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Feedback Control of an Underactuated Planar Bipedal Robot with

Impulsive Foot Action

Jun Ho Choi and J. W. Grizzle

Abstract

A planar underactuated bipedal robot with an impulsive foot model is considered. The analysis extends previous work

on a model with unactuated point feet of Westervelt et al. 1 to include the actuator model of Kuo 2. The impulsive actuator

at each leg end is active only during the double support phase, which results in the model being identical to the model with

unactuated point feet for the single support phase. However, the impulsive foot actuation results in a different model for the

double support map. Conditions for the existence of a hybrid zero dynamics for the robot with foot actuation are studied. A

feedback design method is proposed that integrates actuation in the single and double support phases. A stability analysis is

performed using a Poincaré return map. As in Kuo’s model 2, a more efficient gait is demonstrated with an impulsive foot

action.

I. INTRODUCTION

During walking, some of the mechanical energy of a robot is lost from impacts between the swing leg and the ground.

The energy lost during the impacts needs to be replaced in order to have a periodic motion. Although it is possible to

provide the energy by actuators at the joints during single support phase, it was suggested that a more energy-efficient gait

could be achieved with impulsive force applied at the stance foot 2. In this paper, a planar bipedal robot with impulsive foot

action is studied. This is an approximation of the toe-off action observed in double support phases of human walking 3.

The model studied in this paper is an extension of the model with unactuated point feet by Westervelt et al. 1 and the

2-link model with impulsive foot action by Kuo 2.

Robots with various types of foot action have been studied in the literature. McGeer analyzed a robot that had arc-shaped

unactuated feet 4, which had no foot action. Linde investigated a 2-link robot that had a variable spring and damper at
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each leg with arc-shaped unactuated feet 5. Yi studied a robot that had a passive ankle, specifically, the ankle joints were

connected with springs 6. A robot with point feet that assumed “ankle-actuation” during the single support phase was

studied by Asano et al. 7 Many papers in the literature have considered actuated feet with nontrivial length, with the sole

of the stance foot remaining flat on the ground during the single-support phase 8–10. Since keeping the support sole on the

ground limits the motion of the robot, it has been suggested to allow the foot to roll with respect to the stance toe 11,12.

Grizzle et al., for planar robot models with one degree of underactuation in single support, introduced a feedback method

whereby existence and stability of periodic orbits could be determined by a one-dimensional map 13. A key aspect of the

analysis uses the notion of virtual constraints, that is, holonomic constraints that are asymptotically imposed on the robot’s

motion via feedback control. Westervelt et al. introduced the notion of the hybrid zero dynamics, which transformed the

method of virtual constraints into a practical design method, capable of treating N-link planar bipedal robots with point

feet and one degree of underactuation 1. Extensive experiments have been reported 14,15.

Although impulsive foot action is not necessary for stable walking, as shown by McGeer 4, Grizzle et al. 13, and Westervelt

et al.1, the possibility of more efficient walking with impulsive foot action was shown by Hardt et al. 16 and Kuo2. Hardt

et al. simulated a robot with impulsive foot action, where the impulsive foot force was applied at the beginning of the

single support phase 16. In their simulation, a 5-link model with impulsive foot actuation showed more energy efficient

walking than a robot without the foot action. A 2-link model with impulsive point feet has been studied by Kuo, who

investigated the energetics of powered locomotion 2. The robot was planar and consisted of a massive hip and two rigid

massless legs. An impulsive foot actuator was attached at the end of the stance leg. The impulsive toe-off actuation was

applied just before heel strike. Using this model, it was shown that applying toe-off force is more energy efficient than

using hip torque alone.

In this paper, the impulsive foot actuator is assumed to be active during the double support phase. This results in the

identical model of Westervelt et al. 1 during the single support phase. However, due to the impulsive foot actuator during

the double support phase, the double support map becomes a function of not only the states before the double support

phase but also the foot force during the double support phase. The notion of the hybrid zero dynamics is extended to

accommodate the presence of the foot force. A class of foot force control laws is introduced to create the invariance of

the zero dynamics. The Poincaré map is also used to analyze the stability of the robot’s motion.

In Section II, the model of the robot with impulsive foot action is presented. In Section III, the existence of the hybrid

zero dynamics is addressed. In Section IV, the stability of the robot is proved using a Poincaré return map. In Section V,

the output function for the hybrid zero dynamics is parameterized using Bézier polynomials for optimization. In Section
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VI, simulation results for a robot in Chevallereau et al. 17 with the addition of impulsive foot action are presented. The

paper is concluded in Section VII.

II. ROBOT MODEL WITH IMPULSIVE FEET

The model considered in this paper is extended from the model with unactuated point feet 1 by adding an impulsive

actuator at each foot. The robot is assumed to be planar, bipedal, and have N rigid links with mass. Each connection of

the links is in the form of an actuated revolute joint. Since the robot has point feet, there is no torque applied between the

leg and the ground. A typical robot model with 5-link is shown in Fig. 1. Walking is assumed to consist of two phases,

which are single support and double support. The double support phase is assumed to have a foot actuation subphase and

an impact subphase, see Fig. 2. It is assumed that the impulsive actuator at the stance foot is activated only in the foot

actuation subphase, and when active, applies a unilateral force along the direction of the link in contact with the ground.

Therefore, during the single support phase, the model is identical to a robot with unactuated point feet. The detailed

assumptions for the single support phase are based on Westervelt et al. 1 and are listed in Appendix A for the convenience

of the readers.

During the single support phase, the robot is underactuated since the impulsive foot actuator at the stance foot is not

activated. Therefore, the model for the single support phase is identical to the one with unactuated point feet, which is

given as

D(q)q̈ + C(q, q̇)q̇ +G(q) = BΓ, (1)

where q = (q1, · · · , qN )T ∈ Q, Q is a simply connected subset of [0, 2π)N , q are the configuration variables, q̇ are the

velocities, and Γ = (Γ1, · · · ,ΓN−1)
T are the input torques applied at the joints. Let x = (qT , q̇T )T ∈ TQ. Then the

dynamic equation in state-space form is given by ẋ = f(x) + g(x)Γ.

