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A Predictor-based Attitude and Position Estimation

for Rigid Bodies Moving in Planar Space by using

Delayed Landmark Measurements

Danial Senejohnny and Mehrzad Namvar

Abstract

This paper proposes a globally and exponentially convergent predictive observer for attitude and

position estimation based on landmark measurements and velocity (angular and linear) readings. It is

assumed that landmark measurements are available with time-delay. The maximum value of the sensor

delay under which the estimation error converges to zero is calculated. Synthesis of the observer is

based on a representation of rigid-body kinematics and sensor delay, formulated via ordinary and

partial differential equations (ODE-PDE). Observabilitycondition specifies necessary and sufficient

landmark configuration for convergence of attitude and position estimation error to zero. Finally, for

implementation purposes, a PDE-free realization of the predictive observer is proposed. Simulation

results are presented to demonstrate performance and convergence properties of the predictive observer

in case of a wheeled mobile robot.

I. INTRODUCTION

The estimation problem in this paper is to determine attitude and position of a rigid body

moving in a planar space. Attitude and position estimation are used in detecting and identifying

faults [1] and effective attitude and position control of rigid bodies [2], [3]. The employed sensors

in the landmark-based attitude and position estimation aredivide into velocity sensors, such as

rate Gyro and Doppler for angular and translational velocity readings, and charged-couple device

(CCD) cameras for tracking terrain characteristics. Landmarks are points with known locations
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which can be observed by rigid body. Landmark-based attitude and position estimation have

received considerable attention for the past decades [4], [5]. Except some sensors, such as laser

detection and ranging (LADARs) or laser scanners which use light to determine the distance,

landmark measurement is not usually available at the same time as it is perceived. This is either

caused by long range observation, or complex computation, or both. Take CCD camera as an

example of landmark measurement sensor, which is coupled with a video processing system.

Due to computational burden of the image processing unit [6], the time that takes to calculate the

measurement vector from visual stream of information is notnegligible and creates significant

time-delay.

The effect of time-delay in sensor measurement, from the best of our knowledge, has been

rarely dealt within the realm of rigid body attitude and position estimation [6]-[9]. The existing

works, are basically based on the Kalman filtering and its extensions. Smith predictors can also

deal with delay in linear time-varying systems. However, both approaches do not guarantee

asymptotic convergence of estimation error to zero due to intrinsic nonlinear and time-varying

nature of attitude and position estimation problem. On the other hand, nonlinear observers [4],

[10]-[12] stand out as an important approach among a wide variety of estimation techniques.

However, topological limitations on non-Euclidean spaceshamper achieving global stabilization.

These limitations call for the relaxation from global to almost global stability, meaning that the

region of attraction of the origin comprises all the state space except a nowhere dense set of

measure zero [4], [13].

In [6] authors presented an estimation method for combiningmeasurements provided by

inertial sensors (gyroscopes and accelerometers), globalpositioning system (GPS), and video

system for unmanned aerial vehicle (UAV). The effect of datadelay in video system is taken

into account for attitude and position estimation. In [7], [8] the source of data delay was

considered to be in the GPS sensor, where [7] proposed complementary Kalman filter and [8]

proposed extended Kalman filter (EKF) to deal with estimation problem of interest. A delay

and dropout tolerant Kalman filter-based position, velocity, and acceleration estimation for aerial

vehicles was proposed in [9] by fusing inertial and vision measurements. This work assumes

vision measurement packets undergo delay and dropout due toimage processing and wireless

communication.

The contribution of this paper is the development of an attitude and position estimation



algorithm in presence of time-delay in landmark measurements, while ensuring global and

exponential convergence of estimation error. The estimation method is based on predictive

observer of [14] which is further developed and employed forthe case of attitude and position

estimation problem. In the proposed technique, the overallattitude and position of the rigid

body is described by an ordinary differential equation (ODE) in form of state affine systems.

The delayed sensor measurement is formulated by a first-order Partial Differential Equation

(PDE). The predictive observer, designed for the cascade ofODE-PDE systems, aims to predict

and compensate delayed sensor measurement. Necessary and sufficient conditions for landmark

configuration are presented to achieve asymptotic estimation of attitude and position. Conver-

gence analysis are built on Lyapunov-Krasovskii functional. An upper-bound for sensor delay

is derived which preserves convergence properties. Owing to simplified analysis, the observer

is first designed under the ODE-PDE framework and then transformed into an implementable

PDE-free realization.

