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SUMMARY
This paper proposes an alternative environment mapping method for accurate robotic navigation
based on 3D information. Typical techniques for 3D mapping using occupancy grid require
intensive computational workloads in order to both build and store the map. This work introduces
an Occupancy-Elevation Grid (OEG) mapping technique, which is a discrete mapping approach
where each cell represents the occupancy probability, the height of the terrain and its variance. This
representation allows a mobile robot to know with an accurate degree of certainty whether a place
in the environment is occupied by an obstacle and the height of such obstacle. Thus, based on its
hardware characteristics, it can make calculations to decide if it is possible to traverse that specific
place. In general, the map representation introduced can be used in conjunction with any kind of
distance sensor. In this work, we use laser range data and stereo system data with a probabilistic
treatment. The resulting maps allow the execution of tasks as decision making for autonomous
navigation, exploration, localization and path planning, considering the existence and the height of
the obstacles. Experiments carried out with real data demonstrate that the proposed approach yields
useful maps for autonomous navigation.
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1. Introduction
Environment mapping is considered an essential task for autonomous robot navigation.1 With the
determination of obstacles and free pathways, the robot can interact coherently with the environment.
Constructed maps can be used for safety navigation, obstacles avoidance and, can be applied for the
robot dealing with unexpected situations.

Several approaches (or models) have been proposed to the representation of environment maps.
They can be roughly classified in topological and metric maps.2 Topological maps represent the
robot environment using a graph-like structure, where nodes usually correspond to places and edges
correspond to paths between the places. This representation can be used efficiently for path planning
and localization in large-scale environments.3 On the other hand, in the approach based on metric
maps the geometric properties of the environment are stored. This technique can generate accurate
and fine grained descriptions, allowing either grid-based approximations or geometric primitives to
represent the environment.4 Among the metric map techniques, the occupancy grid model proposed by
Elfes5 is one of the most used. The mapped environment is represented as a regular grid composed of
cells that contains, each one, an occupancy probability value. Therefore, all places of the environment
can be classified into occupied by an obstacle, free of obstacle, or not mapped. This probabilistic
approach allows adequate manipulation of the sensory uncertainties.6

The occupancy grid idea is spread in the robotics community and widely used until today, and
the approach can be naturally extended to three-dimensional environment mapping. The use of a

* Corresponding author. E-mail: andersonabner@uern.br

https://doi.org/10.1017/S0263574715000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000235


Occupancy-elevation grid 2593

3D occupancy grid map allows robust autonomous navigation for mobile robots, considering the
elevation of obstacles and other structures inside the environment. Furthermore, Liu et al.7 justified
the use of such approach arguing that height information can be used to solve the data association
problem in robotic mapping, because 3D models have more information than 2D models thus having
less ambiguity.

Despite these advantages, the construction of full three-dimensional occupancy grid models
typically has excessively high computational demands for building and storing. Therefore, they
are not suitable for direct application on mobile robots.4 The use of 2.5-dimensional maps has
been introduced as an interesting alternative. This kind of structure does not represent a mapped
environment in a 3D array. The structure of height is retained in a more compact two-dimensional
array, in which each cell stores the height of a mapped point that represents a small region in the
environment. A 2.5D map, named here as elevation map, considers the existence of an obstacle in
a place with an elevation. That is, it ignores the existence probability of an obstacle, thus assuming
as true the existence of the obstacle. This deterministic behavior is somewhat undesirable, since
it ignores the influences of uncertainties present in the sensory data during the obstacle existence
estimation.

In resume, it is known that three-dimensional occupancy grids have high computational demands
and that elevation maps do not offer an adequate treatment for occupancy information, considering
the fact that robotic mapping is characterized by uncertainty and sensory noises.6 As a solution, in the
current work we propose an alternative approach for environment mapping with three-dimensional
information using a compact structure named OEG. Basically, the proposed representation consists
of a two-dimensional grid where each cell stores a probabilistic estimation of occupancy, the height
of the terrain and its variance. This approach overcomes the high memory demand imposed by 3D
occupancy grid to represent height information, and offers a coherent probabilistic technique to deal
with sensor data uncertainties, in the estimation of occupancy and height. Occupancy-Elevation maps
can be applied for accurate robot navigation with classification of terrain traversability. That is, in the
case of a short obstacle, after considering the height and its variance, that allows the robot to traverse
over it, the robot can take this decision. Other cases as passing under a tree branch or advertisement
boards can also be treated by the proposed methodology indeed.