Property 1: Consider hypothesis RH5 in Appendix A (that is, the coordinates of the robot consist of N − 1 relative

angles, q1, · · · , qN−1, and one absolute angle qN ,) and assume furthermore that qN is measured in the counterclockwise

direction. Then the angular momentum of the robot about the stance leg end during the single support phase is σ = dN (q)q̇,

where dN (q) is the last row of D in (1).

Proof: See Appendix B.

In general, the angular momentum of the robot and dN (q)q̇ are related as dN (q)q̇ = ±σ depending on the direction of

qN .
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During the double support phase, the foot actuation subphase and the impact subphase occur successively within an

infinitesimally small time interval. The foot actuation subphase is when the actuator at the stance foot is active. It applies an

impulsive force to the robot in the direction of the stance tibia, causing a discontinuous change in the velocity states. The

impact subphase is when the swing leg touches the ground after the foot actuation. The impact also causes an impulsive

reaction force to the robot, which results in another discontinuous change in the velocity states. In both cases, the position

states remain continuous. The overall double support phase becomes an algebraic mapping that maps the states just before

the foot actuation to the states right after the impact. The double support map therefore depends not only on the states

before the foot actuation, but also on the applied foot force.

Based on Kuo 2, the necessary hypotheses for the impulsive foot action are :

IFH1) The double support phase lasts for an infinitesimally small period of time;

IFH2) The double support phase has two sequential subphases, namely, the foot actuation subphase and the impact

subphase;

IFH3) The foot actuation subphase occurs just before the impact subphase, with the time interval between the two subphases

being infinitesimally small;

IFH4) There is an impulsive foot actuator at the end of each tibia, which is activated only during the foot actuation

subphase;

IFH5) Impulsive foot force causes discontinuous changes in the velocity states but the position states remain continuous;

IFH6) The foot force is applied along the stance tibia, that is, the direction of the force is the same as the stance tibia;

IFH7) The applied foot force is unilateral, in other words, it cannot pull the robot down to the ground.

To describe the double support phase, it is necessary to use an N+2 DOF model (e.g. N DOF for the joints and

2 DOF for the position of the stance end). Adding Cartesian coordinates, (ph1 , p
v
1), to the end of the stance leg gives

qe = (qT , ph1 , p
v
1)
T and q̇e = (q̇T , ṗh1 , ṗ

v
1)
T , see Fig. 3. Let φ1 and φ2 be the angles of the foot actuation force and the

impulsive ground reaction force, computed with respect to the vertical, respectively. Using the method of Lagrange, the

dynamics for the double support phase are obtained as follows:

De(qe)q̈e + Ce(qe, q̇e)q̇e +Ge(qe) = BeΓ + E1eδF1 +E2eδF2, (2)

where Υ1(qe) and Υ2(qe) denote the Cartesian coordinates of the stance leg end and swing leg end, respectively, E1e =

(

∂Υ1(qe)
∂qe

)T

, E2e =
(

∂Υ2(qe)
∂qe

)T

, and δF1 and δF2 denote the impulsive foot force and the impulsive ground reaction

force, respectively.
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During the foot actuation subphase, F1 = T δFf and δF2 = 0, where

T =









sinφ1

cosφ1









. (3)

Let q1e be the state vector for the foot actuation subphase. Then, following the procedure in Grizzle et al. 13, (2) becomes

De(q̇
1+
e − q̇1−e ) = E1eT Ff , (4)

where Ff =
∫

δFf dt, q̇1+e is the velocity just after the foot actuation and q̇1−e is the velocity just before the foot actuation.

Since the stance foot acts as a pivot before the double support phase, q̇1−e = (q̇−T , 0, 0)T .

Property 2: Under hypotheses RH5 and GH2 (that is, the stance foot acts as a pivot in single support) in Appendix A,

dN (q−)q̇− = de,N (q−e )q̇
−
e , where de,N (qe) is the N th row of De in (2).

Proof: See Appendix B.

Property 3: Assume the hypothesis RH5 in Appendix A. Then de,N (q1−e )q̇1−e = de,N (q1+e )q̇1+e in the coordinates

q1e = (q1, · · · , qN , ph1 , p
v
1), where q1−e , q̇1−e are the states before the foot actuation and q1+e , q̇1+e are the states after the

foot actuation.

Proof: See Appendix B

Properties 2 and 3 imply that the angular momentum about the stance leg end is conserved even with impulsive foot

actuation. The change in linear momentum is studied next.

Property 4: Let ~P+c , ~P
−
c be the linear momentum of the robot after and before foot actuation. Then ~P+c − ~P−c = T Ff .

Proof: See Appendix B.

Since De in (4) is positive definite, it is always possible to calculate the velocity states after the foot actuation. The

velocity states after the foot actuation are given as

q̇1+e = q̇1−e + (De)
−1E1eT Ff . (5)

Right after the foot force is applied to the stance leg, the swing leg makes contact with the ground, which is the impact

subphase. During the impact subphase, δF1 = 0 and δF2 =





δFT
2

δFN
2



, where δF T
2 and δFN

2 denote the tangential and

normal components of the impulsive reaction force. Following the procedure in Grizzle et al. 13 again, (2) becomes

De(q̇
2+
e − q̇2−e ) = E2eF2, (6)

where F2 =
∫

δF2 dt, q̇2+e is the velocity just after the impact, and q̇2−e is the velocity just before the impact.

Property 5: Under hypotheses RH5 and GH2 in Appendix A, dN (q2+)q̇2+ = de,N (q2−e )q̇2−e .
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Proof: The proof is analogous to the proof of property 2.

Property 6: Assume the hypothesis RH5 in Appendix A. Then in the coordinate q2e = (q1, · · · , qN , ph2 , p
v
2), de,N (q2−e )q̇2−e =

de,N (q2+e )q̇2+e , where q2−e , q̇2−e are the states before impact and q2+e , q̇2+e are the states after impact.

