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SUMMARY

This paper proposes an interval-based approach in order to obtain the obstacle-free workspace of
parallel mechanisms containing one prismatic actuated joint per limb, which connects the base to
the end-effector. This approach is represented through two cases studies, namely a 3-RPR planar
parallel mechanism and the so-called 6-DOF Gough—Stewart platform. Three main features of the
obstacle-free workspace are taken into account: mechanical stroke of actuators, collision between
limbs and obstacles and limb interference. In this paper, a circle(planar case)/spherical(spatial
case) shaped obstacle is considered and its mechanical interference with limbs and edges of
the end-effector is analyzed. It should be noted that considering a circle/spherical shape would
not degrade the generality of the problem, since any kind of obstacle could be replaced by its
circumscribed circle/sphere. Two illustrative examples are given to highlight the contributions of the

paper.

KEYWORDS: Parallel mechanism; Collision-free workspace; Mechanical interference; Interval
analysis.

1. Introduction

Parallel mechanisms (PMs) are known to be more precise and able to carry heavier loads than the
serial manipulators.'> Besides several advantages, they are restricted by their limited workspace.
Therefore, in practice, the presence of an obstacle inside their workspace should be taken into
consideration in order to alleviate this limitation. Obtaining the obstacle-free workspace of PMs leads
to have a conservative workspace for which all actions inside the aforementioned workspace are free
of collision. Furthermore, obtaining the obstacle-free workspace is a definite asset in path planning
and obstacle avoidance while controlling PMs.

The problems of path planning and obstacle avoidance have been frequently investigated in
the literature.® In ref. [4], Zi et al. considered the possible collision of a cooperative cable-driven
parallel robot for multiple mobile cranes and used the sensor technology in order to avoid obstacles.
Laliberte et al. in ref. [5] calculated the motion of the manipulator using the velocity inversion
of a redundant manipulator, which optimizes the distance to obstacles. The algorithm includes
joint limit constraints, collision detection and heuristics for the solution of typical difficult cases,
thereby leading to a high success rate. Brooks et al. proposed an efficient algorithm to generate
collision-free paths for a manipulator with five or six revolute joints. Yang et al. investigated
dynamic collision-free trajectory generation in a non-stationary environment, using biologically
inspired neural network approaches. Brocks and Khatib® represented elastic strip framework which
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enables the execution of a previously planned motion in a dynamic environment for robots with
many degree of freedom (DOF). Khatib et al.” presented developments of models, strategies and
algorithms dealing with a number of autonomous capabilities that are essential for robot operations in
human environments. These capabilities include integrated mobility and manipulation, cooperative
skills between multiple robots, interaction ability with humans and efficient techniques for real-time
modification of collision-free paths. In ref. [8], Komainda and Hiller presented a concept for motion
control of redundant manipulators in a changing environment. In ref. [9], Jiménez et al. described a
general approach to cover all distance computation algorithms, hierarchical object representations,
orientation-based pruning criteria and space partitioning schemes. In ref. [10], Wenger and Chedmail
illustrated the collision-free workspace of serial manipulators. Caro et al., in ref. [11], introduced a
new method, based on numerical constraint programming, in order to compute a certified enclosure of
the generalized aspects. In ref. [12], the collision-free workspace of a planar PM is investigated. This
paper aims at extending the latter study by proposing a general concept to be applicable to 6-DOF
PMs, such as Gough—Stewart platform.

Most of the approaches presented in the literature are case dependent and cannot be generalized
and extended to other cases. In ref. [13], the workspace of 3-RRR PMs has been investigated. Even
for this particular PMs, the approach could be applied upon considering some assumptions, where
in the latter paper, the mechanisms should be symmetric. It should be noted that in the foregoing
paper, the workspace is only investigated without considering mechanical interferences and obstacles
within the workspace.

The mathematical framework used in this paper is based on interval analysis.!*'¢ Interval analysis
is a reliable method to evaluate functions and is used frequently in the field of robotics.!” An interval
variable of [x] = [x, X] is a set of all real numbers from the lower bound, x, to the upper bound, x.
More details about the application of interval analysis in kinematic investigation of robotic mechanical
system are discussed in Section 2 and in ref. [14].

