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Mind the gap: detection and traversability analysis of terrain
gaps using LIDAR for safe robot navigation
Arnab Sinha and Panagiotis Papadakis™

ALCOR, Vision, Perception and Cognitive Robotics Laboratory, Department of Computer, Control and Management

Engineering, University of Rome, “La Sapienza,” Italy

SUMMARY

Safe navigation of robotic vehicles 1s considered as a
key pre-requisite of successful mission operations within
highly adverse and unconstrained environments. While
there has been extensive research in the perception of
positive obstacles, little progress can be accredited to the
field of negative obstacles. This paper hypostatizes an
elaborative attempt to address the problem of negative
obstacle detection and traversability analysis in the form of
gaps by processing 3-dimensional range data. The domain
of application concerns Urban Search and Rescue scenarios
that reflect environments of increased complexity in terms of
diverse terrain irregularities. To allow real-time performance
and, in turn, timely prevention of unrecoverable robotic
states, the proposed approach is based on the application of
efficient image morphological operations for noise reduction
and border following the detection and grouping of gaps.
Furthermore, we reason about gap traversability, a concept
that 1s novel within the field. Traversability assessments are
based on features extracted through Principal Component
Analysis by exploring the spatial distribution of the interior
of the individual gaps or the orientation distribution of the
corresponding contour. The proposed approach is evaluated
within a realistic scenario of a tunnel car accident site
and a challenging outdoor scenario. Using a contemporary
Search and Rescue robot, we have performed extensive
experiments under various parameter settings that allowed
the robot to always detect the real gaps, and either optimally
cross over those that were traversable or otherwise avoid
them.

KEYWORDS: Mobile robots; Navigation; Motion planning;
Computer vision; Man—-machine systems.

1. Introduction

In parallel to common applications where mobile robots
operate 1n indoor-structured environments, there has been
an evident interest in advancing robot technology to increase
the degrees of freedom 1n their operation so that they can
be deployed within outdoor, off-road, natural as well as
unnatural environments. Typical scenarios concern planetary
exploration, military, forestry, agriculture, and mining,
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together with Urban Search and Rescue (USAR) robotics,
which is the focus of this paper.

Robots are able to operate in challenging environments by
using reconfigurable components that (passively or actively)
adapt to rough terrain. In such applications, several 1ssues
need to be addressed such as: (1) assessment of terrain
traversability, (11) planning optimal paths with respect to
given criteria and (111) automatically adapting the articulating
parts of the robot.

The aim of the Natural Human-Robot Cooperation in
Dynamic Environments (NIFT1) project, where the present
work contributes to, 1s to develop a robotic system that
teams with human operators and firefighters for first-response
missions in USAR. Our first extensive experience with the
consortium’s robotic platform? was at a joint exercise in July
2011"° and recently within an end-user evaluation taking
place in a tunnel at the VVF training site in Montelibretti
in December 2011° (see Fig. 1). The scenario spanned a
broad area into the tunnel filled with debris, pallets, barrels,
crashed vehicles and smoke. The overall setting comprised
various hazards for the mobility of the robot, among which
were several gaps, some of which were traversable and others
were not.

A collective observation was that due to the low point
of view from on-board sensors, constrained lighting and
presence of smoke, it was very difficult for the users to
manually navigate the robot, let alone perceive and avoid
or traverse gaps in an optimal way. This strived the need to
improve the autonomous navigation capabilities of the robot,
but 1n a way that it would be transparent to the user so that it
could be trusted.

In this work we address the problem of negative obstacle
perception and traversability analysis in the form of gaps,
hence dealing with the first highlighted issue, namely,
assessing terrain traversability. This is certainly one of the
most challenging perception problems, since the presence of
a negative obstacle can only be inferred through the absence
of data that can have various interpretations.

We propose a methodology that 1s applicable in real-
time and provides accurate traversability assessments under
various challenging conditions. Our approach for gap
perception and analysis 1s based on 3-dimensional (3D) point
cloud processing, which i1s considered to be more reliable in
general compared to other methods that are based either on
vision or other sensor modalities. From this perspective and
in comparison to previous methods that rely on 3D scene
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Fig. 1. (Colour online) Tunnel car accident at Montelibretti’s firefighter Italian school used for USAR evaluation.

analysis, the main contributions of the present work are
summarized as follows:

* Organization/grouping of regions that correspond to gaps.

e Traversability analysis of gaps allowing for non-binary and
higher level classification.

* Extensive experiments in USAR scenarios.

In detail, we employ 2D 1mage morphological and
contour detection (through border following) algorithms for
perceiving gaps spread around the ground in the vicinity
of the robot, without the need of processing the complete
3D scene, unless gap detection 1s required for more than
one plane. For each detected gap that is captured by the
corresponding contour, we perform a traversability analysis
based on its eigen-decomposition, where we consider the
spaftial distribution of the interior of individual gaps or
the orientation distribution of the corresponding contour
to assess the optimal traversal path accounting for vehicle
mobility constraints.

The remainder of the paper is organized as follows: In
Section 2 we first review the previous works in negative
obstacle detection and in particular for gap perception to
motivate the directions that we followed in the proposed
methodology. In Section 3 we proceed to the detailed
description of the proposed gap perception and traversability
analysis approach, and finally in Section 4 we present the
results of an extensive set of experiments within a tunnel car
accident scenario and an outdoor environment, and elaborate
on the performance of our approach.

2. Previous Works

In addressing the gap detection problem, various directions
have been explored, nonetheless the problem remains
challenging, especially for Search and Rescue environments
that are highly diverse and unconstrained in terms of terrain
irregularities. With respect to the sensor modalities that have
been employed for sensing the environment, we may tabulate
the previous works as shown in Table 1.

