

* Corresponding author. E-mail: s.prabhu@gre.ac.uk

A Survey on Evolutionary-aided Design in
Robotics
Shanker G. R. Prabhu*, Richard Seals, Peter Kyberd
and Jodie Wetherall

Department of Engineering Science, Faculty of Engineering & Science, University of
Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.

SUMMARY
The evolutionary-aided design process is a method to find solutions to design and
optimisation problems. Evolutionary Algorithms (EAs) are applied to search for optimal
solutions from a solution space that evolves over several generations. EAs have found
applications in many areas of robotics. This paper covers the efforts to determine body
morphology of robots through evolution and body morphology with the controller of robots
or similar creatures through co-evolution. The works are reviewed from the perspective of
how different algorithms are applied and includes a brief explanation of how they are
implemented.

KEYWORDS: Evolutionary robotics; Evolutionary-aided design; Morphology evolution; Co-
evolution;

1. Introduction
Evolutionary Computation (EC) stems from Darwin’s theory of evolution [1] and Mendel’s
experiments in hybridising plants [2]. The concept utilises various mechanisms of
evolutionary theory to stochastically evolve a population of solutions. Evolutionary
Algorithms (EAs) are a subset of EC introduced in the 1970s by Holland [3] as Genetic
Algorithms (GA). GAs use a basic structure that changes over time by minor variations made
at each time step. At the same time, other researchers developed conceptually similar
algorithms like Evolution Strategies (ES) or Genetic Programming (GP). It was almost two
decades before they were successfully applied to robotics [4]. Evolutionary Robotics (ER) is
concerned with the generation of autonomous robots using the principles of evolutionary
computing [5]. EC strategies are applied to autonomous robot development in evolving
morphologies and controllers separately or co-evolving both simultaneously [5].

Even though ER is over 20 years old, rarely has it been used to generate a physical
demonstration of evolved robots. Nichele estimated that more than 95% of the literature
focussed on the evolution of robot controllers. In the rest, less than 1% reported works that
physically tested the generated morphology and controller and the remaining 4% only
simulated the co-evolution process [6]. Although EAs are known to converge to solutions
that are often unintuitive and unconventional (when compared to the results of traditional
design methods), it must be noted that applying EAs mean incorporating many variables
and parameters. Consequently, different combinations lead to different results which
rapidly drift away from optimal solutions [7].

In ER, the applications of EAs can be spread across various domains from traditional
mobile and manipulator robotics to newer areas such as; modular robotics, swarm robotics,
biorobotics, developmental robotics and soft robotics [8]. This paper reports the evolution

A Survey on Evolutionary-aided Design in Robotics

2

of the morphology alone along with the co-evolution of morphology and controller in the
traditional areas of robotics.

There have been several surveys covering various aspects of ER. Starting with a
discussion of such articles, we review publications that discuss the evolution of physical
creatures with or without their control system design with an emphasis on algorithmic
variations and application areas along with a discussion on evolved buildable robots.

In 2001, Taylor et al. [9] reported on the software packages utilised during the evolution
of controller and morphology of virtual creatures. Later, Floreano et al. [10] briefly
examined evolving morphologies and Lipson [11] explained how ER was used to perform
open-ended design automation, while covering a few of the important works involved in
robot body and controller design in addition to robot body only design. ER’s effect in the
area of biologically inspired robots is described in [12]. Evolutionary principles are used in
robotics for automatic parameter tuning, designing, online learning and automatic synthesis
are explained in [4]. The review article [8] briefly covers different application areas of ER
along with the various challenges faced.

Recent publications; Winfield et al. [13] and Nolfi et al. [14] discuss the challenges faced
by the community by analysing the key publications which report robot morphology
development and robot body and controller co-evolution. The applications of EC principles
in the field of robotics is broadly covered by Eiben et al. [15]. A recent review paper by Gupta
et al. [16] touches on the main applications of EC in robotics for controller only evolution,
morphology only evolution and their co-evolution.

Nelson et al. [17] surveyed fitness functions used in evolutionary robotics. Papers [18, 19]
contain a study on methods used for controller only design. Kicinger et al. [20] compiled a
comprehensive list of publications that reported the use of EA for fixed structural design.
There are more recent surveys on swarm [21], modular [22, 23] and soft [24] robotics. Other
articles published which discuss ER are [25-32].

While several publications explain the intricacies of the area, to the best of our
knowledge, none of them cover all reported attempts to deal with the applications of EAs in
robot or similar creature’s morphology design and optimisation with or without
simultaneous controller design. Therefore, this paper covers this subset of ER, which would
help the understanding of the state of the art along with a brief background of the applied
theory.

2. Algorithms for morphology evolution
EAs have a near standard structure and therefore the paper first elaborates the basic
principle involved and subsequently explains how different researchers have used EAs in
their works.

2.1. The basic structure of evolutionary algorithms:
As the name suggests, the algorithms are inspired from biological evolution. Consequently,
each of the steps involved can be closely mapped with the different stages in biological
evolution as nature searches for better living beings. The entire topic is explained in detail
in [33].

The structure of a typical EA is as follows:
1. Initialise a population of candidate solutions.
2. Evaluate each candidate.
3. Select parent/s.
4. Recombine parents.
5. Mutate offspring.
6. Replace generation.

The steps 3 to 6 are repeated until the results are sufficiently close to the desired objective
or after the computation time is exceeded.

2.1.1. Phenotype. Before discussing the above procedure, it is necessary to explain how the
candidate solutions are represented. Phenotype refers to the physical or observable entity
of the candidate solution, or robot, and the phenotype space is where the observable
properties of a robot are found.

A Survey on Evolutionary-aided Design in Robotics

3

2.1.2. Genotype. In biology, the genome carries the various features of the organism through
a set of genes and genotype is the equivalent term in ER. It encodes a description of the
phenotype (or robot), and a genotype-phenotype mapping transfers the information
between genotype space to phenotype space. Evaluation of each individual is performed on
the phenotype while all other steps are conducted in the genotype space.

The genotype holds morphological and control parameters or control algorithms
according to the application. Various morphological parameters convey details pertaining
to body size, weight, wheel diameters, spatial information about position or coordinates or
angle, or any other relevant information. The control side may include various neural
network parameters or neural network wiring or other parameters unique to the specific
controller type under use. In many of the applications the genome has a fixed length, with
exceptions in [34, 35].

Genotype representations in the literature use binary [36-38], integer [39], real number
[40-42] and string [43] encoding with many applying either or a combination of the
different encoding methods. The basic genome types could also be placed in a matrix [44],
vector [34, 45-47], graph [48-53] and tree [54-62]. Further, in other representations, [34,
63] applied the concept of a hox gene for encoding body morphology and [39, 64] applied
Compositional Pattern-Producing Networks (CPPN) based encoding . The CPPN encoding
involves accepting arguments as inputs and generating a resultant graph which explains the
connections between various functions. L-system (Lindenmayer) representation in [65] is a
type of grammar representation where developmental design rules or building commands
are evolved to generate symmetrical structures.

2.1.3. Genotype-phenotype mapping. Each candidate’s fitness is estimated through the
performance of the corresponding phenotype using genotype to phenotype conversion.
There are several mappings which can be separated into parametric and open-ended
representations. Parametric representations appeared in fixed topology designs [36, 38, 47,
51, 60, 61, 66-69] where various parameters of the topology were evolved. Open-ended
representations can be of generative and non-generative types. The generative encoding
allows reuse of its individual elements during phenotype design. Each element is used only
once in a non-generative encoding. Generative encoding is further divided into implicit and
explicit, and non-generative encoding is either direct [40, 54, 59, 70] or indirect [64] types.
See [71] for further details.

2.1.4. Population. The initial population acts as a seed for solutions which are later evolved
into solution(s) with the desired performance. In the area under discussion, the population
varied from 15 to 1000 candidate solutions when fitness evaluation was performed in
computer simulation. But in a unique case, from 1 to 3 elements, actual robots were built for
evaluation [72]. While most populations were initiated with random values, Samuelsen et
al. [34] chose 200 identical individuals and the GOLEM project [73] had 200 to 1000 null
individuals to start the evolutionary process. Single population evolved solutions except in
[74, 75]. In [74], for faster convergence, when the average fitness of the first population
reached a fixed value (or after 50 generations), the best individual was transferred to a
second population. Once twenty such transfers were completed, the solutions were further
optimised with the second population.

2.1.5. Fitness function. Each candidate solution in the population is tested using a fitness
function. The phenotypes are active entities which are affected by the environment they are
in. Each phenotype is placed in a simulated environment and the fitness function is designed
for use in the phenotype space. Fitness functions were task specific through individual or
combinations of penalty functions, cost functions, reward functions or based on the extent
of objective attainment. The different kinds of fitness functions designed are listed in Table
I.

