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Abstract
Over the past several decades a number of O(n) methods for forward and inverse dynamics
computations have been developed in the multi-body dynamics and robotics literature. A method
was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial
polymer chain consisting of point masses. In other recent papers, we extended this method in order
to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present
paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies.
This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and
the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of
Lie-group-valued argument.

1 Introduction
Serial chains consisting of n rigid bodies connected with rotational or prismatic joints have
been studied for many years. The first O(n) algorithm for dynamics computation was developed
in the multi-body systems literature in 1975 [1]. In the robotics area, the Luh-Walker-Paul
recursive Newton-Euler approach [2] has been a cornerstone of manipulator inverse dynamics
for many years. Another O(n) algorithm within a Lagrangian dynamics setting was presented
in [3]. In addition, recursive techniques from linear filtering and smoothing theory for serial
manipulators were introduced for both the forward and inverse dynamics problems [4,5]. In
[6], two recursive factorization methods of the mass matrix were presented for fixed-base and
mobile-base manipulators: Newton-Euler factorization and innovations factorization. As
another approach, a decomposition method using analytical Gaussian Elimination(GE) of the
inertia matrix [7] and a recursive forward dynamics algorithm for open-loop, serial-chain
robots [8] were presented by Saha. His algorithm has O(n) computational complexity and is
also based on reverse GE applied to analytical expressions of the elements of the inertia matrix.
Angeles and Ma developed the Natural Orthogonal Complement for the manipulator mass
matrix [9]. In a series of papers [10]-[14], Anderson and his colleagues presented a numerical
analysis and simulations of multi-rigid-body dynamic systems. An O(n + m) algorithm for
multi-body systems with arbitrarily many closed loops, containing n generalized coordinates
and m independent constraints, was presented in [15]. Featherstone showed a new efficient
factorization of the joint space inertia matrix (JSIM) for branched kinematic trees [16,17]. A
coordinate invariant algorithm for forward dynamics using Lie groups and Lie algebra of SE

‡G.S. Chirikjian (corresponding author) is with the Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD
21218, USA, gregc@jhu.edu.

NIH Public Access
Author Manuscript
Robotica. Author manuscript; available in PMC 2010 February 16.

Published in final edited form as:
Robotica. 2007 November 1; 25(6): 739. doi:10.1017/S0263574707003852.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3) was introduced in [18]. More recently, a recursive O(n) forward dynamic computations
was used to obtain a set of Hamiltonian equations for open-loop and closed-loop multi-body
systems [19,20].

Interestingly, all of these approaches appear to be unaware of developments in the polymer
physics literature in which Fixman developed an O(n) method for computing the mass-matrix
determinant of a serial chain structure composed of rigid links and point masses [21]. In a series
of recent conference papers, we extended Fixman's method to yield a new method for O(n)
inversion of the mass matrix for planar serial manipulators and polymer chains consisting of
point masses [22,23]. In [24], we examined chains of rigid bodies. The inverse of the
constrained mass matrix (M−1) is obtained by computing the inverse of the unconstrained mass
matrix (H) composed of four block matrices which appear to be sparse and band-limited due
to the special properties of the serial chain structure. Using these properties, M−1 is calculated
by

(1)

where Hij's are block matrices of H. This form is known as the Schur complement [25]. The
main difference of our work and others that use the Schur compliment is that we adapt Fixman's
method of partitioning generalized coordinates into soft and hard variables. This partitions H
into four sparse and band-limited matrices instead of using the mathematical manipulations in
[25]. Each step of our method gives clear insight into the physics.

The rest of the paper is organized as follows. In Section 2, we briefly review Fixman's method
and our extension to solve Mx = b for given M and b in O(n) time for n-link serial chains
consisting of n point masses. Further extensions to rigid-body applications are described in
Section 3. In Section 4, we explain how to use the algorithm in detail, and include numerical
examples for the PUMA 560 robot arm and a polypeptide chain. The Denavit-Hartenberg (D-
H) parameterization is used to describe rigid-body motions for the examples.