Unlike the traditional occupation grid methods, the approach presented in this paper gives the
possibility for the robot to identify if an area is occupied or empty, according to the probability
values. Besides, if it is occupied, the robot can decide whether it is possible to overcome the obstacle
by checking the elevation values and variance and by considering its locomotion skills and hardware
characteristics as its own height and wheels diameter. For example, our robot, a Pioneer 3AT, can
overcome obstacles up to 3.5 cm, tested in practice. Thus, occupied area of the map with elevation up
to 3.5 cm can be overcome by our robot during a navigation task. Another possibility not dealt in this
paper is that a ramp up to a certain degree of slope can also be passed by robots. So if from a point to
another of the grid the robot detects an inclination degree say of 30◦, the robot can pass through this
ramp.

In this work, OEGs are constructed from stereo vision data and from laser range find data. We
have used a robust inverse sensor model in the estimation of occupancy values and we have applied
the Kalman filter method to update the elevation value and its variance. We have confirmed the
feasibility and robustness of the proposed mapping method with several experiments performed in
indoor environments, in outdoor spaces, and also in mixed sites, which present typical scenes of
indoor and outdoor places.

This paper is organized as follows: Section 2 discusses some related works. The OEG formalism
is introduced in Section 3. After, Section 4 depicts the range sensor modeling adopted in this work.
Section 5 shows the steps to build a local occupancy-elevation map from range data. Practical
experiments are presented in the Section 6 to validate our method and Section 7 presents a final
analysis of our approach and possible improvements.

2. Related Works
Grid mapping has been largely studied at least during the last three decades. The first works on this
subject are presented by Elfes5 and Moravec,8 where the authors developed mapping frameworks
based on Bayesian statistical foundation. In a later work Moravec9 introduces an approach based
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on Dempster–Shafer evidence theory named Evidence Grid, which accumulates diffuse evidence
about the occupancy of a grid of small volumes. Other approaches for grid representation emerged to
produce better approximations of the environments. For example, Stachniss and Burgard10 introduce
the coverage maps, which represent in each cell of a given discretization a posterior probability about
how much this cell is occupied by an object.

Three-dimensional grid mapping approaches arisen as a natural extension of 2D grid mapping.
They represent an important step towards accurate robotic navigation, considering obstacles heights.
Liu et al.7 state that height information in a 3D grid mapping can be used to solve the data association
problem since 3D models have less ambiguity. In this context, Moravec9 presents an early work
using 3D grid mapping approach for robot perception. Furthermore, other researchers use similar
approaches. For example, Chen and Xu11 developed a real time 3D occupancy grid mapping for an
autonomous land vehicle (ALV). Andert12 presents a 3D occupancy grid mapping and world modeling
for unmanned helicopter navigation. And, Azim and Aycard13 use a 3D occupancy grid representation
to model the dynamic environment surrounding a vehicle and to detect moving objects.

However, as already mentioned, the construction of full three-dimensional models typically has
excessively high computational demands for its direct, online application in a mobile robot.4 In large-
scale outdoor scenarios or when there is the need of fine resolution memory consumption can become
prohibitive.14 To overcome this question, some researches introduce the elevation map (or 2.5D
maps), which is a compact two-dimensional grid representation where each cell of the map stores the
height value of the mapped place. Bares et al.15 and Hebert et al.16 have done the first investigations
with elevation maps in robotics applications employing the proposed approach for planetary rovers
exploration. Recent researches have applied elevation maps for outdoor localization and mapping and
for loop closing. Pfaff et al.4 present a system for mapping outdoor environments with elevation maps.
Their formulation uses Kalman filter to estimate the elevation of places and, after this, locations in the
environment are mapped into four classes, namely: locations sensed from above, vertical structures,
vertical gaps, and traversable cells. Marks et al.17 introduce a different approach based on the gamma
distribution, where each cell contains the posterior distribution over the variance of elevations. This
representation has been applied for navigating in a wide variety of off-road environments, using a
Simultaneous Localization and Mapping algorithm named Gamma-SLAM.