The remainder of this paper is organized as follows. In Section II, we formulate our estimation

problem of interest. In Section III, and IV the main result ofthe papers is presented. In Section

V, we provide a PDE-free realization for implementation. A numerical example on wheeled

mobile robot is presented in Section VI. Section VII concludes the paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

We denote{I} as the inertial reference frame and{B} as the body frame.P ∈ R
n denotes the

position of the rigid body with respect to{I} and expressed in{B}. Attitude of the rigid body

is represented by the rotation matrixR ∈ SO(n) =
{
R ∈ R

n×n | det(R) = 1 , R⊤R = I
}

whereR⊤ represents orientation of the body frame with respect to theinertial frame. Rigid

body attitudeR and positionP can be interpreted as an element ofSE(n) := SO(n) × R
n,

which is represented by the matrix



R P

0 1



 ∈ SE(n)

Thus, rigid body kinematics is described by



Ṙ Ṗ

0 1



 =




−S(ω) v

0 0








R P
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Fig. 1: Landmark-based attitude and position estimation.

whereω ∈ R
n and v ∈ R

n denote angular and translational velocities of{I} with respect to

{B}, and expressed in{B}. We define the operatorS(·) as a function fromRn to the space of

skew-symmetric matricesS(n) =
{
S ∈ R

n×n | S⊤ = −S
}

. Without loss of generality in planar

motions, namelyn = 2, angular velocity is a scalar variable. Landmark measurements indicated

as qi ∈ R
n, i = 1, · · · , N , are obtained through the sensors mounted on the rigid body which

are capable of detecting and tracking terrain characteristics (such as CCD cameras). Also, we

have

qi = Rpi −P

wherepi represents the location ofith landmark with respect to the inertial frame{I} andN is

the number of landmarks. Fig. 1 depicts an example of rigid body planar motion in compliance

with (1).

A. EmbeddingSE(n) into the Euclidean Space

Consider column stacking ofR andP given byX =
[

P⊤ r⊤1 · · · r⊤n

]⊤
∈ R

n2+n, where

R =
[

r1 · · · rn

]

, rj ∈ R
n, j = 1, ..., n. It is straightforward to see that equation (1)



transforms into

Ẋ(t) = A(ω)X(t) +B(v) (2)

where A(ω) = −diag(S(ω), . . . , S(ω)) ∈ R
(n2+n)×(n2+n) is a block diagonal matrix, and

B(v) =
[

In 0n×n2

]⊤
v ∈ R

n2+n . Similarly, by column stacking landmark measurements, the

output equationqi = Rpi−P can be formulated asY (t) = CX(t), whereY =
[

y1
⊤ · · · yn

⊤
]⊤

∈

R
nN and

C =








−In p11In · · · p1nIn
...

...
. . .

...

−In pN1In · · · pNnIn







∈ R

nN×(n2+n)

with pi =
[

pi1 · · · pin

]⊤
∈ R

n.

Rigid body position and attitude kinematics can then be considered as a class of state affine

systems described by

Ẋ(t) = A(u)X(t) +B(u)

Y (t) = CX(t)
(3)

where angular and linear velocities are lumped inu(t) ⊂ D, whereD is the set to which

bounded inputs belong. Taking into account the delayed stream of information from landmark

measurement sensors, the estimation problem of interest insequel is that of designing an observer

for state affine system (3).

B. Preliminaries

Definition 1: [15] WhenA(u) satisfies the commutative property

A(u(t))

(∫ t

t0

A(u(τ))dτ

)

=

(∫ t

t0

A(u(τ))dτ

)

A(u(t)) (4)

for all t, t0, then the state transition matrix associated with the system Ẋ(t) = A(u)X(t) is

given by

Φ(t, t0) = e
∫ t
t0

A(u(τ))dτ
. (5)

�

Properties pertinent to state transition matrix (5) can be enumerated as

1) Φ(t0, t0) = I,

2) Φ(t, t0) = Φ(t, s)Φ(s, t0),



3) d
dt
Φ(t, t0) = A(u(t))Φ(t, t0),

4) Φ−1(t, t0) = Φ⊤(t, t0) = Φ(t0, t),

5) Φ(t, t0)A(u(t)) = A(u(t))Φ(t, t0).

