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ABSTRACT 8 

Due to physically demanding tasks in construction, workers are exposed to significant safety and health 9 

risks. Measuring and evaluating body kinematics while performing tasks helps to identify the fundamental 10 

causes of excessive physical demands, enabling practitioners to implement appropriate interventions to 11 

reduce them.  Recently, non-invasive or minimally invasive motion capture approaches such as vision-12 

based motion capture systems and angular measurement sensors have emerged, which can be used for in-13 

field kinematics measurements, minimally interfering with on-going work. Given that these approaches 14 

have pros and cons for kinematic measurement due to adopted sensors and algorithms, an in-depth 15 

understanding of the performance of each approach will support better decisions for their adoption in 16 

construction. With this background, the authors evaluate the performance of vision-based (RGB-D sensor-, 17 

stereovision camera-, and multiple camera-based) and an angular measurement sensor-based (i.e., an optical 18 

encoder) approach to measure body angles through experimental testing. Specifically, measured body 19 

angles from these approaches were compared with the ones obtained from a marker-based motion capture 20 

system that has less than 0.1 mm of errors. The results showed that vision-based approaches have about 5-21 

10 degrees of error in body angles while an angular measurement sensor-based approach measured body 22 

angles with about 3 degrees of error during diverse tasks. The results indicate that in general, these 23 

approaches can be applicable for diverse ergonomic methods to identify potential safety and health risks, 24 
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such as rough postural assessment, time and motion study or trajectory analysis where some errors in motion 25 

data would not significantly sacrifice their reliability. Combined with relatively accurate angular 26 

measurement sensors, vision-based motion capture approaches also have great potential to enable us to 27 

perform in-depth physical demand analysis such as biomechanical analysis that requires full-body motion 28 

data, even though further improvement of accuracy is necessary.  Additionally, understanding of body 29 

kinematics of workers would enable ergonomic mechanical design for automated machines and assistive 30 

robots that help to reduce physical demands while supporting workers’ capabilities.  31 

Keyword: Body Kinematics, Motion Capture, Construction 32 

INTRODUCTION 33 

Construction workers are frequently exposed to excessive physical demands in a relatively dangerous and 34 

unhealthy working environment that may lead to health and safety issues [1]. Despite recent improvements 35 

by adopting best practices (e.g., tool box meetings and structured hazard analysis processes) to deal with 36 

these issues, the construction sector still remains as one of the hazardous industries, showing higher rates 37 

of fatal and nonfatal injuries than other industries [2]. Consequently, evaluating and controlling physical 38 

demands from the job, equipment and environment not to exceed one’s capabilities is essential to prevent 39 

and mitigate potential health and safety risks.  40 

In-depth evaluation and control of physical demands should begin with measuring body kinematics that 41 

include body position, displacement, velocity and acceleration [3]. Human motions not only create loads 42 

on the involved musculoskeletal system (e.g., muscles and tendons) by themselves or combined with 43 

external forces, but they also have an important role in accompanying an action by transmitting forces 44 

generated from a body (i.e., active muscle contraction) to the external environment [4]. As a result, 45 

kinematics data can provide contextual information on the fundamental causes of changing physical 46 

demands as a worker’s behavior is affected by physical work environmental factors (e.g., geometry of the 47 

workplaces, temperature, and types of tools), as well as individual factors (e.g., anthropometry and 48 
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preferred working techniques) [5]. Also, enhanced awareness of body kinematics of workers helps to 49 

support effective design of automated machines and assistive robotics that can not only reduce physical 50 

demands from work, but also enhance workers’ capabilities by improving ergonomics in human-machine 51 

(or robot) interaction [6,7]. Such an understanding of workers body kinematics would also inform 52 

contemporary research in construction ergonomics and robotics, given current developments in architecture, 53 

gerontechnology, exoskeletons, anthropomorphic robotics, augmented reality, and industrialized 54 

construction environments because they all demand highly interdependent and integrated kinematics 55 

systems solutions [9-15]. 56 

Generally, measuring body kinematics is enabled by using motion capture techniques that are based on 57 

optical, inertial, mechanical, magnetic or acoustic approaches. Among them, optical motion capture systems 58 

are the most popular solution to obtain 3D full-body motion data by tracking active or passive markers 59 

attached to the body. They have been widely used for diverse applications including clinical motion analysis 60 

and biomechanical study. Despite their precision and reliability, their applications in practice have been 61 

limited due to the need for complex laboratory settings, the high cost of devices and the time consuming 62 

procedure for data collection. Their most critical drawback is the need for simulating tasks in a controlled 63 

environment by assuming that captured motions correspond to typical activities under real conditions [8]. 64 

However, considering the continuously changing and unstructured nature of working environments in 65 

construction, it is hard to simulate construction tasks in a controlled setting by reflecting all possible 66 

situations that would exist on sites. As a result, an effective and easily accessible means for collecting in-67 

field motion data at construction sites is required to evaluate potential safety and health risks of workers 68 

while performing tasks.    69 

Recently, vision-based (i.e., markerless) motion capture approaches have gained interest. These approaches 70 

appear to be promising as an in-field motion data collection method by addressing some of the major 71 

challenges that exist with optical motion capture systems. For example, as these vision-based approaches 72 

obtain body kinematics data by processing 2D or 3D images directly collected from real conditions, they 73 
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don’t need complex laboratory settings or markers attached to a human body. Also, 2D or 3D images can 74 

be collected using any type of existing ordinary video cameras or affordable 3D image sensing devices (e.g., 75 

RGB-D sensors and stereovision cameras). The ease of use, non-invasiveness and cost-effectiveness of 76 

vision-based approaches can broaden the spectrum of their applications for job analysis under real 77 

conditions. Additionally, the use of body fixed sensors such as Inertial Measurement Units (IMUs) or 78 

angular measurement sensors (e.g., goniometers, optical encoders, strain gauges or magnetic sensors) has 79 

provided effective solutions for in-field motion measurement [8]. Combined with a wireless data 80 

transmission capability, these approaches allow us to obtain real-time motion data. For 3D full-body 81 

kinematic measurements, several commercialized IMU-based (e.g., XsensTM (Xsens North America Inc., 82 

xsens.com)) or mechanical (e.g., Gypsy 7TM (Meta Motion, metamotion.com)) motion capture systems are 83 

available, but the need for wearing a full-body suit equipped with sensors may interfere with on-going work. 84 

