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SUMMARY  
The evolutionary-aided design process is a method to find solutions to design and 
optimisation problems. Evolutionary Algorithms (EAs) are applied to search for optimal 
solutions from a solution space that evolves over several generations. EAs have found 
applications in many areas of robotics. This paper covers the efforts to determine body 
morphology of robots through evolution and body morphology with the controller of robots 
or similar creatures through co-evolution. The works are reviewed from the perspective of 
how different algorithms are applied and includes a brief explanation of how they are 
implemented.  

KEYWORDS: Evolutionary robotics; Evolutionary-aided design; Morphology evolution; Co-
evolution;  
 

 
1. Introduction 
Evolutionary Computation (EC) stems from Darwin’s theory of evolution [1] and Mendel’s 
experiments in hybridising plants [2]. The concept utilises various mechanisms of 
evolutionary theory to stochastically evolve a population of solutions. Evolutionary 
Algorithms (EAs) are a subset of EC introduced in the 1970s by Holland [3] as Genetic 
Algorithms (GA). GAs use a basic structure that changes over time by minor variations made 
at each time step. At the same time, other researchers developed conceptually similar 
algorithms like Evolution Strategies (ES) or Genetic Programming (GP). It was almost two 
decades before they were successfully applied to robotics [4]. Evolutionary Robotics (ER) is 
concerned with the generation of autonomous robots using the principles of evolutionary 
computing [5]. EC strategies are applied to autonomous robot development in evolving 
morphologies and controllers separately or co-evolving both simultaneously [5].  

Even though ER is over 20 years old, rarely has it been used to generate a physical 
demonstration of evolved robots. Nichele estimated that more than 95% of the literature 
focussed on the evolution of robot controllers. In the rest, less than 1% reported works that 
physically tested the generated morphology and controller and the remaining 4% only 
simulated the co-evolution process [6]. Although EAs are known to converge to solutions 
that are often unintuitive and unconventional (when compared to the results of traditional 
design methods), it must be noted that applying EAs mean incorporating many variables 
and parameters. Consequently, different combinations lead to different results which 
rapidly drift away from optimal solutions [7].  

In ER, the applications of EAs can be spread across various domains from traditional 
mobile and manipulator robotics to newer areas such as; modular robotics, swarm robotics, 
biorobotics, developmental robotics and soft robotics [8]. This paper reports the evolution 
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of the morphology alone along with the co-evolution of morphology and controller in the 
traditional areas of robotics. 

There have been several surveys covering various aspects of ER. Starting with a 
discussion of such articles, we review publications that discuss the evolution of physical 
creatures with or without their control system design with an emphasis on algorithmic 
variations and application areas along with a discussion on evolved buildable robots.  

In 2001, Taylor et al. [9] reported on the software packages utilised during the evolution 
of controller and morphology of virtual creatures. Later, Floreano et al. [10] briefly 
examined evolving morphologies and Lipson [11] explained how ER was used to perform 
open-ended design automation, while covering a few of the important works involved in 
robot body and controller design in addition to robot body only design. ER’s effect in the 
area of biologically inspired robots is described in [12]. Evolutionary principles are used in 
robotics for automatic parameter tuning, designing, online learning and automatic synthesis 
are explained in [4]. The review article [8] briefly covers different application areas of ER 
along with the various challenges faced.  

Recent publications; Winfield et al. [13] and Nolfi et al. [14] discuss the challenges faced 
by the community by analysing the key publications which report robot morphology 
development and robot body and controller co-evolution. The applications of EC principles 
in the field of robotics is broadly covered by Eiben et al. [15]. A recent review paper by Gupta 
et al. [16] touches on the main applications of EC in robotics for controller only evolution, 
morphology only evolution and their co-evolution.  

Nelson et al. [17] surveyed fitness functions used in evolutionary robotics. Papers [18, 19] 
contain a study on methods used for controller only design. Kicinger et al. [20] compiled a 
comprehensive list of publications that reported the use of EA for fixed structural design. 
There are more recent surveys on swarm [21], modular [22, 23] and soft [24] robotics. Other 
articles published which discuss ER are [25-32]. 

While several publications explain the intricacies of the area, to the best of our 
knowledge, none of them cover all reported attempts to deal with the applications of EAs in 
robot or similar creature’s morphology design and optimisation with or without 
simultaneous controller design. Therefore, this paper covers this subset of ER, which would 
help the understanding of the state of the art along with a brief background of the applied 
theory. 

 
 

2. Algorithms for morphology evolution 
EAs have a near standard structure and therefore the paper first elaborates the basic 
principle involved and subsequently explains how different researchers have used EAs in 
their works.  
 
2.1. The basic structure of evolutionary algorithms:  
As the name suggests, the algorithms are inspired from biological evolution. Consequently, 
each of the steps involved can be closely mapped with the different stages in biological 
evolution as nature searches for better living beings. The entire topic is explained in detail 
in [33]. 

The structure of a typical EA is as follows: 
1. Initialise a population of candidate solutions. 
2. Evaluate each candidate. 
3. Select parent/s. 
4. Recombine parents. 
5. Mutate offspring. 
6. Replace generation. 

The steps 3 to 6 are repeated until the results are sufficiently close to the desired objective 
or after the computation time is exceeded.  

 
2.1.1.  Phenotype. Before discussing the above procedure, it is necessary to explain how the 
candidate solutions are represented. Phenotype refers to the physical or observable entity 
of the candidate solution, or robot, and the phenotype space is where the observable 
properties of a robot are found.  
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2.1.2.  Genotype. In biology, the genome carries the various features of the organism through 
a set of genes and genotype is the equivalent term in ER. It encodes a description of the 
phenotype (or robot), and a genotype-phenotype mapping transfers the information 
between genotype space to phenotype space. Evaluation of each individual is performed on 
the phenotype while all other steps are conducted in the genotype space.  

The genotype holds morphological and control parameters or control algorithms 
according to the application. Various morphological parameters convey details pertaining 
to body size, weight, wheel diameters, spatial information about position or coordinates or 
angle, or any other relevant information. The control side may include various neural 
network parameters or neural network wiring or other parameters unique to the specific 
controller type under use. In many of the applications the genome has a fixed length, with 
exceptions in [34, 35].  