Despite greatly reducing the memory requirement, elevation maps and similar approaches only
record positive sensor data, and provide no mechanism for decreasing the occupancy value of objects
located on the map.18 Thus, any erroneous readings such as false sensor positives are never removed
from the map. This deterministic treatment ignores the influences of the noises present in the sensory
readings in the obstacle existence estimation. Such characteristic is an important drawback of the
most 2.5D maps.

In the work of Triebel et al.,19 for example, the authors present an approach for environment
mapping with three-dimensional information named Multi-Level Surface (MLS) map, which enables
a mobile robot to model vertical structures like bridges, underpasses, buildings or mines. A MLS
map consists of a 2D grid of variable size where each cell stores a set of surface patches, and each
surface patch is represented as the mean and variance of the measured heights of a 3D point detected
by the sensor. This method allows to build a compact map and it can be used as features that support
the alignment of maps. However, as the traditional elevation maps, this work assumes as a certain
existence of an obstacle, considering uncertainties only in the height estimation. Erroneous readings
about the existence of an obstacle, such as false sensor positives never will be correctly treated.
Additionally, in some situations this technique will require more memory for map storage that the
approach presented in this work, since a map cell can store a large amount of surface patches.

In a subsequent work, Rivadeneyra et al.20 propose some improvements to the MLS technique
relative to treatment of sensory uncertainties, suggesting a more robust probabilistic model. However,
just like its predecessor, this work deals with the existence of obstacle in a deterministic way.

Dryanovski et al.18 present an approach for 3D mapping named Multi-Volume Occupancy Grid
(MVOG). The MVOG map explicitly stores information about 3D spaces occupancy. This proposal
allows the authors to correct potentially previous erroneous readings by incrementally fusing in new
positive or negative sensor information and outperforms existing probabilistic 3D mapping methods
in terms of memory usage, due the fact that observations are grouped together into continuous vertical
volumes to save space. Nevertheless, this approach underperforms when compared to our method, in
terms of memory consumption.
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Octree structures can also be used to building 3D maps, where each node in an octree represents
the space contained in a cubic volume, usually called voxel.21 This volume is recursively subdivided
into eight subvolumes until a given minimum voxel size is reached. Hornung et al.14 introduces an
evolution of the work presented by Fairfield et al..21 Their work presents an integrated mapping
system based on octrees named Octomap, which achieves probabilistic, compact 3D maps, however,
this approach, in some situations, underperforms when compared to our method.

Our approach, named OEG, represents three-dimensional environments on a 2D horizontal grid,
where each cell contains the value of the occupancy probability, the height and its variance,
corresponding to the mapped point (region). Thus, we guarantee the use of a compact form for
representing 3D information. Moreover, noisy sensory information is adequately addressed through
probabilistic tools, allowing that positive and negative sensor data can update the map coherently.
OEG maps can be used for robot navigation, considering traversability costs to constructing optimal
paths. Path planning methods, as potential fields,22 can be directly applied over OEG, aiming safety
and accurate navigation.

3. Occupancy-Elevation Grid Framework
We define OEG as a regular two-dimensional grid with three-dimensional information in which each
cell stores the occupancy probability, the height or elevation and its variance for a mapped point in
the scene (a small region). Mathematically, an OEG map M can be described by expression (1).

M = {〈O0:t,n, μ0:t,n, σ
2
0:t,n〉, n = 1, . . . , N}, (1)

where N represents the number of cells in the grid. The grid mapping algorithm decomposes the
high-dimensional mapping problem into smaller one-dimensional problems by modeling the map as
a Markov Random Field, where the state of each individual cell can be calculated independently. This
means that the occupancy probability, the height and its variance for an individual cell do not affect
the estimation of the state for neighboring cells. This is a simplification generally used to make easy
grid representations.3, 5, 12 Each cell mn of the map M can be described as a tuple in Eq. (2),

mn = 〈O0:t , μ0:t , σ
2
0:t〉, (2)

where O0:t is the occupancy probability value of the cell, μ0:t is the height (or elevation) estimation,
and σ 2