Probably the first elaborative attempt to deal with this
problem can be attributed to the work of Matthies et al.,"?
where the presence of negative obstacles is inferred by
performing ray tracing for every pixel within the range image,
and comparing the actual range values along the ray with the
expected range values according to the position of the ground
plane. If the distance between the ranges of consecutive pixels

Table I. Sensors used 1n earlier approaches.

Earlier work Stereo camera Laser Other sensors

Matthies et al !’ Yes No No
Bellutta et al ! Yes No No
Matthies et al.'* Yes No Thermal
Dima et al.” Yes Yes Infrared camera
Kelly er al ® Two Four = Omnidirectional

camera, monochrome
digital camera

Crane et al.* No Yes No
Dubbelmanand et al.® Yes No No
Heckman ef al.’ No Yes No
Larson et al.''-!? No Yes No

was greater than a threshold, then this indicated the presence
of negative slope or ravine.

The approach of Bellutta et al.! for terrain perception was
based on the combination of geometric and visual features
through a rule-base system. Terrain was geometrically
classified into negative or positive obstacles by inspection of
the height profile of elevation data, while the terrain support
was statistically learned through expectation maximization
in colour space.

An alternative approach in terms of perception for
detection of negative obstacles during night was later
proposed in ref. [14], wherein range data were combined
with thermal features of the terrain that highlight cavities as
potential negative obstacles. The method was based on the
observation that negative obstacles retain more heat during
night than planar surfaces.

Dima et al’ used feature and classifier fusion for
obstacle detection and terrain traversability where the basis
features that are computed for various perceptual modalities
correspond to the mean and variance of pixel values along a
set of image patches that span the whole 1image. Combining
features that incorporate domain knowledge,'’ different
classifier fusion strategies are evaluated that show improved
classification scores for road, human, and negative obstacle
detection 1n comparison with single feature-based classifiers.

Kelly et al.® describe the design and operation of a
human-robot team for off-road navigation, wherein terrain
classification 1s based on geometry-based features combined
with multi-spectral image-based features. The robot-support
surface 1s extracted by ray-tracing of laser-beams and training
a neural network to derive the load-bearing surface when
traversing over vegetated areas, while negative obstacles
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Fig. 2. The modules of the proposed methodology. The Gap perception block perceives the gaps with the parameters written below each
sub-block traversability analysis can be performed in two ways namely, with contour information or using the space within the gap.

are found by the absence of laser hits in the direction
perpendicular to the support surface.

Crane et al.* describe the traversability grid data structure
that served as a common interface between components that
either produced or consumed perception data. A collection of
smart sensors complied with a fixed underlying traversability
assessment protocol which assigned traversability scores
to each grid cell. Three LIDAR sensors were employed
together with a camera sensor, with distinct traversability
analysis roles. A LIDAR sensor directed toward the ground
was dedicated for detecting negative obstacles based on
the assumption that the unmanned ground vehicle (UGV)
follows a level path, hence cells lying below the prescribed
plane were assigned traversability values mainly based on
their range distance.

In ref. [6], obstacles were detected using dense 3D terrain
data reconstructed from stereo disparities in the direction
of image columns. First, a disparity validity measure was
employed together with an image pyramid to produce reliable
disparity estimates. In the following, the traversability was
computed for each pixel of the disparity image by estimating
the maximum vertical (positive or negative) slope and using
hysteresis thresholding that was driven by morphological
opening and region filling.

Heckman et al.” performed detection of potential negative
obstacles by initially performing ray-tracing for occlusion
labeling and finally for context-based labeling. Given a 3D
voxel grid where cells were classified into linear, surface
and scatter, ray-tracing was used to propagate the class
of occupied voxels to the corresponding occluded voxels
whereas context-based labeling was used to differentiate
between four cases that could be the cause of data
absence and hence reason about the presence of negative
obstacles.

In the work of Larson et al.,'? terrain traversability was
determined by the presence of positive—negative obstacles,
step edge obstacles, slope steepness and terrain roughness.
Patches of missing range data that exceeded some size were
considered as potential negative obstacles, and a consecutive
filtering process determined whether these could be the
result of shadowing from positive obstacles. Larson and
Trivedi!' in their work explored a two-stage (long and
short-range) negative obstacle detection framework. Initially,
potential negative obstacles were detected at a distance using
the NODR classification approach and then further refined

and filtered using support vector machines (SVM) when
the UGV has sufficiently approached the surrounding area.
Negative Obstacle DetectoR (NODR) comprises a multi-pass
detection process that first looked for steps and next for gaps
whose characteristics could either be directly measured from
the available range data, or inferred by using contextual
cues, such as sudden negative or positive elevation drops.
Eventually, using an SVM model trained on ground truth
data, true and false positives of negative obstacles were
distinguished once the UGV had sufficiently approached.

As can be derived from Table I, there are only three works
that correspond to same sensor allotment (highlighted in
bold). The basis of the corresponding works as described
in refs. [4, 7, 11, 12] corresponds to laser ray tracing.
Unfortunately, for lack of a generative framework and
due to their dependence on the underlying laser device,
a straightforward comparison seems infeasible. In contrast
to earlier works, we propose a gap detection method that
can be used by any laser device. Moreover, all previous
works discussed so far concern applications where robotic
vehicles operate within natural environments. To the authors’
knowledge, there is no previous work on gap perception
regarding USAR scenarios wherein the complexity of the
terrain 1s by far more increased, and no previous work in
gap traversability analysis regardless of the environment of
operation. From this perspective, the present work constitutes
an 1mportant step toward a better comprehension of the
problem and proposes a solution that is robust under diverse
conditions.