Genotype representations in the literature use binary [36-38], integer [39], real number 
[40-42] and string [43] encoding with many applying either or a combination of the 
different encoding methods. The basic genome types could also be placed in a matrix [44], 
vector [34, 45-47], graph [48-53] and tree [54-62]. Further, in other representations, [34, 
63] applied the concept of a hox gene for encoding body morphology and [39, 64] applied 
Compositional Pattern-Producing Networks (CPPN) based encoding . The CPPN encoding 
involves accepting arguments as inputs and generating a resultant graph which explains the 
connections between various functions. L-system (Lindenmayer) representation in [65] is a 
type of grammar representation where developmental design rules or building commands 
are evolved to generate symmetrical structures.  

 
2.1.3. Genotype-phenotype mapping. Each candidate’s fitness is estimated through the 
performance of the corresponding phenotype using genotype to phenotype conversion. 
There are several mappings which can be separated into parametric and open-ended 
representations. Parametric representations appeared in fixed topology designs [36, 38, 47, 
51, 60, 61, 66-69] where various parameters of the topology were evolved. Open-ended 
representations can be of generative and non-generative types. The generative encoding 
allows reuse of its individual elements during phenotype design. Each element is used only 
once in a non-generative encoding. Generative encoding is further divided into implicit and 
explicit, and non-generative encoding is either direct [40, 54, 59, 70] or indirect [64] types. 
See [71] for further details. 
 
2.1.4. Population. The initial population acts as a seed for solutions which are later evolved 
into solution(s) with the desired performance. In the area under discussion, the population 
varied from 15 to 1000 candidate solutions when fitness evaluation was performed in 
computer simulation. But in a unique case, from 1 to 3 elements, actual robots were built for 
evaluation [72]. While most populations were initiated with random values, Samuelsen et 
al. [34] chose 200 identical individuals and the GOLEM project [73] had 200 to 1000 null 
individuals to start the evolutionary process. Single population evolved solutions except in 
[74, 75]. In [74], for faster convergence, when the average fitness of the first population 
reached a fixed value (or after 50 generations), the best individual was transferred to a 
second population. Once twenty such transfers were completed, the solutions were further 
optimised with the second population. 

 
2.1.5. Fitness function. Each candidate solution in the population is tested using a fitness 
function. The phenotypes are active entities which are affected by the environment they are 
in. Each phenotype is placed in a simulated environment and the fitness function is designed 
for use in the phenotype space. Fitness functions were task specific through individual or 
combinations of penalty functions, cost functions, reward functions or based on the extent 
of objective attainment. The different kinds of fitness functions designed are listed in Table 
I.  
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Table I. Different types of fitness functions. 
 

Fitness function based on Citations 

Movement (e.g. distance, area, speed) 

[67, 70, 72, 76, 77]*, [34, 52, 78]* [36, 40, 
79]*, [43, 51, 57, 59, 73, 80]*, [81]*, [74]*, 
[47]*, [82, 83]*, [37, 58]*, [69]*, [35]*, [53]*, 
[63]*, [84]*, [60, 61]*, [85]*, [86]* 

Energy or cost [40, 79]*, [46]*, [84]*, [38] 
Action (e.g. collision, touch, fall, damage inflicted or 
suffered, obstacle avoidance) 

[70]*, [67]*, [51]*, [60]* 

Mechanical features (e.g. centre of gravity, torque 
generated, load, weight, size, dexterity, mobility, 
tension) 

[64, 81]*, [74]*, [47]*, [83]*, [37]*, [35]*, 
[69]*, [46]*, [84]*, [85, 87]* 

Design or feature (e.g. novelty, diversity) [78]*, [55] 
Goal specific (e.g. time to contact with prey, lifting, 
grasping, time on line, food eaten, competition 
winner, climbing ability) 

[41, 45, 50, 53]*, [63]*, [46]*, [44, 86]* 

Human feedback [70]*, [66] 

*Combination of more than one category.   
 
 
2.1.6.   Parent selection. The probability of creating a better offspring depends strongly on 
parent selection and hence, selection plays a major role in determining the time taken by 
EAs to converge to a satisfactory solution. Normally, parents with higher fitnesses are 
allotted a higher priority to be selected for reproduction. However, to avoid solutions being 
trapped in local optimum, parents with lower fitnesses are also selected, through a selection 
probability which is set at a low value [33]. In most cases, two parents are mated, except 
when applying asexual reproduction in [64]. There are several ways to select the parents:  
 
Fitness proportional selection (FPS): In FPS, the individual’s selection probability depends 
on its absolute fitness relative to the remaining population. Windowing or sigma scaling are 
commonly used to avoid premature convergence or to avoid solutions getting stuck in local 
minima due to the consistent selection of best candidates or to control selection pressure 
when fitness values are close to each other [33].  

 
Ranking selection: FPS suffers from the lack of constant selection pressure. To avoid this, 
in ranking selection, the probability is allocated according to rank and not the fitness value 
itself with higher ranked individual being allocated higher selection probability. For 
selecting probabilities, commonly used techniques are roulette wheel and stochastic 
universal sampling. Roulette wheel selection conceptually involves randomly selecting 
parents by repeatedly spinning a hypothetical roulette wheel. Each slot on the wheel 
represents a selection probability (allocated from a cumulative probablity distribution 
function), and a parent is selected after every spin of the wheel. Among its disadvantages, a 
uniform selection of parents from the probability distribution is not possible as the wheel is 
spun more than once. To overcome this, stochastic universal sampling is applied where all 
parents are selected simultaneously from the distribution [33]. This is accomplished by 
using the concept similar to a wheel of fortune, where instead of one selecting pointer 
directing to a single slot, multiple uniformly spaced pointers (equal to number of parents) 
select multiple slots (with their size proportional to corresponding probability) in a single 
spin.  
 
Tournament selection: The parent selection methods explained so far require the 
probability distribution of entire the population in every generation to apply the necessary 
algorithm. By contrast, tournament selection works by dividing the population into groups 
and selecting the best for each candidate’s relative fitness in that group. The prominent 
parent selection methods applied in the area are listed in Table II. 
 