Proof: The proof is analogous to the proof of property 3.

Properties 5 and 6 imply the angular momentum about the swing leg end is conserved during the impact of the swing leg

end.

By IH1, the swing leg does not slip during the impact. Hence,

∂Υ2
∂qe

q̇2+e = (E2e )
T q̇2+e = 0. (7)

Augmenting (6) and (7) yields








q̇2+e

F2









= Π









Deq̇
2−
e

0









, (8)

where Π is defined as

Π =









De −E2e

(E2e )
T 0









−1

. (9)

By assumption IFH3, there is an infinitesimally small time interval between the foot actuation and the impact, which

implies that q1+e = q2−e and q̇1+e = q̇2−e . Then the velocity states after the impact can be expressed as a function of the

states before the foot actuation and the foot force. After the impact, the states need to be relabeled since the swing leg

and the stance leg switch their roles for the next step. The overall mapping from the velocity states just before the foot

actuation to the velocity states right after the impact is given as follows:

q̇+ =

[

R 0

]

Π













De





I

0





0













q̇−

+

[

R 0

]

Π









E1eT

0









Ff

= ∆q̇2(q
−)q̇− +∆q̇1(q

−)Ff , (10)

where q̇−, q̇+ are the velocity states just before the foot action and right after the impact, respectively, and R is a relabeling

matrix. Since the position states remain continuous during the double support phase, the position states only need to be
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relabeled for the next step, q+ = ∆q(q
−) = Rq−. The double support map is given as

x+ =









q+

q̇+









=









∆qq
−

∆q̇2(q
−)q̇− +∆q̇1(q

−)Ff









= ∆(x−, Ff ). (11)

Note that ∆q̇2 = ∆q̇ in Westervelt et al. 1 and ∆q̇1(q
−), ∆q̇2(q

−) are functions of the position states only.

Following the method in Ye et al. 18 gives the overall system description. Let S = {x ∈ TQ|ph2 > 0, pv2 = 0} be a set

of states satisfying the conditions for the double support phase, where (ph2 , p
v
2) represents the Cartesian coordinates of the

swing leg end, see Fig. 3. The overall system is given as















ẋ = f(x) + g(x)Γ, x− 6∈ S,

x+ = ∆(x−, Ff ), x− ∈ S, Ff ∈ IR+ ∪ {0}.
(12)

Note that the dynamics for the single support phase is identical to the model with unactuated point feet 1 and the double

support map becomes identical when the foot force Ff is zero.

III. EXISTENCE OF HYBRID ZERO DYNAMICS

In this section, the existence of a zero dynamics for the hybrid model (12) is studied. This will be a one degree of

freedom subdynamic of the full-order model (12) with the property that asymptotically stable orbits of the one degree of

freedom subdynamic are asymptotically stabilizable orbits of the full-order model. The systematic design and analysis of

a feedback controlled walking motion is much easier on the hybrid zero dynamics. The controller is designed to impose

N − 1 independent holonomic constraints on the robot, and to be invariant under the double support map. With impulsive

foot actuation, the hybrid zero dynamics manifold is determined by not only the choice of the output function but also

the foot force applied during the double support phase.

Let y = h(x) be a vector of N − 1 functions satisfying HH1-HH5 of Westervelt et al. 1 (see Appendix A), which

essentially means that h depends only on the configuration variables during the single support phase, the associated

decoupling matrix, LgLfh(x), is full rank, and there exists θ(q) such that [hT , θ(q)]T is a local diffeomorphism on Q̃, an

open set of the configuration space. Then there exists a smooth manifold Z = {x ∈ TQ|h(x) = 0, Lfh(x) = 0}, called

the zero dynamics manifold, and S ∩Z is smooth. S ∩Z is one-dimensional if S ∩Z 6= ∅. Z becomes the state space for

the one degree of freedom constrained system, called the zero dynamics. In addition to the hypotheses HH1–HH5, if the
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hypothesis RH5 is also satisfied, then the single support phase zero dynamics can be expressed in the form

ż1 = κ1(z1)z2 (13)
fzero(z) :

ż2 = κ2(z1) (14)

where z1 = θ(q) and z2 = dN (q)q̇ 1. By Property 1, z2 is the angular momentum about the stance foot.

Definition 1: Let Z and ż = fzero(z) be the zero dynamics manifold of the single support phase and the associated

zero dynamics, respectively. Z is a hybrid zero dynamics manifold if ∀z− ∈ S ∩ Z, ∃Ff (z−) ∈ IR+ ∪ {0} such that

∆(z−, Ff (z
−)) ∈ Z. In other words, Z is controlled-invariant with respect to the impulsive foot action. The nonlinear

system

ż = fzero(z), z− 6∈ S ∩ Z

z+ = ∆(z−, Ff (z
−)), z− ∈ S ∩ Z

(15)

with z ∈ Z is called the hybrid zero dynamics of (12).

Remark 1: By the definition, Z is a hybrid zero dynamic manifold if, and only if, ∀z− ∈ S ∩ Z, ∃Ff ∈ IR+ ∪ {0}

such that

h ◦∆(z−, Ff ) = 0, (16)

Lfh ◦∆(z−, Ff ) = 0. (17)

¤

Let x(t) be a solution of the system (12) for the single support phase with the output y = h(x) being zero. If the

trajectory of the solution contains an impact with S then the impact time tI exists and is finite. Then x− := limt↗tI x(t)

exists and x− = (q−, q̇−)T ∈ S ∩ Z. By HH5, q− is a unique point in Q̃ defined as in HH2. Define Φ : IR → S ∩ Z as

Φ =









Φq

Φq̇









, (18)

where Φq = q− and

Φq̇(q
−) =









∂h
∂q

(q−)

dN (q−)









−1 







0

1









, (19)

then Φ is a diffeomorphism 1. Define z− = (θ−, σ−) = (θ(q−), dN (q−)q̇−) then the double support map for the velocity

states (10) becomes

q̇+ = ∆q̇1(q
−)Ff +∆q̇2(q

−)Φq̇(q
−)σ−

= w1Ff + w2σ
−, (20)
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where w1 = ∆q̇1(q
−) and w2 = ∆q̇2(q

−)Φq̇(q
−) . Note that w1, w2 are uniquely defined N × 1 vectors.