3. Proposed Gap Detection and Traversability Analysis
Methodology

The problem that we are addressing 1s decomposed into
two sub-problems, namely, gap detection and traversability
analysis. In Fig. 2, we provide a schematic overview of
individual steps followed in the proposed methodology.

Gap detection: Given a 3D point cloud P = {p;|p; =
(xi,vi,zi),i =1,2,..., Np}, we seek to detect sets of point
clouds G;,j =1,2,..., N, that correspond to the gaps in
the vicinity of the robot, where Np denotes the total number
of points, and N, i1s the total number of different gaps
detected.



Fig. 3. (Colour online) Constrained sensory box in front of a robot.

Gap traversability: We assess the traversability—mobility of
the gaps, that 1s, we reason about whether it 1s safe for a
robot to traverse a detected gap as well as derive the optimal
traversal mode. This information 1s stored for each gap
within a vector t; = {7, Peenters Pstart> Pend)» Where ¢ € {0, 1}
designates whether a gap i1s traversable or not, and in the
former case, P .o provides the center of the gap contour
together with the optimal START and END poses, p., and
P.ng» respectively, that the robot should follow to traverse
over the gap.

An 1mplicit assumption that we make here, in accordance
to ref [ 7] which shares most familiarity to the present work, 1s
that the set of points belonging to a given gap contour satisfy
a plane equation up to a certain error constant in terms of
their distance from that plane. In other words, we restrict the
problem of gap detection from the complete 3D scene to a
ground slice of fixed thickness in front of the robot, which i1s
eventually represented by the projections of 3D points within
the slice onto the 2D ground plane equation.

3.1. Gap detection
The gap detection stage has been split into the following three
parts to assist in the comprehension of overall methodology:

 Binary image formation (Section 3.1.1)
* Image processing (Section 3.1.2)
* Gap point cloud generation for further processing (Section

3.1.3)

The pseudo-code of the overall methodology 1s given in
Algorithm 1, and finally in Section 3.1.4 we describe the
computational complexity of the proposed approach.

3.1.1. Binary image formation. We begin by constraining
the space of gap detection from the complete 0’ to the
space within a virtual sensory box defined as [xpn, R] X
[—R, R] X [—Zmin, Zmax] C N> (as shown in Fig. 3 (left))
according to the specifications and dimensions of robotic
platform used in our experiments” (we elaborate more on this
in Section 4.2). In general, z,;, can be thought of as infinity,
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or the maximum range distance that a particular laser sensor
can support.

Our gap detection approach is applied onto the set of points
that reside close to a 2D plane that could support the robotic
vehicle. We detect these points and project them onto a 2D
binary image I that will be used in next steps (Sections 3.1.2
and 3.1.3).

One could attempt to estimate the robot supporting plane
by fitting a plane into the point cloud within the sensory
box, using, for example, regression, maximum likelihood or
RANSAC. However, it 1s inherently implausible to follow
this approach. Due to the presence of gaps, the supporting
plane would not be easily distinguishable due to lack of
sufficient data (inliers) that could result in an erroneous
plane estimation. Instead, a more suitable approach could
be to consider a fixed planar area in front of the robot. In
detail, we take a slice of terrain mainly for two reasons,
namely, (1) to compensate for a small variance in the real
3D position of coplanar points that could be due to error
or noise, and (11) to allow the perception of gaps not only
within perfectly planar terrain in front of the robot of zero
inclination, but also within slightly inclined but highly planar
terrains in the foreground. The plane that corresponds to
this slice 1s estimated by taking into account the 3D pose
estimation of the robot that is computed by fusing sensory
information from an Inertia Measurement Unit (IMU) and
the registration of 3D point clouds as acquired by the LIDAR
sensor. A particular decision on how to regress the plane
depends on the density of laser sensing, the dimensions of
the sensing box and the nature of the terrain that 1s expected
to be encountered. Without loss of generality, we continue
the description of our approach on the basis of an underlying
plane estimation process.

Using the standard notation ax + by + ¢z + d = O for the
representation of a 3D plane, by employing a threshold Pl
a point p; can be checked whether it resides on the robot’s
supporting plane by using the following equation:

_ax; + by, +czi +d

li
va? + b 4 c?

(1)
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Fig. 4. (Colour online) Consecutive stages of the gap detection process. Left: Binary image of the plane point cloud within the polar
coordinate space, the rectangle shows the robot position and the X, Y axes with respect to robot. Middle: After morphological operations.

Right: Detected gap contours.

If |t;| < Ply, then the ith pointbelongs to the robot supporting
plane, otherwise if t; > Pl,, the point represents a positive
obstacle. It could be argued that it 1s not appropriate to fix a
threshold for positive obstacles or that a single point cannot
represent an obstacle. This issue 1s alleviated as described
in the next section, where by means of image processing we
can filter out noisy points and outliers. Moreover, as shown
in Algorithm 1, once p; 1s classified as a positive obstacle
point, we further mark those pixels of the binary image that
correspond to the points behind p; along the ray that connects
the laser’s origin and p;, as NON gap pixels in order to not
misinterpret as gaps the absence of data that is due to positive
obstacle occlusion.

Finally, given a point p;, the computation of its
corresponding image pixel coordinates (k;, [;) 1s performed
by the following:

tan— (%)
ki = ' (2)
Qint
Fi
i = | logy ( + I)J , (3)
. \74
ri=vxi2+ 32, (4)
rd o thtigh[_l . l+ ( )

¥

In the above equations, parameter 6;,, = 7/ Iiqn denotes
the step between two consecutive 6 values as shown in Fig. 3
(right). Let us assume that the radial values are ry, ro, ..., 1.
If we set r, — r| = rg as the initial interval, the remaining
consecutive intervals are r3s —r, =r;+8,, ra —r3s =ryg +
24, and so on. Since the maximum radial value 18 fixed to
R and also the resolution (number of radial values) 1s fixed
by the parameter Iiqpn, the two parameters r,; and §, are
interdependent. We fix the parameter §, (discussed 1in Section
4.2) and evaluate r,; as shown in Eq. (5).