2 Fixman's Theorem and Efficient Inversion of the Mass Matrix
2.1 Background

Given a set of n point masses {m1, …, mn} with corresponding set of absolute positions {x1,

…,xn}, we define the 3n-dimensional composite position vector as . If N
generalized coordinates, q1, …, qN, are used to parameterize x, then the partial derivatives of
x with respect to the N generalized coordinates can be arranged in the 3n × N Jacobian matrix:

(2)

If we define, for m = (m1, ⋯,mn),
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then the generalized mass matrix is given by

(3)

In the case when no constraints are imposed, N = 3n, and all of the matrices in (3) are square
and invertible almost everywhere.1 Therefore, it follows that, for m̃ = (1/m1, ⋯,1/mn),

(4)

Recall that the derivative of a scalar-valued function of vector-valued argument, f(z) with z ∈

IRn, with respect to its argument is a row vector,  This means that

where each entry in the above matrix is a 3-dimensional row vector.

2.2 Fixman's Method and Extension to Solve Mx = b
We begin by introducing Fixman's Theorem to the robotics community and showing how
extensions of Fixman's results can be used to efficiently invert the expression Mx = b, where
M is the mass matrix for a serial chain composed of point masses and b is any given vector
with matching dimension.

Given an n-link serial chain with point masses, the vector of generalized coordinates is
partitioned into the vector of soft variables and the vector of hard variables, such that q = [sT,
hT]T where s = [s1, ⋯, sf]T and h = [h1, ⋯, hr] when f + r = 3n [21]. Then, (3) and (4) are also
represented as partitioned matrices, such that

1For general invertible matrices A and B, (AB)−1 = B−1A−1 and (AT)−1 = (A−1)T.
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Now we consider the fast inversion of G11 of the equation

(5)

where G11(= M) is the mass matrix for a serial chain with constraints. In general, G11 is a full
matrix, and thus, the direct numerical inversion of G11 requires O(n3) computations. By using
the fact that

 is now computed using blocks of H as

(6)

This is known as a form of the Schur complement. Instead of Eq. (5), our approach will be to
solve

(7)

where each block matrix of H is calculated as follows:

(8)

For serial manipulators, the matrices in (8) can be computed efficiently due to their structural
properties. In the case of the planar n-link serial chain with constrained link lengths [22], the
vector of generalized coordinates is partitioned as q = [θ1, ⋯, θn, L1, ⋯, Ln]T, where θi's are
the joint angles (soft variables) and Li's are the link lengths (hard variables). The analytical
expressions for soft and hard variables are written as some functions of related position vectors,
such that θi = f(xi, xi−1, xi−2) and Li = g(xi, xi−1). Since ∂θi/∂xj = 0 except of when j = i, i − 1,
i − 2 and ∂Li/∂xj = 0 except of when j = i, i − 1, there are (3n − 2) nonzero elements in

 and (2n − 1) nonzero entries in , noting that each element is a 1 ×
2 row vector.

If matrices have O(n) nonzero entries, matrix multiplication can be made in O(n) computations
by extracting zero elements. Once all blocks of H(which are also sparse and band-limited) are
computed, Eq. (7) can be calculated in O(n) as well. There are O(n) algorithms to solve

 for some vector c with a matching dimension [26]. The computational steps for an n-link
spatial manipulator composed of n point masses are summarized as follows.
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Computational steps
I. Define a partitioning of the generalized coordinates as q = [sT, hT]T where s = [s1,

⋯, sf]T is the vector of soft variables and h = [h1, ⋯, hr]T is the vector of hard variables,
such that f + r = 3n.2

II. Obtain analytical expressions for each variable in terms of position vectors, such that
si = f(x) and hj = g(x), where si and hj denote the ith soft variable and the jth hard
variable respectively, and f and g are some functions of position vectors3.