Moreover, the transition matrix associated withṘ = −S(ω)R is R(t)R⊤(t0). Therefore, (5) is

equivalent to

Φ(t, t0) = diag(R(t)R⊤(t0), · · · ,R(t)R⊤(t0)) ∈ R
(n2+n)×(n2+n). (6)

SinceR(τ)R⊤(t0) ∈ SO(n), it follows that ‖Φ(τ, t)‖ = 1.

Remark 1:The commutativity property in (4) imposes limitation on thediversity of kine-

matics that can be fit into framework (2) and at the same time enjoy state transition matrix.

Skew-symmetric matrices of dimension2 comply with this property. This makes systems with

kinematics evolving in planar space, namelySE(2), to be of practical interest to this theory.

Meanwhile, to the best of authors knowledge, so far, no explicit state transition matrix is proposed

for spatial kinematic evolution, namelySE(3).

�

Definition 2: The 2-norm of a vector is denoted by,‖ · ‖. TheL2 norm of matrix or vector

functions (of the variablex) are denoted by‖ . ‖L2[0, D]. In the sequel, the PDE state variable

U(x, t) is a vector function of two variablesx and t, wheret is time andx is a spatial variable

that takes values in the interval[0, D]. Therefore,

‖U(t)‖L2[0, D] =

(∫ D

0

U⊤(x, t)U(x, t)dx

)1/2

which makes it a function of time variablet [14]. �

Lemma 1: [16], [17] Consider the matrix differential equation

Ṗ (t) = −εP (t)− A⊤(u)P (t)− P (t)A(u) + C⊤ΣC (7)

whereε ∈ R>0 is a positive constant and initial conditionP (0) ∈ R
n×n and parameterΣ ∈ R

n×n

are symmetric positive definite (SPD) matrices. Then, thereexistβ1, β2 ∈ R>0, such thatP (t) be-

comes a SPD matrix and satisfies the inequality0 < β1In ≤ P (t) ≤ β2In for all time. Moreover,

the lower bound of matrix differential equation (7) is givenby β1 = 2Te−εTλ(C⊤ΣC), ∀ t >

t0 + T [16], whereλ is the minimum eigenvalue of corresponding matrix. Parameter T is a

positive constant, so that, for allt > 0
∫ t+T

t

Φ⊤(τ, t)C⊤ΣCΦ(τ, t)dτ ≥ αIn > 0



whereIn is then× n identity matrix andα = Tλ(Σ)λ(C⊤C). �

Assuming that the rank of the matrixC⊤C is complete, the pair(A(u), C) is uniformly com-

pletely observable and henceβ1 > 0.

Lemma 2:For anyX , Y ∈ R
n and any scalarκ ∈ R>0 , one has

2X⊤Y ≤ κX⊤X + κ−1Y⊤Y . (8)

�

III. PREDICTOR OBSERVER

Consider the following state affine system

Ẋ(t) = A(u)X(t) +B(u)

Y (t) = CX(t−D)
(9)

whereX(t), u(t) and Y (t) are the state, input, and output of the system, respectively. Also,

A(u), B(u), C are uniformly bounded matrices of compatible dimensions. We assume that the

output is delayed byD unit of time, which is constant and known. Let the predictiveobserver

for system (9) be given by

˙̂
X(t) = A(u)X̂(t) +B(u) + e

∫ D
0

A(u(τ))dτP−1(t)C⊤Σ
(

Y (t)− Ŷ (t)
)

Ŷ (t) = CX̂(t−D) + C
∫ t

t−D
e
∫ t−θ
0

A(u(τ))dτP−1(θ)C⊤Σ
(

Y (θ)− Ŷ (θ)
)

dθ

Ṗ (t) = −εP (t)− A⊤(u)P (t)− P (t)A(u) + C⊤ΣC

(10)

whereX̂(t) and Ŷ (t) are observer state and output, respectively. The rest of thenotations are

elaborated onLemma1 andDefinition 1.

Remark 2:Observer output in (10) have a distributed delay integral feedback term. This term

is in form of a general convolution integral function given by
∫ t

t−D

Φ(t− θ, 0)f(θ)dθ,

whereΦ(t−θ, 0) = e
∫ t−θ

0
A(u(τ))dτ andf(t) = P−1(t)C⊤Σ

(

Y (t)− Ŷ (t)
)

. The distributed delay

integral term depending on the the output estimation errorY (t)− Ŷ (t), is prominent feature of

the predictor based observer and ensures exponential convergence of estimation error to zero.