A Survey on Evolutionary-aided Design in Robotics

4

Table I. Different types of fitness functions.

Fitness function based on Citations

Movement (e.g. distance, area, speed)

[67, 70, 72, 76, 77]*, [34, 52, 78]* [36, 40,
79]*, [43, 51, 57, 59, 73, 80]*, [81]*, [74]*,
[47]*, [82, 83]*, [37, 58]*, [69]*, [35]*, [53]*,
[63]*, [84]*, [60, 61]*, [85]*, [86]*

Energy or cost [40, 79]*, [46]*, [84]*, [38]
Action (e.g. collision, touch, fall, damage inflicted or
suffered, obstacle avoidance)

[70]*, [67]*, [51]*, [60]*

Mechanical features (e.g. centre of gravity, torque
generated, load, weight, size, dexterity, mobility,
tension)

[64, 81]*, [74]*, [47]*, [83]*, [37]*, [35]*,
[69]*, [46]*, [84]*, [85, 87]*

Design or feature (e.g. novelty, diversity) [78]*, [55]
Goal specific (e.g. time to contact with prey, lifting,
grasping, time on line, food eaten, competition
winner, climbing ability)

[41, 45, 50, 53]*, [63]*, [46]*, [44, 86]*

Human feedback [70]*, [66]

*Combination of more than one category.

2.1.6. Parent selection. The probability of creating a better offspring depends strongly on
parent selection and hence, selection plays a major role in determining the time taken by
EAs to converge to a satisfactory solution. Normally, parents with higher fitnesses are
allotted a higher priority to be selected for reproduction. However, to avoid solutions being
trapped in local optimum, parents with lower fitnesses are also selected, through a selection
probability which is set at a low value [33]. In most cases, two parents are mated, except
when applying asexual reproduction in [64]. There are several ways to select the parents:

Fitness proportional selection (FPS): In FPS, the individual’s selection probability depends
on its absolute fitness relative to the remaining population. Windowing or sigma scaling are
commonly used to avoid premature convergence or to avoid solutions getting stuck in local
minima due to the consistent selection of best candidates or to control selection pressure
when fitness values are close to each other [33].

Ranking selection: FPS suffers from the lack of constant selection pressure. To avoid this,
in ranking selection, the probability is allocated according to rank and not the fitness value
itself with higher ranked individual being allocated higher selection probability. For
selecting probabilities, commonly used techniques are roulette wheel and stochastic
universal sampling. Roulette wheel selection conceptually involves randomly selecting
parents by repeatedly spinning a hypothetical roulette wheel. Each slot on the wheel
represents a selection probability (allocated from a cumulative probablity distribution
function), and a parent is selected after every spin of the wheel. Among its disadvantages, a
uniform selection of parents from the probability distribution is not possible as the wheel is
spun more than once. To overcome this, stochastic universal sampling is applied where all
parents are selected simultaneously from the distribution [33]. This is accomplished by
using the concept similar to a wheel of fortune, where instead of one selecting pointer
directing to a single slot, multiple uniformly spaced pointers (equal to number of parents)
select multiple slots (with their size proportional to corresponding probability) in a single
spin.

Tournament selection: The parent selection methods explained so far require the
probability distribution of entire the population in every generation to apply the necessary
algorithm. By contrast, tournament selection works by dividing the population into groups
and selecting the best for each candidate’s relative fitness in that group. The prominent
parent selection methods applied in the area are listed in Table II.

2.1.7. Variation operations (Mutation and Recombination). Variation operators are
applied to the selected parents to create new offspring. Usually, both recombination and
mutation after mating are implemented in that order. When a child is generated from a

A Survey on Evolutionary-aided Design in Robotics

5

single parent, the process is called mutation, and when multiple parents are used, the
process is referred to as recombination. Mutation involves stochastic modification of
parent’s genotype. It must be noted that genotype should be altered at random and should
be unbiased. Therefore, slightly targeted tweaking of the genotype is not considered as
mutation [33].

Table II. Methods of parent selection

Parent selection methods Citations

Random [52, 53, 67, 74]*
Tournament selection
(binary/deterministic/triple/multiple population)

[34, 36, 50, 56, 60, 63, 68]*, [41,
88]*, [69]*, [58]*, [38]

Fitness proportionate (FPS/rank/cost/x
best/neighbouring pair)

[39, 49, 74]*, [41, 55, 82, 88]*

Non-dominated sorting [34]*, [81]*
Crowed distance sorting [81]*
Diversity measure [34]*
Stochastic universal sampling [35]

Roulette wheel selection [37, 46, 69]*, [58]*, [45]

*Combination of more than one category.

In another method, recombination or crossover operation is applied to the two parents

to generate offspring. In this stochastic method, random parts of the mating parents are
joined to inherit offspring with features from both parents. Moving away from the purely
Darwinian model, theoretical studies and demonstrations have shown that using more than
two parents in recombination produces more fit offspring. Despite this the method is seldom
used [33]. There are several variations to the recombination and mutation operations when
applied to solve problems in ER, and some of the significant variations are listed in Tables
III and IV, respectively.

Table III. Mutation methods.

Mutation operations Citations

Fixed non-adaptive [67]
Gaussian [41, 56, 57]
Gaussian Random [44]
Standard [36, 40, 45, 46, 51, 55, 61, 63, 64, 69, 79-81, 84, 87]
Through deletion, duplication,
modification

[34, 53, 59, 73, 89], [48]

Variable probabilities [82]
Concatenation [58]
Binary/float/integer [85, 86]
Vector differential mutation [46]

Table IV. Types of crossover.

Crossover operations Citations

Random [39, 46, 89], [59], [61], [48, 85]
Single point [36, 68], [83]
Two point [38, 60, 76]
N point [57]
Grafting, Copying [50]
Classic [40, 45, 51, 55, 69, 79, 81, 84, 87], [52, 86]

BL- [80]

Segregation [86]

2.1.8. Survivor selection. The population size is fixed by finite resources. So the proportions
of which of the offspring are added to the population and which individuals are replaced
need to be decided. Age-based and fitness-based replacement are the two main types of

A Survey on Evolutionary-aided Design in Robotics

6

selection strategies. Fitness-based selection involves several methods, and the most
prominent ones are discussed below.

A fixed number of least fit members are replaced from the population and rest are moved
to the next generation in the replace the worst strategy. It results in a fast increase of average
fitness, but this may also lead to premature convergence. As a result, it is only commonly
applied to large populations. Elitism is implemented in addition to age-based and stochastic
replacement methods to ensure that the fittest member of the population is retained and not
replaced by other methods. In cases where fittest is among the population and not among
the children, the latter is discarded. The round-robin tournament is another method in
which, competitions are conducted between an offspring and a randomly selected opponent
from a merged parent-child population. Each child competes for a fixed number of times,
and once all of them finish competing, the offspring with highest wins replace the weakest
of the population [33].

In the area under survey, 10% of the population were deleted by Lee [61], and that space
was added with randomly generated candidates while [54] chose to retain the best children.
In the single objective EA discussed in [67], the offspring immediately replaced parent if
found to be fitter, and when multi-objective EA was used, offspring was compared with every
individual in the population before replacement. Variable replacement strategy was used in
[56] and elitism was excercised in [35, 38, 41, 46, 51, 52, 64, 81, 90]. Truncation strategy
appeared in [34], and elitism with tournament selection was applied by Clark et al. [68] and
Moore et al. [36]. Researchers [50] replaced the loser of the population with the child and
in [74], individuals with costs higher than average of the population were replaced. Further,
[44] retained random non-dominated solutions by replacing dominated solutions and
parents were always replaced in [37]. The entire population was filled by children at every
generation and the ten worst performers were replaced with randomly generated individuals
every 50 generations in [82]. 20% of the highest scoring individuals in the population after
competing against opposing population were retained, and rest were filled with offspring in
[58]. Miniature round-robin tournaments were applied for selection and genotype
validation, with garbage collection in [53]. Sims [48] and Shim et al. [69] retained 20% of
the elite population, and rest were filled with offspring.

2.2. Different EAs applied
EAs have been realised using variations of the basic algorithm. While standard EAs were
applied in [49, 67, 69, 72, 73, 76], an alternative approach is Multiple Objective Evolutionary
Algorithms (MOEA) [40, 44, 67]. MOEA works with two fitness functions (eg. size fitness
and performance fitness) that are calculated in parallel to find the dominant solutions
(solutions with at least one fitness in one parent is better than the corresponding fitness in
the other) which replace the non-dominant ones.

