” is not necessary,
there nevertheless may be some benefits relative to the
original cooperative formulation above. For example,
return to the assembly problem with two bodies
depicted in Figure 3 and consider the two objective

functions by~ d ||2k
b é 17 4 ,
9:() (b= by —(ps + P2y
b, — dal|*

70 2 G by = (S

defined on the disjoint intervals B:(b;), i, j =1, 2. Noting
that ¢, represents a special case of @ (where d, is equated
to b;), it follows that ¢; is convex as well and takes two
extrema —one minimum in both of the disjoint
components of %;(b;). Once again, the relation

al(bZ) & arg min _@,(x, b,)
(x,b)eRB
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becomes a function upon selection of one or the other
disjoint component of 3. 3
Graphical analysis shows that an iterated repetition of
these low level controllers analogous to that analyzed ln
Paragraph 3.1.2.b results in convergence to the desired
goal configuration. Moreover, it seems to be the case]
that the transients are much shorter: convergence alwayg
takes place in one or two steps when the goal and th
initial configuration are in the same component of %}
Unfortunately, it is not presently clear how to generalize
the analysis of this algorithm to the multi-body case]
Clearly, Paragraph 3.1.2.a and Paragraph 3.1.21
continue to hold when @; is substituted for @u)5,, in (11);
Yet following the gradient of @; does not always lowe
the value of @, . It is intriguing to consider the effects i
general of retaining (14) as a termination condition i
this setting. ?
We might try to follow Li and Basar,*® who show th
such an algorithm gives rise to a contraction when

[D%(Pl D%z‘Pl]
D%]‘pZ D%Z(Pz

has a positive determinant. Unfortunately, @; hay
degenerate Hessian matrices at isolated points of %, ar
the determinant test will fail in general. On the oth
hand, while the contraction result seems to depend upg
the convexity of the cost structure, the nopdegeneral

1

cost function, @;, is not convex. ¥
tx

T

b
i
By

4 CONCLUSION
This paper has proposed a new version of the assemb
problem. Instead of requiring an abstract descriptidﬁ“
all mating sequences, only one is required from ea
possible problem configuration. However, the specifi
tion function (the map from initial configuration §
mating sequence) is required to take the form of
feedback controller. That is, the mating is specifi¢
implicitly as a force law for bringing many unactuat
degrees of freedom into a completed configuration with
single actuated robot possessed of far fewer degreé§
freedom.
The strategy of this paper has been to focus cait
attention upon what might be considered the simpk
instance of the problem. This is the situation where €
piece to be manipulated has only one degree of free‘{i
and where the robot does not occupy the sa
workplace as the pieces. In this simple setting, the pa
offers a complete algorithm along with a demonstral
of its correctness. That is to say, the robot is guarantf
to arrive at its final nest destination. It will do 504
repeating the operation of approaching, grasp
towing, and releasing various of the pieces. It will!
leaving an incomplete assembly if and only if
configuration representing the final assembly was,
path connected to the configuration represented by
initial location of the pieces. It will never caus
collision between two pieces in the course Of
manipulations. It will require only bounded forces.

This study of the simplest instance reveals seY

ge:
no
co:
int
pre
no
co:
the
up
of
ass
sta
m¢
us!
sta
fee
kit
pi¢
in

int
mc
co:
m¢
wi
me
(fc
alr

“‘f£
k3




the desired%i

e the cage
2nce aIWaysf’-
oal and the",
nent of g
) generalizé”{
-body case,
ph 3.1.24
16iny in (11)-4
iways lower
1e effects i

2

:ondition in’(
!
o show that’

when

o
]

L

/s @ have »
s of 9B, and
n the other
epend upon
degenerate |,

1e assembly
scription qfs
from each:
e specifica’
sjuration to"[
form of a (
is specified
unactuated
ation with a
degrees of f

cus careflilj ;
he simplest
where each
of freedom

the same
1, the Paperi{
monstration.
guaranteed
do so after’

grasping.’
It will nest)
nly if the |
ly was not.
ated by the.
er cause
irse of ifS

Autonomous assembly

eneral features of the problem. First, because of the
rlonholonomic nature of the accompanying kinematic
constraints, assembly systems share with many other

