Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-17T22:06:04.869Z Has data issue: false hasContentIssue false

Sensor fusion-based dynamic positioning of ships using Extended Kalman and Particle Filtering

Published online by Cambridge University Press:  01 August 2012

Gerasimos G. Rigatos*
Affiliation:
Department of Engineering, Harper-Adams University College, TF10 8NB, Shropshire, UK Unit of Industrial Automation, Industrial Systems Institute, 26504 Rion Patras, Greece
*
*Corresponding author. E-mail: grigat@ieee.org

Summary

The paper examines the problem of dynamic ship positioning with the use of Kalman Filter- and Particle Filter-based sensor fusion algorithms. The proposed approach enables to estimate accurately the ship's state vector by fusing the vessel's position and heading measurements coming from on-board sensors together with distance measurements coming from sensors located at the coast (e.g. radar). The estimated state vector is used in turn, in a control loop, to regulate the horizontal position and heading of the vessel. The performance of dynamic positioning of the ship based on Kalman and Particle Filtering is evaluated through simulation experiments.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fossen, T. I. and Perez, T., “Kalman Filtering heading control of ships and offshore rigs,” IEEE Control Syst. Mag. 29 (6), 3246 (Dec. 2009).Google Scholar
2.Harris, C. J. and Gan, Q., “State estimation and multi-sensor data fusion using data-based neurofuzzy local linearization process models,” Info. Fusion (Elsevier) 2, 1729 (2001).CrossRefGoogle Scholar
3.Rigatos, G. G. and Tzafestas, S. G., “Adaptive fuzzy control for the ship steering problem,” J. Mechatronics (Elsevier) 16 (6), 479489 (2006).CrossRefGoogle Scholar
4.Cunha, R., Silvestre, C. and Hespanha, J., “Output-feedback control for stabilization on SE(3),” Syst. Control Lett. 57 (12), 10131022 (2008).CrossRefGoogle Scholar
5.Wondergen, M., Lefeber, E., Petersen, K. Y. and Nijmeijer, H., “Output feedback tracking of ships,” IEEE Trans. Control Syst. Technol. 19 (2), 442448 (2011).CrossRefGoogle Scholar
6.Vasconcelos, J. F., Cunha, R., Silvestre, C. and Oliveira, P., “Landmark Based Nonlinear Observer for Rigid Body Attitude and Position Estimation,” Proceedings of the 46th IEEE Conference Decision and Control, Riverside, New Orleans (Dec. 2007).Google Scholar
7.Mahony, R., Hamel, T. and Pflimlin, J. M., “Nonlinear complementary filters on the special orthogonal group,” IEEE Trans. Autom. Control 53 (5), 12031218 (2008).CrossRefGoogle Scholar
8.Kobayashi, K., Cheok, K. C., Watanabe, K. and Munekata, F., “Accurate differential global positioning system via fuzzy logic Kalman filtering,” IEEE Trans. Ind. Electron. 45 (3), 510518 (1998).CrossRefGoogle Scholar
9.Ge, Q.-B. and Wen, G.-L., “Relative Ship Positioning Based on Information Fusion in the Marine Intelligent Transportation System (MITS),” Proceedings of the 7th International Conference on Machine Learning and Cybernetics, Kunming, China (July 2008).Google Scholar
10.Tannuri, E. A. and Morishita, H. M., “Experimental and numerical evaluation of a typical dynamic positioning system,” Appl. Ocean Res. (Elsevier) 28, 133146 (2006).CrossRefGoogle Scholar
11.Ruiz, A. R. J. and Granja, F. S., “A short-range ship navigation system based on Ladar imaging and target tracking for improved safety and efficiency,” IEEE Trans. Intell. Transp. Syst. 10 (1), 186197 (2009).CrossRefGoogle Scholar