Genetic Algorithm (GA), Simple GA (SGA) or canonical GA uses a binary representation
for its genotypes, FPS mechanism for parent selection, low mutation rates, and one point
crossover is used as the standard recombination mechanism. The entire population is
refreshed every generation as everyone is selected for crossover and is replaced by mutated
children. However, depending on the probabilities set on variation operators, there can be
copies of parents in the new population. SGAs possess flaws, to achieve faster convergence,
they have been modified to include elitism and tournament selection [33]. SGAs were used
for morphology development in [50, 56, 63, 66, 74, 83, 84] and they were amended with
elitism, or other selection methods [35, 38, 43, 45, 46, 48, 51, 68, 87, 88]. A GA with novelty
search and an objective based GA found application in [70] where individuals that
performed differently were rewarded if they possessed novelty. A two level GA made of SGAs
are in [37, 85, 90].

Another variation to the standard GA, is called the Last Elite Opponent (LEO) algorithm
developed by Cliff et al. [75] which was inspired from Sims’s [91] algorithm. It used two
populations of solutions. The fitness of each individual in the first population was calculated
by competing it with the champion of the other population. The best 20% were then retained
and remaining were filled with children of these parents. Parents were selected via roulette-
wheel selection, and the same operation was applied to the second population [58].

Smith et al. combined GA, extremal optimisation and pareto optimisation for evolution
[74]. A GA generated two populations and best of the first population was moved into second
population every 50 generations or after attaining a specified fitness. Later when the

A Survey on Evolutionary-aided Design in Robotics

7

population size reached 20, an extremal optimisation technique was applied. During this
operation, the overall cost of each genotype was improved by modifying a specific gene
which had the maximum adverse effect on the phenotype. A pareto optimisation technique
then differentiated the best among competing designs. In this step, the cost of each gene in
the genotype was compared with every other corresponding gene in other genotypes. The
value of genes with greater costs was increased, and best genotype in the population was
finally selected.

Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a popular variation of GA
developed by Deb et al. [92]. In NSGA-II, the parents are chosen from a ranked list of
candidate solutions. After mutation and recombination operations, the child and parent
populations are combined and ranked before applying elitist selection criteria for building
the new population. The algorithm was implemented by Samuelsen et al. [34] and Rubrecht
et al. [81].

In Differential Evolution (DE) [46], individual solutions are ranked through a cost
function. During mutation, a vector differentiation method is applied by adding a third
solution vector from the weighted difference of two others. Normally, parameter vector
dimensions are equal to the number of design variables and population size is same as the
number of parameter vectors.

A Multi-Chromosome Evolutionary Algorithm (MEA) proposed by Chocron [85]
concentrated some of the robot’s features on a single chromosome of floating point
numbers. The variation operations were performed on each of them and not globally on the
genotype. The algorithm was inspired from evolutionary strategy principles developed by
Back [93]. The paper also tested an Adaptive Multi-Chromosome Evolutionary Algorithm
(AMEA) with variation operator parameters modified as per an adaptive selection pressure
function. A hard selection pressure was applied when fitness of solutions exhibited higher
spread or greater standard deviation.

While standard EAs search for solutions, the more recent, Genetic Programming (GP)
works by searching for a method or steps or an algorithm to build a solution. Chromosomes
are represented as parse trees, and either recombination or mutation is applied instead of
both [33]. GP can be found during morphology design in [55, 57, 79].

NeuroEvolution of Augmenting Topologies (NEAT) developed by Stanely et al. [94]
found its application in [64] for developing Ribosomal robots. The algorithm starts on a
simple CPPN encoded network and builds it complexity by the addition of nodes to the
genotype. The genotype consists of node genes and corresponding connection genes. A
structural mutation is carried out through the addition of a connection or a node. The
connection weights are also allowed to mutate freely, and thus producing complex systems
as the generations progress.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a variation of Evolution

Strategy (ES). In a standard ES, a population with  candidate solutions generate 
offspring. A random number is added to a randomly selected parent where the number is
chosen from a Gaussian distribution with mean as zero and standard deviation or mutation

step size called . In (+) ES, the offspring replaces parent if found to be fitter. On the other
hand in (,) ES, the child always replaces the parent [33]. CMA-ES applied in [47, 77] is a
leading form of ES utilised especially for high-dimensional and non-linear optimisation
problems. A covariance matrix represents the pairwise joint variability of parameters in the
Gaussian distribution which is updated by CMA. The technique self-adapts parameters in
two stages. In the first step, the mean of the distribution and covariance matrix is
incrementally updated to increase the probability of successful solutions from previous
generations. In the second step, evolution paths (two paths from time evolution of mean)
which hold useful information of nearby steps are used. One helps to avoid premature
convergence while other supports the increase in the rate of variance. For a detailed
explanation, see the tutorial by Hansen [95].

Java Evolutionary Algorithm Framework (JEAF) developed by Caamaño et al. [96] was
applied in [54] to incorporate multiple algorithms like DE, GA and CMA-ES. The framework
was built to allow the use of multiple algorithms without worrying about the background
coding of each of the algorithms.

2.3. Simulators and the reality gap
During fitness evaluation, the individually designed fitness function is applied on the
behaviour of candidates normally in a simulated environment. The task specific simulation

A Survey on Evolutionary-aided Design in Robotics

8

environments for mobile creatures where flat surfaces, except in a few cases when they were
curved [47], uneven or stepped [97]. None of the reported works attempted to use a
dynamically changing environment. The only partial dynamic aspect of a simulation was an
automatic removal of consumed food [50]. Other than in [55, 79], a 3-D arena was always
necessary for simulation. In a unique approach to building simulation platforms, [63] and
[98] modelled them by converting the behaviour of a robot in reality to a virtual
environment. The only online driven evaluation process was reported in [72]. The software
packages developed were individually built from scratch or on easily available packages such
as MATLAB or PhysX or Open Dynamics Engine (ODE) (Table V). Another notable
common feature was the sending of each individual robot to another CAD module in the
software package for evaluation. To speed up the performance of the simulator, multiple
design checks were also performed before testing. For instance in [56], each robot was
checked for the number and type of links, actuators and sensors before simulation. Likewise,
Chocron [86] applied three hierarchical levels namely; mathematical elimination, quick
simulation and full simulation.

Quality of the simulation setup plays an important role in deciding if the evolved
individual can perform the same task in reality as in a simulation. This difference is referred
to as the reality gap in ER [99] and it is a widely-researched topic. Even though reality gap
is a well-known concern in ER, only limited papers reported here shed light in the problems
faced during physically building robots. Moore et al. [36] experienced difficulties during the
physical validation of robots owing to poor modelling of mechanical elements such as servo
motor joints and an inability to simulate physical conditions. The difference in on-board
controller timing and simulator timing resulted in a drastic difference of robot speeds (55
cm per minute and 14 cm per minute, respectively) in virtual and real systems [59]. The
inconsistency of 3D printing added towards a notable reality gap in [68]. Further, numerical
explosion due to accuracy of simulator environment resulted in evolving solutions with
unreasonable fitness [52].

To counter the reality gap and to accommodate the uncertainty of physical systems, a
common method was to induce random noise to the measurements [56, 59]. For testing
controller robustness, Bongard [44] performed damage testing via disabling sensors on the
robot. Lee et al. [60] proposed using a training set with multiple starting positions and
incorporating cumulative fitness to ensure robustness.

3. Algorithms in controller
During co-evolution, the body and controller are evolved simultaneously with EAs as the

generations progress. The controller type selected for such evolutions are either artificial
intelligence based (mainly Artificial Neural Networks (ANNs)) or traditional control
techniques based.

In an ANN based control scheme, artificial neurons are internally wired to connect
sensors (receptors), actuators (effectors) or other neurons. Output signals are generated
based on the input value, corresponding internal weights, biases and other operations that
undergo in the neural network. Various arithmetic operations or oscillating signals act at
different neural nodes to manipulate the input signal. As the genotype representation carries
information about the control system info of each part, it gets carried to offspring and gets
modified during the variation operations. Examples of such or similar systems are included
in [50-53, 56, 58, 73, 76, 88, 89, 91, 97]. Endo et al. [79] built a tree type of neural network
with a maximum depth of five. For decision making, six different types of neural networks
namely; AA, DD, AD, ND, NA, DA where A was for Analog, D was for Digital were
incorporated. In an AA type network, input and output were analogue, in DD, both input
and output were digital and in the other two, output was either analogue or digital but with
no input signal. In a different approach, Shim et al. fed the evolved body parameters of a
flying robot to a neural network to create a controller [69].