Instead, wearing light-weight and wearable angular measurement sensors attached only at a specific body 85 

joint of interest may minimize workers’ discomfort during performing tasks, though they only provide one 86 

degree of freedom joint angle.  87 

To measure workers’ body kinematics non-invasively or minimally invasively at construction sites, both 88 

vision-based and angular measurement sensor-based approaches are viable means, although several 89 

limitations such as sensitivity to self-occlusions (i.e., occlusions of specific body joints by other body parts) 90 

of vision-based approaches and limited use of angular measurement sensors still remain [8,16-18]. Given 91 

the pros and cons of these approaches, an in-depth understanding of the performance of each approach can 92 

lead to better decisions for appropriate uses of these approaches in construction. 93 

With this background, this paper reports on the evaluation of motion data obtained from vision-based and 94 

angular measurement sensor-based approaches through an experimental study. Specifically, three emerging 95 

vision-based approaches for collecting motion data during construction tasks are selected. Those are: 1) 96 

RGB-D sensor-based [17]; 2) stereo-vision camera-based [19]; and 3) multiple camera-based [16,18] 97 

approaches. An optical encoder, which is a potentiometer-based electro-goniometers [20], is applied as an 98 
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angular measurement sensor. Also, a marker-based motion capture system (OptotrakTM, Northern Digital, 99 

Inc., Waterloo, Canada) is used as the ground truth of motion data. To compare the accuracy of motion data, 100 

selected joint angles from each approach are compared with the ones from OptotrakTM during performance 101 

of several dynamic tasks. Based on the results, the performance of these approaches and their potential 102 

application areas for analyzing construction tasks are discussed.  103 

 104 

STATE-OF-THE-ART IN IN-FIELD BODY KINEMATICS MEASUREMENTS 105 

This section describes technical aspects and procedures of the state-of-the-art approaches that enable us to 106 

non-invasively or minimally invasively measure body kinematics while workers perform tasks at 107 

construction sites. Those include: 1) vision-based approaches, and 2) angular measurement sensor-based 108 

approaches. Also, by reviewing previous work on these approaches, the pros and cons of each approach are 109 

summarized.  110 

Vision-based Motion Capture Approaches 111 

Vision-based approaches aim to extract full-body motion data by processing 2D or 3D images [21]. 112 

Previous research efforts have developed several vision-based approaches: 1) RGB-D sensor-based [17, 113 

22-25]; 2) stereo-vision camera-based [19, 53]; and 3) multiple camera-based [16,18] approaches. While 114 

RGB-D sensor- and stereovision camera-based approaches take an advantage of the 3D imaging sensors 115 

that directly provide 3D information on scenes, a multiple camera-based approach relies on photogeometric 116 

acquisition of 3D body joint locations (i.e., 3D reconstruction) from tracked 2D joint locations of multi-117 

view images.  118 

RGB-D sensor-based approach 119 

Several computer vision algorithms have been developed to estimate human poses by detecting the 3D 120 

positions of body joints directly from RGB-D images [22-25]. Recently, motion capture solutions such as 121 
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iPi Desktop Motion Capture (www.ipisoft.com) and OpenNI (www.openni.org) that use a Microsoft Kinect 122 

sensor have provided effective solutions for extracting skeleton-based motion data from 3D images 123 

obtained by RGB-D sensors.  124 

The Kinect sensor that was initially developed for video gaming is capable of providing both depth and 125 

color information at the resolution of 640×480 and the rate of 30 frames per second [26]. This sensor is 126 

equipped with the infrared (IR) projector, the color camera and the IR camera. Using the projected 127 

structured IR lights, it measures the depth, reconstructing 3D scenes with point cloud [27]. Combined with 128 

the 3D sensing feature of the Kinect, the iPi Desktop Motion Capture software provides a marker-less 129 

solution for collecting full-body motion data. Figure 1 shows an example of an RGB-D image with a pre-130 

defined body model, and the corresponding motion data. Basically, the algorithm in this software is model-131 

based, which means that motion data can be tracked by matching the surface of a pre-defined body model 132 

with a depth image (Figure 1A). Then, the tracked motion data can be exported into any types of motion 133 

data formats such as the Biovision Hierarchy (BVH) motion data (Figure 1B). This software also provides 134 

several post-processing algorithms to refine tracking and filtering algorithms for noise removal and 135 

smoothing.  136 

 137 
Figure 1. RGB-D Sensor (i.e., KinectTM)-based Motion Capture 138 

 139 

http://www.ipisoft.com/
http://www.openni.org/
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The following are advantages of an RGB-D sensor-based motion capture approach: 1) no need for markers 140 

or sensors attached to human body, which allows for motion capture without interfering with on-going work; 141 

2) low cost (e.g., approximately 150 – 250 USD); 3) an easy-to-use and easy-to-carry means for in-field 142 

motion data collection [17]. Technically, this approach is robust to self-occlusions because the iPi software 143 

provides an inverse kinematics algorithm that can adjust incorrectly tracked body parts due to occlusions. 144 

However, as the Kinect uses IR light, the use of this approach is limited only in an indoor environment due 145 

to its sensitivity to sunlight. Also, the short operating range of the Kinect sensor (within 4 m) is one of the 146 

disadvantages of this approach.   147 

Stereovision camera-based approach 148 

A stereovision system is designed to extract 3D information from a stereo image pair [28]. Stereo vision 149 

works in a similar way to 3D sensing in human vision. It begins with identifying image pixels that 150 

correspond to the same point in a physical scene observed by multiple cameras. The 3D position of a point 151 

can then be established by triangulation using a ray from each camera. The more corresponding pixels 152 

identified, the more 3D points that can be determined with a single set of images. Correlation stereo methods 153 

attempt to obtain correspondences for every pixel in the stereo image, resulting in tens of thousands of 3D 154 

values generated with every stereo image. A Bumblebee XB3™ manufactured by Point Grey Technologies 155 