0:t is the variance value of such height. These variables are estimated considering the temporal
evolution until the instant t . Figure 1 illustrates the composition of these information in the proposed
map building algorithm. Elevation values are described by a normal distribution characterized by
μ0:t and σ 2

0:t , that is, N (μ0:t , σ
2
0:t ) and occupancy probability O0:t is given by the probability density

function, p(n|s0:t , z0:t ).
This representation stands out for meeting the following characteristics:

Three-dimensional modeling: The proposed approach allows the representation of three-
dimensional information of the mapped area. Structures and obstacles can be depicted in the OEG
map. This characteristic provides useful data for a robust navigation, considering traversability
costs based on terrain elevation.

Compactness: OEG map stores 3D information in a 2D grid. This means a significant decrease of
memory requirement to represent three-dimensional data.

Updatable: It is possible to update the map (occupancy, elevation and variance values) whenever
new sensory readings are provided. This is an important issue when there are dynamic changes in
the environment, where the obstacles can change at any time.

Probabilistic approach: Sensory data suffers the influence of noise, which yield uncertainty.
Probabilistic tools provide a coherent way for modeling and treating this effect.

In summary, OEG is an alternative to full 3D mapping with a compact representation of the three-
dimensional data. Furthermore, both occupancy and elevation values are estimated through stochastic
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Fig. 1 Occupancy-Elevation Grid composition. Each cell stores occupancy O0:t , elevation μ0:t and variance σ 2
0:t

values.

tools, which allow the correct treatment of the uncertainties inherent to sensory readings. With OEG
erroneous readings can be removed from map updating occupancy values from new sensory data.
Thus, OEG overcomes the drawbacks inherent to both full 3D grids and elevation maps.

This approach can be directly used to navigation with path planning and obstacle avoidance.
Moreover, the robot can classify the obstacles as traversable or non-traversable, based on elevation
values and its variance, according to its locomotion skills.

3.1. Occupancy value updating
In order to determine the occupancy probability O0:t of each cell mn of the map M, a Gaussian based
approach is used like proposed by Elfes.5 The occupancy probability value of a cell mn is calculated
by the probability density function, O0:t = p(n|s0:t , z0:t ), given by Eq. (3).

p(n|s0:t , z0:t ) = 1 − 1

1 + eL0:t,n
, (3)

where

L0:t,n = L0:t−1,n + log
p(n|st , zt )

1 − p(n|st , zt )
− log

1 − p(n)

p(n)
. (4)

A log notation is used to avoid numerical instabilities for probabilities near zero or one. Note
that the occupancy of a cell mn, depends on the historic of localizations of the robot, s0:t , and the
historic of sensors readings, z0:t . The probability p(n|st , zt ) specifies the occupancy probability of
mn conditioned to the sensor reading zt and to the robot position st at time t . This function is named
inverse sensor model, and is explained on Section 4.1. p(n) is the prior occupancy value for the cell
mn assigned before any sensory measurement. The common assumption of a prior probability leads
to p(n) = 0.5, thus, we can rewrite Eq. (4) as is shown in Eq. (5).

L0:t,n = L0:t−1,n + Lt,n, (5)
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with

Lt,n = log
p(n|st , zt )

1 − p(n|st , zt )
, (6)

In practice, when occupancy grid map is used for navigation, a threshold on the occupancy
probability value calculated by Eq. (3) is applied. An mn cell is considered occupied when the
threshold is reached and is considered free otherwise. This assumption is also used to change the
elevation of the cell mn.

With a more detailed observation over Eq. (4), it is possible to note that in order to change the
state of a cell (occupied and free) we need to integrate as many observations as have been integrated
to define its current state. That is, if a cell was considered free during the last k times, then it must be
observed occupied at least next k times in order for its state to be changed to occupied according to the
specified threshold.14 This property is not desirable in dynamic environments, because the maps do
not update quickly following changes in the environments. To overcome this situation, Yguel et al.23

proposes an update approach that defines an upper and lower bound on occupancy estimate given by
Eq. (7)

L0:t,n = max(min(L0:t−1,n + Lt,n, Lmax), Lmin), (7)

were Lmax and Lmin represent the upper and lower bound for log value. With this modification the
map can adjust more quickly to changes in the environment.