In the context of application of interval analysis in investigating the kinematic properties of PMs,
several papers have been published. Most of them dealt with solving the Forward Kinematic Problem
(FKP)'8 and obtaining the workspace.!%!%20 Merlet, in ref. [21], investigated the workspace of PMs.
Several papers have been published in the context of obtaining the singularity-free workspace using
geometrical approach,?? and using interval analysis'® in which the novelty is about demonstrating
the state of the art of applying interval analysis in solving the foregoing problems. In ref. [23],
authors used interval analysis in order to investigate the orientation workspace of a parallel kinematic
machine. Merlet, in ref. [24], proposed an algorithm that enables one to determine almost all the
geometries of a simplified Gough platform whose workspace should include an arbitrary set of poses.
There have been few study conducted on analyzing the workspace of PMs by considering mechanical
interference and also in the presence of obstacle. This is a definite asset both in design and control of
PMs, which is the main concern of this paper.

Few studies have been conducted on obtaining the collision-free workspace of PMs and this is
mainly due to the fact that this mechanisms have complex kinematic expressions comparing to their
serial counterpart. Interval analysis has been used more in solving the FKP and in obtaining theoretical
workspace, i.e., workspace in which mechanical interference and obstacle are not taken into account.
Some papers worked on obtaining the collision-free workspace of cable-driven PMs which is out
of the scope of the present paper. In the latter papers, the approach is mostly based on numerical
techniques in which all the configurations and poses of the end-effector (EE) are tested in order to
obtain configurations for which collision may occur.?® For instance, interval analysis has been used
in investigating the workspace of cable-driven PMs.?¢

The main contribution of this paper deals with the use of interval analysis techniques in order to
obtain the collision-free workspace of parallel manipulators. It should be noted that obtaining the
collision-free workspace of robotic mechanical systems, PMs among others, is a very delicate task
which is elusive to classical methods. Therefore, more elaborated methods should be used such as
interval analysis techniques. To the best of author’s knowledge, few studies have been conducted in
this regard.

The remainder of this paper is organized as follows. First, the mathematical framework of interval
analysis is broadly reviewed. Then, the concept of the algorithm developed to obtain the obstacle-free
workspace and the corresponding pseudo-code are explained in detail. Finally, the results obtained for
a 3-RPR and a 6-UPS PM are given and the corresponding obstacle-free workspaces are illustrated.



2. Interval Analysis and Mathematical Framework
Several people had the idea to bound rounding errors with intervals: e.g. Dwyer (1951),%” Sunuga
(1958),28 Warmus (1956)*° and Wilkinson (1980).3° However, interval mathematics has been
widespread in the research community with Moore’s book “Interval Analysis" in 1966.3! Moore’s
book transformed this simple idea into a viable tool for error analysis. Instead of merely treating
rounding errors, Moore extended the use of interval analysis to bound the effect of errors from
all sources, including approximation and errors in data.3> In the literature, interval analysis is
regarded as a powerful numerical method to solve a wide range of problems such as, among
others, circumventing round-off errors,'® solving system of equations, optimization problem*? and
proper workspace presentation, etc..!”-323% Furthermore, interval analysis provides an interactive
visualization in the progress of calculation which is a definite asset in 2D and 3D representations
of manipulator workspaces. Recently, upon revealing some remarkable features of interval analysis,
such as finding the solution of a problem within some finite domains and taking into account the
numerical computer round-off errors, it has stimulated the interests of many researchers in the robotic
community to deal with complicated problems such as FKP and inverse kinematic problem (IKP),!8:33
calibration®®3” and the determination of the singularity-free workspace of parallel manipulators.'%1

In the evolutionary techniques, the chance of being trapped in a local optimum is highly dependent
of the initial population and initial search space. However, in the case of interval analysis, the only
parameter to obtain the global optimum is to choose the proper search space. In order to compute the
maximum singularity-free workspace of PMs and other kinematic properties,'”>3? interval analysis
entails following advantages: (a) Contrary to other tools, which would result in a lengthy computation
process and may converge to a local optimum, interval analysis is not a black box, since it requires
combination of heuristics and numerical concepts to be effective; (b) it allows us to find all the solutions
with inequalities within a given search space;'®3 (c) for two and three-dimensional problems, it leads
to see the evolution of the solutions and to monitor the procedure in order to have better insight to the
problem; (d) it allows us to consider uncertainties in the model of the robot.