Let Z be the hybrid zero dynamics manifold. The double support map for θ restricted to Z is given by

θ+ = θ ◦∆q(q
−). (21)

The double support map of σ restricted to Z is given by

σ+ = dN (q+)q̇+

= dN (q+)(∆q̇2(q
−)Φq̇σ

− +∆q̇1(q
−)Ff ). (22)

Using Properties 1 to 6, it follows that (22) is equivalent to

σ+ = σ− + l(Mvv−c + cosφ1Ff ), (23)

where l is the step length, M is the total mass, and vv−c is the vertical component of the velocity of the center of mass

just before the impact.

Theorem 1: Suppose there exists at least one point ẑ− = (θ̂−, σ̂−) ∈ S ∩ Z and F̂f ∈ IR+ ∪ {0} such that σ̂− 6= 0,

h ◦∆(ẑ−, F̂f ) = 0, Lfh ◦∆(ẑ−, F̂f ) = 0, and q̇+ 6= 0. Suppose w1 and w2 are not zero, where w1, w2 are the vectors

defined in (20). Then ∀z− = (θ−, σ−) ∈ S ∩Z, there exists Ff ∈ IR+ ∪ {0} such that Lfh ◦∆(z−, Ff ) = 0 if, and only

if, one of the following is satisfied.

1) The foot force is defined as

Ff =
F̂f
σ̂−

σ−; (24)

2) There exists λ ∈ IR such that

De





Φq̇

0



− λE1eT ∈ R(E2e ), (25)

where R(E2e ) is the range space of E2e .

Proof: See Appendix C.

Although having an output function satisfying the second condition in Theorem 1 enables us to use an arbitrary foot force

to achieve the hybrid zero dynamics, designing such an output function is too restrictive. Indeed, the second condition

results in w1 and w2 being in the null space of ∂h(q+)
∂q

, which is one dimensional. This condition implies that the q̇+ has

the same direction for all possible σ− and Ff , and that the swing leg and the stance leg should have a posture such that

the resulting post-impact velocity lies in the direction. Consequently, the foot force during the double support phase is

chosen as

Ff = rfσ
− (26)
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with rf ∈ IR+ ∪ {0}, in order to create the hybrid zero dynamics. Then the double support map (22) becomes

σ+ = dN (q+)(∆q̇1rf +∆q̇2)σ
−

= δzσ
−, (27)

where δz = dN (q+)(∆q̇1rf +∆q̇2).

IV. STABILITY ANALYSIS

Using the method of Poincaré section, the stability of the robot restricted to the hybrid zero dynamics manifold is

analyzed. Then the stability of the full model is addressed.

By Westervelt et al. 1, it was shown that if the robot completes a step within the zero dynamics, then σ is nonzero

during the single support phase. Since σ 6= 0 during the step, ζ = σ2

2 is a valid coordinate transformation. Then, (13) and

(14) become

dζ = σdσ =
κ2(θ)

κ1(θ)
dθ. (28)

Let z− = (θ−, σ−) ∈ S ∩ Z and θ+ be defined as in (21). For θ+ ≤ θ ≤ θ−, define

Vzero(θ) = −

∫ θ

θ+

κ2(ξ)

κ1(ξ)
dξ, (29)

V max
zero = max

θ+≤θ≤θ−
Vzero(θ). (30)

If δ2zζ
− − V max

zero > 0, then (28) can be integrated over a step, which results in

1

2
(σ−)2 −

1

2
(σ+)2 = ζ− − ζ+ = −Vzero(θ

−). (31)

From (27), ζ+ = δ2zζ
−. Hence, the reduced Poincaré map in (θ, ζ) coordinates, ρ(ζ−) : S ∩ Z → S ∩ Z, is defined as

follows

ρ(ζ−) = δ2zζ
− − Vzero(θ

−) (32)

with domain of definition

D = {ζ− > 0|δ2zζ
− − V max

zero > 0}. (33)

Theorem 2: Under the hypotheses RH1–RH5, GH1–GH5, IH1–IH6, and HH1–HH5 in Appendix A and IFH1–IFH7,

with the foot force defined as in (24),

ζ∗ = −
Vzero(θ

−)

1− δ2z
(34)
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is an exponentially stable fixed point of (32) if, and only if,

0 < δ2z < 1 (35)

δ2z
1− δ2z

Vzero(θ
−) + V max

zero < 0. (36)

Proof: D is non-empty if, and only if, δ2z > 0. If there exists ζ∗ ∈ D satisfying ρ(ζ∗) = δ2zζ
∗ − Vzero, then ζ∗ is

an exponentially stable fixed point if, and only if, 0 < δ2z < 1, and in this case, (34) is the value of ζ∗. Finally, (36) is

the necessary and sufficient condition for (34) to be in D.

Note that this is identical to the result of Westervelt et al. 1 if rf is set to be zero. Using (23), the condition (35) yields

that Mvv−c , the value of the vertical component of the robot’s linear momentum, should be negative just before impact,

and for stability, cosφ1Ff , the intensity of the vertical component of the foot force, should not exceed |Mvv−c |. More

precisely, let Υc(q) = [Υh
c (q) Υ

v
c (q)]

T be the Cartesian coordinates of the center of mass. Then Υc(q) is a function of

configuration variables only, and the velocity of the center of mass just before the impact is given as follows:

v−c =









vh−c

vv−c









=
∂Υc(q)

∂q

∣

∣

∣

∣

q=q−
q̇−. (37)

Then, with the foot force defined in (26), the impact map (23) becomes

σ+ = σ− + lM
∂Υv

c

∂q
Φq̇σ

− + cosφ1rfσ
− (38)

= (1 + lM
∂Υv

c

∂q
Φq̇ + cosφ1rf )σ

− (39)

= δzσ
−, (40)

where δz < 1 is necessary for stability.