 
2.1.7.  Variation operations (Mutation and Recombination). Variation operators are 
applied to the selected parents to create new offspring. Usually, both recombination and 
mutation after mating are implemented in that order. When a child is generated from a 
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single parent, the process is called mutation, and when multiple parents are used, the 
process is referred to as recombination. Mutation involves stochastic modification of 
parent’s genotype. It must be noted that genotype should be altered at random and should 
be unbiased. Therefore, slightly targeted tweaking of the genotype is not considered as 
mutation [33].  

Table II. Methods of parent selection 

Parent selection methods Citations 

Random [52, 53, 67, 74]* 
Tournament selection 
(binary/deterministic/triple/multiple population) 

[34, 36, 50, 56, 60, 63, 68]*, [41, 
88]*, [69]*, [58]*, [38] 

Fitness proportionate (FPS/rank/cost/x 
best/neighbouring pair) 

[39, 49, 74]*, [41, 55, 82, 88]* 

Non-dominated sorting [34]*, [81]* 
Crowed distance sorting [81]* 
Diversity measure [34]* 
Stochastic universal sampling  [35] 

Roulette wheel selection [37, 46, 69]*, [58]*, [45] 

*Combination of more than one category. 
 
 

 

 
In another method, recombination or crossover operation is applied to the two parents 

to generate offspring. In this stochastic method, random parts of the mating parents are 
joined to inherit offspring with features from both parents. Moving away from the purely 
Darwinian model, theoretical studies and demonstrations have shown that using more than 
two parents in recombination produces more fit offspring. Despite this the method is seldom 
used [33]. There are several variations to the recombination and mutation operations when 
applied to solve problems in ER, and some of the significant variations are listed in Tables 
III and IV, respectively.  

 

Table III. Mutation methods. 

Mutation operations  Citations 

Fixed non-adaptive [67] 
Gaussian [41, 56, 57] 
Gaussian Random [44] 
Standard [36, 40, 45, 46, 51, 55, 61, 63, 64, 69, 79-81, 84, 87] 
Through deletion, duplication, 
modification 

[34, 53, 59, 73, 89], [48] 

Variable probabilities [82] 
Concatenation [58] 
Binary/float/integer [85, 86] 
Vector differential mutation [46] 

 

Table IV. Types of crossover. 

Crossover operations  Citations 

Random [39, 46, 89], [59], [61], [48, 85] 
Single point [36, 68], [83] 
Two point  [38, 60, 76] 
N point [57] 
Grafting, Copying [50] 
Classic  [40, 45, 51, 55, 69, 79, 81, 84, 87], [52, 86] 

BL- [80] 

Segregation  [86] 

 
 

2.1.8.  Survivor selection. The population size is fixed by finite resources. So the proportions 
of which of the offspring are added to the population and which individuals are replaced 
need to be decided. Age-based and fitness-based replacement are the two main types of 
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selection strategies. Fitness-based selection involves several methods, and the most 
prominent ones are discussed below. 

A fixed number of least fit members are replaced from the population and rest are moved 
to the next generation in the replace the worst strategy. It results in a fast increase of average 
fitness, but this may also lead to premature convergence. As a result, it is only commonly 
applied to large populations. Elitism is implemented in addition to age-based and stochastic 
replacement methods to ensure that the fittest member of the population is retained and not 
replaced by other methods. In cases where fittest is among the population and not among 
the children, the latter is discarded. The round-robin tournament is another method in 
which, competitions are conducted between an offspring and a randomly selected opponent 
from a merged parent-child population. Each child competes for a fixed number of times, 
and once all of them finish competing, the offspring with highest wins replace the weakest 
of the population [33].  

In the area under survey, 10% of the population were deleted by Lee [61], and that space 
was added with randomly generated candidates while [54] chose to retain the best children. 
In the single objective EA discussed in [67], the offspring immediately replaced parent if 
found to be fitter, and when multi-objective EA was used, offspring was compared with every 
individual in the population before replacement. Variable replacement strategy was used in 
[56] and elitism was excercised in [35, 38, 41, 46, 51, 52, 64, 81, 90]. Truncation strategy 
appeared in [34], and elitism with tournament selection was applied by Clark et al. [68] and 
Moore et al. [36]. Researchers [50] replaced the loser of the population with the child and 
in [74], individuals with costs higher than average of the population were replaced. Further, 
[44] retained random non-dominated solutions by replacing dominated solutions and 
parents were always replaced in [37]. The entire population was filled by children at every 
generation and the ten worst performers were replaced with randomly generated individuals 
every 50 generations in [82]. 20% of the highest scoring individuals in the population after 
competing against opposing population were retained, and rest were filled with offspring in 
[58]. Miniature round-robin tournaments were applied for selection and genotype 
validation, with garbage collection in [53]. Sims [48] and Shim et al. [69] retained 20% of 
the elite population, and rest were filled with offspring. 
 
 
2.2.  Different EAs applied 
EAs have been realised using variations of the basic algorithm. While standard EAs were 
applied in [49, 67, 69, 72, 73, 76], an alternative approach is Multiple Objective Evolutionary 
Algorithms (MOEA) [40, 44, 67]. MOEA works with two fitness functions (eg. size fitness 
and performance fitness) that are calculated in parallel to find the dominant solutions 
(solutions with at least one fitness in one parent is better than the corresponding fitness in 
the other) which replace the non-dominant ones.  

Genetic Algorithm (GA), Simple GA (SGA) or canonical GA uses a binary representation 
for its genotypes, FPS mechanism for parent selection, low mutation rates, and one point 
crossover is used as the standard recombination mechanism. The entire population is 
refreshed every generation as everyone is selected for crossover and is replaced by mutated 
children. However, depending on the probabilities set on variation operators, there can be 
copies of parents in the new population. SGAs possess flaws, to achieve faster convergence, 
they have been modified to include elitism and tournament selection [33]. SGAs were used 
for morphology development in [50, 56, 63, 66, 74, 83, 84] and they were amended with 
elitism, or other selection methods [35, 38, 43, 45, 46, 48, 51, 68, 87, 88]. A GA with novelty 
search and an objective based GA found application in [70] where individuals that 
performed differently were rewarded if they possessed novelty. A two level GA made of SGAs 
are in [37, 85, 90].  