Interval analysis is a branch of mathematics that basically works with closed intervals instead of
accurate numbers. An interval [x] is a set of real numbers between two bounds and can be represented
as follows:

xX]I=[xX]=xeR|x<x<X}, x<X), (1

where x and x are lower bound and upper bound, respectively. All mathematical operations such as
addition and multiplication can be performed on intervals. For instance,'*

X1+ ] =[x, x1+ [y, vyl =[x+ y,x+ Y] 2
[x][y] = [min(S) , max(S)], §={xy, xy, Xy, xy}. 3)

Moreover, a function of real numbers such as f(x) can be evaluated as an interval from a given
interval, [x], which results in an interval [ f] = f([x]). For example, for a monotonic function like

fx) =3,
[f1= f(Ix]D) = [fx), FG)] =[x, %]. 4

The whole concept of interval analysis is based on bisecting a box (or a hyper-box in a higher
dimensional space), called branch & prune approach,* upon considering some well-defined algebra
on intervals and natural evaluations, in such a way that the latter box will converge toward the desired
solution.

3. Obstacle Avoidance Formulation via Geometrical Concept

To the sake of understanding the proposed method, the latter is first fully described for 3-RPR PM.
It should be noted that, without loss of generality, the obstacle is considered as a circle (planar case)
or a sphere (spatial case) since any kind of obstacle could be replaced by its circumscribed circle
or sphere. In order to avoid an obstacle, in general, the links of limbs and the edges of the EE are
considered to be straight line segments. Moreover, all links can be considered to be perfect cylinder
(rectangle in planar case). In the case of more complicated shape of a link, one should simplify
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Fig. 1. (a) Schematic representation of a 3-RPR planar PM and a circle-shaped obstacle located at point P,
Pmin = 5 and pmax = 50. and (b) the constant-orientation workspace of a 3-RPR planar PM for ¢ = /4 via
interval analysis, collisions are ignored. A| = {—10, =5}, A, = {50, —5} and A3 = {15,40}; xp =20, yp =0
and rp = 3; I, = [, = 10. Green boxes are inside and red boxes are outside the workspace.
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Fig. 2. Two types of interval lines. In both cases, there is no collision if the obstacle is located at either point P;
or point P;. (a) Interval line passing through one point, A}, and one box, [ B;]; link A; B; in Fig. 1(a). (b) Interval
line passing through two boxes, [B;] and [B;]; edge B B; of the EE in Fig. 1(a).

it to a cylinder which contains all parts of the link. Even though it may cause to eliminate some
non-collision part of the workspace, but it depends on the trade-off preference of the user to keep
a balance between the computational time and precision of the result. This is a common approach
to compute the constant-orientation workspace of parallel robots. In the case of 6-DOF PMs, since
here is no human visualization for depicting six-dimensional space, thus one should fix the rotational
DOF to have a graphical representation of the workspace.

As it can be observed in Fig. 1, in the case of planar PMs, the obstacle is a circle; xp and yp
being the Cartesian coordinates of its center point and rp its radius. The problem of obtaining the
obstacle-free workspace via interval analysis can be divided into two cases: the collisions between
the obstacle and (a) a line passing through one point and one box (b) through two boxes. These two
cases are depicted in Fig. 2. The first case is applicable for links that are connected to the fixed frame
via a revolute joint; for instance, links A;B;, A, B, and A3Bj in the 3-RPR planar PM shown in
Fig. 1(a). The second case is more general and is applicable for those links which are the medial or
distal links of the limb; there is not such a link in the 3-RPR planar PM. Moreover, the edges of the
EE should be categorized in the second case, i.e., in the 3-RPR planar PM, B, B;, B, B3 and B3 B;.