A Survey on Evolutionary-aided Design in Robotics

9

Mazzapioda et al. [82] designed a neural controller with five neurons per joint with one

for angular motor position and the rest for interaction with nearby joints. Here, each neuron
generated four different signals and a sinusoidal oscillator controlled the motor angle based
on the normalised signal values. A neural oscillator with PD (Proportional-Derivative)
control and a neural network with a Central Pattern Generator (CPG) for control appeared
in [90] and [34], respectively. The latter had six neurons with a total of 14 parameters that
were interconnected in a specific pattern in every module. Similarly, the parameters of CPGs
were evolved again by Larpin et al. [40]. A GP was used in [63] and [57] to evolve a
perceptron (single layer neural network) based controller. Another variation of ANN called
Continuous Time Recurrent Neural Networks (CTRNNs) could be seen in [44, 59, 78] and
Elman’s recurrent network in [83]. Lessin et al. [49] developed ESP (encapsulation,
syllabus and pandemonium) principles to generate neural networks.

Instead of neurons, Mautner et al. [43] simulated artificial cells in the neural network.
Multiple cell division operations resulted in adding connections to new sensors, and the
vector sum at the output controlled the direction and power propagation in the network. A
variation of the NEAT algorithm called Hyper-NEAT applied primarily in large scale ANN
design was also used in [56] along with a standard ANN based controller. In other methods
of controller design, Lee et al. [60, 61] based GP for the neural network evolution while GA
for morphology evolution. There were instances when blank neural networks evolved into a
useful controller [100] and combination of ANN and Finite State Machine (FSM) based
controllers were employed [83].

Parker et al. [98] designed a reactive controller where a GA selected the rules for the
sensor system to act. Simple inverse kinematic control evolved by an EA [47], Constraint
Compliant Control (CCC) law which relied on velocity kinematic principles [81] and a simple
periodic open loop control [70, 86] are examples for non-ANN based controllers evolved by
EAs.

(a) [84]§ (b) [76]§

(c) [78] (d) [72]

(e) [56] (f) [56]

Fig.1 Examples of the evolved designs.

§ Reprinted courtesy of Springer.

Table V. Evaluation
platforms.

Platform Citations

Webots [40, 67]
MARS [47]
Ella [57]

ODE
 [36, 52, 53,

59, 64, 68, 69,
77, 82]

CimStation [45]
Gazebo [54]
MATLAB [46, 70, 72]
PhysX [34, 49]
GOLEM [73, 89]
ORCOS [81]
Custom six
modules

 [35]

MathEngin
e

 [9]

LeGena [83]
Brevea [97]
RoboGena [56]
YAKS [41]
MASSb [50]
EDHMoR [54]
FEM based [46, 76]
Custom
C++ based

 [86]

aBased on ODE
bBased on PhysX

A Survey on Evolutionary-aided Design in Robotics

10

4. Application Areas
The areas discussed can be classified into works that purely deal with the evolution of
mechanical design and works where control and morphology are co-evolved with the help
of EAs. A comprehensive chronological list of works that report morphology only evolution,
and co-evolution of morphology and control scheme can be found in Table VI and Table VII,
respectively.

Table VI. List of works with morphology only evolution.

Author/s Robot application type Algorithm Year

Chedmail et al.
[45]

Manipulator robot design GA 1996

Chung et al. [87] Manipulator robot design GA 1996
Chocron et al.

[37]
Manipulator robot design GA 1997

Farritor et al. [84]
Inspection robot design for constrained
areas

GA 2001

Shiakolas et al.
[46]

Manipulator robot design GA, DE 2002

Parker et al. [35] LEGO robot for locomotion GA 2007
Lipson [55] 2D robot mechanism GP 2008

Smith et al. [74] Legged robot design
GA with Extremal &

Pareto
Optimisation

2010

Clark et al. [68] Robot fin design GA 2012
Lim et al. [67] Six-legged robot design SOEA, MOEA 2015
De Beir et al. [66] Social robot design GA 2016
Cruz et al. [38] Mechanical design of humanoid GA 2016

4.1. Morphology only evolution
4.1.1. Articulated robots. Many groups have developed manipulators using EAs starting with
Chedmail et al. [45]. They designed serial and parallel manipulator robots with fixed end
effector trajectory for avoiding obstacles. Similarly, Chung et al. [87] fixed degrees of
freedom (DOF) of the robot to follow a specified trajectory and evolved its design. The
Denavit-Hartenberg (DH) parameters of Selective Compliance Articulated Robot Arm
(SCARA) and articulated robots with predefined initial and final position, motion time and
joint constraints were evolved in [46]. In a different approach to serial manipulator design,
Chocron et al. [37] applied a two level GA for a task specific robot, with upper layer for
topology evolution and the lower level for finding the inverse kinematic solutions. Two-
dimensional kinematic mechanisms which could draw a straight line were developed by
Lipson [55] while keeping DOF fixed during evolution. The study also applied compensation
operators for deleting redundant links from the evolved designs.

4.1.2. Mobile robots. Inspection robots for space constrained areas (like duct) were designed
with a set of modules for power, control, joint and foot by Farritor et al. [84] (Fig. 1(a)). Even
though this can be characterised under modular robots, it is included here as it has a single
central controller as opposed to multiple controllers in a typical modular reconfigurable
robot system. LEGO robot designs were searched by a GA primarily for maximising distance
travelled with wheels in [35]. The GA required over 300 generations to evolve structures
that stayed clear from the ground except by the robot’s wheels. The fin length and Young’s
Modulus of a robotic fish were evolved in simulation using ODE by Clark et al. [68].

In legged robots, Smith et al. evolved various physical parameters of a legged robot,
mainly body and leg dimensions including the number of legs, with the aim of increasing
stability and mobility [74]. A six-wheeled articulated robot body parameters were optimised
for step climbing operation by Lim et al. [67]. The kinematic parameters of a passive
humanoid robot were evolved in [38] with a 32-member population which evolved over 500
generations in 9 hours on a standard personal computer.

A Survey on Evolutionary-aided Design in Robotics

11

Table VII. List of co-evolving creatures or robots.

Author/s Application
Type of algorithm

Year
Evolution Controller

Sims [48]
Creatures for swimming, walking and
jumping

GA ANN 1994

Lee et al. [60] Mobile robot with obstacle avoidance GA, GP ANN 1996
Komosiński et al. [76] Creatures for walking and swimming EA ANN 1999
Mautner et al. [43] Mobile robot with obstacle avoidance GA ANN 2000
Pollack et al. [73] Locomotion with linear elements EA ANN 2000
Lee [61] Mobile robot with obstacle avoidance GA, GP ANN 2000

Endo et al. [79]
Multi-linked 2D robot for locomotion and
hill climbing

GP ANN 2001

Taylor et al. [9]
Creatures for swimming, walking and
jumping

GA ANN 2001

Lund [63] Line follower robot with LEGO GA, GP ANN 2003
Pollack et al. [89] Genobots for locomotion EA ANN 2003

Lee [101]
Straight locomotion with obstacle
avoidance

GA, GP ANN 2003

Endo et al. [90] Humanoid body design GA ANN 2003
Shim et al. [69] Wing structure design EA ANN 2004
O’Kelly et al. [53] Creatures for combat GA ANN 2004
Macinnes et al. [59] Locomotion with LEGO bricks EA CTRNN 2004
Miconi et al. [88] Creatures with multiple locomotion modes GA ANN 2005
Lassabe et al. [97] Creatures for multi-surface locomotion GA ANN 2007
Chaumont et al. [52] Creatures for walking/block throwing GA ANN 2007

Parker et al. [98] Sensor position and gait design GA
Reactive

controller
2007

Chocron [85] Serial manipulator design
TGA,

M/AMEA
Inverse

kinematic
2007

Chocron [86] Mobile robot for rough terrains EA Open-loop 2007

Miconi et al. [58] Fighting creatures
GA with

LEO
ANN 2008

Heinen et al. [83] Four-legged walking robot GA FSM & ANN 2009
Mazzapoida et al. [82] Creatures for irregular surface locomotion EA ANN 2009

Rommerman et al.
[47]

Six-legged robot design CMA-ES
Inverse

kinematic
controller

2009

Bongard [44] Articulated robot design MOEA CTRNN 2010
Rubrecht et al. [81] Serial manipulator design NSGA-II CCC 2011
Azarbadegan et al. [51] Biped walking creatures GA ANN 2011
Gregor et al. [57] Creatures for locomotion GP ANN 2012
Larpin et al. [40] Quadrupedal robot design MOEA CPG 2012

Moore et al. [102, 36] Amphibious robot design EA
Sinusoidal
controller

2012

Pilat et al. [50] Food consuming creatures
Steady

State GA
Recurrent

ANN
2012

Auerbach et al. [78] Creatures for locomotion
CPPN-
NEAT

CTRNN 2013

Samuelsen et al. [34] Robots for locomotion NSGA-II CPG 2013
Risi et al. [64] Robots for walking NEAT CPPN 2013
Lessin et al. [49] Light following/fighting creatures EA ESP-ANN 2014

Digumarti et al. [77] Legged robot design CMA-ES
Inverted

pendulum
based

2014

Auerbach et al. [56] Racing/chasing robot design GA
Recurrent

ANN/Hyper
-NEAT

2014

Corucci et al. [70] Underwater robot design GA
Open-loop

control
2015

Faiña et al. [54] Mobile robot design
Multiple

EAs
Sinusoidal

control
2015

Brodbeck et al. [72] Mobile robot design EA
Amplitude &
phase shift

based
2015

A Survey on Evolutionary-aided Design in Robotics

12

 Evolved robot morphology for creatures that moved towards a goal with an innovative
hox gene inspired historical marking strategy for tracking ancestors was shown applied by
Samuelsen et al. [34]. In a unique application of EAs in robot design, the appearance of a
Social Robot was evolved with human feedback acting as the fitness function [66].