4 interesting control systems that arise in robotics the

roperty that although completely controllable, they are
pot continuously feedback stabilizable. However, in
contrast to the more usual classical (analytic) constraints,
the impossibility of exerting even a very small influence
upon arbitrarily distant bodies precludes the possibility
of stabilizing assemblies with any feedback law. In
assembly, a convergent closed loop system can never be
sable. The second general observation concerns the
motivation for considering hierarchical controllers. In the
ssual case of analytic nonholonomic constraints, if
stability is to be assured then no single continuous
feedback controller can be used. The necessity for some
kind of discontinuous switching between the continuous
pieces of a feedback law having been established, one is
in a position to offer a rational justification for the
introduction of hierarchy (a presently popular but poorly
motivated construct within the contemporary intelligent
controls literature). In assembly, the situation is still
more compelling. No stability of any kind is possible
within the original terms of the problem, so any solution
mechanism that employs standard means of convergence
(for example, with Lyapunov-like principles in mind as is
almost always in the nonlinear context), must be
designed and proven correct with respect to a ‘““coarser”
setting of the problem wherein the obstructions are
“factored out.”” Finally, there appears to be in
manipulation tasks a natural mode of higher level
analysis which achieves this ““factoring out” by removing
any consideration of the robot other than as a very
abstracted agent of environmental indexing and re-
ordering. Namely, identifying the discrete stages of the
higher level dynamics with respect to events on the
contact set in the configuration space h\iges the dynamical
irregularities and permits a new appeal to standard
notions of dynamical systefns theory. In our earlier
juggling studies the significance of the contact set was
intuitively apparent and made a formal appearance in the
familiar garb of a Poincaré section.® In the present study,
since there is no underlying periodic phenomenon in
sight, the contact set makes a muddier appearance but
appears to be the simplest means of state dependent
indexing.

As matters stand, one obvious task in a program of

» generalization beyond the present simplistic setting is the

construction of navigation functions on more complex
bodies moving in spaces of higher dimension. Indeed,
this is a matter of active investigation in our lab at
present.”** Another clear need is for the introduction of
More realistic dynamical models and contact models, for
Instance as in Ref. 3. Yet there is at least one issue not
encountered in the present study whose treatment will be
€ssential to a truly practicable incarnation of these ideas.
Although assembly in one degree of freedom raises many
of the problems to be found in general, it does not
Provide a convenient arena for investigating the critical
aSpect of the robot itself occupying space in the
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workplace. This is an aspect of assembly whose
complications have been addressed by Laumond and
colleagues.® In the present context, it is intriguing to
note the game theoretic interpretation of the last section
and to attempt the development of a descent
methodology for non-cooperative multi-player problems
whose cost structure may not admit any convexity
properties.
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APPENDIX A: TASK ENCODING:
TRANSLATING GOALS INTO CONTROLLERS
The investigation of task encoding principles arises from
the effort to render abstract goals into feedback laws.
This section offers a brief review of techniques for
encoding two rather different classes of robotic tasks,
both of which have been developed in previous
independent research. Perhaps fortuitously, the control
policy developed in this paper represents a combination
of both.

A.1 Navigation
Let a fully actuated mechanism move in a cluttered but
perfectly known workplace. There is a particular location
of interest and it is desired that the “robot” move to this
location from anywhere else in the workplace without
colliding with the obstacles present. Initiated by Khatib a
decade ago,” the idea of using artificial potential
functions for robot task description and control was
adopted or re-introduced independently by a number of
researchers.*'™ Gradually, there seems to have emerged
a common awareness of several fundamental problems
with the potential function methodology. Spurious local
minima seemed unavoidable, and unrealizable infinite
torques were thought to be required at the obstacle
boundaries. In fact, an artificial potential function need
satisfy a longer list of technical conditions in order to
give rise to a bounded torque feedback controller that
guarantees convergence to the goal state, from almost
every initial configuration. This list comprises the notion
of a navigation function introduced to the literature two
years ago.* Roughly speaking, a navigation function
attains its maximal value of unity on the boundary of
connected domain (if the domain is not compact then
one considers the point at infinity to be part of the
boundary), and has one and only one minimum on that
domain.