Differentiating the output y = h(x) twice gives

ÿ := v (41)

= L2fh(x) + LgLfh(x)Γ. (42)

Let v be any control input satisfying controller hypotheses CH2–CH5 in Westervelt et al. 1, see Appendix A. Then the

zero dynamics manifold for the single support phase is invariant. In this paper, v is defined as

v =
1

ε2
ν(y, εẏ), (43)

where ν is the finite settling-time controller by Bhat and Bernstein 19 and ε > 0 is a constant for adjusting the settling
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time, see Appendix D. The feedback for the full-model (12) is given as follows,

Γ = (LgLfh(x))
−1(v(h(x), Lfh(x))− L

2
fh(x)). (44)

By Theorem 2 in Grizzle et al. 13, the full state model is asymptotically stable if, and only if, the reduced Poincaré map

(32) has an exponentially stable fixed point. Therefore, the full system is asymptotically stable.

V. PARAMETRIZATION AND OPTIMIZATION OF THE HYBRID ZERO DYNAMICS

As developed in the previous section, controlling the robot is realized by imposing constraints as an output function,

which is driven to zero using feedback. Thus, designing an optimal feedback u, that is, a control that creates a stable

periodic orbit while meeting a performance objective, is equivalent to designing an optimal output h(q).

The output y = h(q) is selected to have the form

y = h(q) = H0q − h
d(θ(q)), (45)

where H0 is a (N − 1)×N constant matrix, hd(θ(q)) is a desired function for H0q to track, and θ(q) = cq satisfies HH3

so that [HT
0 cT ]T has full rank. The desired function hd(θ(q)) = hd(s) ◦ θ(q) is chosen to be a (N − 1)× 1 vector whose

elements are Bézier polynomials. Let bi(s) be Bézier polynomial with order M ≥ 3

bi(s) :=

M
∑

k=0

αik
M !

k!(M − k)!
sk(1− s)M−k. (46)

Then hd(θ(q)) = [bi(s), · · · , bN−1(s)]
T , with

s(θ(q)) =
θ(q)− θ+

θ− − θ+
. (47)

Let αk = [α1k, · · · , α
N−1
k ]T where the constants αik are the coefficients of the Bézier polynomials in (46). Let the foot

force be defined as in (26). Then (16) and (17) are satisfied when








α0

θ+









= HRH−1









αM

θ−









, (48)

and

α1 =
H0(θ

− − θ+)(∆q̇2Φq̇(q
−) + ∆q̇1rf )

Mc(∆q̇2Φq̇(q−) + ∆q̇1rf )
+ α0. (49)

Note that since the foot actuation does not affect the position states, the condition for α0 to satisfy (16) is identical to the

model of unactuated point feet. An optimal control can be found by optimizing the output parameters. The cost function

to be optimized is defined as

J =
1

Ls
(Wj +Wf ) , (50)
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where Ls is the step length, Wj is the sum of the work done by the joints, and Wf is the work done by foot actuation.

The total work done by the joints is defined as

Wj =

N−1
∑

i=1

∫ T−s

T
+
s

|q̇iΓi| dt, (51)

where T+s , T−s represent the beginning and ending time of a step.

The work done by the impulsive foot action is defined as follows. Let tI be the impact time and τ = E1eδF1 =

E1eF1δ(t − tI) from (2) be the effective impulsive torque of the foot. Then the work by the impulsive foot actuation is

given by

Wf =

∫ t
+
I

t
−

I

τT q̇e dt =

∫ t
+
I

t
−

I

(E1eF1δ(t− tI))
T q̇e dt. (52)

Due to the impulsive foot actuation, there exists a discontinuous change in the velocity states. Let ∆q̇e = q̇+e − q̇
−
e then

the velocity states can be written as

q̇e = ∆q̇eu(t− tI) + ˙̄qe, (53)

where u(t) is the unit step function. Note that ˙̄qe is continuous and ∆q̇e can be obtained from (4) as

∆q̇e = (De)
−1E1eF1. (54)

From (52) and (53), the work done by foot actuation can be obtained as

Wf = (E1eF1)
T∆q̇e

∫ t
+
I

t
−

I

δ(t− tI)u(t− tI) dt

+(E1eF1)
T q̇−e . (55)

By Hypothesis GH2 in Appendix A, which is the stance leg end acting as a pivot during the single support phase,

∂Υ1(qe)

∂qe
q̇−e = (E1e )

T q̇−e = 0, (56)

where Υ1(qe) is the Cartesian coordinates of the stance leg end. With (56) and (54), the work by the foot actuation

becomes

Wf = (E1eF1)
T (De)

−1E1eF1

∫ t
+
I

t
−

I

δ(t− tI)u(t− tI) dt. (57)

For the work by the foot to be calculated, it is required to determine the value of
∫ t
+
I

t
−

I

δ(t− tI)u(t− tI) dt. Although the

integration is not defined at t = tI in general, in this paper it is taken to be
∫ t
+
I

t
−

I

δ(t− tI)u(t− tI) dt =
1
2 .

Since the hybrid zero dynamics needs to be achieved during walking, (48) and (49) should be satisfied. Therefore, only

(N − 1) × (M − 1) coefficients of (46) need to be determined. The detailed constraints for optimization are given in
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Westervelt et al. 1, which ensure a valid stable walking motion.

IMPULSIVE FOOT CONSTRAINT: An additional constraint on foot actuation is necessary to ensure the applied foot

force is unilateral.

IFC1) Foot force, δFf , is unilateral.