Another variation to the standard GA, is called the Last Elite Opponent (LEO) algorithm 
developed by Cliff et al. [75] which was inspired from Sims’s [91] algorithm. It used two 
populations of solutions. The fitness of each individual in the first population was calculated 
by competing it with the champion of the other population. The best 20% were then retained 
and remaining were filled with children of these parents. Parents were selected via roulette-
wheel selection, and the same operation was applied to the second population [58].  

Smith et al. combined GA, extremal optimisation and pareto optimisation for evolution 
[74]. A GA generated two populations and best of the first population was moved into second 
population every 50 generations or after attaining a specified fitness. Later when the 
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population size reached 20, an extremal optimisation technique was applied. During this 
operation, the overall cost of each genotype was improved by modifying a specific gene 
which had the maximum adverse effect on the phenotype. A pareto optimisation technique 
then differentiated the best among competing designs. In this step, the cost of each gene in 
the genotype was compared with every other corresponding gene in other genotypes. The 
value of genes with greater costs was increased, and best genotype in the population was 
finally selected.  

Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a popular variation of GA 
developed by Deb et al. [92]. In NSGA-II, the parents are chosen from a ranked list of 
candidate solutions. After mutation and recombination operations, the child and parent 
populations are combined and ranked before applying elitist selection criteria for building 
the new population. The algorithm was implemented by Samuelsen et al. [34] and Rubrecht 
et al. [81].  

In Differential Evolution (DE) [46], individual solutions are ranked through a cost 
function. During mutation, a vector differentiation method is applied by adding a third 
solution vector from the weighted difference of two others. Normally, parameter vector 
dimensions are equal to the number of design variables and population size is same as the 
number of parameter vectors.  

A Multi-Chromosome Evolutionary Algorithm (MEA) proposed by Chocron [85] 
concentrated some of the robot’s features on a single chromosome of floating point 
numbers. The variation operations were performed on each of them and not globally on the 
genotype. The algorithm was inspired from evolutionary strategy principles developed by 
Back [93]. The paper also tested an Adaptive Multi-Chromosome Evolutionary Algorithm 
(AMEA) with variation operator parameters modified as per an adaptive selection pressure 
function. A hard selection pressure was applied when fitness of solutions exhibited higher 
spread or greater standard deviation.  

While standard EAs search for solutions, the more recent, Genetic Programming (GP) 
works by searching for a method or steps or an algorithm to build a solution. Chromosomes 
are represented as parse trees, and either recombination or mutation is applied instead of 
both [33]. GP can be found during morphology design in [55, 57, 79].  

NeuroEvolution of Augmenting Topologies (NEAT) developed by Stanely et al. [94] 
found its application in [64] for developing Ribosomal robots. The algorithm starts on a 
simple CPPN encoded network and builds it complexity by the addition of nodes to the 
genotype. The genotype consists of node genes and corresponding connection genes. A 
structural mutation is carried out through the addition of a connection or a node. The 
connection weights are also allowed to mutate freely, and thus producing complex systems 
as the generations progress.  

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a variation of Evolution 

Strategy (ES). In a standard ES, a population with  candidate solutions generate  
offspring. A random number is added to a randomly selected parent where the number is 
chosen from a Gaussian distribution with mean as zero and standard deviation or mutation 

step size called . In (+) ES, the offspring replaces parent if found to be fitter. On the other 
hand in (,) ES, the child always replaces the parent [33]. CMA-ES applied in [47, 77] is a 
leading form of ES utilised especially for high-dimensional and non-linear optimisation 
problems. A covariance matrix represents the pairwise joint variability of parameters in the 
Gaussian distribution which is updated by CMA. The technique self-adapts parameters in 
two stages. In the first step, the mean of the distribution and covariance matrix is 
incrementally updated to increase the probability of successful solutions from previous 
generations. In the second step, evolution paths (two paths from time evolution of mean) 
which hold useful information of nearby steps are used. One helps to avoid premature 
convergence while other supports the increase in the rate of variance. For a detailed 
explanation, see the tutorial by Hansen [95]. 

Java Evolutionary Algorithm Framework (JEAF) developed by Caamaño et al. [96] was 
applied in [54] to incorporate multiple algorithms like DE, GA and CMA-ES. The framework 
was built to allow the use of multiple algorithms without worrying about the background 
coding of each of the algorithms.  
 
2.3. Simulators and the reality gap 
During fitness evaluation, the individually designed fitness function is applied on the 
behaviour of candidates normally in a simulated environment. The task specific simulation 



A Survey on Evolutionary-aided Design in Robotics 

 

8 

environments for mobile creatures where flat surfaces, except in a few cases when they were 
curved [47], uneven or stepped [97]. None of the reported works attempted to use a 
dynamically changing environment. The only partial dynamic aspect of a simulation was an 
automatic removal of consumed food [50]. Other than in [55, 79], a 3-D arena was always 
necessary for simulation. In a unique approach to building simulation platforms, [63] and 
[98] modelled them by converting the behaviour of a robot in reality to a virtual 
environment. The only online driven evaluation process was reported in [72]. The software 
packages developed were individually built from scratch or on easily available packages such 
as MATLAB or PhysX or Open Dynamics Engine (ODE) (Table V). Another notable 
common feature was the sending of each individual robot to another CAD module in the 
software package for evaluation. To speed up the performance of the simulator, multiple 
design checks were also performed before testing. For instance in [56], each robot was 
checked for the number and type of links, actuators and sensors before simulation. Likewise, 
Chocron [86] applied three hierarchical levels namely; mathematical elimination, quick 
simulation and full simulation.  