3.2. Elevation value updating
In order to estimate the elevation and its error for each cell, we apply the Kalman filter formulation,
which considers a new measurement, ht , with its uncertainty represented by σ 2

t at time t . Those
values are calculated by the model presented in the Section 4.2, where the elevation is associated
to the occupancy probability value of a cell mn. In order to integrate a new sensor reading, ht , we
follow the same formulation presented by Pfaff et al..4 Equations (8) and (9), derived from Kalman
formulation, estimate the elevation, μ0:t and its variance σ 2

0:t respectively, for a cell mn, considering
all sensor readings up to the time t .

μ0:t = σ 2
t μ0:t−1 + σ 2

0:t−1ht

σ 2
0:t−1 + σ 2

t

, (8)

σ 2
0:t = σ 2

0:t−1σ
2
t

σ 2
0:t−1 + σ 2

t

. (9)

In our current system, we apply a sensor model in which the variance of the elevation of a
measurement σ 2

t increases with the distance. In this paper, we present experiments with two sensors,
a laser range finder and a stereo camera system. Characteristics of each sensor are analyzed to
calculate the value of σ 2

t .
At this point, it can be remarked that the proposed OEG overcomes the high memory requirement

imposed by 3D occupancy grid to represent three-dimensional information and offers a coherent way
to deal with sensory data uncertainties based on probabilistic tools, allowing estimation of occupancy
and elevation.

4. Sensor Model
In general, the map representation introduced in the previous section can be used in conjunction with
any kind of range sensor. In our experiments, we have used laser range and stereo camera data to
acquire 3D information from the robot environment. To efficiently determine the cells which need
to be updated, a ray-casting operation is performed using a 3D variant of the Bresenham algorithm
along a beam from the sensor origin to an endpoint (the obstacle). Figure 2 shows this process when
there is a new measurement data.
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Fig 2. Illustration of points projection on grid map and map updating.

Sensor beam r is discretized by Bresenham algorithm, and each point (sample) along r will have
a corresponding grid cell (projection) updated with the sensor model for occupancy, elevation and its
variance values. In Fig. 2, there are some examples, three points represented by Pi , Pj and Pk , and
its projection on the cells mi , mj and mk . Thus, occupancy probability, elevation and variance values
of mi , mj and mk will be updated. Occupancy probability p(i|st , zt ), p(j |st , zt ) and p(k|st , zt ) are
calculated by occupancy sensor model, which will be explained in the next section. Elevation hi , hj ,
hk and variance values σi , σj , σk are estimated by elevation sensor model, explained later.

4.1. Occupancy sensor model
A measurement model makes the interpretation of the sensor data and uses it to populate the map.
For the occupancy values, we adopt a modeling that is similar to the one depicted by Andert.12

Occupancy sensor model calculates the occupancy probability values for each cell mn, which has
the projection of a point Pn along r , resulting of Bresenham approximation (Fig. 2). Equation (10)
computes the occupancy probability value for mn, relative to the measurement at time t ,

p(n|st , zt ) = pocc(l) +
(

k

�lp
√

2π
+ 0.5 − pocc(l)

)
e
− 1

2 (
l−lp

�lp
)2

, (10)

with

pocc(l) =
{

pmin, if 0 < l ≤ lp

0.5, if l > lp
. (11)

Parameter k specifies the significance of a single measurement, l represents the distance from the
sensor frame origin to a sample along r , lp is the distance measured by the sensor, �lp is the error
in the measured distance, according to the accuracy of the sensor, and pmin specifies the minimum
probability value considered by the model. This one-dimensional Gaussian model translates noisy
sensory data into occupancy information. The function denoted by Eq. (10) iterates over the distance
l along the ray r and defines occupancy probability values for cells on the 2D grid at the time t .

The graphic shown in Fig. 3 illustrates a typical occupancy sensor model behavior with occupancy
values. Note that measurements at near distance (lp = 10 m) results in more significant occupancy
probability value and far distance measurements (lp = 15 m) in low occupancy probability value.
This occurs due to effects caused by sensory uncertainties.