3.1.2. Image processing. We proceed by applying a noise
filtering operation to the 2D binary image that was computed
in the previous step. Due to the fact that this image 1s formed
by employing a hard threshold Ply,, the image will not be
smooth 1n the sense that there may be some regions with
points belonging to the robot supporting terrain but have been

excluded. Moreover, there could be some regions where some
spurious obstacle points have been detected and resulted in
a noisy image. At this point, we are making a local spatial
coherence assumption, that 1s, in the presence of a “gap” or
an “obstacle,”’ the corresponding feature should be present in
the neighbourhood as well. Following this idea, we smooth
the binary image with binary image morphological filters.
First we apply an erosion filter and then a similar dilation
filter. The filtered 1mage can be termed as [p.

Finally, we detect the gaps in the filtered image Ip(i, j)
by a state-of-the-art contour detection algorithm proposed
by Suzuki et al.,’® which is based on the idea of border
following. This method provides an accurate estimate of
outer contours and holes, and a very efficient implementation
can be found within the OpenCV library.” In Fig. 4 we
demonstrate the consecutive stages of gap contour extraction
In a representative example.

3.1.3. Gap point cloud extraction. At the final step, we
assemble the gap point clouds G ; that are going to be used as
input in the “gap traversability analysis™ stage. In that stage
(detailed 1n Section 3.2), we may require the interior of the
gaps or only the gap contour. In Algorithm 1, this condition is
controlled by the boolean variable K. The conversion from an
image pixel (i, j) to the corresponding 3D point coordinates
(x, v, z) 1s easily obtained by inversion of Egs. (2)—(4).

3.1.4. Computational complexity. The computational com-
plexity of the binary image formation algorithm 1s linear
to the total number of points Np, hence O(Np). Erosion
and dilation operations are performed on a binary image,
hence the computational complexity 1S O(Lywidth X ITheight),
where Iyigm and Ipeigne correspond to the width and height
dimensions of the image respectively. The complexity of the
border following algorithm by Suzuki et al.*® for contour
detection 1s linear to the number as well as the length of
contours. We may therefore implicitly disregard the latter
cost as it 1s dominated by the computational complexity of
binary image-formation which is linear to the total number
of 3D points whose numbers greatly exceed the total number
of points belonging to the contours. The total worst-case
complexity of the proposed algorithm i1s O(Np + [yigin X
Iheignt). Since we eventually fix the resolution of the image,
namely, Iyigm and Ipeigne, the overall complexity of the



Algorithm 1: Gap point cloud extraction

Input:
P = {p,}: Point cloud
n,: number of morphological operations
la, b, c, d}: Robot supporting plane extraction
K : Boolean (TRUE: if interior, FALSE: if contour)
Output:
G = {G;}: Set of point clouds corresponding to each
gap G
begin
Transform point cloud P to robot local coordinate
system: P — — > (
Filter point cloud Q according to sensory box:
Q——>38
I = ones: Initialize the binary image.
for Each point s; within point cloud S do
if s; point is on robot support plane then

Find (6;, r;) corresponding to s;

[(6;, r;) = 0: Mark the pixel as “not a GAP”
end
else if (s; point is from a positive obstacle) then
Find (6;, r;) corresponding to §;
for all pixels behind (occluded) positive
obstacle: r = r; to I,
do

1(6;, r) = 0: Mark the pixel as “not a

GAP”
end

end

end

Ip = Morphological_operation(/, n,)
C={C;;j=1,...,N,} FindContour(/p)

if (K=TRUE) then

for each contour C; € C do

Generate interior point cloud G ; according
to the interior of contour C;

end

end
else if (K=FALSE) then

for each contour C; € C do
Generate contour point cloud G ; according

to the contour C j

end

end
end

proposed approach is linear to the number of points within
the scene.

3.2. Gap traversability
Following the stage of gap detection, we analyse the shape
of gap contours in order to address the following issues:

 Gap ftraversability: Determining whether the robot can
cross over the gap considering its dimensions.
* Gap traversal path: If the gap is traversable, what are the

START and END poses that the robot should reach for
traversing the gap.

Mind the gap

Algorithm 2: Gap traversability analysis

Input: G ;: Point cloud representing the gap

Output: t;: Traversability analysis data for the gap
begin

if Contour then

Con; = convex(G ;): Extract convex point cloud
Ct; = Contour(Con;): Generate uniform
contour point cloud

m; = centroid(Ct;): Required for START and
END pose evaluation

D; = direction(Ct;): Extract direction vectors
Cov; = covariance(D ;)

[e, A] = PCA(Cov;): Eigen-vectors e and
eigen-values A of the gap contour orientation
€,pt <— st eigen-vector

end

else if Interior then

m; = centroid(G ;)

Cov; = covariance(G ; — m;)

e, A] = PCA(G): Eigen-vector e and
eigen-value A of the gap

€opt < 2nd eigen-vector

end

G;- = {g;-q K =8 kegpt}: projected points onto the

optimal principal direction ey

lenj :maxy, [[g;, — &;,ll

if len; > d, then

| ti(1)=0

end

else

tj(l): l,tj(2:4):mj

START = m; + negp

END =m; — negy

if ||START|| > ||EN D|| then

| t;(5:7)=END,t;8:10) = START
end

else

| t;(5:7)=START,t;(8:10)=END
end

end
end

Our approach to address the above issues resides in using
two alternative feature spaces. Afterwards, on either of
these two feature spaces, we apply Principal Component
Analysis (PCA) and elaborate on the traversability of
individual gaps. The two feature spaces are constructed either
from the contour orientation using the Normal Principal
Component Analysis (NPCA) method'”-!® or from the spatial
distribution of the interior of the detected gap point cloud.
In the sequel, we will discuss both of these feature space
extraction methodologies and compare their performance in
Section 4.7. The overall traversability analysis is given in
Algorithm 2.