III.
Compute all nonzero entries of  and . There are O(n)
nonzero elements for each matrix. The elements of these matrices are:

.

IV. Compute H11, , and H22 using Eq.(8). Recall that matrix multiplications
for band-limited matrices can be done in O(n) by extracting zero elements from the
matrices. (For example, the ‘sparse(·)’ command in Matlab stores all nonzero entries
of a sparse matrix as an array.)

V. Compute Eq.(7) as follows:

Finally,

Multiplication of a sparse matrix with O(n) nonzero entries with a vector with the
corresponding size requires O(n) computations. Note that H22 is also sparse and band-
limited, and therefore  can be computed using an O(n) algorithm, such as LU
decomposition [26].

3 Extension to Rigid Bodies
While Fixman's theorem represents a clever insight into how to directly exploit the serial nature
of a chain consisting of point masses, the mathematics required is nothing more than multi-
variable calculus. This is because the positions of point masses are quantities that belong to
IR3, and taking gradients in this space is a common mathematical operation. In contrast, it is
not at all clear without invoking higher mathematics how to do the same for rigid bodies. In
other words, whereas it makes sense to compute gradients of the form ∂/∂xi where xi ∈ IR3,
and the unconstrained Jacobian [∂x/∂q] in Eq. (2) is square, when considering rigid bodies,
would it mean anything to compute ∂/∂Ri where Ri ∈ SO(3)? Also, the dimensions of the

2For spatial chains with rigid-bodies, f + r = 6n.
3In the rigid-body case, each generalized coordinate will be written as a function of homogeneous transformations, such that si = f′
(Ti−1,Ti) and hj = g′(Tj−1,Tj).
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associated Jacobians would certainly not be square given that rotation matrices have nine
elements and only three free parameters. Hence, in this section we address how to compute
derivatives in an appropriate way for functions of rotations and rigid-body motions in order to
extend Fixman's approach.

3.1 Rotations and Skew-Symmetric Matrices
To begin, recall that if R is a rotation matrix, then RTR = II, and

and so

Due to the skew-symmetry of this matrix, we can write ω = (RT Ṙ)∨, where the operator ‘∨’ is
defined by (S)∨ = s where s = [s1, s2, s3]T and

Any 3 × 3 skew-symmetric matrix, S, can be written as  where

These can be written in a vector form as (Ei)∨ = ei, such that

Then it follows that  since the ∨ operation is linear. We will use this fact later.

If the vector ω is the angular velocity as seen in a body-fixed frame of reference, the kinetic
energy of a rigid-body is then

(9)

where I is the constant moment of inertia matrix as seen in the specific body-fixed frame with
origin at the center of mass, and x is the position of the center of mass of the rigid body as seen
in a space-fixed frame of reference. The following subsections develop the mathematical
framework needed to handle the rotational contribution to kinetic energy in our extension of
Fixman's theorem.
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3.2 Jacobians Associated with Parameterized Rotations
When a time-varying rotation matrix is parameterized as4

then by the chain rule from calculus, one has

Multiplying on the left by RT and extracting the dual vector from both sides, one finds that
[27]:

(10)

where

(11)

which is called the ‘body’ Jacobian. When using the ZXZ Euler angle parameterization (α, β,
γ), the Jacobian is written explicitly as [27]:

(12)

3.3 Differential Operators for SO(3)
Let A ∈ SO(3) be an arbitrary rotation, and f(A) be a function that assigns a real or complex
number to each value of A. In analogy with the definition of the partial derivative (or directional
derivative) of a complex-valued function of IRN-valued argument, we can define differential
operators which act on functions of rotation-valued argument:

(13)

where An(θ) denotes a counterclockwise rotation by an angle θ around an axis defined by the
unit vector n. In the above definition, the dummy variable ξ is introduced to emphasize that
the derivative is not with respect to n, but rather the derivative along a coordinate defined by
the direction n.5 Note that for a small value of θ,

4We use the different symbols R(t) and A(q), because these functions have different arguments even though R(t) = A(q(t)).
5In the Lie theory literature, the derivative ∂f/∂ξn would be denoted Nf, which may be confusing for an engineering audience.
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.