From the occupancy values calculated by Eq. (10), it is possible to update the map with Eq. (3).
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Fig 3. Sensor model simulation, with lp = 10 m and lp = 15 m. In the red curve we have �zc = 0.2 and the
cyan curve �zc = 0.3.

4.2. Elevation sensor model
In order to calculate the elevation value ht for a cell mn, at the time t , is used the distance l calculated
iteratively along r , to estimate 3D coordinates in world frame of a sample, Pn = (x, y, z)T . The height
is given by the z coordinate, that is, ht = z. However, the elevation is related to the occupancy, that
is, the elevation exists when there is an obstacle. In other words, the occupancy probability must be
higher than a threshold locc, which indicates that probably exists an obstacle. Thus

ht =
{

z, if p(n|st , zt ) > locc

0, otherwise
. (12)

Probability and elevation values are estimated at the same iterations over the distance l along the
ray r , used to calculate occupancy probability values. It is important to mention that the elevation is
computed considering the higher point of the obstacle.

Variance of ht , represented by σt , can be calculated from �lp, which increase according to the
distance, lp, measured. The computation of σt depends on the sensor properties, taking into account
sources of uncertainties which influence its measurements. Figure 4 illustrates the behavior of the
sensor model for the elevation mapping. In this figure, the vertical lines (green, red and blue) represents
the variation of the height measured, ht = 2 m, which is according to distance estimated from laser
range finder data.

With these values, ht and σt , the elevation value and its variance can be updated in the grid map
by Kalman filter formulation, Eqs. (8) and (9).

5. Building a Local Occupancy-Elevation Map
Algorithm 1 builds a local map given: the grid map M, estimated a priori; the sensory readings zt ;
and the robot pose st . This procedure returns the updated OEG map, M. The occupancy probability
and elevation values at time t are estimated iteratively through Bresenham algorithm over a sensor
beam r . For each sample pn (or point) over r is verified its projection on the bidimensional grid (cell
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Fig 4. Simulated elevation uncertainties for the sensor model measurement ht = 2 m, with distances lp = 1 m,
lp = 2 m and lp = 3 m, σt = 0.032 m, σt = 0.13 m and σt = 0.28 m.

mn in line 4), and then are calculated the occupancy value, elevation value and its variance for mn,
according to the sensor model presented in Sections 4.1 and 4.2. After, those estimates are integrated
to the map M through Eqs. (3), (8) and (9). At the end of the algorithm, the grid map M has integrated
the sensory input taken on the time t .

Algorithm 1: BuidLocalMap
Data: M, zt , st .
Result: M.

1 begin
2 Consider the ray r from sensor to the obstacle with length lp;

// Bresenham algorithm extended to 3D

3 for each sample pn over r do
4 Identify the cell mn where is the pn projection;
5 Calculate l; // distance from sensor to pn

6 Calculate p(n|st , zt );
7 Calculate the elevation value ht for pn;

// Updating M

8 Update the occupancy value on M, calculating p(n|s0:t , z0:t );
9 Update the elevation value on M, calculating μ0:t ;

10 Update the variance of the elevation on M, calculating σ0:t ;
11 end
12 end

6. Experiments and Results
One of the most important characteristics of the OEG mapping is that it is updatable (for occupancy,
elevation and variance of elevation). That means, noisy sensory information are adequately addressed
through probabilistic tools, allowing that positive and negative sensor data can update the map
coherently, differently from traditional elevation maps. This is an important issue when there are
dynamic changes in the environment. Figure 5 illustrates an example of this situation. The robot
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Fig 5. Views of a dynamic environment. (a) A person is perceived. (b) No dynamic obstacle is near.

is mapping an indoor environment while people were walking in front of its field of view. Some
sensor readings detect the people (Fig. 5(a)), and the OEG formulation translates them as obstacles.
Figure 6(a) shows elevation values relative to those readings. Later, there are no people in front of the
robot (Fig. 5(b)), and the OEG is updated after new readings, according to the formulation presented
in Section 3 like is shown in Figs. 6(b) and (c). New occupancy information produces an updating in
the elevation data.