3.1. Interval distance to obstacle
A simple solution to obtain the obstacle-free workspace is to write the equation from the distance of
a point to a line in the 2D space, which can be written as follows:

d = \/(xp+r:ln2y+pl—mc _ XP)Z + (mxp+m;'v1p—mc +eo— yp)2 (5)
L:y=mx+c,



Table I. Geometric parameters of a 3-RPR PM.

i XA; YA; Pmin Pmax XB/ YB] unit
1 —10 -5 5 50 0 0 cm
2 50 -5 5 50 10 0 cm

3 15 40 5 50 0 10 cm
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Fig. 3. The obstacle-free workspace of a 3-RPR planar PM shown in Fig. 1(a), for ¢ = 0, only considering the
first limb A; B;. Green boxes are inside and red boxes are outside the obstacle-free workspace. (a) A;B; as a
line satisfying [d] > rp. (b) A B, as a segment line satisfying [d] > rp and ||A — [B]|l» < ||A — P]|»-

where d stands for the distance from point P to line L, xp and yp are the x and y coordinates of the
obstacle P, respectively, m stands for the slope of the line and c is a constant.

In the case of implementing an interval line using a point and a box, the first aforementioned case,
one has

va — [yl
m—

= ) C=ys—mxa, (6)
xa — [x3]

in which x 4 and y, stand for the coordinates of point A, [xz] and [yg] stand for the components of box
[B]. These lines are referred to as the collision lines, which are assigned to the links of mechanisms
and in some configurations may interfere with the obstacle.

3.2. Collision of limbs with obstacle

Resorting to interval functions,! one can apply interval variables to Eq. (5) and obtain an interval
of distances, [d]. For example, in the case of the 3-RPR PM shown in Fig. 1(a), having geometric
parameters represented in Table I, for the first limb, the collision line passes through A;, which is
a fixed point, and a box in the search space of the interval algorithm. The task of the algorithm is
to determine the distance from obstacle P to the collision line. If [d] > rp, i.e., the distance of all
possible lines passing through the fixed point and the box under investigation will be higher than the
obstacle radius, then the corresponding box will be fully inside the obstacle-free workspace. On the
other hand, if [d] < rp, the box will be fully outside of the aforementioned workspace. Eventually,
if 0 € [d] — rp the box goes for further bisection. The result of the above procedure is illustrated in
Fig. 3(a). It is noteworthy that the green circles in the figures correspond to the lower limits of the
actuators.

3.3. Collision of edges of EE with obstacle

The procedure of obtaining the obstacle-free workspace is not complete yet. Indeed, the RPR limb
should be regarded as a segment instead of a line. Therefore, if ||A — [B]||, < ||A — P||2, then [B]
does not interfere with the obstacle and should be a member of obstacle-free workspace, Fig. 3(b).
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Fig. 4. The obstacle-free workspace, considering only edge B; B, of EE, for ¢ = /4. The result is undesirable
due to interval blow up.

In addition to the limbs, the interference between the edges of the EE and the obstacle should
also be taken into account. In the case of 3-DOF PMs, a simple EE can be regarded as a triangle.
Therefore, its edges belong to those lines passing through two intervals, i.e., the second case. In
this case, obtaining the distance from the obstacle to the line, using Eq. (5), leads to a very time
consuming and inefficient process. Figure 4 represents the obstacle-free workspace in the case that
only the collision of the edge B; B, with the obstacle is taken into consideration. The result shown
in Fig. 4 is not a desirable result. The white area, which shows unassigned boxes, comparing to
Fig. 3(b), is a vast area. Furthermore, there are too many red boxes and green boxes in the middle of
the workspace. From the previous results, we expected that the number of boxes would be lower. This
shows that computational load of these boxes is high. The latter problem is known as blow up. Blow
up is a common phenomenon in interval analysis, which appears when some intervals are multiplied
together and when degree of complexity of the interval function becomes high.*> Hence, a geometrical
methodology is proposed in order to eliminate those parts of the workspace for which edges of the
EE collide with the obstacle. Since the workspace is represented for a constant orientation, the slope
of the interval line is constant. In other words, by determining the dimensions (width and height)
and position of [B;], the position and dimensions of [B;] are known. The result of considering a
constant slope for the interval line passing through two boxes is represented in Fig. 5. In the latter
figure, the edge B) B, is regarded as a line and the workspace is obtained for a constant orientation
of ¢ = w /4. However, the result is not complete because B; B, should be regarded as a segment
line.