3.2.1. Contour-based feature extraction. Given an individual
gap point cloud G;, we first extract the convex polygon
Con; of this planar point cloud. Afterwards, we uniformly
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(a) According to NPCA on contour.

Fig. 5. (Colour online) Gap traversability analysis.

sample the convex contour Con ; and obtain Ct;, from which
we extract the directional feature space by the estimation
of the normal vector at each point along the contour Ct;.
The main idea is explained in detail in our previous work,'®
where NPCA was formulated and proposed for the rotation
normalization of 3D objects. Here instead NPCA 1s applied
in the 2D domain for the purpose of feature extraction as
exemplified in Fig. 5(a).

3.2.2. Interior-based feature extraction. Alternatively, we
may perform feature extraction in the original space, taking
into account the non-uniform distribution of acquired 3D
points due to the laser mode of sensing. To alleviate this
limitation of non-uniformity, we down-sample the point
cloud according to a neighbourhood size. First we build
up a Kd-tree!® for each gap point cloud. We terminate the
branching of the tree when we reach at a leaf size below a
distance threshold €. The leaf size 1s defined as the maximum
distance of a point from the centroid of its cluster. With
this algorithm, we would like to make the point cloud G ;
uniform. It 1s true that if the maximum of minimum distance
between any two points within G ; 1s t, then the leaf size of
the tree should be € = 7 to make G; uniform. Since G; 18
generated from the image domain according to contour C;
(see Algorithm 1), this value of t can be evaluated from the
maximum radial value within an individual gap point cloud
as described by the Egs. (2)—(5). Let us denote the maximum
value of the radial index /; (see Eq. (3)) for the jth gap within
the binary image as max(/;) = L. Then the value of t should
be derived according to the following formula:

T = (851 =857 ra (6)

3.2.3. Traversability analysis. After extracting the feature
space (either contour or interior), we employ PCA to derive
the shape characteristics of the detected gap. In order to
assess traversability, we assign e, the optimal eigen-vector
as the first principal direction for the contour-based feature
space and the second principal eigen-vector for the interior-
based feature space. This can be better apprehended from
Fig. 5 and Algorithm 2. Afterwards, we project all the
original gap points G; onto the optimal principal direction
eopt for the evaluation of START and END poses. Moreover,
let us say that the set of projected points are denoted as
G;,- — {g;-!k — gj,kegpt}, where k =0, 1,..., N; for the jth

Robol

(b) According to PCA on interior.

Table II. Parameters.

Robot and

environment-

specific Laser-specific Algorithmic-specific
parameters parameter parameters

Plane threshold: Increment of inter- Number of morpho-

Ply vals between two logical operations:
consecutive radius n,
values: o,
Xmin resolution of r: Iheight
Zmax resolution of 0: Iy;am

gap and N; 1s the number of points in the uniformly
sampled point cloud G ;. We define max; ; || g;. i g;. || as
the maximum distance between any two points 5’; . and gj ]

from the set G; The value that 1s finally assigned to len;
reflects the length of the gap if it were traversed from the
narrowest side. Essentially, this value is used to condition
the traversability of the corresponding gap, considering the
mobility capabilities of the robotic vehicle. In particular, the
gap G ; 1s deemed as untraversable in the following cases:

1. If len; 18 more than a threshold d,, which 1s based upon
the length of the robot footprint.

2. If estimated START or END poses reside very close to
another gap Gy or close to a positive obstacle.

3.3. Parameters

In this section we highlight those parameters of the proposed
approach that are more relevant to the overall performance.
We may roughly classify the set of parameters into three

groups, as described in the following, and summarized in
Table II.

1. Robot and environment-specific parameters:

* Plane threshold (Ply): The value of this parameter
depends upon two factors, namely, the expected terrain
roughness, and the degree of roughness that the
vehicle can tolerate without adapting its articulating
components.

* Xpin: The minimum range along the x-direction from
where we are bounding the sensing box.
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be easily understood that the point p will not affect the
traversability of the robot.

* R: Maximum sensing radius. The sensing box
boundaries along the x and y-axes are also fixed by
this parameter.

2. Laser-specific parameters:

 §,: Increment in intervals of consecutive r values, as

explained in Fig. 3.
3. Algorithmic-specific parameters:
* n,: Number of erosion (and dilation) operations. This

parameter depends on laser specifications and the
Fig. 6. Snapshots from the tunnel car accident scenario at corresponding 8, value.

Montelibretti’s firefighters school in Italy.

* Resolutions of r and 0 are Ipejon and Iy respectively.
These parameters define the number of different » and 6
values within the image plane. In Section 3.1, we have
used the parameter 6, that 1s equal to 7/ I iqm. Again,
given the values of §, and Ieignt, the individual r values
can be calculated using Egs. (3)—(5).