We now find the explicit forms of the operators  in any 3-parameter description of rotation
A = A(q1,q2,q3). Expanding (13) in a Taylor series in ∊ and using the classical chain rule, one
writes

where  are the parameters such that . The ‘r’ denotes the
fact that each qi is perturbed by multiplication of A(q) on the right by An(∊). At this point, the

coefficients  is not known, but can be determined by observing two different-looking,
though equivalent, ways of writing the product A · An(∊) for infinitesimally small ∊:

The first equality results from direct multiplication of A and An(∊) = II + θN, and the second
equality results from expanding A(qr) in a Taylor series about ∊ = 0. From the above equation,
we have that

or, using the linearity of the ∨ operator,

which is rewritten using the definition of the Jacobian (11) as . This allows us to
solve for

For example, if A is parameterized with ZXZ Euler angles, J is the Jacobian calculated in (12),
and its inverse is

Making the shorthand notation  we then write for the ZXZ Euler angles
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The exact form of the differential operators will depend on the specific parameterization used.
Each different parameterization will result in different concrete forms of these abstract
operators.

3.4 Infinitesimal Motions and Associated Jacobians
For “small” motions the matrix exponential description of a rigid-body motion is approximated
well when truncated at the first two terms:

(14)

Here Ω = −ΩT and ω = Ω∨ describe the rotational part of the displacement. Since the second
term of the right side in Eq. (14) consists mostly of zeros, it is common to extract the information
necessary to describe the motion as

This six-dimensional vector is called an infinitesimal screw motion or infinitesimal twist. The
fact that we have used the ∨ operation to extract a six-dimensional vector from 4×4 “screw
matrices” as well as using it to extract a three-dimensional vector from 3×3 skew-symmetric
matrices should not be a source of concern, since its use will always be clear from the context.

Given a homogeneous transform

parameterized with q = [q1, …, q6]T ∈ IR6, one can express the homogeneous transform
corresponding to a slightly changed set of parameters as the truncated Taylor series

This result can be shifted to the identity transformation by multiplying on the left by T−1 to
define an equivalent relative infinitesimal motion:

(15)
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3.5 Differential Operators for SE(3)
The differential operators ∂/∂ξ̃i for i = 1, …, 6 acting on functions on SE(3) are calculated
similarly with the case of SO(3). For small translational and rotational displacements from the
identity along (or about) the ith coordinate axis, the homogeneous transforms representing
infinitesimal motions are given by

where

The tilde is used to distinguish the se(3) basis elements from those for so(3). It is often
convenient to write the se(3) basis elements in a 6 × 1 vector form as (Ẽi)∨ = e˜i, such that all
elements are zeros except for the ith element with 1.

Given that elements of SE(3) (viewed as homogeneous transforms) are parameterized as T =
T(q), the differential operators take the form

(16)

Since T and Ti(∊) are 4 × 4 matrices, we henceforth drop the “·” notation since it is understood
as matrix multiplication.

In analogy with the SO(3) case, we define qr,i such that T(q)Ti(∊) = T(qr,i), and we observe for

the case of  that

In analogy with the SO(3) case, these are two equivalent ways of writing TTi(∊). Subtracting
T and multiplying T−1 on the left of this expression, we then have that
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or

which is written as  where  is the SE(3) Jacobian defined in Section 3.4.
This allows us to solve for

which is used to calculate

as

(17)

3.6 Extension to Chains of Rigid Bodies
Eq. (9) can be rewritten as

The mass matrix is G(q) = T ℐ , and thus, the inverse of the mass matrix for a single rigid
body is

where ℐ = I ⊕ (mII3) is the 6 × 6 inertia matrix.