In order to validate the proposed mapping, we have performed several experiments using real
sensory data. We use data acquired by our robot based on stereo vision measurements and also other
set of range data available on this subject is also used, for comparison purposes.24 In general, our
approach can be used with any kind of distance sensor. As said, we use data provided by both stereo
vision system and laser range finders.

6.1. Stereo vision data
In the first experiments described, an outdoor environment is mapped using a Pioneer 3AT robot
equipped with a very simple stereo vision system. In this experiment, the robot has to deal with
bushes, poles and with an irregular terrain. Figure 7 shows some images captured by the robot during
its mapping trajectory. Figure 8 shows an overview of the mapped space, highlighting the trajectory
followed by the robot (red line).

Results of the mapping process can be seen in Fig. 9, where the map was constructed with 0.2 m of
cell resolution. The values of each parameter (occupancy, elevation and variance of the elevation) are
identified through color bars. Figures 9(a) and (b) highlight specific places, for example, the yellow
ellipse corresponds to the mapping of the scenario shown in Fig. 7(a), the white ellipse shows the
constructed map of the scene displayed by Fig. 7(b) and red circle emphasizes the grid map of the
scene shown in Fig. 7(c).

Obstacles in the environment are correctly identified and their elevations were computed in a
coherent way considering the real scenario. Yet, we can see in Fig. 9(b) regions in the map whose
elevation values are within the range between 0.1 m and 0.2 m, next to the robot path. These regions
cannot be traversed by the robot.

6.2. Laser range data
In this subsequent experiment, we considered a real world data set introduced by Smith.24 The sensor
readings have been acquired using two laser range finders LMS 291-S14 scanning over 90◦.24 We
apply the sensory models introduced in Section 4, in order to determine the occupancy probability
and elevation of a cell following a 3D variant of the Bresenham algorithm. The mapped area can be
seem in Fig. 10. The robot’s trajectory specified by the red line is estimated through a visual odometry
process from the camera images.

Figure 11 shows the resulting map. Figure 11(a) expresses the values of the occupancy probability
while Fig. 11(b) shows the elevation values and Fig. 11(c) shows the values of the variances relative
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Fig 6. Estimated elevation values on the OEG map in a dynamic environment. (a) Elevation values with a
dynamic obstacle. (b) Elevation values updated by the first readings without dynamic obstacle. (c) Elevation
values updated by the second readings without dynamic obstacle.
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Fig 7. Scenes captured during the mapping. (a) Free path and bushes. (b) Pole. (c) Bush.

Fig 8. Overview of the mapped space.

to elevations. The values of each parameter are identified by color bars. Low variance values of
the elevations map mean that the elevation values present high accuracy and higher variance values
indicates low accuracy of the sensor. The robot can use these values (occupancy, elevation and variance
of elevation) to identify traversable areas inside its environment considering its motion skills.

Furthermore, it is important to note that mainly in outdoor environments a robot can face some
overhang structures such as tree branches and advertisement boards. The proposed mapping can be
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Fig 9. Estimated OEG map for outdoor environment. The values of each parameter are identified through the
color bars: (a) occupancy, (b) elevation and (c) variance of the elevation.

Fig 10. Aerial view of the mapped area.
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Fig 11. Estimated OEG map for outdoor environment. The values of each parameter are identified through the
color bars: (a) occupancy, (b) elevation and (c) variance of the elevation.
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Table I. Memory consumption analysis.

Mapped Memory consumption [MB]

Map data set Area [m3] Res. [m] Full Grid MVOG OctoMap OEG

FR-079 corridor 43.8 × 18.2 × 3.3
0.05 80.54 − 41.70 3.83
0.1 10.42 − 7.25 0.96

Freiburg outdoor 292 × 167 × 28
0.2 654.42 − 130.39 14.63
0.8 10.96 − 4.13 0.91

New college (Epoch C) 250 × 161 × 33
0.2 637.48 − 50.70 12.07
0.8 10.21 − 1.81 0.75