* Zmax. The maximum range along the z-direction that
could be due to a positive obstacle. This parameter
1s fixed by the wvehicle’s height. The proposed
methodology does not concentrate on positive obstacle
detection. Any 3D point above the robot supporting
plane 1s considered as a positive obstacle. If we assume 4. Experiments
that a 3D point p 1s above this threshold z,., and  In this section we evaluate the proposed gap detection and
there 1s no other 3D point q at the nearby (x, y) traversability analysis approach within USAR and outdoor,
coordinate which 1s having less z value, then it can urban scenarios. Our aim1s to evaluate the performance of the

'- |  \ r ~ { palette 1/
palette 4 \__ | f

[
X
a4

} robot

" ! f .I'.
palette 3 |\ X l f”‘-‘é‘.:w]f |

Y

-

palette |

robot

palette 2

Fig. 7. (Colour online) Top row: Schematic top-down views of two experiment scenarios. Red lines correspond to negative obstacles, and
black (straight) lines signify occlusion due to a positive obstacle. Bottom row: Top-down views of acquired 3D point clouds within the
corresponding scenarios.
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b.2 m

)
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(a)

Fig. 8. (Colour online) Scenario 3: (a) Schematic representation of the scene. Blue rectangle and arrow denote the robot position and
orientation, gaps are signified through red lines, while the distance from the robot to the gap is shown in green. (b) Point cloud acquired
from position ¢ shown in coloured coding. Yellow signifies the minimum z-value, while blue signifies the maximum z-value.

proposed methodology under varying parameter settings that
assist in deriving its limitations and encountering its failure
cases which finally provides us with the optimal modes of
operation. The experiments that we have conducted further
demonstrate the performance of our method with respect to
different viewing angles and locations of the vehicle within
the scene.

4.1. Evaluation scenarios

4.1.1. Tunnel scenario. The first two experiments were
performed within a realistic tunnel car accident site (depicted
in Figs. 1 and 6). These experiments were conducted for the
purpose of end user’s evaluation of robotic platform used
within the EU FP7 IP NIFTi project (www.nifti.eu) that
concerns Natural Human Robot Cooperation in Dynamic
Environments.

We have evaluated our approach within two variations of a
scene as depicted in Fig. 7. These two scenarios correspond
to two different situations where the negative obstacle 1s too
close to the robot. The 3D point clouds corresponding to each
scenario are shown at the bottom of Fig. 7.

1. The first scenario corresponds to a constrained situation
wherein the robot 1s unable to move 1n any direction.

2. The second scenario allows a single moving direction
(corresponding to a small and traversable gap in the

foreground). The added complexity of this scenario in
comparison to the first scenario 1s the presence of a positive
obstacle (barrel) that occludes a portion of the scene.

4.1.2. Outdoor scenario. In Fig. 8(a) we provide the
schematic diagram of the outdoor scenario (scenario 3) and
the robot positions (a, b, ..., g, h) with robot-pose direction
(depicted as a blue arrow). In Fig. 8(b), we show the
corresponding point cloud acquired from the robot at position
¢ to give a view of the surrounding area. This scenario 1s used
to evaluate the performance of the proposed methodology

under different viewing angles and robot positions.

4.2. Effect of parameters

The robot and environment-specific parameters may vary
according to robot specifications. For the specific robot
used 1n these experiments, we have fixed the values of

the corresponding parameters (in metres) as Ply, = 0.1,
Xmin = 0.6, Zmax = 2.0, R = 3.0.

4.2.1. Parameter 6,. The value of §, should generally be
ereater than one and according to Larson et al.,'? the optimal
value 1s §, = 2. In Fig. 9, we show two results with respect
to two different §, values, namely, 6, = 1.1 and §, = 2.
The point cloud (shown in blue in Fig. 9(a) and yellow
in Fig. 9(b)) corresponds to the grid of the image plane.

7N
(h) ‘ir —

Fig. 9. (Colour online) Effect of the laser parameter d,: The blue and yellow pixels in (a) and (b), respectively, show the generated point
cloud from the image plane, while orange pixels show the original point cloud. It can be seen that for the laser used in these experiments,
8, = 2.0 is not the preferred setting in contrast to the approach followed within.!?
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(c) k=6 (d) k=7

Fig. 10. (Colour online) Effect of resolution parameter k£ by keeping parameter n,, fixed. Resolution 1s defined as Iyign = Theight = 2k + 1.

[E) fiy = 2.

(a) no = 0. No morpholog- (b) n,
ical operation.

Fig. 11. (Colour online) Effect of morphological parameter n,, by keeping the resolution parameter fixed at k = 6; with no morphological
operation (a) all the gaps are detected but not grouped; with too many morphological operations (c) some gaps are not detected.

(a) Scenario 2.

(b) Scenario 3. (¢) Scenario 3. Gap-detection result.

Fig. 12. (Colour online) Positive obstacle occlusion.
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(a) Case 1.
there 1s no gap.

(c) Case , 8

there 18 no gap.

Gap detected but 1 reality (b) Case 1.

1S detected.

Gap detected but 1n reality (d) Case 2. At the same location no gap

1s detected.

Fig. 13. (Colour online) Failure cases: occasionally gaps may be detected, although they correspond to false positives.

Here we show the result when the optimal §, value for our
particular laser sensor 1s used, namely, 6, = 1.1, where the
interval between two consecutive radial point acquisitions
most reliably resembles the radial interval with respect to
the original point cloud (shown in orange). Therefore, in
the remaining set of experiments we have set §, = 1.1. In

general, 6, can be fixed according to the specifications of the
LIDAR sensor that 1s used.

4.2.2. Resolution parameters. Finally, we are interested to
see the results with respect to the three parameters of the
algorithm, namely, n,, Iheigne and Iyigm. Without loss of
generality, we set Ineight = Iwidth = 2% 4+ 1. Therefore, asmall
variation in k£ will result in large variation in the resolution
of both r and 6 that has a direct effect on the performance of
the proposed methodology, as will be shown.