The inverse of the mass matrix can be rewritten using the derivatives defined in the previous
section. Particularly, if we define the SE(3) gradient of a function to be
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then we can apply this gradient to the parameters q = [q1, …, q6]T used to parameterize a

motion. Using (17) and observing that , we find that

(18)

This means that the inverse of the mass matrix for a single rigid-body can be written in the
Fixman-like form:

(19)

For a collection of n rigid bodies, the configuration space is (SE(3))n = SE(3) × SE(3) × ⋯ ×
SE(3). Each rigid body has six degrees of freedom described by twists, the ith of which is ξ̃i ∈
IR6, and can be described alternatively by the six parameters qi ∈ IR6. Composite vectors

 and q = [sT, hT]T ∈ IR6n can be formed. Then, the inverse of the
Jacobian is computed as

 is the inverse of the unconstrained serial chain when the generalized coordinates are
partitioned into the soft and hard variables. Hence, it differs from the direct sum of the inverse
of Jacobian matrices, , where  denotes the inverse Jacobian of the ith
rigid-body. The inverse of the unconstrained mass matrix for this collection of rigid bodies is
then of the form

(20)

Everything then follows using the extension of Fixman's theorem as in the point-mass case,
with (20) replacing (4). The same partitioning into soft and hard variables and the same O(n)
performance results.

4 Examples
Examples of an n-link planar revolute manipulator and a polymer chain composed of point
masses at each joint are presented in our earlier papers [22,23]. In this section, we describe
how to use our extension of Fixman's algorithm for chains of rigid-bodes and demonstrate with
a PUMA 560 robot arm and a polypeptide chain.

The homogeneous transformations, Tk,  and Qk, are defined as shown in Fig. 1. Using the
facts that  and  due to the serial nature, we have that
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(21)

Since  is written as a function of  and , in order to differentiate , we use the
differential operators for SE(3) described in Section 3.5. Then, we have the Lie derivatives of
Eq. (21) given by6

(22)

In our algorithm, we compute the inverted Jacobian of an unconstrained system to get the
inverse of an unconstrained mass matrix, i.e., . However, most
manipulators have singularities where the Jacobian matrix is not invertible. In contrast, the
mass matrix for most manipulators is invertible at all values of the generalized coordinates,
and therefore, there always exists G−1. The problems related with singularities can be mostly
eliminated by choosing the parameterization carefully or using more than one method for
assigning frames, because the Jacobians computed for different parameterizations may have
singularities in different locations. We begin by describing rigid-body motions using Denavit-
Hartenberg(D-H) framework in the following section.

4.1 Denavit-Hartenberg Parameterizations
A screw transformation is a combined rotation and translation along a common axis. In
particular,

where n ∈ IR3 is any unit vector. D-H parameterization is a method for assigning frames of
reference to a robot arm constructed of rotational joints connected with rigid links. The relative
transformation from the D-H frame i − 1 to the D-H frame i appear as two screw motions, such
that

(23)

where c(·) = cos(·) and s(·) = sin(·) are used for a short-hand writing. Here ei's are as defined
in Section 3.1. The link parameters are defined as follows [28]:

6For T ∈ SE(3),

Lee et al. Page 13

Robotica. Author manuscript; available in PMC 2010 February 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



• bi, the distance from Ẑi−1 to Ẑi measured along X̂i−1,

• βi, the counter clockwise measured angle between Ẑi−1 and Ẑi measured about X̂i−1,

• ci, the distance from X̂i−1 to X̂i measured along Ẑi, and

• γi, the counter clockwise measured angle between X̂i−1 and X̂i measured about Ẑi.