4.2. Co-evolution of morphology and control
In this section, the research reported can be primarily classified into the evolution of virtual
creatures and evolution of virtual but physically realisable robots.

4.2.1. Virtual Creatures or Robots. The first reported application of EAs in morphology
evolution was for configuring sensor position on a mobile robot in 1993 [103]. However, as
this paper deals with the evolution of stationary sensory element positions and not the core
mechanical aspects of the robots, such works are not covered. The pivotal paper that
reported the evolution of virtual creatures was by Sims in 1994 [48, 91] where body and
brain of creatures for swimming, walking and jumping were evolved. Here, 3D blocks with
imaginary joints were allowed to freely develop in simulation. Subsequent works were
inspired by Sim’s virtual creatures.
 For instance, the work was later replicated by Taylor et al. [9] in the MathEngine
platform. Again, virtual robot combat pairs with spherical links and motors were evolved in
a period of few days in [53]. Further, a simple steady state GA was reported in [88] for
imitating Sims’s work. In the same direction, creatures for walking, climbing and skating on
multiple surface types were evolved by Lassabe et al. [97]. Likewise, walking or block
throwing Sims’s creatures were developed on ODE by Chaumont et al. [52]. In a related
work, Miconi [58] used Sims’s creatures for fighting through the LEO algorithm. In [82], to
evolve creatures that could transverse flat and irregular surfaces, a tub with round ends
acted as the building block with possibilities of attaching to others or modifying its length.
Yet again following Sims’s work, robots with biped morphology were designed in [51].
 A cuboidal body with hinge joints were the building blocks for evolving creatures aimed
at consuming virtual food in [50]. The evolution of a creature called Framestick with sticks,
muscles and sensors for orientation, smell and touch for walking and swimming is explored
in [76] (Fig. 1(b)). A Braitenberg type vehicle design with the aim of reaching a goal while
avoiding obstacles is described by Mautner et al. [43]. A four-legged virtual dog-like creature
had its body dimensions evolve in the LeGen simulator [83].
 Multi-linked robots were designed for 2D locomotion and hill climbing by Endo et al.
[79]. They constrained the evolution process with two to seven links for the robot. Later,
Bongard developed the body plan design of an articulated robot for grasping and lifting
various objects [44]. Context blocks along with GP were used for evolution of body plan only
and not the structure of creatures with the help of Ella software package by Gregor et al.
[57]. Sphere shaped parts with embedded sensors for distance moved, touch, proprioception
and time were evolved for covering maximum displacement in [78] (Fig. 1(c)). Risi et al.
[64] evolved robots that moved straight made with 3D printed ribbons and embedded
motors. On NVIDIA PhysX, creatures with muscle (spring), actuators and photoreceptors
were evolved which can adapt its morphology as per the chosen task [49].

4.2.2. Physically realisable robots. The papers in the previous section covered the creatures
or robots with virtually co-evolved body and controller, and they all suffered from a major
drawback of not being able to be built physically. This section and Table VIII are dedicated
to those works that report buildable robots.
 Lee et al. [60], kept a fixed robot shape while evolving the structural parameters of a
mobile robot for locomotion with obstacle avoidance. In a similar work, Lee [61] evolved
parameters for obstacle avoidance on a three-wheeled robot. A robot to move in a straight
line while avoiding obstacles was designed in [101] with its body parameters and controller
evolving simultaneously.

The morphology and walking pattern of a six-legged robot for space missions were
simultaneously optimised by Rommerman et al. [47] in the MARS (Machina Arte Robotum
Simulans) simulation platform. The robot was simulated in three scenarios during its
evaluation. A quadrupedal robot body parameters were evolved for maximum distance
travelled using minimum energy in [40]. Another quadrupedal evolved using modular
components for rough terrain exploration is presented by Chocron [86]. Using an innovative
generative encoding, [65, 89, 104] created Genobots with bars and joints (actuated and non-

A Survey on Evolutionary-aided Design in Robotics

13

actuated) for locomotion. The GOLEM project at the Brandeis University evolved robots
with linear bars and linear actuators and with the help of rapid prototyping tested the
evolved prototypes [73].

 A line follower was evolved by Lund [63] using LEGO Mindstorms where the
morphological shape was fixed and allowed the evolution of all other parameters. From a
library of pre-existing parts comprising of LEGO bricks, Macinnes et al. [59] evolved robots
for locomotion. Servo motors and position feedback sensors used in the assembly of the final
robot after evolution.

A number of variables of a fixed topology biped humanoid robot along with it controller
for gait design were evolved in [90]. ODE found its application in developing the body
dimensions and control parameters of a four-legged robot for optimal speed and predefined
gait [77]. The wing structure and low-level controllers of a robot for flying along a straight
line were evolved by Shim et al. [69]. The frequently used ODE platform appeared again in
[36, 102] for evolving body parameters of an amphibious robot and the final model there
was 3D printed to confirm the simulation.

Along similar lines, existing design parameters of an underwater robot PoseiDRONE was
modified using a novelty search based GA in MATLAB by Corucci et al. [70]. Chocron [85]
applied two level GA similar to [37] for evolving the end effector pose and orientation with
other physical parameters of a serial manipulator with multiple chromosome genotypes. A
serial manipulator for highly constrained space like the inside of a tunnel boring machine is
elaborated in [81]. There, each robot was made of segments which comprised of links with
revolute or prismatic joints for a maximum of one-DOF.

RoboGen [56] is an open-source platform which generates robots for racing or chasing
activities with a set of standard parts including servo motor actuators, IR, light and IMU
sensors and Arduino controller. The package is capable of evolving morphology and
controller and generates 3D printable models which can be physically assembled. A virtual
and corresponding 3D printed evolved mobile robot is shown in Figures 1(e) and (f),
respectively.

Table VIII. Buildable co-evolved robots.

Author/s
Fixed
design

Fixed
parts

library

Fixed part
shape with

variable
size

Locomotion
(Wheeled(

W)/Legged(
L))

Sensor
feedback

used
during

evolution

Controller
parameter

only
evolution

Subtasks

Lee et al. [60] ✓ W ✓ ✓
Pollack et al. [73] ✓ ✓ L
Lee [61] ✓ W ✓ ✓
Lund [63] ✓ W ✓ ✓
Pollack et al. [89] ✓ ✓ L
Lee [101] ✓ W ✓ ✓
Chocron [86] ✓ W&/L ✓ ✓
Endo et al. [90] ✓ L ✓ ✓
Shim et al. [69] ✓ ✓ Winged ✓ ✓
Macinnes et al. [59] ✓ L ✓
Rommerman et al.
[47]

✓ L ✓ ✓

Rubrecht et al. [81] ✓ ✓ ^ ✓
Larpin et al. [40] ✓ L ✓

Moore et al. [102, 36] ✓ L$ ✓
Samuelsen et al. [34] ✓ ✓ L ✓
Digumarti et al. [77] ✓ L ✓
Auerbach et al. [56] ✓ W&/L ✓ ✓
Corucci et al. [70] ✓ L$ ✓
Faiña et al. [54] ✓ L ✓ ✓
Brodbeck et al. [72] ✓ L ✓ ✓
$ Underwater fin based.
^ Not a mobile robot.

A Survey on Evolutionary-aided Design in Robotics

14

Faiña et al. [54] developed a system for applications involving a list of subtasks such as
painting, carrying and cleaning executed through a variety of locomotion modes like
climbing, walking, rolling and crawling. The system was called EDHMoR [105] with the core
module containing encoder and accelerometer and there were four possible options for
actuators or special sensors that could be connected on empty slots of the core module.