In order to find the obstacle-free workspace, only considering B; B,, a geometrical approach, based
on the fact that the workspace is obtained for a constant orientation, is combined with interval analysis.
For the sake of better understanding, first a simple example is discussed here. The example can be
observed in Fig. 6. Assuming that the problem consists in obtaining a shape within the workspace
which should be subtracted from the full workspace. In the constant orientation case, the slope of
edge B; B, of the EE is constant, in this example ¢ = 7w /4. The workspace consists of the set of
locations that point By can reach in the fixed frame, because the moving frame is attached to the EE
in B;. As it can be observed from Fig. 6, the shape is a rounded rectangle. A rounded rectangle is
a shape which is generated by sweeping the center of a circle along a segment line. It is a rectangle
having a rounded cap instead of right angle. An example of rounded rectangle is shown in Fig. 6.
The next step is to define the shape using geometrical reasoning. By considering three geometrical
constraints for the center of obstacle circle, the shape can be obtained: The center is subject to (a) the
line passing through point P and of slope ¢ (b) the interval [x¢] along x-component (c) interval [yc]
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Fig. 5. The obstacle-free workspace, considering only edge B B, of EE, for ¢ = /4. This is a modified result
of Fig. 4. A better solution is represented in Fig. 7(a).
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Fig. 6. Technique to find the shape that should be subtracted from the full workspace. This rounded rectangle

is the shape within the workspace that shows the locations of B; where edge B; B, collides with the obstacle
circle.

along y-component. For the case study of this paper, one has

[xc] =xp — [0, Bi B, cos ¢] @)
[vcel = yp — [0, Bi By sin¢]. (8)

Figure 7(a) illustrates the results of the foregoing methodology, considering only the collision of
edge B B, with the obstacle, for ¢ = 0. In this figure, a rounded-end rectangle inside the workspace
is eliminated. Upon considering all the three edges of the EE, Fig. 7(b) represents the obstacle-free
workspace of the 3-RPR planar PM for ¢ = /4.

Algorithm 1, in the appendix, represents the pseudo-code of the introduced method. It is based
on a branch and prune algorithm.*® Note that f, which indicates the number of actuated joint of the
mechanism, is 3 in the case of planar PM. In the upcoming section, we will extend the algorithm to
a higher DOF mechanism, i.e. 6-UPS PM and in that case f = 6. There is another variable which is
indicated by g, referring to the dimension of the box. In the case of planar PM, it is 2 and in the case
of spatial PM it is 3. In lines 5-7, the position of the three distal joints is determined as intervals in the
fixed frame. In line 9, for all limbs, the distance from the distal to the proximal joints, i.e., the length
of the actuator, is evaluated in order to be checked in line 15. In line 10, Line(A, B) is a function
which creates a collision line that passes through points A and B. Since the second argument is an
interval [B;], hence the collision line is an interval line. Distance(L, P) computes the Euclidean
distance from point P to line L. Therefore, [d;], i = 1, 2, 3, are intervals of possible distances from



Algorithm 1 The pseudo-code of the algorithm to obtain the obstacle-free workspace of a PM with
prismatic actuation. Lines followed by % are comments. \/ and /\ stand for logical OR and logical
AND, respectively.

1: Input: Design parameters of the mechanism; xp, yp and rp for properties of the obstacle; [B]
as search space; pmin and pmax as mechanical strokes; € as the desired accuracy; f, the degree of
freedom of the mechanism (i.e. 3 for 3-RPR planar PM and 6 6-UPS spatial PM); g dimension
of boxes.

Output: L;, as the constant-orientation obstacle-free workspace of the mechanism, L, as boxes,
which are outside the aforementioned workspace.