However, in most standard state observers for time-delay systems, only a pure output error term

is presented and the convergence is normally asymptotic. �



IV. OBSERVER SYNTHESIS

To simplify convergence analysis, we model the output equation in (9) by PDE

Ut(x, t) = Ux(x, t)

U(D, t) = CX(t)

Y (t) = U(0, t)

(11)

where the delayed stateU(x, t) depends on the time variablet and the spatial variablex. Variable

x assumes values in the interval[0, D]. It can be verified that the solution to this transport PDE

equation is

U(x, t) = CX(t+ x−D) (12)

Therefore, at the boundary conditionx = 0, we have the delayed stateU(0, t) = CX(t − D),

which is equivalent to system output. The entire delayed system can then be represented as

interconnection of ODE and PDE

Ẋ(t) = A(u)X(t) +B(u)

Ut(x, t) = Ux(x, t)

Y (t) = U(0, t)

(13)

Now, we propose the predictive observer in the ODE-PDE form as

˙̂
X(t) = A(u)X̂(t) +B(u) + Φ(D, 0)P−1(t)C⊤Σ

(

Y (t)− Û(0, t)
)

Û t(x, t) = Ûx(x, t) + CΦ(x, 0)P−1(t)C⊤Σ
(

Y (t)− Û(0, t)
)

Û(D, t) = CX̂(t)

(14)

whereΦ(t, 0) is the transition matrix (5) andP (t) is given by the matrix differential equation in

Lemma1. A block diagram of the proposed observer is provided in Fig. 2. Note that the above

ODE-PDE representation of the observer is for analysis purpose. Real-time implementation of

the observer is always based on (10).

Next, we define the estimation error variables by

X̃(t) = X(t)− X̂(t)

Ũ(x, t) = U(x, t)− Û(x, t)



+
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Fig. 2: Block diagram of the predictive observer in presenceof sensor delayD.

By virtue of (12), the termŨ(x, t) can be regarded as delayed sensor estimation error. The

following error dynamics are resulted from (13) and (14).

˙̃X(t) = A(u)X̃(t)− Φ(D, 0)P−1(t)C⊤Σ
(

Y (t)− Û(0, t)
)

Ũ t(x, t) = Ũx(x, t)− CΦ(x, 0)P−1(t)C⊤Σ
(

Y (t)− Û(0, t)
)

Ũ(D, t) = CX̃(t)

(15)

Global and exponential convergence of the error dynamics (15) is investigated in sequel. We

define the composite estimation error by [14]

W̃(x, t) = Ũ(x, t)− CΦ(x,D)X̃(t) (16)

whereW̃(x, t) includes the estimation error̃X(t) and the delayed output estimation errorŨ(x, t).

Introduction of the composite error is to further simplify and clarify the convergence analysis.

DifferentiatingW̃(x, t) with respect tox and t with appropriate replacement from (15), yields

W̃ t(x, t)− W̃ x(x, t) = C (A(u(x))−A(u(t))) Φ(x,D)X̃(t) (17)

In light of the above transformation and the boundary condition W̃(D, t) = Ũ(D, t)−CX̃(t) = 0,

the observer error dynamics (15) becomes

˙̃X(t) =
(
A(u)− Φ(D, 0)P−1(t)C⊤ΣCΦ(0, D)

)
X̃(t)− Φ(D, 0)P−1(t)C⊤ΣW̃(0, t)

W̃ t(x, t) = W̃x(x, t) + C (A(u(x))− A(u(t))) Φ(x,D)X̃(t)

W̃(D, t) = 0

(18)



The following theorem is the main result of this section.

Theorem 1:The attitude and position observer (14) guarantees thatlimt→+∞ X̃(t) = 0

and limt→+∞ Ũ(x, t) = 0, ∀x ∈ [0, D]. More specifically, the observer error equation (18) is

exponentially stable in the sense of the norm
(

‖X̃(t)‖
2
+

∫ D

0

Ũ
⊤
(x, t)Ũ(x, t)dx

)1/2

(19)

provided that the following two assumptions hold:

1) The known and constant time-delay satisfies0 < D < Dmax.

2) The observer gain is chosen to satisfy0 < εmin < ε < εmax.

whereεmin, εmax, Dmax are given in the proof.

Proof: In order to preserve continuity, a proof of this result is provided in Appendix.