In all the works above, the evolution was performed in a software platform, and best
designs were implemented in reality. However, in the paper by Brobeck et al. [72], a 6-DOF
serial mother robot built the solution population and tested their speed of locomotion and
created better solutions with the help of an EA. The solution population was constructed
from active and passive modules. Servo motor, Bluetooth module and Arduino controller
were used in the module while the evolution process was offloaded to MATLAB running on
a PC which was interfaced with the mother robot. The end-effector of mother robot building
robots is shown in Fig. 1(d). In a step further, Weel et al. [39] explained a futuristic concept
of online co-evolution as a proof of concept with no central evolution process involved.

5. Discussion and Conclusion
In this paper, the general principle of EAs along with the various methods applied for
evolving body morphology and controller have been explored. A brief explanation of
algorithms for controller development and how they are applied in different scenarios are
also covered in the above sections. In the quarter century that evolutionary computing
techniques have found applications in robotics, more than 80% of the works reported are in
the post-2000 era which could be owing to the advent of fast computing systems as
optimisation methods are computationally expensive. This could also be why in most of the
applications, the core topology of robots was fixed.

While many researchers applied EAs in robotics as a proof of concept, there were only a
handful who tested the evolved robots in reality. Usually, when the design was allowed to
evolve freely, the ability to physical realise it appeared to be compromised. When the aim
was to build physical robots, the evolution process was confined to the selection of parts
from a predefined set, except in a few cases. However, in such situations, any sensory
feedback in the system seemed to be missing (Table VIII).

In buildable systems, the general trend of application area appeared to be around
locomotion and serial manipulation. The cause for such constrained applications might be
due to several reasons as follows: The long time required for evolution on the current
general-purpose computing systems, even for slightly complex tasks. The reality gap
between the simulation and real systems. Difficulty in designing effective fitness functions,
and methodological problems such as biasing and premature convergence.

The reality gap could also be contributing to discouraging physical realisation. Even
though, there has been several reported works addressing the reality gap in ER, they mainly
focus on controller only evolution, this suggests the need for further research specific to co-
evolution process. A similar trend is also observed in designing fitness functions where
functions for works related to controller only evolution show multiple types being applied,
such as aggregate, competitive, environmental, behavioural, incremental, tailored and
training data based fitness functions [17]. It has also been demonstrated that EAs could help
in the latest thrust areas of online lifelong learning where neural networks evolve though
robot’s lifetime, perform diagnostic/repair functions automatically and even perform co-
operative actions.

The review also suggests the need for software packages integrating multiple areas
covering physics simulator, CAD modelling, controller development and evolver as only an
interdisciplinary team is restricted to using the full advantage of ER. This highlights an
immediate need for developing a stable high-level ER environment. There is also a need to
consolidate the generated knowledge and develop standards including benchmarking
methods to aid transferability and to move away from ad hoc practices. Further, formal
conventional methods for morphology and controller designs guarantee convergence and
discovery of suitable solutions. All these reasons collectively could be why ER is not given
sufficient weight in robotics or discourage roboticists to delve into the area. However, it must
not be forgotten that humans are a result of evolution by natural selection and we are yet to
replicate the grace and sophistication exhibited by its creations from the traditional
approaches.

On a final note, evolutionary approaches have found successful application in robot

A Survey on Evolutionary-aided Design in Robotics

15

morphology design and simultaneous evolution of controller and structure among other
application areas. It is reckoned that the technology has still not reached its peak and will
continue to evolve towards fully automatic synthesis [4] of robots in the future or towards
the evolution of things [32]. Even though ER is inspired by biological evolution which has
evolved over trillions of organisms, we may still be far away from conducting evolution at
that scale. Nevertheless, this should gradually change as our understanding of the biological
evolution deepens on one side and the technology matures on the other.

References

1. C. Darwin, The origin of species by means of natural selection: or, the preservation of favored
races in the struggle for life (John Murray. London, 1859).

2. G. Mendel, “Experiments in plant hybridization (1865),” In: Classic papers in genetics, (1), 1–
19, (Prentice-Hall Inc. Englewood Cliffs, New Jersey, 1959).

3. J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence (MIT Press. Cambridge, MA, USA,
1992).

4. S. Doncieux, J.B. Mouret, N. Bredeche, and V. Padois, “Evolutionary Robotics: Exploring New
Horizons,” In: New Horizons in Evolutionary Robotics, 341(1), 3–25, (Springer Berlin
Heidelberg. Berlin, Heidelberg, 2011).

5. S. Nolfi and D. Floreano, Evolutionary robotics: The biology, intelligence, and technology of
self-organizing machines (MIT Press. Cambridge, MA, USA, 2000).

6. S. Nichele, “The coevolution of robot controllers (” brains”) and morphologies (” bodies”)–
challenges and opportunities,” online, 2015. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.2391&rep=rep1&type=pdf.
Accessed Mar- 20, 2017.

7. P. A. Vargas, E. A. Di Paolo, I. Harvey, and P. Husbands, The horizons of evolutionary robotics
(MIT Press. Cambridge, MA, USA, 2014).

8. J. C. Bongard, “Evolutionary robotics,” Communications of the ACM 56(8), 74–83 (2013).
9. T. Taylor and C. Massey, “Recent Developments in the Evolution of Morphologies and

Controllers for Physically Simulated Creatures,” Artif. Life 7(1), 77–87 (2001).
10. D. Floreano, F. Mondada, A. Perez-Uribe, and D. Roggen, “Evolution of Embodied Intelligence,”

In: Embodied Artificial Intelligence, 3139(23), 293–311, (Springer Berlin Heidelberg. Berlin,
Heidelberg, 2004).

11. H. Lipson, “Evolutionary robotics and open-ended design automation,” Biomimetics 17(9), 139–
155 (2005).

12. R. Pfeifer, M. Lungarella, and F. Iida, “Self-organization, embodiment, and biologically inspired
robotics.,” Science 318(5853), 1088–1093 (2007).

13. A. F. T. Winfield and J. Timmis, “Evolvable Robot Hardware,” In: Evolvable Hardware, (13),
331–348, (Springer Berlin Heidelberg. Berlin, Heidelberg, 2015).

14. S. Nolfi, J. Bongard, P. Husbands, and D. Floreano, “Evolutionary Robotics,” In: Springer
Handbook of Robotics, 2nd ed.236(76), 2035–2068, (Springer International Publishing. Cham,
2016).

15. A. E. Eiben and J. Smith, “From evolutionary computation to the evolution of things,” Nature
521(7553), 476–482 (2015).

16. S. Gupta and E. Singla, “Evolutionary robotics in two decades: A review,” Sadhana 40(4), 1169–
1184 (2015).

17. A. L. Nelson, G. J. Barlow, and L. Doitsidis, “Fitness functions in evolutionary robotics: A survey
and analysis,” Rob. Auton. Syst. 57(4), 345–370 (2009).

18. J. Walker, S. Garrett, and M. Wilson, “Evolving controllers for real robots: A survey of the
literature,” Adapt. Behav. 11(3), 179–203 (2003).

19. J. Teo, “Darwin+ robots= evolutionary robotics: Challenges in automatic robot synthesis,” In:
Proceedings of the International Conference on Artificial Life (2004) pp. 7–13.

20. R. Kicinger, T. Arciszewski, and K. De Jong, “Evolutionary computation and structural design:
A survey of the state-of-the-art,” Comput. Struct. 83(23), 1943–1978 (2005).

21. J. C. Barca and Y. A. Sekercioglu, “Swarm robotics reviewed,” Robotica 31(3), 345–359 (2013).
22. H. Ahmadzadeh, E. Masehian, and M. Asadpour, “Modular Robotic Systems: Characteristics and

Applications,” J. Intell. Rob. Syst. 81(3), 317–357 (2016).
23. R. Alattas, “Evolutionary Modular Self-Assembly and Self-Reconfigurable Robotics: Exhaustive

Review,” arXiv.org. 09-Feb-2017.
24. C. Lee, M. Kim, Y. J. Kim, N. Hong, S. Ryu, H. Jin Kim, and S. Kim, “Soft robot review,” Int. J.

Control Autom. Syst. 15(1), 1–13 (2017).
25. R. Pfeifer, F. Iida, and M. Lungarella, “Cognition from the bottom up: on biological inspiration,

body morphology, and soft materials,” Trends Cognit. Sci. 18(8), 404–413 (2014).
26. W. Aguilar, G. S. a-Bonfil, T. Froese, and C. Gershenson, “The Past, Present, and Future of

A Survey on Evolutionary-aided Design in Robotics

16

Artificial Life,” Front. Robot. AI 1(3), 4463 (2014).
27. R. Doursat, H. Sayama, and O. Michel, “A review of morphogenetic engineering,” Nat. Comput.