The above four parameters describe constrained motions in SE(3). In other words, we need six
parameters to describe a full rigid-body motion in SE(3), but we only have four D-H parameters.
Therefore, we impose two dummy variables (which will be set to be zeros as constraints) to
the D-H parameters as follows. Eq. (23) can be obtained by setting αi = ai = 0 from either

(24)

(25)

or

(26)

If A, B and C are the Jacobian matrices of (24), (25) and (26) respectively, then the
determinant of each Jacobian is calculated as

A becomes singular when sin βi = 0, B becomes singular when sin γi = 0, and C becomes
singular when cos αi = 0. In the D-H parameterization, we set αi = 0, and therefore, cos αi ≠ 0
for all i. Hence, we choose Eq. (26) to describe homogeneous transformations of rigid bodies
in SE(3).

We first need to find analytical expressions for generalized coordinates in terms of
homogeneous transformations. If the relative transformation from the frame k − 1 to the frame
k is represented by three screw motions as (26), it can be written as

(27)

Making the shorthand notation,  and denoting the (k, l)th element of  by Tkl, when

 and γk ∈ [−π, π], the generalized coordinates can be extracted
as7:

7In Matlab™, two functions compute the inverse of the tangent, ‘atan’ and ‘atan2’. atan(z) returns the inverse tangent of z. For real z,
atan(x) is in the range [−π/2, π/2]. atan2(y, x) gives the value of θ, such that sinθ = y and cosθ = x. The value of θ lies in the interval
[−π, π]. In Mathematica™, the same functions are defined as ArcTan[z] and ArcTan[x, y] respectively.
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If T ̃kl denotes the (k, l)th element of , the Lie derivatives of the above equations are computed
as:

(28)

These are elements of . Soft and hard variables are defined differently depending on each
system. In the following sections, we present specific examples of the PUMA 560 and a
polypeptide chain.

4.2 PUMA 560 Robot Arm
D-H parameters for the PUMA 560 arm are shown in Table 1. The vector of generalized

coordinates is defined as q = [sT ; hT]T where s = [γ1, ⋯, γ6]T and  with
hi = [αi, βi, ai, bi, ci]T for i = 1, ⋯, 6. Here γi denotes the ith joint angle of the manipulator. All
necessary constants including the link mass values, the moment of inertia about the center of
mass (c.o.m) and the location of c.o.m of each link (Qk's) were adapted from [29]. The soft
variables are arbitrarily chosen as γk = π/3 for k = 1, ⋯, 6 for the purpose of testing our algorithm.
Based on these parameters, the homogeneous transformations from the global reference frame
to the center of mass of each link are computed as
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Given the homogeneous transformations, nonzero elements of the following matrices can be
computed using equations in (28):

where

As shown above,  and  are sparse and band-limited. Once all nonzero entries are
computed, H11, H12 and H22 can be obtained using Eq. (8). We recall that the matrix
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multiplications for sparse matrices can be done in O(n) for matrices with O(n) nonzero elements
by extracting all zero entries. Finally, we can solve Eq. (7) in O(n) by following the steps
described in Section 2.2. Numerical results of M and M−1 of the PUMA 560 arm are provided
in the Appendix for verification of the result.

4.3 A Polypeptide Chain
The D-H parameters for a polypeptide chain are shown in Table 2. Frames are attached to each
atom in the backbone structure. The main chain atoms are represented as rigid peptide units,
linked through the Cα atoms. The parameters, such as bond-length, bi's, and bond-angle values,
γi's, for a polypeptide chain are adapted from [30]. The offset values, ci = 0, for all i, and torsion
angles along each bond link, denoted by βi for all i = 1, ⋯, n, are viewed as only soft variables.
In fact, the torsion angles along C′ − N bonds are fixed to about 180° in polypeptide chains.
As shown in Fig. 2, each Cα atom is connected to four atoms, C′, N, H, and R (=CH3 for a
polyalanine chain). We assume that this structure is a Tetrahedron with Cα at the center, and
CH3 is considered as a point mass at the location of C. The c.o.m of l point masses at the frame
k can be computed as

where M ̃ is the sum of all point masses and ri is the position of the ith particle seen from the
origin of the frame k. Qk is given by pure translation, cpk. When cpk for all k = 1, ⋯, n are
calculated, the moment of inertia at the c.o.m can be computed respectively. The atomic
masses8 used for numerical examples are C=12.0107[amu], N=14.00674[amu], H=1.00794
[amu] and O=15.9994[amu].