The question immediately arises whether such
desirable features may be achieved in general. In fact,
the answer is affirmative: smooth navigation functions
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exist on any compact connected smooth manifold with
boundary.® Thus, in any problem involving motion of a
mechanical system through a cluttered space (with
perfect information and no requirement of physical
contact) if the problem may be solved at all, we are
guaranteed that it may be solved by a navigation
function. There remains the engineering problem of how
to construct such functions.

In previous work we have found the following simple
“encoding” of holonomic constraints to result in
navigation functions. Let v be the euclidean distance to
the goal state, and let & provide some measure of the
distance away from a forbidden region. Typically, & will
not satisfy any formal metric properties, but it must
vanish on the boundary and remain positive within the
interior of the allowable region. Encode the objective
“go to v=0 and do not go to 8 =0 via the quotient,
v/8. Strengthen the force of the attracting objective by
taking the power,

Since g is unbounded, normalize it via the composition
with a smooth “squashing” function,
1k

A
o (X)E——%-
k( ) (1 +x)l/k
Note that the gomposition
2 0,°oQ = __v——
4 . kP (Vk+6)”k

is a kind of analytic “switch” that vanishes on the goal
state, goes to unity exactly on the bad states, and varies
smoothly in between. It is shown in ref. 6 that this
construction indeed satisfies the conditions of a
navigation function on spaceg of a particularly simple
topology and geometry, the +“sphere worlds”, whose
obstacles are disjoint Euclidean balls in a Euclidean
vector space. In this paper it will be seen that the
construction results again in a navigation function in a
geometrically simple but topologically distinct setting.

A.2 Juggling
Consider a frictionless plane inverted into the earth’s

gravitational field. Two pucks are allowed to slide freely
on this plane except when batted by a simple “robot” —a
revolute motor with a bar attached to it whose axis of
rotation is orthogonal to the plane. The robot has one
degree of actuated freedom (perhaps one and a half,
if one considers the recourse to “whole arm”
manipulation”® as adding freedom) while the environ-
ment possesses two for each puck. The robot is given the
task of repeatedly batting the two pucks so that each one
attains a periodic trajectory whose apex lies at a specified
vertical and horizontal locus on the inverted plane.

The same nonholonomic constraints are present in
juggling as in assembly:®> no imposition of control upon
the environment is possible until contact has been made.
We have shown® that the “vertical one-juggle”
task — batting a single puck on an inclined plane so that it
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eventually attains a repeated purely vertical motion a¢
specified horizontal position — may be encoded as a fixg,
point of a certain discrete dynamical system. Moreovye;
we have shown how to construct a sensor based feedbag
strategy for the robot that accomplishes the task® ang ;
provably correct as well. 2% Let b denote the puck’
position and r denote the robot’s joint angle. Th%
effective strategy calls for the robot to track i
“mirrored” reflection of the puck’s trajectory, r
u(b, b). The correctness proof involves passage to the@
discrete dynamical system (now interpreted as the ret
map on a Poincaré Section of the limit cycle)
respect to which the encoded goal point is shown to
globally asymptotically stable.*® In the present context
is useful to interpret the discrete dynamics as a “high
level” control process brought about by appropriate!
abstracting away the “lower level” details of the robo
torque control strategy.

The primitive one-juggle solution extends rath
simply to the case of juggling two pucks simultaneousl
Although the procedure is heuristic, extensive e
perimental study reveals that it works remarkably well
practice. There are two “low level” strategies, w,
that solve the vertical one juggle for the left and righg}
hand pucks, respectively. Given only one robot (witlg
one degree of freedom), the question arises as to hog
these two strategies should be “assigned” tp the robot §
Consider an emergency situation, when both pucks a
falling toward the bar nearly at the same time. It
imperative to service the nearest first. Moreover, it 3
well worth sacrificing any nominally desirable ane-jugglg
performance to the work of keeping both aloft ang
restoring phase separation between them. This intuitl
can be readily implemented by use of an “analyi
switch” that triggers on the good and bad eveng
interpreted in each puck’s phase space.” The sang
underlying approach can be brought to bear in mediatiff
between the conflicting subgoals of difficult pieces in §

assembly.