(www.ptgrey.com) is one of the widely used stereovision cameras. The stereo camera measures line-of-156 

sight distance using two lenses with a narrow baseline in a self-contained unit. This allows for both optical 157 

and depth data to be collected with few environmental restrictions (e.g. outdoor environments) and limited 158 

field-of-view.  159 

Starbuck et al. [19] proposed a stereovision camera-based motion capture approach that addresses the short 160 

operating range of an RGB-D sensor. The 3D point cloud data collected from the stereovision camera was 161 

converted into a format used by an existing kinematic modeling software solution (i.e., iPi Motion Capture 162 

software) designed for use with RGB-D sensors. Then, using the same algorithm used in a RGB-D sensor-163 

based approach, skeleton-based motion data was extracted from the 3D point cloud data. Through a 164 

http://www.ptgrey.com/
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laboratory test, the proposed method was proved to be comparable to the traditional RGB-D sensor-based 165 

approach [19].  166 

A stereovision camera-based approach provides additional advantages, beyond the benefits from the RGB-167 

D sensor-based approach. For example, the use of this approach does not suffer from environmental 168 

conditions, allowing both indoor and outdoor applications. Also, the operating range of the stereovision 169 

camera is flexible according to lens field-of-view, lens separation, and image size [29]. However, as 170 

computing depth information from two images is a computationally intensive task, the frame rate relies on 171 

the performance of hardware [29].  172 

Multiple camera-based approach 173 

A multiple camera-based motion capture approach aims to estimate the 3D locations of body joints by 174 

processing 2D images from two different views using multiple video cameras or a 3D camcorder that has 175 

two lenses in one camera [16]. Han and Lee [16] proposed a motion capture process that consists of: 1) 2D 176 

pose estimation from one view of images; 2) correspondence matching of body joints on the other view of 177 

images; and 3) 3D reconstruction of body joints using the corresponding joint locations identified. However, 178 

this approach suffered from the need for extensive training images to detect joint locations on testing images, 179 

and significant computation time for 2D pose estimation. To address this issue, Liu et al. [18] modified Han 180 

and Lee [16]’s approach by proposing body joint tracking that accelerates the 2D pose estimation process 181 

without the prior knowledge (training images for joint detection). Figure 2 shows an overview of the 182 

modified approach.   183 
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 184 

Figure 2. An Overview of a Multiple Camera-based Motion Capture Approach 185 

 186 

The main idea of 2D joint tracking is that continuous tracking of body joints on consecutive image frames 187 

enables fast estimation of 2D skeletons [18]. Once the target joints are initialized in the first frame (Figure 188 

2A), the algorithm tracks the joints in consecutive images by detecting the image patch with the most similar 189 

color histogram with that of the initialized target. To reduce computation time, a modified particle filter 190 

tracker was applied to specify a number of reliable candidates for the targets in the subsequent frames [30]. 191 

The tracking of different body joints is performed independently, resulting in a 2D skeleton model (Figure 192 

2B). The next process is to identify the corresponding body joints on the image from the other viewpoint 193 

by comparing the features of a pixel with the feature descriptors such as SIFT (Scale-Invariant Feature 194 

Transform) [31] and SURF (Speeded Up Robust Features) [32,33] (Figure 2C). To obtain more reliable 195 

corresponding locations of body joints, the search space is constrained by epipolar geometry [34] and 196 

homography [16]. Once pairs of corresponding body joints are detected from two different viewpoints of 197 

images, a 3D reconstruction algorithm detects the 3D positions of each joint through triangulation, resulting 198 
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in 3D full-body skeleton-based motion data as shown in Figure 2D. Camera intrinsic and extrinsic 199 

parameters required for 3D reconstruction are obtained by using Zhang [35]’s camera calibration technique.  200 

The strength of a multiple camera-based motion capture approach is that we can use ordinary video cameras 201 

to obtain motion data, and thus this approach is less hardware dependent than RGB-D sensor- and 202 

stereovision camera-based approaches. Also, it is not only cost effective, but also we can benefit from zoom 203 

lenses that collect video images from a distance. Even though environmental conditions such as 204 

illuminations may affect the performance of 3D skeleton extraction, post image processing enables us to 205 

obtain clear images even in a noisy environment. From previous studies that investigated the accuracy of 206 

this approach, about ± 10 cm of errors in body length and up to 20 degrees of errors in joint rotation angles 207 

have been reported [16,18]. These errors came from either incorrectly detected joint locations or inaccurate 208 

camera calibration process. Especially, the performance of this approach was significantly affected by 209 

frequent self-occlusions of forearms (e.g., elbows and hands), which led to larger errors [16,18].  210 

Angular Measurement Sensor-based Approaches 211 

Angular measurement sensor-based approaches directly measure joint angles using sensors attached to 212 

specific body joints without the need for any mathematical transformation in space or time. Examples of 213 

sensors include goniometers and strain gauges.  214 

Goniometers 215 

Goniometers have been used to measure joint range of motion. Traditional goniometers were made of a 216 

mechanical compass that measures the static relative angle between two body segments [36]. Modern 217 

goniometers are made of an electrical compass (potentiometer-based) which can measure static and 218 

dynamic relative angles [36,37]. The potentiometer changes its resistance with the rotation of the two body 219 

segments connected to it. The principle of operation is that the voltage drop (V) across the potentiometer 220 

due to a constant electric current (I) passing through it will depend on the resistance (R) following Ohm’s 221 

law:  222 
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V = IR                                                                           (1) 223 

Calibration of the potentiometer (goniometer) from 0o to a full range of motion is conducted once to produce 224 

a calibration chart that describes the relationship between the change in joint angle and the measured voltage. 225 

The use of potentiometer allows for detection of rotary motion as well as for placement of the sensor at 226 

center of joint rotation. 227 

Strain gauges 228 

Strain gauges work on the same principles as goniometers except that the sensing element in a strain gauge 229 

responds to translation (change in length (∆L)) represented as change in resistance (∆R): 230 