12.Rigatos, G. G., “Extended Kalman and particle filtering for sensor fusion in motion control of mobile robots,” Math. Comput. Simul. (Elsevier) 81 (3), 590607 (2010).CrossRefGoogle Scholar
13.Rigatos, G. G., “Particle Filtering for state estimation in nonlinear industrial systems,” IEEE Trans. Instrum. Meas. 58 (11), 38853900 (2009).CrossRefGoogle Scholar
14.Rigatos, G. G. and Tzafestas, S. G., “Extended Kalman filtering for fuzzy modeling and multi-sensor fusion,” Math. Comput. Modeling Dyn. Syst. (Taylor and Francis) 13 (3), 251266 (2007).CrossRefGoogle Scholar
15.Arulampalam, S., Maskell, S. R., Gordon, N. J. and Clapp, T., “A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal Process. 50, 174188 (2002).CrossRefGoogle Scholar
16.Thrun, S., Burgard, W. and Fox, D., Probabilistic Robotics (MIT Press, Cambridge, MA, 2005).Google Scholar
17.Li, P. and Kadirkamanathan, V., “Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems,” IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 31, 337343 (2001).Google Scholar
18.Zhang, Q., Campillo, F., Cérou, F. and Legland, F., “Nonlinear Fault Detection and Isolation Based on Bootstrap Particle Filters,” Proceedings of the 44th IEEE Conference on Decision and Control, and European Control Conference, Seville, Spain (Dec. 2005).Google Scholar
19.Sandler, M., Wahl, A., Zimmermann, R., Faul, M., Kabatek, U. and Gilles, E. D., “Autonomous guidance of ships on waterways,” Robot. Auton. Syst. (Elsevier) 18, 327335 (1996).CrossRefGoogle Scholar
20.Nilsen, U. D. and Jensen, J. J., “A novel approach for navigational guidance of ships using onboard monitoring systems,” Ocean Eng. (Elsevier) 38, 444455 (2011).CrossRefGoogle Scholar
21.Sorensen, A. J., “A survey of dynamic ship positioning control systems,” Annu. Rev. Control (Elsevier) 35, 123136 (2011).CrossRefGoogle Scholar
22.Ghommam, J. and Mnif, F., “Coordinated path-following control for a group of underactuated surface vessels,” IEEE Trans. Ind. Electron. 56 (5), 39513963 (2009).CrossRefGoogle Scholar
23.Godhavn, J. M., Fossen, T. I. and Berge, S. P., “Nonlinear and adaptive backstepping designs for tracking control of ships,” J. Adapt. Control Signal Process. (Special Issue on Marine Systems Control (J. Wiley) 12 (8), 649670 (1998).3.0.CO;2-P>CrossRefGoogle Scholar
24.Fang, Y., Zergeroglu, E., de Queiroz, M. S. and Dawson, D. M., “Global output feedback control of dynamically positioned surface vessels: An adaptive control approach,” Mechatronics (Elsevier) 14, 341356 (2004).CrossRefGoogle Scholar
25.Katebi, M. R., Yamamoto, I., Matsuura, M., Grimble, M. J., Hiroyama, H. and Okamoto, N., “Robust dynamic ship positioning control system design and application,” Int. J. Robust Nonlinear Control (J. Wiley) 11, 12571284 (2001).CrossRefGoogle Scholar
26.Chen, L., Mercorelli, P. and Liu, S., “A Kalman Estimator for Detecting Repetitive Disturbances,” Proceedings of American Control Conference (ACC 2005), Portland, Oregon (2005).Google Scholar
27.Lee, S. C. and Ahn, H. S., “Sensorless Torque Estimation Using Adaptive Kalman Filter and Disturbance Estimator,” Proceedings of the 2010 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, QingDao, China (July 2010).Google Scholar
28.Zarei, J., Poshtan, J. and Poshtan, M., “Robust Fault Detection of Nonlinear Systems with Unknown Disturbances,” Proceedings of the 2010 IEEE International Conference on Control Applications (Part of 2010 IEEE Multi-Conference on Systems and Control), Yokohama, Japan (Sep. 2010).Google Scholar