12(4), 517–535 (2013).
28. K. O. Stanley, “Why Evolutionary Robotics Will Matter,” In: New Horizons in Evolutionary

Robotics, 341(3), 37–41, (Springer Berlin Heidelberg. Berlin, Heidelberg, 2011).
29. J. A. Meyer, P. Husbands, and I. Harvey, “Evolutionary robotics: A survey of applications and

problems,” In: Evolutionary Robotics, 1468(1), 1–21, (Springer Berlin Heidelberg. Berlin,
Heidelberg, 1998).

30. F. Silva, M. Duarte, L. Correia, S. M. Oliveira, and A. L. Christensen, “Open Issues in
Evolutionary Robotics,” Evol. Comput. 24(2), 205–236 (2016).

31. J. Bongard, “Why Morphology Matters,” In: The horizons of evolutionary robotics, (6), 125–
152, (The MIT Press. Cambridge, MA, USA, 2014).

32. A. E. Eiben and J. E. Smith, “Towards the evolution of things,” SIGEVOlution 8(3), 3–6 (2016).
33. A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing (Springer Berlin

Heidelberg. Berlin, Heidelberg, 2015).
34. E. Samuelsen, K. Glette, and J. Torresen, “A hox gene inspired generative approach to evolving

robot morphology,” In: Proceedings of the Genetic and Evolutionary Computation Conference
(2013) pp. 751–758.

35. G. B. Parker, D. Duzevik, A. S. Anev, and R. Georgescu, “Morphological Evolution of Dynamic
Structures in a 3-Dimensional Simulated Environment,” In: Proceedings of the International
Symposium on Computational Intelligence in Robotics and Automation (2007) pp. 534–540.

36. J. M. Moore and P. K. McKinley, “Evolution of an amphibious robot with passive joints,” In:
Proceedings of the IEEE Congress on Evolutionary Computation (2013) pp. 1443–1450.

37. O. Chocron and P. Bidaud, “Genetic design of 3D modular manipulators,” In: Proceedings of
the International Symposium on Computational Intelligence in Robotics and Automation
(1997) pp. 223–228.

38. R. S. Núñez Cruz and J. M. Ibarra Zannatha, “Efficient mechanical design and limit cycle
stability for a humanoid robot: An application of genetic algorithms,” Neurocomputing 233,
72–80 (2017).

39. B. Weel, E. Crosato, J. Heinerman, E. Haasdijk, and A. E. Eiben, “A robotic ecosystem with
evolvable minds and bodies,” In: Proceedings of the IEEE International Conference on
Evolvable Systems (2014) pp. 165–172.

40. K. Larpin, S. Pouya, J. van den Kieboom, and A. J. Ijspeert, “Co-evolution of morphology and
control of virtual legged robots for a steering task,” In: Proceedings of the IEEE International
Conference on Robotics and Biomimetics (2011) pp. 2799–2804.

41. G. Buason, N. Bergfeldt, and T. Ziemke, “Brains, Bodies, and Beyond: Competitive Co-Evolution
of Robot Controllers, Morphologies and Environments,” Genet. Program. Evolvable Mach. 6(1),
25–51 (2005).

42. K. Endo, T. Maeno, and H. Kitano, “Co-evolution of morphology and walking pattern of biped
humanoid robot using evolutionary computation:designing the real robot,” In: Proceedings of
the IEEE International Conference on Robotics and Automation (2003) pp. 1362–1367.

43. C. Mautner and R. K. Belew, “Evolving robot morphology and control,” Artif. Life Rob. 4(3),
130–136 (2000).

44. J. Bongard, “The Utility of Evolving Simulated Robot Morphology Increases with Task
Complexity for Object Manipulation,” Artif. Life 16(3), 201–223 (2010).

45. P. Chedmail and E. Ramstein, “Robot mechanism synthesis and genetic algorithms,” In:
Proceedings of the IEEE International Conference on Robotics and Automation (1996) pp.
3466–3471.

46. P. S. Shiakolas, D. Koladiya, and J. Kebrle, “Optimum Robot Design Based on Task
Specifications Using Evolutionary Techniques and Kinematic, Dynamic, and Structural
Constraints,” In: Proceedings of the International Mechanical Engineering Congress and
Exposition (2002) 2002 pp. 825–832.

47. M. Rommerman, D. Kuhn, and F. Kirchner, “Robot design for space missions using evolutionary
computation,” In: Proceedings of the IEEE Congress on Evolutionary Computation (2009) pp.
2098–2105.

48. K. Sims, “Evolving virtual creatures,” In: Proceedings of the Annual Conference on Computer
Graphics (1994) pp. 15–22.

49. D. Lessin, D. Fussell, and R. Miikkulainen, “Adopting Morphology to Multiple Tasks in Evolved
Virtual Creatures,” In: Proceedings of the International Conference on Simulation and
Synthesis of Living Systems (2014) pp. 247–254.

50. M. L. Pilat, T. Ito, R. Suzuki, and T. Arita, “Evolution of virtual creature foraging in a physical
environment,” In: Proceedings of the International Conference on Simulation and Synthesis of
Living Systems (2012) pp. 423–430.

51. A. Azarbadegan, F. Broz, and C. L. Nehaniv, “Evolving Sims's creatures for bipedal gait,” In:
Proceedings of the IEEE Symposium On Artificial Life (2011) pp. 218–224.

52. N. Chaumont, R. Egli, and C. Adami, “Evolving virtual creatures and catapults,” Artif. Life 13(2),

A Survey on Evolutionary-aided Design in Robotics

17

139–157 (2007).
53. M. O'kelly and K. Hsiao, “Evolving Simulated Mutually Perceptive Creatures for Combat,” In:

Proceedings of the International Conference on Simulation and Synthesis of Living Systems
(2004) pp. 113–118.

54. A. Faiña, F. Bellas, F. Orjales, D. Souto, and R. J. Duro, “An evolution friendly modular
architecture to produce feasible robots,” Rob. Auton. Syst. 63, 195–205 (2015).

55. H. Lipson, “Evolutionary synthesis of kinematic mechanisms,” Artif. Intell. Eng. Des. Anal.
Manuf. 22(3), 195–205 (2008).

56. J. Auerbach, D. Aydin, A. Maesani, P. Kornatowski, T. Cieslewski, G. Heitz, P. Fernando, I.
Loshchilov, L. Daler, and D. Floreano, “RoboGen: Robot Generation through Artificial
Evolution,” In: Proceedings of the Artificial Life 14: International Conference on the Synthesis
and Simulation of Living Systems (2014) pp. 136–137.

57. M. Gregor, J. Spalek, and J. Capák, “Use of context blocks in genetic programming for evolution
of robot morphology,” In: Proceedings of the International Conference ELEKTRO (2012) pp.
286–291.

58. T. Miconi, “In Silicon No One Can Hear You Scream: Evolving Fighting Creatures,” In: Genetic
Programming, 4971(3), 25–36, (Springer Berlin Heidelberg. Berlin, Heidelberg, 2008).

59. I. Macinnes and E. Di Paolo, “Crawling out of the simulation: Evolving real robot morphologies
using cheap reusable modules,” In: Proceedings of the International Conference on Simulation
and Synthesis of Living Systems (2004) pp. 94–99.

60. W. P. Lee, J. Hallam, and H. H. Lund, “A hybrid gp/ga approach for co-evolving controllers and
robot bodies to achieve fitness-specified tasks,” In: Proceedings of the IEEE International
Conference on Evolutionary Computation (1996) pp. 384–389.

61. W. P. Lee, “Evolving Autonomous Robot: From Controller to Morphology,” IEICE Trans. Inf.
Syst. 83(2), 200–210 (2000).

62. D. Lessin, D. Fussell, and R. Miikkulainen, “Open-ended behavioral complexity for evolved
virtual creatures,” In: Proceedings of the Annual Conference on Genetic and Evolutionary
Computation (2013) pp. 335–342.

63. H. H. Lund, “Co-evolving Control and Morphology with LEGO Robots,” In: Morpho-functional
Machines: The New Species, (4), 59–79, (Springer Japan. Tokyo, 2003).

64. S. Risi, D. Cellucci, and H. Lipson, “Ribosomal robots: Evolved designs inspired by protein
folding,” In: Proceedings of the Annual Conference on Genetic and Evolutionary Computation
(2013) pp. 263–270.

65. G. S. Hornby and J. B. Pollack, “Body-brain co-evolution using L-systems as a generative
encoding,” In: Proceedings of the Annual Conference on Genetic and Evolutionary
Computation (2001) pp. 868–875.