Quality of the simulation setup plays an important role in deciding if the evolved 
individual can perform the same task in reality as in a simulation. This difference is referred 
to as the reality gap in ER [99] and it is a widely-researched topic. Even though reality gap 
is a well-known concern in ER, only limited papers reported here shed light in the problems 
faced during physically building robots. Moore et al. [36] experienced difficulties during the 
physical validation of robots owing to poor modelling of mechanical elements such as servo 
motor joints and an inability to simulate physical conditions. The difference in on-board 
controller timing and simulator timing resulted in a drastic difference of robot speeds (55 
cm per minute and 14 cm per minute, respectively) in virtual and real systems [59]. The 
inconsistency of 3D printing added towards a notable reality gap in [68]. Further, numerical 
explosion due to accuracy of simulator environment resulted in evolving solutions with 
unreasonable fitness [52].  

To counter the reality gap and to accommodate the uncertainty of physical systems, a 
common method was to induce random noise to the measurements [56, 59]. For testing 
controller robustness, Bongard [44] performed damage testing via disabling sensors on the 
robot. Lee et al. [60] proposed using a training set with multiple starting positions and 
incorporating cumulative fitness to ensure robustness.   

 
 

3. Algorithms in controller 
During co-evolution, the body and controller are evolved simultaneously with EAs as the 

generations progress. The controller type selected for such evolutions are either artificial 
intelligence based (mainly Artificial Neural Networks (ANNs)) or traditional control 
techniques based.  

In an ANN based control scheme, artificial neurons are internally wired to connect 
sensors (receptors), actuators (effectors) or other neurons. Output signals are generated 
based on the input value, corresponding internal weights, biases and other operations that 
undergo in the neural network. Various arithmetic operations or oscillating signals act at 
different neural nodes to manipulate the input signal. As the genotype representation carries 
information about the control system info of each part, it gets carried to offspring and gets 
modified during the variation operations. Examples of such or similar systems are included 
in [50-53, 56, 58, 73, 76, 88, 89, 91, 97]. Endo et al. [79] built a tree type of neural network 
with a maximum depth of five. For decision making, six different types of neural networks 
namely; AA, DD, AD, ND, NA, DA where A was for Analog, D was for Digital were 
incorporated. In an AA type network, input and output were analogue, in DD, both input 
and output were digital and in the other two, output was either analogue or digital but with 
no input signal. In a different approach, Shim et al. fed the evolved body parameters of a 
flying robot to a neural network to create a controller [69].  
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Mazzapioda et al. [82] designed a neural controller with five neurons per joint with one 

for angular motor position and the rest for interaction with nearby joints. Here, each neuron 
generated four different signals and a sinusoidal oscillator controlled the motor angle based 
on the normalised signal values. A neural oscillator with PD (Proportional-Derivative) 
control and a neural network with a Central Pattern Generator (CPG) for control appeared 
in [90] and [34], respectively. The latter had six neurons with a total of 14 parameters that 
were interconnected in a specific pattern in every module. Similarly, the parameters of CPGs 
were evolved again by Larpin et al. [40]. A GP was used in [63] and [57] to evolve a 
perceptron (single layer neural network) based controller. Another variation of ANN called 
Continuous Time Recurrent Neural Networks (CTRNNs) could be seen in [44, 59, 78] and 
Elman’s recurrent network in [83]. Lessin et al. [49] developed ESP (encapsulation, 
syllabus and pandemonium) principles to generate neural networks.  

Instead of neurons, Mautner et al. [43] simulated artificial cells in the neural network. 
Multiple cell division operations resulted in adding connections to new sensors, and the 
vector sum at the output controlled the direction and power propagation in the network. A 
variation of the NEAT algorithm called Hyper-NEAT applied primarily in large scale ANN 
design was also used in [56] along with a standard ANN based controller. In other methods 
of controller design, Lee et al. [60, 61] based GP for the neural network evolution while GA 
for morphology evolution. There were instances when blank neural networks evolved into a 
useful controller [100] and combination of ANN and Finite State Machine (FSM) based 
controllers were employed [83].  

Parker et al. [98] designed a reactive controller where a GA selected the rules for the 
sensor system to act. Simple inverse kinematic control evolved by an EA [47], Constraint 
Compliant Control (CCC) law which relied on velocity kinematic principles [81] and a simple 
periodic open loop control [70, 86] are examples for non-ANN based controllers evolved by 
EAs. 
 

 
 

(a) [84]§ (b) [76]§ 

  
(c) [78] (d) [72] 

  
(e) [56] (f) [56] 

Fig.1 Examples of the evolved designs. 
 

§ Reprinted courtesy of Springer. 
 
 
 

Table V. Evaluation 
platforms. 

Platform  Citations 

Webots  [40, 67] 
MARS  [47] 
Ella  [57] 

ODE 
 [36, 52, 53, 

59, 64, 68, 69, 
77, 82] 

CimStation  [45] 
Gazebo  [54] 
MATLAB  [46, 70, 72] 
PhysX  [34, 49] 
GOLEM  [73, 89] 
ORCOS  [81] 
Custom six 
modules 

 [35] 

MathEngin
e 

 [9] 

LeGena  [83] 
Brevea  [97] 
RoboGena  [56] 
YAKS  [41] 
MASSb  [50] 
EDHMoR  [54] 
FEM based  [46, 76] 
Custom 
C++ based 

 [86] 

aBased on ODE 
bBased on PhysX 
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4. Application Areas 
The areas discussed can be classified into works that purely deal with the evolution of 
mechanical design and works where control and morphology are co-evolved with the help 
of EAs. A comprehensive chronological list of works that report morphology only evolution, 
and co-evolution of morphology and control scheme can be found in Table VI and Table VII, 
respectively.  
 

Table VI. List of works with morphology only evolution. 

Author/s Robot application type Algorithm Year 

Chedmail et al. 
[45] 

Manipulator robot design GA 1996 

Chung et al. [87] Manipulator robot design  GA 1996 
Chocron et al. 