L

3: L(1) =[B], % Position of the EE in g dimensional space;

4: while IsEmpty(L) # 1 do

5: for i from 1 to f do

6: [Bil= L)+ (b; —bi—1)o,,; % Position of box [B;] in the fixed frame O,,
7: end for

8: for i from 1to f do

9: [pil = I|1A; — [Billl; % Length of prismatic actuator p;
10: [d;] = Distance(Line(A;, [B;]), P); % Distance from P to the line passing through

Ai and [Bl]

11: end for
12: for i from 1to f do

13: [t;] = Distance(Line([B;], [Bi+1]), P);

14: end for _

15: if Pmin < [P1,... 1 < pmax /\ rp < di, ¢\ 1A1..¢ = [Bi. flll2 < A1, 5 —
Pl2) A\ rp <t s then % - stands for supreme of and interval

16: ﬁin < [B]]

17 elseif (pmax < [11V .-V Pmax < [ofDV ..
([_/Ol] < ,Omin\/-- \/[,Of] < /Omin)\/ ce
(dy <rp NIA1 = [Billl2 > |1A1 = Pl) V...

@y <rp NlIA; ~ [B/l2 > A7 = PV ..

o <rp \/ Cen
?f <rp then

13: Low <— [B1]

19: else if Size([B;] > € then

20: L(end — 1, end) «<— Bisect([B;]) % Bisect [ B1] by the largest edge and add two new
boxes at the end of £

21: end if

22: ShiftLeft(Empty(L(1))) % Erase data of £(1) and shift one cell to the left

23: end while

P to the corresponding line of the ith actuator. Lines 12—14 are interval lines passing through two
intervals. Line 15 is the general if-clause for which if all [p;] are in the acceptable range and if all [d;]
distances from P to the collision lines are higher than rp, then the box under study will be a member
of the obstacle-free workspace, L;,. There is an extra condition to ascertain that if the distance from
the box [b;] to the fixed point A; is lower than the distance from P to A;, hence the box should be
inside the obstacle-free workspace. On the other hand, if only one of the aforementioned criteria is
violated, then the box will be moved to the outer boxes list, Loy In line 19, if the box under study
is partially inside the obstacle-free workspace and at least one of its dimensions is still larger than
the desired precision, then it will be bisected by the largest edge (line 20) and two new boxes will
be added at the end of list £. In line 22, ShiftLeft(Empty(L(1))), the first column of list £ will
be erased and all other elements of £ will be moved one cell back to fill the gap. In other words, in
each loop of the while-clause one box from list £ will be investigated. In line 22, it is known that the
aforementioned box is either located inside, outside or on the boundaries of the desired workspace;
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Fig. 7. The obstacle-free workspace of the mechanism shown in Fig. 1(a) by considering interval segment lines
passing through two intervals. Green boxes are inside and red boxes are outside the obstacle-free workspace. (a)
The case for which only B; B, collides with the obstacle, ¢ = 0. (b) Regarding all edges of the EE, i.e. B B,
BzB3 and B3Bl, ¢ = 7'[/4

therefore, there is no need to keep the box and erasing it will help the computer to free up memory.
The algorithm continues until the prescribed precision is reached.

4. Results for 3-RPR PM

So far, an interval-based method to obtain the obstacle-free workspace of planar PMs, for a 3-RPR
planar PM as a case study, has been introduced and the results of obstacle-free workspace, by
considering only the collisions of one limb with its environment, Fig. 3(b), and only considering
the collision of the edges of the EE, Fig. 7(b), are depicted. The next step is to put together all
obstacle-free workspaces of all limbs. Figure 8(a) represents the obstacle-free workspace of the
mechanism for a prescribed orientation, ¢ = /4, by considering the collisions of all limbs with the
obstacle. It should be noted that in Fig. 8(a), the obstacle is only inside the collision space of the first
limb and as it can be observed, for the second and third limbs, the obstacle is located outside the
corresponding red boxes. The latter is due to the fact that the represented workspace is depicted in
the fixed coordinate frame and since a constant orientation of the EE is considered, thus other limbs
should be translated into the fixed coordinate frame via the transformation of the moving frame. For
instance, in the case of the 3-RPR planar PM for ¢ = 7 /4, if we move the obstacle along the vector of
—{lx cos(m/4), I, sin(rw /)T, which is the negative of position of joint B, represented in the moving
frame, the obstacle will be located in the red boxes caused by considering the collisions of the second
limb and the obstacle.