L TN 7, 8

APPENDIX B: DETAILS OF COMPUTATION ¢
It will prove useful to have a general formula for 4%
Hessian matrix of a composed scalar valued functig
Thus, supposing hR"—R™ and y:R"—R, j
denoting Dh by H, Dy by g" and D?*y by G, we hav

D(yoh)=(g"°h)-H

and
D¥(yeh)=D(H" - (g°h)) ;
=[(g"°h® I\D(H'Y +H"-D(goh)-;

It follows that

B.1 Convexity

Lemma 1: Fix an arbitrary constant c¢ € R For;




is assembjy Autonomous assembly

variables n € R?, d € R, consider the map
X ’1? ]
7, di2 - C:; .
It y: R2— R is (strictly) convex, D,y >0, D,y <0, and

1otion at:

N

1
D]Y_V 0
2
R I |

then y ek is (strictly) convex as well.

Proof: We have
D,v=2n"; Div=2I,

and, letting N denote an orthogonal (p X p) matrix
whose first column is n/|jn}|, the Hessian may be
re-written in the form

0 0,
Op—l Ip—l
where P is a positive semi-definite matrix whose kernel is
in the subspace spanned by n. Fixing the notation,

‘ 2
Dﬁv=2NNT=;nnT+P; PéN[ ]NT,

zies, dy,

ft and righ(} -
robot (with d, 0 < 0
; as to ho A&l - 241 g ;
the robot 0 d, 0 ¢, J
\ 1
F2(A2-2%)A; d'2To; o2|: |,
1]
h aloft a yields
his intuitiofg * p, 5 984T, D26 = —28T(E* + I, — 200

in “analy
bad eve Similarly letting © denote an orthogonal (g X g¢) matrix
whose first column is o/q?, the Hessnan of & may be

re-written in the form

-

1—2g 07
D26 = —2ar9[ 9<%~ ‘]@Tr 26TE>A™T
Oq—l Iq 1
= 26(2q - 1) d-—ld—T - Q
q
or_
Qé26r<@[ 0 0 ‘]®T+52A‘Z)F

Agam Q is a positive (semi-)definite matrix (whose
kernel lies in the subspace spanned by o if I is singular).
“Noting that

. T T T
.»AH=Dh=[DV]=[D"V 0, ]=[2n 0, ]
Dé 0, D, 0F 28d°7

We may evaluate the expression (18), as

: lf(y»h){f)" 2o D, 6))[ o]

q
D%y 0.
+D y(v)[ " P q]
l Oyxp Ogxq

0p><q]
D38

%:i

+ D& >

qxp
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2n 0, ] 2
= D*y)((v, 6
Lo, 26g-1] | 1P7IC: )
Dyy/2
. \y/2v (20 1y [2"1* OZ ]
0 Dy lor 2847

2946

+[D,y(v)P 0pxq ]
OqXp —DZY(V)Q
These two singular symmetric matrices have kernel that
intersect at most at 0. The second matrix is positive
semi-definite, thus the joint Hessian will be positive

definite if the first matrix is positive semi-definite as
claimed. O

Lemma 2 The map
y:RZ>R: (v, 8)—>v*/6

is strictly convex when y >0 as long as k > 2.

Proof: We have

Dy =yvT; =[k/v, —1/8]
hence

D*y = y(vwT + Dv)

[k(k - 1)/v? —k/vé] s
—k/vd 2/8*

Since the determinant of the last array is k(k —
2)/v*8*>0, for k>2, the condition implies that D%y is
positive definite when y>0. O

Corollary 3: The function ¢ £

long as k> (2g + 1)/2.

yoh is strictly convex as

Proof: We must show that

k
[k(k - 1/V? —k/vé] 2v? -0
—k/vé 2/8% 0 — (29 -1)
296*
This is equivalent to
k(2k —1)/2v* —k/vd
29+1
—k/vd 24b?
k(2k 1)(2g+1)— 4qk2
>0,
4gv*8*

or k(2k — (2g + 1)) >0 as claimed. O

Lemma 4: If a:R"—R™ is affine and §:R”"—>R is
convex then @ 2 (oa is convex as well. If n<m and a is
injective and @ is strictly convex then ¢ is also strictly
convex.

Proof: This follows from (18) after noting that
D(A")®=D% =0 according to the affine assumption.
)
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