∆R/R = ∆L/L                                                                     (2) 231 

Measuring the joint angle depends on the placement of the strain gauge with respect to the axis of joint 232 

rotation [38]. Misalignment can produce significant errors due to the complexity of placing a translational 233 

sensor to detect rotatory motion [39]. 234 

 235 

EXPERIMENTAL COMPARISON OF IN-FIELD MOTION CAPTURE APPROACHES 236 

The section describes an experimental test to compare the accuracy of three vision-based motion capture 237 

approaches and one angular measurement sensor-based approach: 1) an RGB-D sensor-based approach; 2) 238 

a stereovision camera-based approach; 3) a multiple camera-based approach; and 4) an optical encoder (i.e., 239 

a potentiometer-based electrogoniometer).  240 

Testing Conditions 241 

Vision-based motion capture approaches and an angular measurement sensor-based approach were tested 242 

through two independent testing sessions as shown in Figure 3. An exoskeleton is used to align the optical 243 

encoder with the knee flexion axis of rotation. The straps used to attach the exoskeleton to the lower limb 244 
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were indistinguishable from the subject’s clothes and skin.  As a result, they could affect performance of 245 

image processing for the vision-based approaches, especially the multiple camera-based approach that 246 

tracks body joints using color information. To avoid this, the angular measurement sensor-based approach 247 

was tested in a separate session from the vision based approaches.  248 

Figure 3 shows experimental conditions for each testing session. In the session for vision-based approaches 249 

(Figure 3A), three image sensors were located in front of a subject to collect 2D or 3D images from a front 250 

view. The KinectTM (640×480 resolution with 30 frames per second (fps)), Bumblebee XB3TM stereovision 251 

camera (320×240 resolution with about 10 fps) and 3D camcorder (1920×1080 resolution with 29 fps) were 252 

positioned 4, 6 and 8 meters away from the subject, respectively. The positions of the KinectTM and 253 

Bumblebee XB3TM were determined based on the optimal operating distance proposed by the manufacturer. 254 

As the 3D camcorder has zoom lenses, its position was selected to obtain a clear view of the subject’s whole 255 

body. Motion data obtained from an OptotrakTM system served as a ground truth. The OptotrakTM uses 256 

active markers attached on the center of body joints to track body motions. If the markers are captured by 257 

at least one of cameras, the system can provide accurate 3D positions of the markers with an accuracy of 258 

up to 0.1 mm. The markers were attached to the subject’s center and left body joints, including neck, low 259 

back, shoulder, elbow, wrist, hip, knee and ankle joints. Two OptotrakTM cameras were positioned to the 260 

left side of the subject to prevent possible data loss due to occlusions of the markers.  261 

In the session for the angular measurement sensor-based approach (Figure 3B), the optical encoder (550 262 

samples per second) was positioned across the left knee to measure knee-included angles, the optical 263 

encoder was placed using a specially designed exoskeleton described in [37], reducing the effect of soft 264 

tissue movements. To obtain ground truth angles, active markers were attached to left hip, left knee and left 265 

ankle joints. Two OptotrakTM cameras were also positioned to the left side of the subject.  266 
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 267 

 268 
Figure 3. Experimental Settings and Testing Devices 269 

 270 

In each session, human motion was simultaneously recorded with these devices. For the synchronization of 271 

motion data, the subject was asked to hold a T-pose at the beginning of the recording. Data synchronization 272 

was manually performed by identifying the T-pose frame across all measurement techniques. 273 

Testing Tasks  274 

To compare the accuracy of motion data for diverse tasks, one male subject simulated three types of tasks 275 

as shown in Figure 4: 1) basic tasks with movements of specific body parts; 2) lifting and placing; and 3) 276 

walking.  The basic tasks were designed to test the measurement accuracy for simple motions that involve 277 
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movements of specific body parts. Those include arm-raising to the front and the side, elbow-bending, 278 

back-bending, back-twisting and knee-bending, which are also common motions in manual work such as 279 

construction. For more dynamic motions involving coordinated body movements, a lifting and placing task 280 

was selected (also common in construction). Specifically, the subject was asked to simulate the lifting task 281 

by lifting an imaginary object from the ground and placing it to the side. Lastly, a walking task was intended 282 

to test the measurement accuracy for rapid repetitive movements. To perform identical tasks for two 283 

independent sessions, the subject was asked to practice the task in question for several times before 284 

recording two test sessions.  285 

 286 
Figure 4. Testing Tasks 287 

 288 
Measures for Accuracy Comparison 289 

As measures of motion data accuracy for vision-based motion capture approaches, previous studies have 290 

used 3D positions of body joints, body link lengths or joint rotation angles [16-19]. However, due to the 291 

difference in body models used in each vision-based approach, the use of these measures may lead to bias 292 
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in accuracy comparison. For example, joint locations and corresponding body link lengths in a multiple 293 

camera-based approach can be calculated based on the measured joint locations of the subject. On the other 294 

hand, the RGB-D sensor- and stereovision camera-based approaches capture motions by matching 3D point 295 

clouds with a pre-defined body model, and thus the body link length from the captured motion data is 296 

affected by anthropometric mismatch between the model and subject. Also, while both RGB-D sensor- and 297 

stereovision camera-based approaches provide motion data in a BVH file format that defines body postures 298 

using joint rotational angles, these angles are not available in the motion data from the multiple camera-299 

based approaches used in this test [16, 18]. 300 

To address this issue, the authors define new body angles that are available from all vision-based approaches 301 

as shown in Figure 5. Specifically, the body angles of each body part were defined as the angles between 302 

the vector of the body segments and the vertical vector. For example, the vector of the upper arm is obtained 303 

using 3D shoulder and elbow locations, and the angle between the vector of the upper arm and the vertical 304 

vector (y-axis) is calculated as an upper arm (i.e. shoulder) angle. The other body angles such as lower arm 305 