The final step to obtain the obstacle-free workspace is to merge the obtained results and intersect
them, i.e., considering the limb collisions, Fig. 8(a), and all edges of the EE, Fig. 7(b), with the
obstacle. The final result is illustrated in Fig. 8 and as it could be expected, the obstacle divides the
workspace into three separate parts, which are not connected to each other. The obtained obstacle-free
workspace can be used in obstacle avoidance problems. As it is obtained via interval analysis, for all
paths, whose points are located inside the obstacle-free workspace, it is guaranteed that the paths are
free of obstacle collision.

The proposed interval-based method to obtain the obstacle-free workspace for planar PMs can
be readily extended to more complicated and spatial PMs. Indeed, one can solve the IKP and use
the obtained equations to determine the interval position of all joints and define the aforementioned
segment lines to obtain the distances to the obstacle. It takes approximately 3 min to compute the
obstacle-free workspace of the 3-RPR planar PM shown in Fig. 1(a), precision of 107 percent
of initial search space, with a 2 GHz processor, using INTLAB 6 toolbox. In the case of higher
DOF mechanisms having more links, collision computation of each limb will be added into the
computational time.



Table II. Geometric parameters of the 6-UPS Spatial PM under study (all lengths are given in mm).

i 1 2 3 4 5 6
Xq; 92.58 132.58 40.00 —40.00 —132.58 —92.58
Va; 99.64 30.36 —130.00 —130.00 30.36 99.64
Zq 23.10 23.10 23.10 23.10 23.10 23.10
Xb, 30.00 78.22 48.22 —48.22 —78.22 —30.00
Vb, 73.00 —10.52 —62.48 —62.48 —10.52 73.00
2, —-37.10 —37.10 —37.10 —37.10 —37.10 —37.10
Oivin 454.5 454.5 454.5 454.5 454.5 454.5
Pl 504.5 504.5 504.5 504.5 504.5 504.5
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Fig. 8. The obstacle-free workspace of the 3-RPR planar PM shown in Fig. 1, for ¢ = 7 /4, (a) considering limb
collision only (b) final result considering all collisions. Green boxes are inside and red boxes are outside the
obstacle-free workspace, respectively. (a) Only limbs collisions are taken into account, ¢ = 7 /4. (b) Intersection
of all obstacle-free workspaces including all limbs and all edges of the EE.

For the sake of simplicity, the workspace of the mechanisms studied in this paper is represented
for a constant orientation. This simplification does not affect the generality of the method, because it
can be done for different orientations and represent a higher dimension collision-free workspace (3D
workspace in case of planar mechanism for which z-axis is the orientation of the EE about z-axis).

5. Results for a 6-UPS PM

In this section, the aforementioned method is applied to obtain the obstacle-free workspace of a
6-UPS spatial PM. The proposed method is free from dimensional restriction and it can be applied
to PM with more than two DOF, by only paying the computational time cost. A 6-UPS spatial PM
is shown in Fig. 9(a) and its geometric parameters are represented in Table II. As it can be observed
from Fig. 9, a sphere obstacle, P, is located inside the workspace of the mechanism. The workspace
of the mechanism is obtained by using interval analysis, regardless of the obstacle, Fig. 9(b).!7-3® The
workspace is depicted considering mechanical stroke of prismatic joints and spherical and universal
joint limits.

The main advantage of using this method is that it could be readily extended to 6-DOF; in fact, it
is a feature of the proposed method. Algorithm 1 can be directly used to determine the obstacle-free
workspace of the 6-UPS spatial PM. By choosing the number of DOF f and the dimension of the
box g, the algorithm computes the collision-free workspace of the corresponding PM, i.e., 3-RPR or
6-UPS. In line 6, the positions of all vertexes of the EE are obtained. Other lines of the algorithm is
the same as before, by having in mind that the command Line creates a spatial line in the current
case. Such 3D interval lines are illustrated in Fig. 10.
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Fig. 9. (a) 6-UPS spatial PM and (b) the corresponding workspace considering actuation stroke, via interval

analysis. P =[100, 0, 500], rp = 10. (a) A 6-UPS spatial PM and a sphere obstacle P.% (b) The sliced
constant-orientation workspace of a 6-UPS spatial PM, via interval analysis.
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Fig. 10. Two types of interval lines in case of 3D workspace. (a) Interval line passing through one point, Aj,
and one 3D box, [B,]; link A,Bj¢ in Fig. 9(a). (b) Interval line passing through two 3D boxes, [B;] and [B:];
edge B By3 of the EE in Fig. 9(a).