VI. EXAMPLE

This section illustrates the above results on a robot with impulsive foot action. The robot is the 5-link planar bipedal

robot17 with an impulsive actuator added to each foot. For the output function, the order of the Bézier polynomials was

set to be M = 6. For optimization, the fmincon function in MATLAB was used. Table I shows the work done by the joint

actuators and the foot actuator when the average walking speed is constrained to be 1 (m/s). The work is normalized by

the distance travelled during one step (50). The normalized work done by the robot with foot actuation is less than the

robot without foot actuation, which implies that having foot actuation helps to reduce the work required to walk. Table

II shows the optimization results with a constrained energy per distance travelled instead of constrained walking speed.

The energy constrained is 25 (J/m). With the same amount of energy, the robot with impulsive foot action walks at

0.99 (m/s) whereas the robot without foot action walks at 0.84 (m/s), which also shows the efficiency of impulsive foot

action in walking. An animation is available on the web 20. Table III shows the optimization results with different walking

speed. δz for the robot with impulsive foot action is larger than for the robot without impulsive foot action, which implies

that the convergence rate of the robot with impulsive foot action is slower.

The detailed simulation data of the robot with impulsive foot action are shown in the following figures. The walking

speed is set to be 1 (m/s). Fig. 4 is the stick diagram of the robot for one stride. Fig. 5 shows the velocity states of each

joint. The open circle and the open square represent the state after foot actuation and before the impact. The foot force

on the stance foot is shown in Fig. 6. The stance leg will not slip for a friction coefficient greater than 0.6. The output is

plotted in Fig. 7, showing that the controller has indeed driven the output to zero in finite time. Fig. 8 and Fig. 9 are the

applied torque at each joint. The torques applied at the stance hip, the swing hip, the stance knee, and the swing knee

are represented by u1, u2, u3, and u4, respectively. Fig. 8 is the plot of torques of the robot without foot actuation and

Fig. 9 is the plot of torques of the robot with foot actuation. The robot with foot actuation requires smaller torques are

applied during walking. In particular, smaller torques between the torso and two femurs of the robot with foot actuation.

Fig. 10 shows the phase portraits of the states. It is clear that the solution converges to a limit cycle.
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VII. CONCLUSION

A robot model with impulsive foot actuation was studied. The model was developed from a model with unactuated point

feet by Westervelt et al. 1 and the work by Kuo 2. The impulsive actuator at the end of the stance foot was assumed to be

active only in the double support phase, which resulted in the single support phase model being identical to the model

of the robot with unactuated point feet for the single support phase. However, the double support map depended on the

impulsive foot force, which resulted in changes in the zero dynamics. In general, the output function cannot be designed to

achieve the hybrid zero dynamics without knowing the foot force a priori. A method to design output functions to achieve

the hybrid zero dynamics was given for a class of foot actuation control policies. The stability of the resulting walking

motion was shown with a Poincaré map. These results were applied to a 5-link biped robot. The robot with impulsive

foot action showed more energy efficient walking than the model without foot action.

APPENDIX

A. Hypotheses

The following hypotheses are based on the hypotheses in Westervelt et al. 1 The hypotheses for the robot are:

RH1) The robot consists of N rigid links with revolute joint;

RH2) The robot is planar;

RH3) The robot is bipedal with identical legs connected at hips;

RH4) The joints are actuated;

RH5) The coordinate of the robot consists of N − 1 relative angles, q1, · · · , qN−1, and one absolute angle, qN .

The hypotheses for gait are:

GH1) Walking consists of two alternating phases, single support phase and double support phase;

GH2) The stance feet acts as a pivot during the single support phase;

GH3) The swing leg has neither slipping nor rebounding at impact;

GH4) Successive single support phases are identical with respect to the two legs in steady state;

GH5) Walking is from left to right, so that the swing leg moves from behind the stance leg and touches the ground in

front of the stance leg at impact.

The hypotheses for impact are:

IH1) The swing leg has neither rebound nor slipping during impact;
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IH2) After impact, the stance leg leaves the ground without any interaction with the ground;

IH3) The impact is instantaneous;

IH4) The reaction force due to the impact can be modelled as an impulse;

IH5) The impulsive force results in discontinuous changes in the velocities while the position states remain continuous;

IH6) The actuators at joints are not impulsive.

Let the output y be y = h(x) then the hypotheses are:

HH1) The output function h(x) being a function of only the configuration coordinates during the single support phase;

HH2) The decoupling matrix LgLfh being invertible for an open set Q̃ ⊂ Q;

HH3) Existence of θ(q) such that [h(q); θ(q)] is diffeomorphism;

HH4) h vanishing at least one point.

HH5) Existence of an unique point q− ∈ Q̃ such that (h(q−), pv2(q
−)) = (0, 0), ph2 (q

−) > 0 and the rank of [hT pv2]
T at

q− equals to N .

The hypotheses for the closed-loop chain of double integrators, ÿ = v, are:

CH1) Global invertibility of the decoupling matrix.

CH2) Existence of solutions on IR2N−2 and uniqueness;

CH3) Solutions depending continuously on the initial conditions;

CH4) The origin being globally asymptotically stable and the convergence being achieved in finite time;

CH5) The settling time depending continuously on the initial condition.

B. Proof of property 1, 2, 3, and 4

Proof: [Property 1] Let (phc , p
v
c ) be the Cartesian coordinates of the center of mass of the robot. Let ~r1 be a vector

from the stance foot to the center of mass and let ~r3 be the vector from the stance foot to the swing foot. Let Ψ and ψ

be the angle between ~r1 and the ground, and the angle between ~r1 and ~r3, respectively. Let qN be the absolute angle in

the counterclockwise direction, see Fig. 11.