66. A. De Beir and B. Vanderborght, “Evolutionary method for robot morphology: Case study of
social robot probo,” In: Proceedings of the ACM/IEEE International Conference on Human-
Robot Interaction (2016) pp. 609–610.

67. S. H. Lim and J. Teo, “Design, Optimization and Fabrication of a Climbing Six Articulated-
Wheeled Robot Using Artificial Evolution and 3D Printing,” BR. J. Math. Comput. Sci. 10(2), 1–
21 (2015).

68. A. J. Clark, J. M. Moore, J. Wang, and X. Tan, “Evolutionary design and experimental validation
of a flexible caudal fin for robotic fish,” In: Proceedings of the International Conference on
Simulation and Synthesis of Living Systems (2012) pp. 325–332.

69. Y. S. Shim, S. J. Kim, and C. H. Kim, “Evolving flying creatures with path-following behavior,”
In: Proceedings of the International Symposium on Computational Intelligence in Robotics
and Automation (2004) pp. 125–132.

70. F. Corucci, M. Calisti, H. Hauser, and C. Laschi, “Novelty-Based Evolutionary Design of
Morphing Underwater Robots,” In: Proceedings of the Annual Conference on Genetic and
Evolutionary Computation (2015) pp. 145–152.

71. G. S. Hornby, Generative representations for evolutionary design automation. Ph.D. Thesis
(Brandeis University. Waltham, Massachusetts, USA, 2003).

72. L. Brodbeck, S. Hauser, and F. Iida, “Morphological Evolution of Physical Robots through
Model-Free Phenotype Development,” PLoS ONE 10(6), e0128444 (2015).

73. J. B. Pollack and H. Lipson, “The GOLEM project: Evolving hardware bodies and brains,” In:
Proceedings of the NASA/DoD Workshop on Evolvable Hardware (2000) pp. 37–42.

74. B. G. R. Smith, C. M. Saaj, and E. Allouis, “Evolving legged robots using biologically inspired
optimization strategies,” In: Proceedings of the IEEE International Conference on Robotics and
Biomimetics (2010) pp. 1335–1340.

75. D. Cliff and G. F. Miller, “Tracking the red queen: Measurements of adaptive progress in co-
evolutionary simulations,” In: Advances in Artificial Life, 929(16), 200–218, (Springer Berlin
Heidelberg. Berlin, Heidelberg, 1995).

76. M. Komosiński and S. Ulatowski, “Framsticks: Towards a Simulation of a Nature-Like World,
Creatures and Evolution,” In: Applications of Evolutionary Computation, 1674(33), 261–265,
(Springer Berlin Heidelberg. Berlin, Heidelberg, 1999).

A Survey on Evolutionary-aided Design in Robotics

18

77. K. Digumarti, “Concurrent optimization of mechanical design and locomotion control of a legged
robot,” In: Proceedings of the Mobile Service Robotics: Proceedings of the 17th International
Conference on Climbing and Walking Robots and the Support Technologies for Mobile
Machines (2014) pp. 315–323.

78. J. E. Auerbach and J. C. Bongard, “Evolving complete robots with CPPN-NEAT: the utility of
recurrent connections,” In: Proceedings of the Annual Conference on Genetic and Evolutionary
Computation (2011) pp. 1475–1482.

79. K. Endo and T. Maeno, “Simultaneous design of morphology of body, neural systems and
adaptability to environment of multi-link-type locomotive robots using genetic programming,”
In: Proceedings of the RSJ/IEEE International Conference on Intelligent Robots and Systems
(2001) pp. 2282–2287.

80. K. Endo, T. Maeno, and H. Kitano, “Co-evolution of morphology and walking pattern of biped
humanoid robot using evolutionary computation. Consideration of characteristic of the
servomotors,” In: Proceedings of the RSJ/IEEE International Conference on Intelligent Robots
and Systems (2002) pp. 2678–2683.

81. S. Rubrecht, E. Singla, V. Padois, P. Bidaud, and M. de Broissia, “Evolutionary Design of a
Robotic Manipulator for a Highly Constrained Environment,” In: New Horizons in
Evolutionary Robotics, 341(8), 109–121, (Springer Berlin Heidelberg. Berlin, Heidelberg,
2011).

82. M. Mazzapioda, A. Cangelosi, and S. Nolfi, “Evolving morphology and control: A distributed
approach,” In: Proceedings of the IEEE Congress on Evolutionary Computation (2009) pp.
2217–2224.

83. M. R. Heinen and F. S. Osório, “Evolving morphologies and gaits of physically realistic simulated
robots,” In: Proceedings of the ACM symposium on Applied Computing (2009) pp. 1161–1165.

84. S. Farritor and S. Dubowsky, “On Modular Design of Field Robotic Systems,” Auton. Robot.
10(1), 57–65 (2001).

85. O. Chocron, “Evolutionary design of modular robotic arms,” Robotica 26(3), 323–330 (2007).
86. O. Chocron, “Evolving Modular robots for rough terrain exploration”, In: Mobile Robots: The
 Evolutionary Approach, 50(2), 23–46 (Springer-Verlag, Berlin, Heidelberg, 2007).
87. W. K. Chung, Jeongheon Han, Y. Youm, and S. H. Kim, “Task based design of modular robot

manipulator using efficient genetic algorithm,” In: Proceedings of the International Conference
on Robotics and Automation (1997) pp. 507–512.

88. T. Miconi and A. Channon, “A virtual creatures model for studies in artificial evolution,” In:
Proceedings of the IEEE Congress on Evolutionary Computation (2005) pp. 565–572.

89. J. B. Pollack, G. S. Hornby, H. Lipson, and P. Funes, “Computer creativity in the automatic
design of robots,” Leonardo 36(2), 115–121 (2003).

90. K. Endo, T. Maeno, and H. Kitano, “Co-evolution of morphology and walking pattern of biped
humanoid robot using evolutionary computation - evolutionary designing method and its
evaluation,” In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (2003) pp. 340–345.

91. K. Sims, “Evolving 3D Morphology and Behavior by Competition,” Artif. Life 1(4), 353–372
(1994).

92. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE Trans. Evol. Computat. 6(2), 182–197 (2002).

93. T. Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary
programming, genetic algorithms (Oxford University Press. New York, 1996).

94. K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through Augmenting
Topologies,” Evol. Comput. 10(2), 99–127 (2002).

95. N. Hansen, “The CMA Evolution Strategy: A Tutorial,” arXiv.org, 1604. arXiv:1604.00772,
2016.

96. P. Caamaño, R. Tedín, A. Paz-Lopez, and J. A. Becerra, “JEAF: A Java Evolutionary Algorithm
Framework,” In: Proceedings of the IEEE Congress on Evolutionary Computation (2010) pp.
1–8.

97. N. Lassabe, H. Luga, and Y. Duthen, “A new step for artificial creatures,” In: Proceedings of the
IEEE Symposium on Artificial Life (2007) pp. 243–250.

98. G. B. Parker and P. J. Nathan, “Co-evolution of sensor morphology and control on a simulated
legged robot,” In: Proceedings of the International Symposium on Computational Intelligence
in Robotics and Automation (2007) pp. 516–521.

99. N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The use of simulation in
evolutionary robotics,” In: Advances in Artificial Life, 929(53), 704–720, (Springer, Berlin,
Heidelberg. Berlin, Heidelberg, 1995).

100. A. L. Nelson and E. Grant “Aggregate selection in evolutionary robotics”, In: Mobile Robots: The
Evolutionary Approach, 50(4), 63–88 (Springer-Verlag, Berlin, Heidelberg, 2007).

101. W. P. Lee, “Evolving robot brains and bodies together: An experimental investigation,” J. Chin.
Inst. Eng. 26(2), 125–132 (2003).

102. J. M. Moore and P. K. McKinley, “Evolving flexible joint morphologies,” In: Proceedings of the

A Survey on Evolutionary-aided Design in Robotics

19

Annual Conference on Genetic and Evolutionary Computation (2012) pp. 145–152.
103. D. Cliff, P. Husbands, and I. Harvey, “Explorations in Evolutionary Robotics,” Adapt. Behav.

2(1), 73–110 (1993).
104. H. Lipson and J. Pollack, “Evolving physical creatures,” In: Proceedings of the International

Conference on Artificial Life (2006) pp. 282–287.
105. A. Faíña, F. Bellas, F. López-Peña, and R. J. Duro, “EDHMoR: Evolutionary designer of

heterogeneous modular robots,” Eng. Appl. Artif. Intell. 26(10), 2408–2423 (2013).