(i.e., elbow), trunk flexion, upper leg (i.e., hip) and lower leg (i.e., knee) angles are calculated using the 306 

same method. However, the trunk axial rotation angle that indicates how much the back is twisted was 307 

computed by using shoulder and hip vectors that were projected onto x-y plane. As the motion data from 308 

the three vision-based approaches and OptotrakTM provides 3D locations of body joints, all these angles can 309 

be calculated using vectors defined by two selected 3D joint locations, enabling accuracy comparison.   310 

To measure accuracy of body angles from an angular measurement sensor-based approach, knee-included 311 

angles directly obtained from an optical encoder were compared with the angles determined by 3D locations 312 

of markers attached to hip, knee and ankle joints.  313 
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 314 

Figure 5. Body Angles to be Compared 315 

 316 

Ground truth body angles were calculated based on 3D marker positions from OptotrakTM. The markers 317 

were attached to the skin near the joints, not the centers of body joints. As a result, body angles from 318 

OptotrakTM may slightly differ from the angles from vision- and angular measurement sensor-based 319 

approaches. To adjust possible discrepancies, the body angles were calibrated using the angles from a T-320 

pose. Also, the body angles from each approach were smoothed using a Savitzky–Golay filter [40] that has 321 

been widely used for post processing of motion data [41].  322 

Results  323 

Vision-based motion capture approaches 324 

Figure 6 shows plots of body angles from vision-based motion capture approach during one cycle of diverse 325 

basic tasks. Through the visual investigation, it was found that overall body angles from each approach 326 

were closely matched with body angles from an OptotrakTM, while back (flexion and rotation) and upper 327 

leg angles from a multiple camera-based approach in particular showed some discrepancies during the 328 

middle of the tasks.   329 
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 330 
Figure 6. Comparison of Body Angles from Vision-based Approaches during Basic Tasks 331 

 332 

For the quantitative assessment during these tasks, mean and standard deviation of absolute errors (MAEs 333 

and S.D. of AEs), and maximum and minimum errors (MAX and MIN) in body angles between four 334 

different approaches and an OptotrakTM were calculated as shown in Table 1. An RGB-D sensor-based 335 

approach showed the most accurate (4.2 degrees of average MAEs) and reliable (2.8 degrees of average 336 

S.D.) results for all body angles. A stereovision camera-based approach also provided relatively accurate 337 

motion data, resulting in 6.2 degrees of MAE, but showed higher variations (4.2 degrees of average S.D.) 338 

than an RGB-D sensor-based approach. The least accurate results (11.6 degrees of average MAEs) were 339 

obtained from a multiple camera-based approach, especially due to relatively larger errors in lower arm 340 
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(16.2 degrees of MAEs), truck flexion (12.5 degrees of MAEs) and trunk rotation (21.9 degrees of MAEs) 341 

angles than other body angles.  342 

Table 1. Accuracy of Body Angles from Vision-based Approaches during Basic Tasks 343 
(Unit: degrees) 344 

Notes: MAE (Mean Absolute Error), AE (Absolute Error), S.D. (Standard Deviation), MAX (Maximum Value of 345 
Errors), MIN (Minimum Value of Errors) 346 

 347 

Figure 7 shows body angles from vision-based approaches during one cycle of a lifting and placing task. 348 

Even for a complex task that involves simultaneous whole body movements, all the approaches provided 349 

Body Angles Metrics RGB-D Sensor 
(KinectTM) 

Stereovision 
Camera 

(Bumblebee 
XB3TM) 

Multiple 
Camera 

(3D 
Camcorder) 

A1. Arm-raising to the front 

Upper Arm 
MAE 5.9 3.0 11.3 
S.D. of AE 2.5 2.6 6.8 
MIN/MAX -9.9 to -0.6 -3.2 to 9.9 -22.0 to 12.0 

A2. Arm-raising to the side 

Upper Arm 
MAE 4.7 8.2 7.6 
S.D. of AE 2.3 3.8 4.2 
MIN/MAX -11.1 to -1.9 -14.3 to -0.3 -16.8 to 7.6 

A3. Elbow-bending    

Lower Arm 
MAE 4.9 8.1 16.2 
S.D. of AE 3.4 4.0 4.2 
MIN/MAX -9.8 to 8.6 -2.7 to 14.0 10.1 to 24.5 

A4. Back-bending    

Back Flexion 
MAE 2.5 15.5 12.5 
S.D. of AE 2.1 11.2 12.5 
MIN/MAX 7.6 0.0 39.0 
MIN -3.9 -34.3 -19.7 

A5. Back-twisting    

Back Axial Rotation 
MAE 3.1 11.0 21.9 
S.D. of AE 1.9 8.6 18.5 
MIN/MAX -6.5 to 4.6 -23.8 to 8.6 -64.6 to 22.5 

A6. Knee-bending    

Upper Leg 
MAE 5.4 4.3 9.8 
S.D. of AE 5.5 4.6 12.0 
MIN/MAX -13.7 to 3.3 -14.0 to 9.3 -4.9 to 32.4 

Lower Leg 
MAE 1.0 2.4 2.7 
S.D. of AE 1.1 2.6 2.8 
MIN/MAX -1.7 to 4.1 -6.5 to 7.6 -3.3 to 8.1 

Average MAE 4.2 6.2 11.6 
Average S.D. 2.8 4.4 8.1 
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robust body angle measurements for all body parts. Unlike basic tasks, any severe discrepancies in body 350 

angles from a multiple camera-based approach were not observed.  351 

 352 
Figure 7. Comparison of Body Angles from Vision-based Approaches during a Lifting and Placing Task 353 

 354 

Average MAEs during a lifting and placing task were 6.5 (RGB-D sensor-based), 6.6 (stereovision camera-355 

based), and 10.9 (multiple camera-based) degrees, showing similar errors in body angles during basic tasks 356 

(Table 2). Both RGB-D sensor- and stereovision camera-based approaches showed robust results in this 357 

task, even though errors in body angles in a RGB-D sensor-based approach were slightly increased. Again, 358 
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in motion data from a multiple camera-based approach, larger errors in back (torso flexion and rotation) 359 

angles were observed while upper arm angles were relatively accurate.  360 

Table 2. Accuracy of Body Angles from Vision-based Approaches during a Lifting and Placing Task 361 
 (Unit: degrees) 362 