Then |~r1| and ψ are independent of qN and Ψ = ψ + qN − qN,0, where qN,0 is a scalar such that the swing leg end

touches the ground at qN = qN,0 while the relative angles q1, · · · , qN−1 are unchanged. Therefore, the coordinates of the

center of mass are

phc = |~r1| cos(ψ + qN − qN,0) (58)

pvc = |~r1| sin(ψ + qN − qN,0). (59)
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The partial derivatives of (58) and (59) with respect to qN are given as

∂phc
∂qN

= −|~r1| sin(ψ + qN − qN,0) = −p
v
c (60)

∂pvc
∂qN

= |~r1| cos(ψ + qN − qN,0) = phc . (61)

The Lagrangian is defined as L = K−V , where K is the kinetic energy and V is the potential energy of the robot. Since

K does not depend on qN and V =Mgpvc with g being gravitational acceleration and M being total mass,

d

dt

∂L

∂q̇N
=

∂L

∂qN
= −

∂V

∂qN
= −Mgphc . (62)

Let σ be the angular momentum about the stance foot. Then,

dσ

dt
= (~r1 × ~Fc) · ~e3, (63)

where ~Fc is the force acting on the center of mass. Since ~r1 = phc~e1 + pvc~e2 and ~Fc = −Mg~e2,

dσ

dt
= −Mgphc . (64)

From (62) and (64), we can deduce that ∂L/∂q̇N = σ + C0, with some constant C0. Since ∂L/∂q̇N and σ are zero if

(q̇1, · · · , q̇N ) = 0, C0 = 0. Therefore

∂L

∂q̇N
= σ. (65)

Since dN (q)q̇ = ∂L/∂q̇N , dN (q)q̇ is the angular momentum of the robot.

Proof: [Property 2] Let L and Le denote the Lagrangians for the single support phase and double support phase,

respectively. Define L = K − V and Le = Ke − Ve, where K and Ke are the kinetic energies and V and Ve are the

potential energies. By the hypothesis GH2, L = Le|(ph1 ,pv1 ,ṗh1 ,ṗv1)=(c,0,0,0), where c is constant. Since dN (q)q̇ = ∂L/∂q̇N ,

dN (q−)q̇− = ∂L/∂q̇N |(q,q̇)=(q−,q̇−) = ∂Le/∂q̇N |(q,ph1 ,pv1 ,q̇,ṗh1 ,ṗv1)=(q−,c,0,q̇−,0,0) = de,N (q−e )q̇
−
e

Proof: [Property 3] In the given coordinates, the Cartesian coordinates of the stance foot are given by Υ1(qe) =

(ph1 , p
v
1). Therefore, EN = (∂Υ1/∂qN )T = 0. Thus, from (4), de,N (q1+e )q̇1+e − de,N (q1−e )q̇1−e = 0.

Proof: [Property 4] Let qc = (q1, · · · , qN , phc , p
v
c ) be the coordinates of the robot, where phc , p

v
c denote the Cartesian

coordinates of the center of mass, see Fig. 11. Then the kinetic energy Ke does not depend on phc , p
v
c and the potential

energy is given by Ve =Mgpvc . Since the force acting on the center of mass is Fh = 0, Fv = −Mg,

d

dt

∂Le
∂ṗhc

= −
∂Ve
∂phc

= 0 = Fh (66)

d

dt

∂Le
∂ṗvc

= −
∂Ve
∂pvc

= −Mg = Fv. (67)
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Therefore, ∂Le
∂ṗhc

, ∂Le
∂ṗvc

are the linear momentum. In the coordinates qc, let Υ1(qc) be the Cartesian coordinates of the stance

foot. Then, ~P+c − ~P−c = T Ff .

C. Proof of theorem 1

Proof: (Necessity) Assume ∀z− = (θ−, σ−) ∈ S ∩ Z, there exists Ff ∈ IR+ ∪ {0} such that Lfh ◦∆(z−, Ff ) = 0.

Let z−1 = (θ̂−, σ−1 ) ∈ S ∩ Z and F 1f 6= 0 be a point in S ∩ Z and a foot force satisfying Lfh ◦∆(z−1 , F
1
f ) = 0.

Lfh ◦∆(ẑ−, F̂f ) = 0 ⇐⇒
∂h

∂q
(q+)q̇+ = 0

⇐⇒ w1F̂f + w2σ̂
− ∈ N

(

∂h

∂q
(q+)

)

(68)

Lfh ◦∆(z−1 , F
1
f ) = 0 ⇐⇒

∂h

∂q
(q+)q̇+ = 0

⇐⇒ w1F
1
f + w2σ

−
1 ∈ N

(

∂h

∂q
(q+)

)

, (69)

where w1, w2 are N ×1 vectors defined in (20) and N
(

∂h
∂q

(q+)
)

is the null space of ∂h
∂q

(q+). Since σ̂− 6= 0, there exists

r ∈ IR such that σ−1 = rσ̂−. From (68) and (69),

rw1F̂f + rw2σ̂
− − (w1F

1
f + w2σ

−
1 )

= w1(rF̂f − F
1
f ) ∈ N

(

∂h

∂q
(q+)

)

. (70)

Since (70) is true if, and only if, either w1 ∈ N
(

∂h
∂q

(q+)
)

or rF̂f − F 1f = 0, these cases are now studied separately.

Case 1. If w1 6∈ N
(

∂h
∂q

(q+)
)

and rF̂f = F 1f , then, because σ−1 = rσ̂−, r = σ
−

1

σ̂−
. Therefore,

F 1f =
F̂f
σ̂−

σ−1 . (71)

Case 2. If w1 ∈ N
(

∂h
∂q

(q+)
)

, then (68) implies w2 ∈ N
(

∂h
∂q

(q+)
)

since σ̂− 6= 0. Since w1 6= 0 by hypothesis, and the
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null space is 1 dimensional, there exists λ ∈ IR such that w2 = λw1. From the impact map (10),

w2 − λw1 = 0 ⇐⇒

[

R 0

]

Π

























De





Φq̇

0





0













− λ









E1eT

0





















= 0 (72)

⇐⇒ Π

























De





Φq̇

0





0













− λ









E1eT

0





















∈ N

([

R 0

])

(73)