In examining the effects of the parameters n, and k on
the gap detection result, we choose the first scenario as
shown on the left of Fig. 7. Initially, we fix the parameter
n, = 1 to examine the dependence of the result with respect
to parameter k. It can be derived from Fig. 10 that after
a certain threshold (k = 6) the performance increase is
trivial, if present. We concluded that the benefit in terms of
accuracy in gap perception for values of k higher than k = 6
was not significant enough to compensate for increase in
computational cost (see Section 3.1.4) that has been kept very
low 1n order to allow for real-time performance (< 50 ms,
with k = 6). The overall time performance is discussed in
Section 4.8.

4.2.3. Number of morphological operations n,. In the next
stage of our evaluation, we fix the resolution parameter to the

optimal value (k = 6) and vary the n, parameter within the
interval [0, 2] (since this range 1s sufficient to explain
the effect). Figure 11 shows the effect of morphological
operation with respect to scenario 1.

As canbe observed from Fig. 11(a), with no morphological
operation only two gaps are detected (with light green and
dark green colours), one justin front of the robot and the other
in 1ts surroundings. On the other hand, when the number of
morphological operation 1s increased to two as shown in
Fig. 11(c), some gaps are not detected. Finally, when the
number of morphological operations 1s one, as can be seen
in Fig. 11(b), all the gaps are consistently detected. From
these results, one can easily conclude that morphological
operation helps to segment different gap regions, although
the perceptual information maybe be distorted above a certain
number of operations.

The grouping of gaps is advantageous, since it helps to
study the traversability with respect to each gap and reason
based upon these results, as described in Section 3.2.3.
Therefore, 1t should be estimated according to the robot
mobility capabilities. In our experiments, we finally consider
a single morphological operation, as this option provided the
most stable results.

4.3. Positive obstacle occlusion

As shown 1n Fig. 7 for the second scenario, in the presence
of a positive obstacle in front of the robot, the absence of
points behind this positive obstacle cannot be used as a clue
for the presence of negative obstacles or gaps. We test this
scenario using the optimal parameter setting as described in
Section 4.2. Figure 12(a) shows the result of not detecting the
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(a) Position a: not detected.

Mind the gap

(b [}n;uiTin‘;l b- ot nlrh-u'h'i'i.

(¢) Position ¢ detected.

-

¢) Position e: detected.

o) I.’thll].n]L qg. ot lli'Tl-u'Tl'di_

() I’H:-:;'ftlll d: detected.

(f) Position f: detected

A

|}1_| Position h: not detected.

Fig. 14. (Colour online) Gap detection results within the outdoor scenario: Different gaps are coded in different colours and white point
cloud corresponds to the original point cloud. Fixed parameter set: §, = 1.1, n, = 1, Pl = 0.1. Variable parameter set: Iheight = 20 4+ 1,

Tyiah =2+ 1, R =3 m. Occasionally the gaps are not detected due to the small radius R of the sensing area.

absence of points (occluded by positive obstacle) as a gap.
Moreover, within the third scenario, there i1s one instance
where two human subjects move in front of the robot as
shown 1n the Fig. 12(b). The absence of points beyond
these positive (moving) obstacles should not be labelled
as gaps. As shown in Fig. 12(c), gaps are detected only
when the absence of points is not caused by positive obstacle
occlusion.

4.4. Comparison with earlier approaches

As explained in Section 2 and Table I, there are four
earlier works®*”'"!2 that correspond to the same sensor
allotment, that 1s, gap detection using the LIDAR data.
The methodology that we propose differs from these works
in two perspectives, namely, the gap detection approach

and the consecutive traversability analysis that can support
high-level reasoning during the path planning process.
Our gap detection methodology incorporates the following
two key features: First, the non-uniform sampling of the
robot supporting plane as expressed by Eqs. (2)—(5) assists
in tuning the laser-dependent parameter as described in
Section 4.2.1. Second, we employ image contour analysis
in combination to mathematical morphology that allows
the grouping of individual gaps for traversability analysis.
And last but not least, we perform traversability analysis
of individual gaps that allows for high-level traversability
analysis, a concept that herein 1s explored for the first time.
In this direction, we apply PCA in two different feature spaces
for the extraction of corresponding traversability information
for each individual gap.
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(a) Position a. (b)) Position b.

|C ) Position c. 'ﬁlli Position d .

(e) Position e. () Position f,

(g) Position g. (h) Position h.

Fig. 15. (Colour online) Gap detection results with a radius of 10 m within the outdoor scenario. Different gaps are coded in different
colours and the white point cloud corresponds to the original point cloud. Fixed parameter set: §, = 1.1, n, = 1, Pl = 0.1. Vanable
parameter set: Iheign = 2041, Iy =2°+ 1, R = 10 m. Gaps are detected 1n all cases, since the sensory radius R 1s sufficiently large.

| &)

Fig. 16. (Colour online) Snapshots of the outdoor scenario scene.
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(a) Interior

(¢) Interior

(e} Interior

(¢) Interior

by Contour

d) Contour

h) Contour

Fig. 17. (Colour online) Scenario 1: Gap traversability analysis results using conventional PCA (interior) and NPCA (contour).

Unfortunately, earlier approaches for gap detection cannot
be easily reproduced due to limited descriptions in refs. [4,
11, 12] in terms of learning or adjusting the internal and
external parameters. In contrast, we extensively discuss the
parameters of the proposed algorithm in order to render
the proposed methodology eligible for testing on different
platforms by suitably adjusting the corresponding parameters
as described 1n Section 4.2.