Body Angles Metrics RGB-D Sensor 
(KinectTM) 

Stereovision 
Camera 

(Bumblebee 
XB3TM) 

Multiple Camera 
(3D Camcorder) 

Upper Arm 
MAE 3.5 4.6 4.4 
S.D. of AE 2.4 3.8 3.3 
MIN/MAX -6.3 to 4.4 -13.1 to 6.5 0.3 to 10.4 

Lower Arm 
MAE 3.6 7.6 7.5 
S.D. of AE 1.9 4.7 3.6 
MIN/MAX -4.9 to 8.3 -12.1 to 16.2 -19.3 to 11.1 

Back Flexion 
MAE 10.3 11.0 22.7 
S.D. of AE 5.1 5.2 11.2 
MIN/MAX 2.9 to 16.9 3.1 to 18.4 2.2 to 35.5 

Back Axial 
Rotation 

MAE 8.4 5.5 18.8 
S.D. of AE 6.2 5.2 4.8 
MIN/MAX -23.4 to 11.3 -20.0 to 7.2 -31.1 to -10.5 

Upper Leg 
MAE 6.9 7.1 10.3 
S.D. of AE 6.2 4.7 2.7 
MIN/MAX -19.4 to 1.5 -13.9 to 7.0 4.6 to 14.9 

Lower Leg 
MAE 6.0 4.0 1.5 
S.D. of AE 5.0 1.8 1.4 
MIN/MAX -17.5 to 7.2 -6.7 to 4.0 -6.1 to 3.7 

Average MAE 6.5 6.6 10.9 
Average S.D. 4.5 4.2 4.5 

Notes: MAE (Mean Absolute Error), AE (Absolute Error), S.D. (Standard Deviation), MAX (Maximum Value of 363 
Errors), MIN (Minimum Value of Errors) 364 
 365 

Lastly, a walking task showed larger discrepancies in the patterns of body angles from all vision-based 366 

approaches as shown in Figure 8. Motion data from RGB-D sensor- and multiple camera-based approaches 367 

induced similar errors (7.1 and 11.0 degrees of average MAEs, respectively) with other tasks while a 368 

stereovision camera-based approach showed the largest errors (12.6 degrees of average MAEs) among three 369 

tasks (Table 3).  370 
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 371 

Figure 8. Comparison of Body Angles from Vision-based Approaches during a Walking Task 372 

  373 
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Table 3. Accuracy of Vision-based Motion Capture Approaches during a Walking Task 374 
 (Unit: degrees) 375 

Body Angles Metrics RGB-D Sensor 
(KinectTM) 

Stereovision 
Camera 

(Bumblebee 
XB3TM) 

Multiple 
Camera 

(3D Camcorder) 

Upper Arm 
MAE 7.1 4.5 10.9 
S.D. of AE 4.0 2.3 5.5 
MIN/MAX -13.3 to 1.8 -8.7 to 6.5 -19.3 to -2.0 

Lower Arm 
MAE 10.7 15.9 15.0 
S.D. of AE 6.3 11.6 7.7 
MIN/MAX -20.6 to 1.1 -41.8 to 17.1 -25.4 to 28.0 

Back Flexion 
MAE 5.4 17.3 3.5 
S.D. of AE 1.5 1.4 2.2 
MIN/MAX 2.3 to 7.9 15.0 to 20.4 -1.7 to 9.4 

Back Axial 
Rotation 

MAE 4.8 21.3 15.3 
S.D. of AE 4.8 5.3 8.1 
MIN/MAX -24.4 to 8.8 14.6 to 32.0 -18.6 to 27.9 

Upper Leg 
MAE 8.8 12.1 11.6 
S.D. of AE 6.6 7.2 5.5 
MIN/MAX -21.2 to 3.8 -27.3 to 4.9 -18.9 to 23.1 

Lower Leg 
MAE 5.6 4.2 9.7 
S.D. of AE 5.1 2.7 8.9 
MIN/MAX -4.3 to 16.6 -6.9 to 11.6 -5.0 to 32.5 

Average MAE 7.1 12.6 11.0 
Average S.D. 4.7 5.9 6.3 

Notes: MAE (Mean Absolute Error), AE (Absolute Error), S.D. (Standard Deviation), MAX (Maximum Value of 376 
Errors), MIN (Minimum Value of Errors)  377 
 378 

An angular measurement sensor-based approach 379 

Figure 9 shows plots of knee-included angles measured using an optical encoder and an OptotakTM during 380 

three tasks (among basic tasks, only the knee-bending task was tested). Two plots were almost matched 381 

each other, indicating accurate angular measurement of an optical encoder for all three tasks. However, 382 

small discrepancies were observed at the beginning and end of the cycle of knee-bending, and lifting and 383 

placing tasks.   384 
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 385 

386 
Figure 9. Comparison of Knee-included Angles from an Angular Measurement Sensor-based Approach 387 

(i.e., an optical encoder) during three tasks 388 

 389 

A MAE for knee-included angles from an optical encoder was 2.9, 3.8 and 3.0 degrees for three tasks, 390 

respectively (Table 4). Compared with a RGB-D sensor-based approach that showed the most accurate 391 

measurements for upper and lower leg angles (1.0−8.8 degrees of MAEs) among vision-based approaches, 392 

this approach provided the most accurate and reliable angular measurements regardless of types of tasks.   393 

Table 4. Accuracy of an Angular Measurement Sensor-based Approach (i.e., an optical encoder) during 394 
Three Tasks 395 

 (Unit: degrees) 396 
Body Angles Metrics Basic Task Lifting and 

Placing Task 
Walking Task 

Knee-included 
MAE 2.9 3.8 3.0 
S.D. of AE 2.7 3.1 2.1 
MIN/MAX -10.1 to 2.0 -10.7 to 1.8 -5.6 to 8.8 