⇐⇒

























De





Φq̇

0





0













− λ









E1eT

0





















= Π−1

















0N×1
ξ1
ξ2
ξ3
ξ4

















, (74)

where ξ1, ξ2, ξ3, ξ4 are scalars and Π is a (N + 4)× (N + 4) matrix defined in (9). From the last two rows of (74),

[

(E2e )
T 0

]

















0N×1
ξ1
ξ2
ξ3
ξ4

















= (E2e )
T









0N×1
ξ1
ξ2









= 0 (75)

⇐⇒ (E2e,2)
T





ξ1
ξ2



 = 0, (76)

where (E2e,2)
T is last two columns of (E2e )

T . Since (E2e,2)
T has full rank, ξ1 = ξ2 = 0. Therefore, from (74),

De





Φq̇

0



− λE1eT = −E2e





ξ3

ξ4



 . (77)

(Sufficiency)

Case 1. Since w1F̂f + w2σ̂
− ∈ N

(

∂h
∂q

(q+)
)

and σ̂− 6= 0, (w1
F̂f
σ̂−

+ w2) ∈ N
(

∂h
∂q

(q+)
)

. For Ff =
F̂f
σ̂−
σ−, the impact

map (20) becomes

q̇+ = w1Ff + w2σ
− (78)

= w1
F̂f
σ̂−

σ− + w2σ
− (79)

= σ−(w1
F̂f
σ̂−

+ w2) ∈ N

(

∂h

∂q
(q+)

)

. (80)

Case 2. Let λ ∈ IR and v̂ ∈ IR2 such that

De





Φq̇

0



− λE1eT = −E2e v̂. (81)
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Multiplying (81) by σ̂− yields,

Deq̇
−
e − λσ̂

−E1eT = −E2e v̂σ̂
−. (82)

From the impact map (20) and (82),

q̇+ = w1F̂f + w2σ̂
− (83)

=

[

R 0

]

Π









−E2e v̂σ̂
−

0









+

[

R 0

]

Π









(F̂f + λσ̂−)E1eT

0









(84)

= (F̂f + λσ̂−)Π









E1eT

0









(85)

= (F̂f + λσ̂−)w1, (86)

since

[

R 0

]

Π









−E2e v̂σ̂
−

0









= 0. (87)

(F̂f +λσ̂
−) 6= 0 in (86) since q̇+ 6= 0. Therefore, w1F̂f +w2σ̂− = (F̂f +λσ̂

−)w1 implies w1 ∈ N
(

∂h
∂q

(q+)
)

, which

also implies w2 ∈ N
(

∂h
∂q

(q+)
)

. Therefore, ∀z− ∈ S ∩ Z and Ff ∈ IR ∪ {0}, w1Ff + w2σ
− ∈ N

(

∂h
∂q

(q+)
)

.

D. Finite settling time controller for double integrators

The following controller is the finite-settling time controller for a double integrator developed by Bhat and Bernstein 19.

Consider the double integrator

ẏ1 = y2

ẏ2 = ν. (88)

The double integrator (88) is globally finite-time stabilizable with continuous feedback control

ν = −sign(y2)|y2|α − sign(φα(y1, y2))|φα(y1, y2)|
α
2−α , (89)

where φα(y1, y2) := y1+
1
2−α sign(y2)|y2|2−α and 0 < α < 1. The settling time, Tset, depends continuously on the initial

condition.
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Fig. 1. Typical planar bipedal robot model
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Fig. 2. Phase diagram for the system, which combines the point foot model of Westervelt et al. 1 with the impulsive foot action of Kuo 2.
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Fig. 3. 5-link robot with impulsive feet during the double support phase and the single support phase. F1 and F2 represent the impulsive foot force

and the impulsive reaction force due to impacts, respectively.
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Fig. 4. Stick diagram of the robot for one stride.
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Ff (N) Wtotal(J/m) Wj(J) Wf (J) Ls(m)

0 34.29 15.47 0 0.45

11.95 25.61 11.85 2.56 0.56

TABLE I

WORK DONE BY THE JOINTS AND THE FOOT PER DISTANCE TRAVELLED. Ff , Ls ARE THE FOOT FORCE AND STEP LENGTH, Wtotal IS TOTAL WORK

PER DISTANCE TRAVELLED, Wj , AND Wf ARE WORK BY JOINTS AND WORK BY FOOT, RESPECTIVELY, WHEN THE WALKING SPEED IS 1 M/S.

With Foot Force Without Foot Force
Cost

Speed δz Vzero(θ−) Vmax
zero Step Length Speed δz Vzero(θ−) Vmax

zero Step Length(J/m)
(m/s) − (kgm2/s)2 (kgm2/s)2 (m) (m/s) − (kgm2/s)2 (kgm2/s)2 (m)

25 0.99 0.92 -133.13 404.85 0.549 0.84 0.87 -145.03 216.11 0.430

TABLE II

OPTIMIZATION RESULTS WITH CONSTRAINED REQUIRED ENERGY PER DISTANCE TRAVELLED.

With Foot Force Without Foot Force
Speed

Cost δz Vzero(θ−) Vmax
zero Step Length Cost δz Vzero(θ−) Vmax

zero Step Length(m/s)
(J/m) − (kgm2/s)2 (kgm2/s)2 (m) (J/m) − (kgm2/s)2 (kgm2/s)2 (m)

0.8 18.01 0.937 -76.77 360.81 0.504 23.58 0.858 -156.31 232.99 0.445

0.9 21.61 0.922 -114.41 394.13 0.536 28.49 0.869 -160.11 210.28 0.431

1.0 25.61 0.918 -140.06 426.79 0.563 34.29 0.857 -207.67 217.23 0.451

1.1 29.99 0.915 -167.13 449.12 0.583 40.22 0.848 -255.02 218.28 0.467

1.2 35.20 0.912 -195.74 461.42 0.597 47.83 0.863 -252.06 188.64 0.445

TABLE III

OPTIMIZATION RESULTS WITH CONSTRAINED WALKING SPEED.