[37] 
Manipulator robot design GA 1997 

Farritor et al. [84] 
Inspection robot design for constrained 
areas 

GA 2001 

Shiakolas et al. 
[46] 

Manipulator robot design GA, DE 2002 

Parker et al. [35] LEGO robot for locomotion GA 2007 
Lipson [55] 2D robot mechanism GP 2008 

Smith et al. [74] Legged robot design 
GA with Extremal & 

Pareto 
Optimisation 

2010 

Clark et al. [68] Robot fin design GA 2012 
Lim et al. [67]  Six-legged robot design  SOEA, MOEA 2015 
De Beir et al. [66] Social robot design GA 2016 
Cruz et al. [38] Mechanical design of humanoid GA 2016 
    

 
4.1. Morphology only evolution 
4.1.1. Articulated robots. Many groups have developed manipulators using EAs starting with 
Chedmail et al. [45]. They designed serial and parallel manipulator robots with fixed end 
effector trajectory for avoiding obstacles. Similarly, Chung et al. [87] fixed degrees of 
freedom (DOF) of the robot to follow a specified trajectory and evolved its design. The 
Denavit-Hartenberg (DH) parameters of Selective Compliance Articulated Robot Arm 
(SCARA) and articulated robots with predefined initial and final position, motion time and 
joint constraints were evolved in [46]. In a different approach to serial manipulator design, 
Chocron et al. [37] applied a two level GA for a task specific robot, with upper layer for 
topology evolution and the lower level for finding the inverse kinematic solutions. Two-
dimensional kinematic mechanisms which could draw a straight line were developed by 
Lipson [55] while keeping DOF fixed during evolution. The study also applied compensation 
operators for deleting redundant links from the evolved designs.  
 
4.1.2.  Mobile robots. Inspection robots for space constrained areas (like duct) were designed 
with a set of modules for power, control, joint and foot by Farritor et al. [84] (Fig. 1(a)). Even 
though this can be characterised under modular robots, it is included here as it has a single 
central controller as opposed to multiple controllers in a typical modular reconfigurable 
robot system. LEGO robot designs were searched by a GA primarily for maximising distance 
travelled with wheels in [35]. The GA required over 300 generations to evolve structures 
that stayed clear from the ground except by the robot’s wheels. The fin length and Young’s 
Modulus of a robotic fish were evolved in simulation using ODE by Clark et al. [68].  

In legged robots, Smith et al. evolved various physical parameters of a legged robot, 
mainly body and leg dimensions including the number of legs, with the aim of increasing 
stability and mobility [74]. A six-wheeled articulated robot body parameters were optimised 
for step climbing operation by Lim et al. [67]. The kinematic parameters of a passive 
humanoid robot were evolved in [38] with a 32-member population which evolved over 500 
generations in 9 hours on a standard personal computer.  
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Table VII. List of co-evolving creatures or robots. 

Author/s Application 
Type of algorithm 

Year 
Evolution Controller 

Sims [48] 
Creatures for swimming, walking and 
jumping 

GA ANN 1994 

Lee et al. [60] Mobile robot with obstacle avoidance GA, GP ANN 1996 
Komosiński et al. [76] Creatures for walking and swimming EA ANN 1999 
Mautner et al. [43] Mobile robot with obstacle avoidance GA ANN 2000 
Pollack et al. [73] Locomotion with linear elements EA ANN 2000 
Lee [61] Mobile robot with obstacle avoidance GA, GP ANN 2000 

Endo et al. [79] 
Multi-linked 2D robot for locomotion and 
hill climbing 

GP ANN 2001 

Taylor et al. [9] 
Creatures for swimming, walking and 
jumping 

GA ANN 2001 

Lund [63] Line follower robot with LEGO GA, GP ANN 2003 
Pollack et al. [89] Genobots for locomotion EA ANN 2003 

Lee [101] 
Straight locomotion with obstacle 
avoidance 

GA, GP ANN 2003 

Endo et al. [90] Humanoid body design GA ANN 2003 
Shim et al. [69] Wing structure design EA ANN 2004 
O’Kelly et al. [53] Creatures for combat GA ANN 2004 
Macinnes et al. [59] Locomotion with LEGO bricks EA CTRNN 2004 
Miconi et al. [88] Creatures with multiple locomotion modes GA ANN 2005 
Lassabe et al. [97] Creatures for multi-surface locomotion GA ANN 2007 
Chaumont et al. [52] Creatures for walking/block throwing GA ANN 2007 

Parker et al. [98] Sensor position and gait design GA 
Reactive 

controller 
2007 

Chocron [85] Serial manipulator design 
TGA, 

M/AMEA 
Inverse 

kinematic 
2007 

Chocron [86] Mobile robot for rough terrains EA Open-loop 2007 

Miconi et al. [58] Fighting creatures 
GA with 

LEO 
ANN 2008 

Heinen et al. [83] Four-legged walking robot GA FSM & ANN 2009 
Mazzapoida et al. [82] Creatures for irregular surface locomotion EA ANN 2009 

Rommerman et al. 
[47] 

Six-legged robot design CMA-ES 
Inverse 

kinematic 
controller 

2009 

Bongard [44] Articulated robot design MOEA CTRNN 2010 
Rubrecht et al. [81] Serial manipulator design NSGA-II CCC 2011 
Azarbadegan et al. [51] Biped walking creatures GA ANN 2011 
Gregor et al. [57] Creatures for locomotion GP ANN 2012 
Larpin et al. [40] Quadrupedal robot design MOEA CPG 2012 

Moore et al. [102, 36] Amphibious robot design EA 
Sinusoidal 
controller 

2012 

Pilat et al. [50] Food consuming creatures 
Steady 

State GA 
Recurrent 

ANN 
2012 

Auerbach et al. [78] Creatures for locomotion 
CPPN-
NEAT 

CTRNN 2013 

Samuelsen et al. [34] Robots for locomotion NSGA-II CPG 2013 
Risi et al. [64] Robots for walking NEAT CPPN 2013 
Lessin et al. [49] Light following/fighting creatures EA ESP-ANN 2014 

Digumarti et al. [77] Legged robot design CMA-ES 
Inverted 

pendulum 
based 

2014 

Auerbach et al. [56] Racing/chasing robot design GA 
Recurrent 

ANN/Hyper
-NEAT 

2014 

Corucci et al. [70] Underwater robot design GA 
Open-loop 

control 
2015 

Faiña et al. [54] Mobile robot design 
Multiple 

EAs 
Sinusoidal 

control 
2015 

Brodbeck et al. [72] Mobile robot design EA 
Amplitude & 
phase shift 

based 
2015 
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    Evolved robot morphology for creatures that moved towards a goal with an innovative 
hox gene inspired historical marking strategy for tracking ancestors was shown applied by 
Samuelsen et al. [34]. In a unique application of EAs in robot design, the appearance of a 
Social Robot was evolved with human feedback acting as the fitness function [66].  
 