Notes: MAE (Mean Absolute Error), AE (Absolute Error), S.D. (Standard Deviation), MAX (Maximum Value of 397 
Errors), MIN (Minimum Value of Errors)  398 
 399 

DISCUSSION 400 

Performance Comparison 401 

Specifications and accuracies of three vision-based motion capture approaches and an optical encoder are 402 

summarized in Table 5. The experimental tests in the previous section presented 5.9, 8.5, 11.2 and 3.2 403 

degrees of average MAEs for RGD-D sensor-based, stereovision camera-based and multiple camera-based 404 

approaches, and an optical encoder, respectively. The motion capture performance of each approach tends 405 
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to rely on the specifications of devices (e.g., types of raw data, resolution, fps). For better decisions on 406 

appropriate uses of these approaches in construction, it would be important not only to compare the 407 

accuracy, but also to understand comparative advantages and limitations.  408 

Table 5. Comparison of Specifications and Accuracies of Vision-based Motion Capture Approaches 409 

Performance RGB-D Sensor 
(KinectTM) 

Stereovision 
Camera 

(Bumblebee 
XB3TM) 

Multiple 
Camera        

(3D Camcorder) 

Optical 
Encoder 

Specifica-
tions 

Raw Data 3D images 3D images 2D images Body angles 
Operating Range Less than 4m Less than 10 m 

(unlimited, with 
zoom lenses) 

Unlimited with 
zoom lenses 

Unlimited 

Resolution 640×480 320×240 1920×1080 - 
fps 30 8-10 29 550 

Accuracy 
(MAEs) 

Basic Tasks 4.2° 6.2° 11.6° 2.9° 
Lifting and 
Placing 

6.5° 6.6° 10.9° 3.8° 

Walking 7.1° 12.6° 11.0° 3.0° 
Average 5.9° 8.5° 11.2° 3.2° 

 410 

Among vision-based approaches, an RGB-D sensor-based approach showed the most accurate and reliable 411 

results for all three tasks as it uses data-rich 3D images and has a high resolution and frame rate. It is also 412 

expected that rapid technological development of RGB-D sensors will enable us to collect more accurate 413 

and reliable 3D point cloud data, contributing to improvement of motion tracking performance. Despite the 414 

robust performance of this approach, its short operating range (less than 4m) and sensitivity to sunlight may 415 

limit its application to confined and indoor areas.  416 

Alternatively, a stereovision camera-based approach can be a practical solution by taking advantage of its 417 

ability to collect 3D images at both indoor and outdoor conditions and longer operating range. The accuracy 418 

of body angles from this approach was also not much different from RGB-D sensor-based approach, when 419 

excluding the walking task. Considering that walking involves more rapid movements than other tasks in 420 

this test, it was likely that the low frame rate (8-10 fps) of the stereovision resulted in tracking errors of 421 
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certain body parts (e.g., upper limbs) that moved quickly. As the frame rate of a stereovision camera is 422 

determined by the computational time for 3D reconstruction and the performance of hardware, the use of 423 

an advanced 3D reconstruction algorithm and a high performance computer can achieve a higher frame rate 424 

that helps to reduce errors in motion data, particularly during tasks involving rapid body movements. 425 

Regarding the operating range of a stereovision camera-based approach, it is recommended to set a 426 

Bumblebee XB3TM within 10 m as the quality of 3D point clouds is significantly affected by the distance 427 

from the scene. However, a binocular stereovision system theoretically works with any type of two 2D 428 

cameras that are separated by a short distance, and are mounted parallel to one another. As a result, this 429 

approach is flexible in terms of operating ranges if zoom lenses are used. Recently, a stereovision system 430 

with adjustable zoom lens control has been introduced [42], enabling more practical application of this 431 

approach.  432 

A multiple camera-based approach showed larger errors in body angles than the other two vision-based 433 

approaches. RGB-D sensor-based and stereovision camera-based approaches benefit from 3D imaging 434 

hardware that provides richer information (e.g., RGB pixel values + depth information) on scenes. However, 435 

a multiple camera-based approach need to extract motion data by processing only 2D images that contain 436 

less information (e.g., RGB pixel values). Inaccurate camera calibration process could also lead to errors in 437 

3D triangulation of body joints from two images. Considering these limitations, a multiple camera-based 438 

approach with about 10 degrees of error in body angles is promising. Despite relatively larger errors, a 439 

multiple camera-based approach has several competitive advantages from a practical point of view, 440 

compared with the other two approaches. For example, as any types of ordinary cameras can be used to 441 

collect 2D images, additional investments in devices are not required. Due to the use of zoom lenses, its 442 

operating range is theoretically unlimited. Less sensitivity to rapid movements is another strength of this 443 

approach. In addition, there is room for further improvement if occlusion issues are handled. One of the 444 

reasons of the least accurate results from a multiple camera-based approach is that it showed relatively 445 

larger errors in lower arm, truck flexion and trunk rotation angles than other body angles. As shown in A3 446 
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(elbow-bending), A4 (back-bending) and A5 (back-twisting) tasks in Figure 4, an elbow or a hip was 447 

occluded by a lower arm or a torso (i.e., self-occlusions), which may lead to incorrect detections of these 448 

joints in a multiple camera-based approach. In these tests, especially, a 3D camcorder was used to obtain 449 

two images from different views. As the distance between two lenses is very short (3.5 cm), both images 450 

are affected by self-occlusions. If two independent cameras are positioned away from each other, it could 451 

be possible to obtain at least one clear view of images, reducing errors due to self-occlusions.  452 

The optical encoder provided quite accurate measurements for knee-included angles across all types of 453 

tasks. Further, as these sensors are attached to body joints to directly measure joint angles, they can provide 454 

robust angular measurements for body joints with one degree of freedom under any condition. Although 455 

angular measurement sensors, such as, the optical encoder can be used for all body joints, the use of these 456 

sensors could be limited due to the need for straps or exoskeletons that may lead to interfering with on-457 

going work. Instead, using angular measurement sensor-based approaches for selected body joints can 458 

offset the limitation of vision-based approaches that are sensitive to self-occlusions. However, soft tissue 459 

movements may result in errors in body angles from these sensors. For example, during the testing of this 460 

approach, small differences in knee-included angles were observed at the beginning and end of cycles, 461 

which can be attributed to soft tissue movements, especially when straps are not firmly secured to the leg. 462 