�

Both the maximum tolerable delay and the observer gain directly depend on design parameters

and landmark configuration, namely matrixC. For a given sensor delay, the observer gain

assumes its admissible values in an open interval determined in Assumption 2 of theTheorem1.

Note that the landmarks are not all collinear (on a straight line), otherwise matrixC would be

singular and consequently no specific interval for the observer gainε could be found to establish

the observation convergence.

The following Theorem provides characteristics of exponential convergence of the norm (19).

Theorem 2:An exponentially decaying upper bound for the estimation error norm is given

by
(

‖X̃(t)‖2 +

∫ D

0

Ũ
⊤
(x, t)Ũ(x, t)dx

)1/2

≤

√

ϕ2ψ2

ϕ1ψ1
e−

µ
2
t

(

‖X̃(0)‖
2
+

∫ D

0

Ũ
⊤
(x, 0)Ũ(x, 0)dx

)1/2

(20)

�

Proof: In order to preserve continuity, a proof of this result is provided in Appendix.

A PDE-free realization of the observer (14) is provided in the next section.

V. OBSERVER IMPLEMENTATION

In this section an equivalent representation of predictiveobserver (11) out of ODE-PDE form

is derived. This representation is of importance in implementation and further understanding of



the predictive observer. Taking the Laplace transformL, from the PDE equation in (14), and

knowing thatÛ(x, 0) = 0, yields

sÛ(x, s) = d
dx
Û(x, s) + CΦ(x, 0)L

{

P−1(t)C⊤Σ
(

Y (t)− Ŷ (t)
)}

Û(0, s) = Ŷ (s)

The solution to this first-order ODE in terms ofx is

Û (x, s) = Ŷ (s)esx −

∫ x

0

es(x−η)CΦ(η, 0)L
{

P−1(t)C⊤Σ
(

Y (t)− Ŷ (t)
)}

dη

Inserting the boundary condition̂U(D, s) = CX(s) in the above equation, we have

Ŷ (s) = CX̂(s)e−sD +

∫ D

0

e−sηCΦ(η, 0)L
{

P−1(t)C⊤Σ
(

Y (t)− Ŷ (t)
)}

dη

Finally, after taking the inverse Laplace transform and a change of variableθ = t−η, we obtain

Ŷ (t) = CX̂(t−D) + C

∫ t

t−D

Φ(t− θ, 0)P−1(θ)C⊤Σ
(

Y (θ)− Ŷ (θ)
)

dθ

Thus, the observer representation in terms of the output is given by

˙̂
X(t) = A(u)X̂(t) +B(u) + Φ(D, 0)P−1(t)C⊤Σ

(

Y (t)− Ŷ (t)
)

Ŷ (t) = CX̂(t−D) + C

∫ t

t−D

Φ(t− θ, 0)P−1(θ)C⊤Σ
(

Y (θ)− Ŷ (θ)
)

dθ
(21)

The predictive observer (21) is a PDE-free realization of observer (14) that involves a distributed

delay integral feedback term in observer output.

VI. NUMERICAL EXAMPLE : WHEELED MOBILE ROBOT

We consider a wheeled mobile robot, depicted in Fig. 1, whichcomplies with the class of

state affine systems for which the predictive observer is designed. Owing to planar motion of the

mobile robot, its rotation is around a single axes, namely the z axis. Hence, the angular velocity

ω(t) is a bounded scalar value. Furthermore, the employed wheeled robot can not have any

displacement along the axis perpendicular to their wheels.This makes its translational velocity

vector (expressed in body frame) asv = [vx 0]⊤.

We place our landmarks physically at locationsp1 = [1 3]⊤m and p2 = [3 1]⊤m. Adding

these landmark locations we find the third location to bep3 = [4 4]⊤m. After embedding the
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Fig. 3: Wheeled mobile robot planar path.

robot kinematics fromSE(2) into R
6, the attitude and position dynamics take the form of state

affine systems (9). Therefore, the pertinent matricesA(u), B(u), andC are given by

A(u) = diag(S(ω), S(ω), S(ω)), S(ω) =




0 −ω

ω 0



 , B(u) =
[

vx 0 0 0 0 0
]⊤

C =








−I2 I2 3I2

−I2 3I2 I2

−I2 4I2 4I2








The planar motion of the robot in 100 seconds is depicted in theX−Y plane and shown in Fig.