We first consider that all torsion angles, βi for i = 1, ⋯, n, are soft variables. Then, the vector
of generalized coordinates is defined to be q = [sT ; hT]T where sT = [β1, ⋯, βn]T and hT =
[α1, γ1, a1, b1, c1, ⋯, αn, γn, an, bn, cn]T. For n = 7 (containing two rigid peptide planes), we
arbitrarily choose β1 = 0 and βi = π/3 for i = 2, ⋯, 7. Then,  are given by

8[amu]=Atomic mass unit, defined to be 1/12 of the mass of a C-12 atom.
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Given the homogeneous transformation matrices, we can compute  and  using the
analytical expressions of generalized coordinates derived in Section 4.1. H11, H12 and H22 can
be obtained similarly as described for the PUMA 560 arm.

As mentioned earlier, the torsion angles along the C′-N bonds are fixed to be about 180°.
Therefore, some of the βi's should not be treated as soft variables. We now set β3 = β6 = 180°.
The vectors of soft and hard variables can be redefined as sT =[β1, β2, β4, β5, β7] and hT =[α1,
⋯, α3, β3, γ3, ⋯, α6, β6, γ6, ⋯, b7, c7 ]. H11, H12 and H22 can be computed accordingly for
given q = [sT , hT]T. Numerical results are shown in Section 4.4 and the Appendix.

4.4 Computational Time
The computational time is highly dependent on the computer in which the program runs, such
as the memory size, the type of processor, the operating system, etc. Therefore, one should be
careful when interpreting the result of computational times required to run the algorithm. The
program to test the running times in different sizes of serial chains is written in Matlab version
6.5 and runs in a 2.8GHz Pentium4 computer with 1Gb RAM. The operating system is Window
XP Home edition.

A polypeptide chain example in Section 4.3 is revisited, while all torsion angles are considered
as soft variables. Fig. 3 shows the computational time to invert the mass matrix for n = 1, ⋯,
400. The dashed line indicates the time to solve x = M−1b by inverting the n × n mass matrix,
M, using the ‘inv(M)’ function in Matlab, and the solid line shows one to compute the equation,

.  (in the computational step V in Section 2.2) is calculated using
the LU decomposition. The time is counted using the ‘tic-toc’ function in Matlab. Since the
program can be optimized in many different ways, the running time cannot be viewed as an
absolute measure of the computational speed. However, it can be used as a measure of speed
or efficiency of an algorithm with provided specifications of the computer and software in
which the program runs.

The graph shows that the computational time linearly increases. Instead of counting real time,
we can count the number of operations to verify the O(n) computational complexity. We
analytically proved that our algorithm requires O(n) operations, but did not include an operation
count in this paper. The number of mathematical operations will vary according to different
systems and depends on how to optimize the program. In [31], the actual time required to
compute the forward dynamics for an open chain using the recursive Hamiltonian method is
provided. For n = 400, the running time is about 4.7 [sec]. Our algorithm to solve x = M−1b
for n = 400 requires about 1.9 [sec] as shown in the graph. We note that these numbers are not
directly comparable because we do not compute the whole forward dynamic equations as done
in [31]. Also, the specification of the computer and software (C++) used to run the algorithm
in [31] differ from ours.