4.2. Co-evolution of morphology and control 
In this section, the research reported can be primarily classified into the evolution of virtual 
creatures and evolution of virtual but physically realisable robots. 

 
4.2.1. Virtual Creatures or Robots. The first reported application of EAs in morphology 
evolution was for configuring sensor position on a mobile robot in 1993 [103]. However, as 
this paper deals with the evolution of stationary sensory element positions and not the core 
mechanical aspects of the robots, such works are not covered. The pivotal paper that 
reported the evolution of virtual creatures was by Sims in 1994 [48, 91] where body and 
brain of creatures for swimming, walking and jumping were evolved. Here, 3D blocks with 
imaginary joints were allowed to freely develop in simulation. Subsequent works were 
inspired by Sim’s virtual creatures.   
     For instance, the work was later replicated by Taylor et al. [9] in the MathEngine 
platform. Again, virtual robot combat pairs with spherical links and motors were evolved in 
a period of few days in [53]. Further, a simple steady state GA was reported in [88] for 
imitating Sims’s work. In the same direction, creatures for walking, climbing and skating on 
multiple surface types were evolved by Lassabe et al. [97]. Likewise, walking or block 
throwing Sims’s creatures were developed on ODE by Chaumont et al. [52]. In a related 
work, Miconi [58] used Sims’s creatures for fighting through the LEO algorithm. In [82], to 
evolve creatures that could transverse flat and irregular surfaces, a tub with round ends 
acted as the building block with possibilities of attaching to others or modifying its length. 
Yet again following Sims’s work, robots with biped morphology were designed in [51].  
     A cuboidal body with hinge joints were the building blocks for evolving creatures aimed 
at consuming virtual food in [50]. The evolution of a creature called Framestick with sticks, 
muscles and sensors for orientation, smell and touch for walking and swimming is explored 
in [76] (Fig. 1(b)). A Braitenberg type vehicle design with the aim of reaching a goal while 
avoiding obstacles is described by Mautner et al. [43]. A four-legged virtual dog-like creature 
had its body dimensions evolve in the LeGen simulator [83].  
     Multi-linked robots were designed for 2D locomotion and hill climbing by Endo et al. 
[79]. They constrained the evolution process with two to seven links for the robot. Later, 
Bongard developed the body plan design of an articulated robot for grasping and lifting 
various objects [44]. Context blocks along with GP were used for evolution of body plan only 
and not the structure of creatures with the help of Ella software package by Gregor et al. 
[57]. Sphere shaped parts with embedded sensors for distance moved, touch, proprioception 
and time were evolved for covering maximum displacement in [78] (Fig. 1(c)). Risi et al. 
[64] evolved robots that moved straight made with 3D printed ribbons and embedded 
motors. On NVIDIA PhysX, creatures with muscle (spring), actuators and photoreceptors 
were evolved which can adapt its morphology as per the chosen task [49]. 

 
4.2.2.  Physically realisable robots. The papers in the previous section covered the creatures 
or robots with virtually co-evolved body and controller, and they all suffered from a major 
drawback of not being able to be built physically. This section and Table VIII are dedicated 
to those works that report buildable robots.  
      Lee et al. [60], kept a fixed robot shape while evolving the structural parameters of a 
mobile robot for locomotion with obstacle avoidance. In a similar work, Lee [61] evolved 
parameters for obstacle avoidance on a three-wheeled robot. A robot to move in a straight 
line while avoiding obstacles was designed in [101] with its body parameters and controller 
evolving simultaneously.  

The morphology and walking pattern of a six-legged robot for space missions were 
simultaneously optimised by Rommerman et al. [47] in the MARS (Machina Arte Robotum 
Simulans) simulation platform. The robot was simulated in three scenarios during its 
evaluation. A quadrupedal robot body parameters were evolved for maximum distance 
travelled using minimum energy in [40]. Another quadrupedal evolved using modular 
components for rough terrain exploration is presented by Chocron [86]. Using an innovative 
generative encoding, [65, 89, 104] created Genobots with bars and joints (actuated and non-
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actuated) for locomotion. The GOLEM project at the Brandeis University evolved robots 
with linear bars and linear actuators and with the help of rapid prototyping tested the 
evolved prototypes [73].  

     A line follower was evolved by Lund [63] using LEGO Mindstorms where the 
morphological shape was fixed and allowed the evolution of all other parameters. From a 
library of pre-existing parts comprising of LEGO bricks, Macinnes et al. [59] evolved robots 
for locomotion. Servo motors and position feedback sensors used in the assembly of the final 
robot after evolution.  

A number of variables of a fixed topology biped humanoid robot along with it controller 
for gait design were evolved in [90]. ODE found its application in developing the body 
dimensions and control parameters of a four-legged robot for optimal speed and predefined 
gait [77]. The wing structure and low-level controllers of a robot for flying along a straight 
line were evolved by Shim et al. [69]. The frequently used ODE platform appeared again in 
[36, 102] for evolving body parameters of an amphibious robot and the final model there 
was 3D printed to confirm the simulation.  

Along similar lines, existing design parameters of an underwater robot PoseiDRONE was 
modified using a novelty search based GA in MATLAB by Corucci et al. [70]. Chocron [85] 
applied two level GA similar to [37] for evolving the end effector pose and orientation with 
other physical parameters of a serial manipulator with multiple chromosome genotypes. A 
serial manipulator for highly constrained space like the inside of a tunnel boring machine is 
elaborated in [81]. There, each robot was made of segments which comprised of links with 
revolute or prismatic joints for a maximum of one-DOF.  