3. The angular and linear velocities are given byω(t) = 2 sin(0.04πt) rad/s andvx = 1 m/s. Fur-

thermore, The initial values are arbitrarily selected asX(0) =
[

− 5√
2

1√
2

√
2
2

√
2
2

−
√
2
2

√
2
2

]⊤
.

In order to assess the performance of the proposed predictive observer (21), we consider a



standard state observer of the form [18]
˙̂
X(t) = A(u)X̂(t) +B(u) + P−1(t)C⊤Σ

(

Y (t)− Ŷ (t)
)

Ŷ (t) = CX̂(t−D)

Ṗ (t) = −εP (t)− A⊤(u)P (t)− P (t)A(u) + C⊤ΣC

(22)

and compare it with the proposed observer. In the standard observer we setε and Σ similar

to the predictive observer. Landmark measurements are assumed to be available afterD unit

of time. Furthermore, both observers assume the arbitrary initial valuesP (0) = 0.5I6×6 and

Σ = 0.5I6×6.
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Fig. 4: Comparison of the predictive and the standard observer for D = 1 andε = 0.6.

The observer gainε is selected according to assumption 2 in Theorem 1. The pertinent range

for ε is found from simulations for different delays. From numerical simulations it is observed



that the standard observer (22) does not converge for delaysof larger than 1.04 second, whereas

the predictive observer (21) is still convergent for delaysof shorter than 1.5 second. In simulations

for delaysD = 1.1, D = 1.2, D = 1.3, D = 1.4, andD = 1.5, the lower bound ofε is found

to be0.2, 1.6, 2.1,5 and23, respectively. In Fig. 4 both the predictive and the standard observer

are compared forD = 1 and ε = 0.6. Since the error of the standard observer grows arbitrary

large for delays of larger than 1 second, the results of this observer is eliminated hereafter.

The predictive observer performs satisfactorily for constant delaysD = 1.2 andD = 1.4 and

different values ofε as illustrated in Fig. 5. Furthermore, in Fig. 6 the effect ofvariation in

delay is illustrated for a fixed observer gain.
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Fig. 5: Performance of the predictive observer forD = 1.2, D = 1.4, and different values of

the observer gain.
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Fig. 6: Performance of the predictive observer forε = 2 and different values of delay.

From Fig. 4 and 5, it can be understood that the predictive observer (21) outperforms the

standard state observer (22); in the sense that it handles larger sensor delays, enjoys faster

convergence, and ensures smaller error.
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Fig. 7: Performance of the predictive observer in presence of noise and forε = 2 and different

values of delay.



A. Sensor noise

Noise in sensors is considered on linear velocity readings and landmark measurements. In par-

ticular, additive, zero-mean, white Gaussian noise is taken into account, with standard deviation

of 4 cm/s (4 percent) for linear velocity and0.04 m for the landmark measurements.

As we can see in Fig 7,̃Y (t) is noisier in comparison tõX(t), while error bound inX̃(t) is

bigger than that of̃Y (t). In presence of noise the observer is sensitive with respectto output

delay. This means the steady state error for both state and output has a finite bound, while this

bound increases by the growth in sensor delay. We observe that even in presence of noise, the

predictive observer demonstrates a plausible behavior, though the maximum tolerable delay in

output sensor decreases.

To incorporate noise, as a realistic phenomenon, a realistic angular velocity is required as

well, for instance, lets sayω = 0.4 sin(0.04πt) rad/sec. From definition ofγ in (25) and the

maximum tolerable delay in (28) we see that decrease in angular velocity (equivalently parameter

γ) leads to a biggerDmax. This is corroborated by simulation with adopted angular velocity.

The noise-free observer in this case can tolerate output delay up toDmax = 8.7; Whereas, in

presence of noise Fig 8,̃X(t) tend to grow larger by increase in output time-delayD. This

example better elucidates the sensitivity and performancedegradation of predictive observer in

presence of sensor noise for large sensor delays.

VII. CONCLUSIONS

This paper presents an attitude and position observer basedon landmark measurements and

velocity readings. The attitude and position estimations are obtained from a globally exponential

stable predictive observer combining the measurements from velocity sensors together with

landmark measurements. It is assumed landmark sensors havetime-delay in measuring land-

mark’s position. Upper bound of the time-delay for which theobserver converges, is calculated.

Simulation results confirm advantages of the predictive observer over a standard state observer.