Securing straps firmly to the body to hold the sensor in position is an important factor to obtain accurate 463 

body angles from the sensor [43].   464 

Potential Application Areas of In-field Motion Capture Approaches in Construction 465 

Vision- and angular measurement sensor-based motion capture approaches tested in this study are 466 

considered practical means of in-field motion capture, even though about 5-10 degrees of error in body 467 

angles from vision-based approaches and about 3 degrees of error from an angular measurement sensor-468 

based approach still exist. In construction, tasks are performed in unstructured and varying environments, 469 

and thus work methods and postures are changing over time. Collecting motion data using these non-470 
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invasive and cost effective approaches enable us to understand how workers interact with the environment 471 

at construction sites and to identify potential safety and health risks under given environments, specifically 472 

when accuracies would not significantly matter such as rough postural assessment, time and motion study, 473 

and trajectory analysis.  474 

For example, these approaches can be used to specify the severity of working postures. Existing postural 475 

ergonomic risk assessment methods determine the level of ergonomic risks based on classified postures 476 

through human observation [44]. Some methods such as Rapid Upper Limb Assessment (RULA) [45] and 477 

Rapid Entire Body Assessment (REBA) [46] require detailed segmentations of body postures according to 478 

body angles. For example, in RULA, trunk postures are categorized into four groups according to trunk 479 

flexion angles (0°, 0°-20°, 20°-60° and over 60°). Body angles obtained from these approaches can be used 480 

for rough posture classification that is needed for postural risk assessments.  Also, as continuously measured 481 

workers’ motions during performing tasks is enabled, diverse in-depth motion analysis for understanding 482 

physical demands can be facilitated. Traditionally, pre-determined-motion-time-systems have been widely 483 

used to identify workloads during occupational tasks [47]. As these systems rely on human observations to 484 

describe workers’ manual activities, significant human efforts are generally required. However, by using a 485 

time series motion data from the presented approaches, it is possible to accurately and automatically 486 

quantify motion-time values for these system. In addition, trajectory analysis through in-field motion 487 

measurements helps to evaluate work efficiency, as well as the risk of ergonomic injuries. For example, 488 

shorter trajectories of body movements may imply more efficient movements of a human body, indicating 489 

smaller physical demands. Previous studies on movement patterns during occupational tasks found that a 490 

more ‘dynamic’ pattern of movements is believed to be associated with a lower incidence of WMSD 491 

development [48,49]. Analysis of motion patterns and trajectories using vision-based motion data can 492 

broaden our understanding on the job from an ergonomic perspective.   493 

In-field kinematic measurement using vision- and angular measurement sensor-based motion capture 494 

approaches has also great potential to be used for more in-depth analysis of physical demands such as 495 
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biomechanical analysis, even though further improvement of motion data accuracy is required [50]. 496 

Biomechanical analysis aims to estimate musculoskeletal stresses as a function of motion and external force 497 

data [4, 51]. Previous biomechanical studies have relied on laboratory experiments to collect motion data 498 

using marker-based motion capture approaches, which can be replaced by in-field motion capture 499 

approaches that enable on-site biomechanical analysis. As accurate measurement of all joint angles is 500 

necessary for reliable biomechanical analysis, further accuracy improvement of vision-based motion 501 

capture approaches is required. However, the sensitivity of biomechanical analysis results to motion errors 502 

vary depending on body joints [52]. For example, Chaffin and Erig [52] found that an error of ±10 degrees 503 

in the limiting joint angles (e.g., knees and ankles) could cause the biomechanical analysis results to vary 504 

up to ±12% during lifting, pushing and pulling tasks, whereas errors in other joints could have little or no 505 

effect. This result indicates that some angular errors in body joints that do not involve forceful exertions 506 

are acceptable for biomechanical analysis while it is important to obtain accurate body angles for stressful 507 

body joints. So, complemented by relatively accurate angular measurement sensors such as optical encoders 508 

that are applied to the limiting joints, vision-based motion capture approaches enable researchers to perform 509 

biomechanical analysis without significantly sacrificing the reliability of biomechanical analysis.   510 

 511 

CONCLUSIONS 512 

The study describes the potential of vision-based and angular measurement sensor-based approaches as a 513 

means of measuring workers’ motions. These approaches are compared through laboratory tests while 514 

performing three different types of tasks. Especially, the accuracy of these approaches was computed by 515 

comparing body angles from each approach and a marker-based motion capture. The comparison results 516 

indicated that the overall errors in body angles from vision-based approaches are about more or less 10 517 

degrees, while an optical encoder that is one example of angular measurement sensors can provide quite 518 
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accurate body angle measurements (about 3 degrees) for specific body joints with one degree of freedom. 519 

Self-occlusions and rapid movements are major factors that lead to errors in vision-based approaches.  520 

From a practical perspective, vision-based and angular measurement sensor-based approaches have great 521 

potential as non-invasive motion data collection methods at construction sites. Even though several 522 

obstacles such a limited operating range (RGB-D sensor-based), low frame rates (stereovision camera) and 523 

occlusions (multiple camera-based) still remain to obtain more accurate data from these approaches, further 524 

algorithm refinements and hardware developments are expected to address these issues. An angular 525 

measurement sensor-based approach such as an optical encoder can provide robust measurements of 526 

specific joint movements, despite a small possibility of discomfort by attached sensors. Especially, 527 

combined with vision-based motion capture approaches, an angular measurement sensor-based approach 528 

can enhance the accuracy of in-field motion measurements. Motion data from these approaches can be used 529 

for diverse in-depth analysis without sacrificing its reliability to better understand workers’ physical 530 

demands during occupational tasks including construction. Also, understanding of how workers behave 531 

under given working environments through kinematics measurements and analysis helps to ergonomically 532 

design automated machines and assistive robots, aiming to both reduce physical demands and enhance 533 

workers’ capabilities. 534 
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