4.5. Failure cases

In Fig. 13, we give an example of false positives detection
using our gap detection methodology. Two cases are shown
(respectively in two rows). For each case, at the same
location two point clouds are generated. Each row shows
the result of the proposed algorithm. For these results, we

obtain that the proposed methodology occasionally assess
the presence of a gap although there is no real gap. We
have observed that this behaviour is often attributed to the
susceptibility of the 3D pose estimation of the robot to errors
that results in inconsistency for the underlying supporting
plane computation. This 1s an expected result according to the
formulation of the proposed gap detection approach, which
relies on a robust 3D pose estimation process. However,
the confidence of the 3D pose estimation can be easily
quantified, which in turn allows for weighing the certainty
in the gap detection result. As far as safe robot navigation is
concerned, a high false positive ratio may result in arelatively
intimidating robot behaviour; however, it is guaranteed that
if a gap really exists, then the algorithm will detect the
corresponding gap so that we obtain a true positive 100%.
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(a) Position a: interior.

Ir I}ll"-i?ii}]l (1: CONuONT.

(¢) Position b: interior.

Iti II-II.‘“iTi'II“ |IJZ CONLUONT.

| € ) !’Hrﬂi*.inll . iIiT* I'iHI‘,

ﬁ.

o) Position d: imterior,

f) Position ¢ contour.

(h) Position d: contour.

Fig. 18. (Colour online) Scenario 3: Gap traversability analysis results using conventional PCA (interior) and NPCA (contour).

4.6. Outdoor scenario evaluation

In Figs. 14 and 15, we show the results of applying
the proposed methodology within the outdoor scenario as
described in Section 4.1.2 and shown in Fig. 16. It can
be seen that the proposed approach i1s robust to changes in
the viewing angle and distances. Occasionally, as has been
already discussed at Section 4.5, false positives may appear.
This 1s almost always attributed to the sparsity of acquired
3D points due to increased distance from the robotic vehicle.
Through a careful look at the acquired point clouds, 1t can be
seen that the regions where there 1s no laser data (which 1s not
due to obstacle occlusion) should be detected as a gap region.
This 1s an expected result according to what the proposed
approach 1s designed to perform. Therefore, from a complete
view of the scene it could be derived that these correspond

to false positives but this cannot be assessed solely from a
single 3D scene acquisition.

4.7. Results of traversability analysis

In Figs. 17-19, we demonstrate the gap traversability analysis
results with respect to different individual gaps as detected
within different point clouds. These figures also show the
comparison between the two alternative methodologies that
we explored for traversability analysis, namely, using either
the contour direction information or the interior points of
the gap in the original 3D space. As can be seen, both
methodologies perform quite similarly and produce good
results even if the gaps are not of elliptical or rectangular
shapes. In these results we prompt to show the effectiveness
of our proposed traversability direction evaluation. We do
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(a) Position e: imterior.

(c) Position f: mterior.

|]|: 1'4 r'-“illI'_+ . contour

-

(d) Position f: contour.

(e) Position g: mterior.

(g) Position h: interior.

(f) Position g: contour.

ﬁ

(h) Position h: contour.

Fig. 19. (Colour online) Scenario 3: Gap traversability analysis results using conventional PCA (interior) and NPCA (contour).

not show whether the gaps are traversable or not since when
given the START and END poses, it 1s straightforward to
assess the traversability of any gap.

The similar performance that we attest in the two
approaches 1s a way in which we can evaluate the stability
of the proposed gap analysis methodology. If the two
approaches gave significantly different results, then this
would be a strong indication of instability of the approach.
As is discussed in previous work,'® NPCA and Continuous
PCA (CPCA) give different results that result in an
overall highly complementary behaviour when both direction
information and spatial information are used for the purpose
of normalizing the rotation of 3D objects. However, in the
application that 1s considered in this paper, namely, 2D gap
contour analysis, the inverse behaviour is observed, hence

one can choose to perform the analysis of the shape of a
contour 1n any of the two feature spaces and obtain a very
similar result.

4.8. Time performance

The experiments reported within this work have been
performed by using a system equipped with a 64 bit, Intel-
[7 CPU and 7.8 GB memory. The overall time cost (gap
detection and traversability analysis) ranges from 7 to 30 ms
for an acquired 3D scene, with an average of 15 ms.

S. Conclusions
We have proposed a novel methodology for effective and
efficient detection of negative obstacles in the form of gaps,
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together with a framework to analyse the gap traversability
by considering not only the terrain but also the mobility
capabilities of a robotic vehicle. Together with the proposed
gap traversability analysis approach that allows for non-
binary traversability assessments for the first time, in the
present work, we have reported on the various difficulties
that are encountered in the perception of negative obstacles
and proposed solutions to address each individual problem
through extensive experiments within USAR environments
and conditions that had not so far been explored.

Through our experiments, we have shown that the problem
of gap detection and traversability analysis can be alleviated
by suitably employing state-of-the-art signal processing
techniques that allow a robotic vehicle to navigate in a
safe as well as optimal mode of operation in very adverse
and cluttered environments such as those encountered in
USAR scenarios. Ultimately, the proposed framework can
be used to enhance the performance of robot path planning
locally, as it can signify the presence of gaps and suggest
the most adequate path plan according to the given robotic
vehicle. In particular, the proposed gap perception and
traversability analysis could be seamlessly combined with
the ability of the robotic vehicle to assess the traversability—
mobility of a given 3D terrain automatically as described by
Papadakis and Pirri'® through physics-based optimization.
Such an integration of functionalities would allow the UGV
to primarily filter out the regions that have been deemed
as untraversable gaps and subsequently evaluate the 3D
traversability of continuous solid areas.
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