5 Conclusions
More than 30 years ago, a method for O(n) computation of the determinant of the mass matrix
for a chain of point masses constrained with rigid bonds was developed by Prof. Marshall
Fixman. Whereas this theorem apparently has remained unknown to the multibody and robotics
literature, we have applied it to develop O(n) forward dynamics algorithms, especially to
compute the inverse of the mass matrix, in a series of papers [22], [23] and [24]. The specific
contribution of this paper is the extension of Fixman's theorem to the case of serial chains of
rigid bodies. We demonstrate it on two examples: the 6 DOF PUMA 560 manipulator and
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polypeptide chain on several lengths. The associated mathematics required for this extension
have also been developed and presented.

Nomenclature

• M = G11, the constrained mass matrix

• G, the unconstrained mass matrix

• H = G−1, the inverted mass matrix of the unconstrained system

• q = [q1, ⋯ , qN]T, the vector of generalized coordinates

• Soft variables: variables defining allowable motion of chains with kinematic
constraints

• Hard variables: constrained variables of the chain

• s = [s1, ⋯ , sf]T , the vector of soft variables

• h = [h1, ⋯ , hr]T, the vector of hard variables

• mi, the ith point mass or the mass of the ith rigid body

• Ii, the moment of inertia of the ith rigid body in a frame attached at the center of
mass

• Ti = (Ri,pi), the rigid-body transformation from the global reference frame to the
Denavit-Hartenberg (D-H) frame i. Ti ∈ SE(N), Ri ∈ SO(N) and p ∈ IRN for N =
2 or N = 3.

• , the transformation from the global reference frame to the ith center
of mass.

• Qi, the homogeneous transformation from Ti to .

• , the relative transformation from the D-H frame i − 1 to the D-
H frame i.

•
 for any square matrices A and B.

• screw(ei, θ, x), a transformation made by the rotation θ about the axis i and the
translational displacement, x, along the same axis.

• ℐ = I ⊕ mII3 ∈ IR6×6, the moment of inertia seen at the center of mass.

• J ∈ IR3×3, the Jacobian associated with parameterized rotations.

• 1D4A5; ∈ IR6×6 , the Jacobian associated with parameterized transformations.

• IIk, k × k identity matrix.

• 0k, k × k zero matrix

• 0l×k, l × k zero matrix
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Appendix
The mass matrix of the PUMA 560 arm in Section 4.2 is given by

The inverse of the constrained mass matrix using the extended Fixman's algorithm in Eq. (6)
is computed as

Matrix multiplication of the above two matrices yields that . We note that
Eq. (7) can be computed in O(n), but not the matrix M−1 (while each column of M−1 can be
obtained in O(n)). We provide the numerical results of M−1 for a verification purpose.

The constrained mass matrix of 7-link polypeptide chain (when all βi's are viewed as soft
variables) in Section 2 is given by

The inverse of the constrained mass matrix for the 7-link polypeptide chain computed from
 is given by

Matrix multiplication of the above matrices yields .
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Figure 1.
 is the homogeneous transformation from the global reference frame {S} to the center of

mass of the kth rigid body, and Tk is the one from {S} to the frame k. Qk is the relative
transformation from Tk to .
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Figure 2.
A polypeptide chain with alanine side chains.
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Figure 3.
Computational time [sec] vs. the number of links [n]: the time required for direct inversion of
M (dashed line) and the time required when using the extended Fixman's method (solid line),
for n = 1, ⋯, 400.
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Table 1

D-H parameters of PUMA 560 Arm [29]

i βi[°] bi[m] ci[m] γi[°]

1 90 0 0 γ1

2 0 0.4318 0 γ2

3 −90 0.0191 0.1254 γ3

4 90 0 0.4318 γ4

5 −90 0 0 γ5

6 0 0 0 γ6
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Table 2

D-H parameters of a Polypeptide chain [30]

i βi[°] bi[Å] ci[Å] γi[°]

1 β1 0 0 70.5

2 β2 1.525 0 296.2

3 β3 1.329 0 58.3

4 β4 1.458 0 289.5

5 β5 1.525 0 63.8

6 β6 1.329 0 301.7

7 β7 1.458 0 70.5
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