In the case of a spatial PM, corresponding interval lines are derived from 3D expressions, and the
distance from line to the obstacle is expressed as follows:

J— l(x2 — x1) x (X1 — Xo)|
12 — Xyl

, C))

in which, x; and x; are two points on the line, in our case, positions of the U joint and S joint.
Moreover, X stands for the center point of the obstacle.

Considering the limited workspace of the 6-UPS spatial PM, only two limbs of the mechanism
clash with the obstacle, which are A, Bjg and Ase Bjg. By pursuing the same procedure, as introduced
in the previous section for 3-RPR planar PM, the obtained workspace could be computed in which
only the collisions of one limb with the obstacle is considered, Fig. 11. The workspace is shown
in two views, namely, top view, Fig. 11(a), and sectioned isometric view, Fig. 11(b). In this case, a
conical part of the workspace is removed.

The final workspace of the mechanism, while considering the collisions of one limb with the
obstacle, is represented in Fig. 12. Since the workspace is obtained for a constant orientation and the
workspace of the 6-UPS spatial PM is very limited, the moving platform will not collide with the
obstacle. The workspace is in a constant orientation because there is no graphical representation for
a workspace in a dimension higher than three. In Fig. 12, two views of the obstacle-free workspace is
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Fig. 11. Obstacle-free workspace of a 6-UPS Spatial PM, considering the collisions of one limb with the obstacle.
(a) Top view (b) Sectioned isometric view.
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Fig. 12. Obstacle-free workspace of a 6-UPS Spatial PM, considering the collisions of all limbs with the obstacle,
for the constant orientation of the EE at reference configuration, i.e. O for all three Euler angles. (a) Top view
(b) Sectioned isometric view.

represented, which are top view, Fig. 12(a), and sectioned isometric view, Fig. 12(b). In the case that
the obstacle is bigger than the one considered here, other limbs may collide with it and there will be
more subtracted conical area in the workspace.

Computational time and required memory of the process is highly dependent of the desired
precision. It can be improved by choosing a proper initial search box to avoid unnecessary computation
of the area outside of the workspace. Moreover, a symmetric and simple design of the robot may lead
to a lower computing time. For this case study, using a 2 GHz CPU and 4 GB of ram and INTLAB
toolbox in Matlab, it took almost three minutes to obtain the final result.

6. Conclusion
In this paper, an interval-based methodology was introduced in order to obtain the obstacle-free
workspace of two Parallel Manipulators (PMs), namely a 3-RPR PM and 6-DOF Gough—Stewart
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platform. The proposed approach for the obstacle-free workspace and the corresponding results were
represented. First, the collisions of proximal segment lines which pass through one point and one
interval with the obstacle were investigated. Then a more general case in which the segment line
passes through two intervals was used to determine the collisions between the obstacle and medial
and distal limbs and also with edges of the EE. Indeed, the collision-free workspace of a 6-UPS spatial
parallel manipulator was traced by using the proposed approach. To the best of authors’ knowledge,
this paper can be regarded as the first study on the collision-free workspace of parallel manipulator
using interval analysis and opens an avenue to extend it to more complex parallel manipulators.
However, the proposed approach in this paper could be well extended to parallel manipulator with
one prismatic joint connecting the base to the EE directly. In fact, due to the limitation of interval
analysis, although it is very reliable, it is a computationally intensive approach and in the case of
high degree and complex equations, it may lead to very high computing time. Ongoing works deal
with the collision detection of limbs between themselves and EE which is an important issue for the
determination of the collision-free workspace of cable-driven parallel robots.
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