RoboGen [56] is an open-source platform which generates robots for racing or chasing 
activities with a set of standard parts including servo motor actuators, IR, light and IMU 
sensors and Arduino controller. The package is capable of evolving morphology and 
controller and generates 3D printable models which can be physically assembled. A virtual 
and corresponding 3D printed evolved mobile robot is shown in Figures 1(e) and (f), 
respectively.  

 
Table VIII. Buildable co-evolved robots. 

Author/s 
Fixed 
design 

Fixed 
parts 

library 

Fixed part 
shape with 

variable 
size 

Locomotion 
(Wheeled(

W)/Legged(
L)) 

Sensor 
feedback 

used 
during 

evolution 

Controller 
parameter 

only 
evolution 

Subtasks 

Lee et al. [60] ✓   W ✓  ✓ 
Pollack et al. [73]  ✓ ✓ L    
Lee [61] ✓   W ✓  ✓ 
Lund [63] ✓   W ✓  ✓ 
Pollack et al. [89]  ✓ ✓ L    
Lee [101] ✓   W ✓  ✓ 
Chocron [86]  ✓  W&/L  ✓ ✓ 
Endo et al. [90] ✓   L ✓ ✓  
Shim et al. [69]  ✓ ✓ Winged ✓ ✓  
Macinnes et al. [59]  ✓  L ✓   
Rommerman et al. 
[47] 

✓   L ✓ ✓  

Rubrecht et al. [81]  ✓ ✓ ^ ✓   
Larpin et al. [40] ✓   L  ✓  

Moore et al. [102, 36] ✓   L$  ✓  
Samuelsen et al. [34]  ✓ ✓ L  ✓  
Digumarti et al. [77] ✓   L  ✓  
Auerbach et al. [56]  ✓  W&/L ✓  ✓ 
Corucci et al. [70] ✓   L$  ✓  
Faiña et al. [54]  ✓  L  ✓ ✓ 
Brodbeck et al. [72]  ✓  L ✓ ✓  
$ Underwater fin based.  
^ Not a mobile robot. 
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Faiña et al. [54] developed a system for applications involving a list of subtasks such as 
painting, carrying and cleaning executed through a variety of locomotion modes like 
climbing, walking, rolling and crawling. The system was called EDHMoR [105] with the core 
module containing encoder and accelerometer and there were four possible options for 
actuators or special sensors that could be connected on empty slots of the core module.  

In all the works above, the evolution was performed in a software platform, and best 
designs were implemented in reality. However, in the paper by Brobeck et al. [72], a 6-DOF 
serial mother robot built the solution population and tested their speed of locomotion and 
created better solutions with the help of an EA. The solution population was constructed 
from active and passive modules. Servo motor, Bluetooth module and Arduino controller 
were used in the module while the evolution process was offloaded to MATLAB running on 
a PC which was interfaced with the mother robot. The end-effector of mother robot building 
robots is shown in Fig. 1(d). In a step further, Weel et al. [39] explained a futuristic concept 
of online co-evolution as a proof of concept with no central evolution process involved.  

 
 

5.  Discussion and Conclusion 
In this paper, the general principle of EAs along with the various methods applied for 
evolving body morphology and controller have been explored. A brief explanation of 
algorithms for controller development and how they are applied in different scenarios are 
also covered in the above sections. In the quarter century that evolutionary computing 
techniques have found applications in robotics, more than 80% of the works reported are in 
the post-2000 era which could be owing to the advent of fast computing systems as 
optimisation methods are computationally expensive. This could also be why in most of the 
applications, the core topology of robots was fixed.  

While many researchers applied EAs in robotics as a proof of concept, there were only a 
handful who tested the evolved robots in reality. Usually, when the design was allowed to 
evolve freely, the ability to physical realise it appeared to be compromised. When the aim 
was to build physical robots, the evolution process was confined to the selection of parts 
from a predefined set, except in a few cases. However, in such situations, any sensory 
feedback in the system seemed to be missing (Table VIII).  

In buildable systems, the general trend of application area appeared to be around 
locomotion and serial manipulation. The cause for such constrained applications might be 
due to several reasons as follows: The long time required for evolution on the current 
general-purpose computing systems, even for slightly complex tasks. The reality gap 
between the simulation and real systems. Difficulty in designing effective fitness functions, 
and methodological problems such as biasing and premature convergence.  

The reality gap could also be contributing to discouraging physical realisation. Even 
though, there has been several reported works addressing the reality gap in ER, they mainly 
focus on controller only evolution, this suggests the need for further research specific to co-
evolution process. A similar trend is also observed in designing fitness functions where 
functions for works related to controller only evolution show multiple types being applied, 
such as aggregate, competitive, environmental, behavioural, incremental, tailored and 
training data based fitness functions [17]. It has also been demonstrated that EAs could help 
in the latest thrust areas of online lifelong learning where neural networks evolve though 
robot’s lifetime, perform diagnostic/repair functions automatically and even perform co-
operative actions.  

The review also suggests the need for software packages integrating multiple areas 
covering physics simulator, CAD modelling, controller development and evolver as only an 
interdisciplinary team is restricted to using the full advantage of ER. This highlights an 
immediate need for developing a stable high-level ER environment. There is also a need to 
consolidate the generated knowledge and develop standards including benchmarking 
methods to aid transferability and to move away from ad hoc practices. Further, formal 
conventional methods for morphology and controller designs guarantee convergence and 
discovery of suitable solutions. All these reasons collectively could be why ER is not given 
sufficient weight in robotics or discourage roboticists to delve into the area. However, it must 
not be forgotten that humans are a result of evolution by natural selection and we are yet to 
replicate the grace and sophistication exhibited by its creations from the traditional 
approaches.  

On a final note, evolutionary approaches have found successful application in robot 
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morphology design and simultaneous evolution of controller and structure among other 
application areas. It is reckoned that the technology has still not reached its peak and will 
continue to evolve towards fully automatic synthesis [4] of robots in the future or towards 
the evolution of things [32]. Even though ER is inspired by biological evolution which has 
evolved over trillions of organisms, we may still be far away from conducting evolution at 
that scale. Nevertheless, this should gradually change as our understanding of the biological 
evolution deepens on one side and the technology matures on the other.  
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