29.Chen, W. H., Ballance, D. J., Gawthrop, P. J. and Reilly, J. O., “A nonlinear disturbance observer for robotic manipulators,” IEEE Trans. Ind. Electron. 47 (4), 932938 (2000).CrossRefGoogle Scholar
30.Gupta, A. and Malley, M. K. O., “Disturbance-observer-based force estimation for haptic feedback,” ASME J. Dyn. Syst. Meas. Control 133 (1), 14505–509 (2011).CrossRefGoogle Scholar
31.Miklosovic, R., Radke, A. and Gao, Z., “Discrete Implementation and Generalization of the Extended State Observer,” Proceedings of the 2006 Americal Control Conference, Minneapolis, Minnesota (2006).Google Scholar
32.Cortesao, R., “On Kalman active observers,” J. Intell. Robot. Syst. (Springer) 48 (2), 131155 (2006).CrossRefGoogle Scholar
33.Cortesao, R., Park, J. and Khatib, O., “Real-time adaptive control for haptic telemanipulation with Kalman active observers,” IEEE Trans. Robot. 22 (5), 987999 (2005).CrossRefGoogle Scholar
34.Rigatos, G. and Siano, P., “Distributed Nonlinear Filtering and Sensorless Control under Disturbances and Model Uncertainties,” Proceedings of the IMACS Workshop on Scientific Computation (MASCOT 2011), Italian Institute for Calculus Applications, Roma, Italy (Oct. 2011).Google Scholar
35.Fossen, T. I. and Strand, J. P., “Passive nonlinear observer design for ships using Lyapunov methods: Full-scale experiments with a supply vessel,” Automatica (Elsevier) 35, 316 (1999).CrossRefGoogle Scholar
36.Bernsten, P. I. B., Aamo, O. M. and Leira, B. J., “Ensuring mooring line integrity by dynamic positioning: Controller design and implementation tests,” Automatica (Elsevier) 45, 12851290 (2009).Google Scholar
37.Zhang, Q., “Adaptive observer for Multiple-Input-Multiple-Output (MIMO) linear time-varying systems,” IEEE Trans. Autom. Control 47 (3), 525529 (2002).CrossRefGoogle Scholar
38.Rigatos, G. G., Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotics and Industrial Engineering (Springer, New York, 2011).CrossRefGoogle Scholar
39.Dodin, P., Minvielle, O. and Le Cadre, J. P., “Re-Entry Vehicle Tracking Observability and Theoretical Bound,” Proceedings of the 8th IEEE International Conference on Information Fusion (2005).CrossRefGoogle Scholar
40.Zhao, Z., Chen, H., Chen, G., Kwan, C. and Li, X. Rong, “Comparison of Several Ballistic Target Tracking Filters,” Proceedings of the IEEE American Control Conference (ACC 06), Minneapolis, Minnesota (June 2006).Google Scholar
41.Gustafsson, F., “Particle filter theory and practice with positioning applications,” IEEE Aerosp. Electron. Syst. Mag. 25 (7), 5381 (2010).CrossRefGoogle Scholar
42.Yang, N., Tian, W. F., Jin, Z. H. and Zhang, C. B., “Particle filter for sensor fusion in a land vehicle navigation system,” Meas. Sci. Technol. 16, 677681 (2005).CrossRefGoogle Scholar
43.Bolić, M., Djurić, P. M. and Hong, H., “Resampling algorithms and architectures for distributed particle filters,” IEEE Trans. Signal Process. 53, 22422450 (2005).CrossRefGoogle Scholar
44.Míguez, J., “Analysis of parallelizable re-sampling algorithms for particle filtering,” Signal Process. (Elsevier) 87, 31553174 (2007).CrossRefGoogle Scholar
45.Schön, T. B., Törnqvist, D. and Gustafsson, F., “Fast Particle Fitlers for Multi-rate Sensors,” Proceedings of the 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland (Sep. 2007).Google Scholar