As a possible future line of research, it is interesting to investigate the same problem under state

dependent delay.
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Fig. 8: Performance of the predictive observer in presence of noise and forε = 8 and different

values of delay.

VIII. APPENDIX

A. Proof of Theorem 1

Proof: Consider the Lyapunov-Krasovskii functionals

V (t) = V1(t) + V2(t)

V1(t) = X̃
⊤
(t)Φ⊤(0, D)P (t)Φ(0, D)X̃(t)

V2(t) = ρ

∫ D

0

(1 + x)W̃
⊤
(x, t)W̃(x, t)dx

(23)

whereρ is a positive scalar to be chosen. By virtue of (23), it can be inferred that

β1

∥
∥
∥X̃(t)

∥
∥
∥

2

≤ V1(t) ≤ β2

∥
∥
∥X̃(t)

∥
∥
∥

2

ρ

∫ D

0

W̃
⊤
(x, t)W̃(x, t)dx ≤ V2(t) ≤ ρ(1 +D)

∫ D

0

W̃
⊤
(x, t)W̃(x, t)dx

(24)



whereβ1, β2 are first appeared inLemma1, Taking time differentiation of the functionals in

(23) and substituting from (18), yields

V̇ 1(t) =− X̃
⊤
(t)Φ⊤(0, D)

(
εP (t) + C⊤ΣC

)
Φ(0, D)X̃(t)− 2X̃(t)⊤Φ⊤(0, D)C⊤ΣW̃(0, t)

V̇ 2(t) =− ρW̃
⊤
(0, t)W̃(0, t)− ρ

∫ D

0

W̃
⊤
(x, t)W̃(x, t)dx

+ ρ

∫ D

0

2(1 + x)W̃
⊤
(x, t)C (A(u(x))−A(u(t))) Φ(x,D)X̃(t)dx

In light of properties 2 and 4 in Definition 1, and the lower bound of P (t) given in Lemma 1

and the inequality (8), we have

V̇ 1(t) ≤− εβ1‖X̃(t)‖2 +
(
κ1λ̄(C

⊤Σ2C)− λ(C⊤ΣC)
)
‖X̃(t)‖2 + κ−1

1 ‖W̃(0, t)‖2

V̇ 2(t) ≤− ρ‖W̃(0, t)‖2 − ρ

∫ D

0

W̃
⊤
(x, t)W̃(x, t)dx+ ρ

[

(1 +D)
(
κ2

∫ D

0

W̃
⊤
(x, t)W̃(x, t)dx

)

+ κ−1
2 λ̄(C⊤C)‖X̃(t)‖

2
∫ D

0

(1 + x)‖Φ(x,D)‖2‖A(u(x))−A(u(t))‖2dx
]

SinceR(x)R⊤(D) ∈ SO(n) it follows from (6) that‖Φ(x,D)‖ = 1. Moreover,

γ := sup
u∈D

{

‖A(u(x))− A(u(t))‖2L2[0, D]

}

(25)

Choosingρ = κ−1
1 in the Lyapunov function, implies

V̇ (t) ≤ −δ1‖X̃(t)‖2 − ρδ2‖W̃(t)‖2L2[0, D] (26)

where

δ1 = εβ1 + λ(C⊤ΣC)− κ1λ̄(C
⊤Σ2C)−D(

D

2
+ 1)γκ−1

1 κ−1
2 λ̄(C⊤C)

δ2 = 1− (1 +D)κ2

In order to makeδ2 > 0, the parameterκ2 must be chosen such thatκ2 < 1
1+D

. An equivalent

expression can be derived as1 +D < κ−1
2 . Eliminatingκ−1

2 from δ1, yields

εTe−εT ≥
1

2

[
D(D + 1)(D + 2)γκ−1

1 λ̄(C⊤C) + 2κ1λ̄(C
⊤Σ2C)

2λ(C⊤ΣC)
− 1

]

(27)

This makesδ1 > 0. Combining the inequalities (24) and (26), we have

V̇ (t) ≤ −
δ1
β1
V1(t)−

δ2
1 +D

V2(t) ≤ −µV (t)



whereµ = min
{

δ1
β1
, δ2
1+D

}

.

Hence, the origin of transformed system
(

X̃, W̃
)

in (18) is a globally and exponentially

stable equilibrium point in the sense of the norm‖X̃(t)‖
2
+
∫ D

0
W̃

⊤
(x, t)W̃(x, t)dx. Finally,

from the transformation (16), we achieve exponential convergence in the sense of the norm (19).