New college (Epoch A) 80 × 100 × 33
0.1 390.75 16.44 56.31 9.6
0.5 3.24 0.58 0.78 0.38

adapted to deal with these situations, without difficulties, by setting a height threshold. It is important
to highlight that one of the main contributions of the proposed mapping approach is the generation of
a useful map for robot navigation. In order to do that, we can limit the mapping process to build the
map considering only structures a bit higher than the robot height. The other ones which are much
higher than the robot and with underpassages can be ignored by the mapping since the robot can pass
under them. That is, they will not affect the robot navigation. Thus, when the robot visualizes an
overhang tree branch in a higher position than its height, for example, it will be ignored. Figure 12
illustrates an experiment dealing with this situation. Figure 12(a) shows the robot view with some
trees and their branches. Our robot is 0.46 m tall, thus, it is able to pass under the trees branches. If it
is used the mapping without height thresholding, the generated elevation values would indicate that
the robot could not pass under the trees (Fig. 12(b)). However, if it is employed the mapping with
height thresholding the produced elevation values demonstrate that it is possible to pass under the
trees (Fig. 12(c)).

It is important to say that the mapping of thin obstacles depends on the sensor quality. However,
in our approach, if the sensor can capture these obstacles they will be represented with its degree of
certainty in the map. For example, it is possible that a thin board or wire can be strategically posted
in front of the robot in such a way that the sensor cannot capture it, then the process would fail. Yet,
sensors as the kinect have a lower and higher distance limiting so obstacles outside this range would
not be captured as well. Of course, in these cases, there is no technique that can avoid the problems
caused.

6.3. Analysis of memory usage
We have done an analysis of the memory usage by comparing our approach with the 3D occupancy
grid mapping method presented by Andert,12 MVOG introduced by Dryanovski et al.18 and OctoMap
shown by Wurm et al..25 The memory size provided for data structures assume single-precision
floating point representations and is based on New College data set,24 Frieburg1 data set and results
presented in refs. [18] and [25]. The results of this investigation, considering different resolutions
(res.), are summarized in Table 6.3. Figure 13 shows the reduction achieved by OEG maps compared
to Full 3D Grid, MVOG and OctoMap approaches for each data set.

7. Conclusion
We have proposed a novel approach to perform environment mapping using a mobile robot that builds
a map representation based on a probabilistic occupancy grid and an elevation map named OEG. Our
approach can be used for robust autonomous navigation. To build the map, the system interprets data
provided by a stereo camera system. However, as shown, the map representation introduced can also
be used in conjunction with other kind of distance sensor, in fact it was also experimented with range
finder data.

1 Courtesy of B. Steder and R. Kümmerle, available at http://ais.informatik.uni-freiburg.de/
projects/datasets/fr360/.
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Fig 12. Overhang structures mapping. The red point in (a) and (b) represents the robot position. The color bars
quantify the height of the considered obstacles in each case ((a) shows obstacle form 0 to around 3.5 m and (b)
shows obstacle from 0 to around 0.5 m). (a) Robot view. (b) Elevation values without height thresholding. (c)
Elevation values with height thresholding.

Our method allows a robot to perform mapping of environments actually coherent with sensory
data provided by the perceptual system of the robot using less processing requirements and memory.
During experimental evaluation, our method has been tested in indoor and outdoor situations, and the
results show that the generated maps are consistent with the environments. The obtained maps can be
used directly in tasks like path planning, obstacle avoidance and grid-based localization. Furthermore,
the proposed OEG map can help the autonomous operation of a mobile robot system and its tasks
execution considering traversable areas.

As the very first future work, we are already performing tests on more complex environments in
order to validate the coherent construction of the proposed map. Further, we believe that other
techniques can be developed on the top of this system for dealing with the several situations
experimented in real scenarios where the robot can go ahead without problems or not, as ramps
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Fig 13. Reduction of memory. (a) Reduction achieved for FR-079 corridor mapping. (b) Reduction achieved
for Freiburg mapping. (c) Reduction achieved for New College (Epoch C) mapping. (d) Reduction achieved for
New College (Epoch A) mapping.

and other transposable (say small) obstacles. On situations of untransposable obstacles, techniques
can be combined with the current one for learning that an obstacles cannot be passed, for example
using reinforcement learning. Techniques based in image features as SURF (speeded up robust
features) can also be combined to determine possible situations where the robot can transpose or not
some region.
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