From inequality (27), the maximum tolerable delay and admissible range of the observer gain

in Theorem 1 are derived as

0 < D < Dmax =
1

3σ
+ σ − 1

0 < −
1

T
W0(−υ2)

︸ ︷︷ ︸

εmin

< ε < −
1

T
W−1(−υ2)

︸ ︷︷ ︸

εmax

(28)

where

σ =

(

υ1
2

+

√

υ21
4

−
1

27

)1/3

υ1 =
2λ(C⊤ΣC)(1 + 2e−1)− 2κ1λ̄(C

⊤Σ2C)

γκ−1
1 λ̄(C⊤C)

and finally

υ2 =
1

2

(D(D + 1)(D + 2)γκ−1
1 λ̄(C⊤C) + 2κ1λ̄(C

⊤Σ2C)

2λ(C⊤ΣC)
− 1
)

Furthermore,T is defined inLemma1,λ andλ̄ denote the minimum and maximum eigenvalue of

their corresponding matrix and the functionsW0 andW−1 are defined in subsectionA. Lambert

function in the Appendix. �

B. Proof of Theorem 2

From the Lyapunov-Krasovskii functional (23), we have

ϕ1

(

‖X̃(t)‖
2
+

∫ D

0

W̃
⊤
(x, t)W̃(x, t)dx

)

≤ V (t) ≤ ϕ2

(

‖X̃(t)‖
2
+

∫ D

0

W̃
⊤
(x, t)W̃(x, t)dx

)

whereϕ1 = min {β1, ρ} andϕ2 = min {β2, ρ(1 +D)} . By virtue of (16), we obtain
∫ D

0

W̃
⊤
(x, t)W̃(x, t)dx ≤ φ1

∫ D

0

Ũ
⊤
(x, t)Ũ(x, t)dx+ φ2‖X̃(t)‖2

∫ D

0

Ũ
⊤
(x, t)Ũ(x, t)dx ≤ φ3

∫ D

0

W̃
⊤
(x, t)W̃(x, t)dx+ φ4‖X̃(t)‖2



whereφ1 = 1+κ3, φ2 = (1+κ−1
3 )λ̄(C⊤C)D, φ3 = 1+κ4, φ4 = (1+κ−1

4 )λ̄(CTC)D. Combining

the above inequalities, implies

ψ1

(

‖X̃(t)‖
2
+

∫ D

0

Ũ
⊤
(x, t)Ũ(x, t)dx

)

≤ ‖X̃(t)‖2 +

∫ D

0

W̃
⊤
(x, t)W̃(x, t)dx

‖X̃(t)‖2 +

∫ D

0

W̃
⊤
(x, t)W̃(x, t)dx ≤ ψ2

(

‖X̃(t)‖
2
+

∫ D

0

Ũ
⊤
(x, t)Ũ(x, t)dx

)

whereψ1 =
1

max{φ3, 1+φ4} , ψ2 = max{φ1, 1 + φ2}. Finally, by solving the differential inequality

V̇ (t) ≤ −µV (t) and substituting from inequality

ϕ1ψ1

(∥
∥
∥X̃(t)

∥
∥
∥

2

+

∫ D

0

Ũ
⊤
(x, t)Ũ(x, t)dx

)

≤ V (t) ≤ ϕ2ψ2

(∥
∥
∥X̃(t)

∥
∥
∥

2

+

∫ D

0

Ũ
⊤
(x, t)Ũ(x, t)dx

)

,

we conclude the inequality (20). �

C. Lambert Function

The Lambert W function is defined as the inverse of the function yey = z whose solution

is given byy = W (z) or shortlyW (z)eW (z) = z. For real valuedz, if z < −e−1, thenW (z)

is multivalued complex. If−e−1 < z < 0, there are two possible real values ofW (z): The

branch satisfying−1 ≤ W (z) is denoted byW0(z) and called the principal branch of the W

function, and the other branch satisfyingW (z) ≤ −1 is denoted byW−1(z) . If z ≥ 0, there is

a single real value forW (z), which also belongs to the principal branchW0(z) [19]. The two
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Fig. 9: Solid line:W−1(z), Dashed line:W0(z).



real branches of the Lambert W function in the third-quadrant is of interest in Theorem 1. The

two real branches of the Lambert W function are depicted in Figure 9.
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