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Abstract— This paper deals with the robust force and position 
control problems of Series Elastic Actuators (SEAs). It is shown 
that an SEA’s force control problem can be described by a 
second-order dynamic model which suffers from only matched 
disturbances. However, the position control dynamics of an 
SEA is of fourth-order and includes matched and mismatched 
disturbances. In other words, an SEA’s position control is more 
complicated than its force control, particularly when 
disturbances are considered. A novel robust motion controller 
is proposed for SEAs by using Disturbance Observer (DOb) 
and Sliding Mode Control (SMC). When the proposed robust 
motion controller is implemented, an SEA can precisely track 
desired trajectories and safely contact with an unknown and 
dynamic environment. The proposed motion controller does 
not require precise dynamic models of environments and SEAs. 
Therefore, it can be applied to many different advanced robotic 
systems such as compliant humanoids and exoskeletons. The 
validity of the motion controller is experimentally verified. 

I. INTRODUCTION 

In the last two decades, SEAs have received increasing 
attention due to their potential advantages (e.g., safety and 
high fidelity force control) in physical robot-environment 
interaction [1]–[3]. Several advanced robotic systems, such 
as compliant industrial, humanoid and exoskeleton robots, 
have recently been developed by using SEAs [4, 5]. A 
flexible mechanical component (e.g. spring) is intentionally 
placed between actuator and link in the design of an SEA [2, 
3]. Although the compliant mechanical component improves 
physical robot-environment interaction, it complicates the 
mechanical design and motion control problem, particularly 
in position control [6, 7]. Moreover, it makes SEAs more 
sensitive to disturbances than inherently robust stiff 
actuators with high gear ratios. Therefore, the stability and 
performance of an SEA may significantly deteriorate by 
disturbances in practice [3, 7 and 8]. 

The position control problem of robots with flexible joints 
has long been studied in the literature. However, the 
proposed controllers have several shortcomings for SEAs. 
Singular Perturbation Method was applied to compliant 
robots in [9]. This method is sensitive to disturbances, and it 
can only be applied if the joint stiffness is high enough [9, 
10]. Compliant robots have generally been controlled by 
using a PID-controller combined with a model-based feed-
forward controller [11]–[13]. Although feed-forward control 
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improves the positioning accuracy of links, it makes control 
system sensitive to disturbances. Moreover, it is applicable 
only for regulation control [13]. Intelligent control methods, 
such as neural network control, were applied to compliant 
robots in [14, 15]. They generally have high computational 
load and complex control structures to be implemented in 
real-time. Resonance Ratio Control (RRC) was originally 
proposed for the vibration control problem of industrial 
robots with flexible joints, and it was recently applied to 
SEAs in [7, 16]. An RRC-based position controller is 
sensitive to load and link uncertainties as the robustness is 
degraded to suppress the vibration of link [7]. Moreover, 
RRC cannot independently control whole system dynamics 
due to insufficient control parameters. Authors proposed the 
SMC-based robust position controller for SEAs in [17]. 

SEA studies have generally focused on force/impedance 
control problem and its advanced robotic applications, e.g., 
human-robot collaboration. A PID controller was proposed 
to perform force control in [2]. The performance of force 
control was improved by applying feed-forward control 
signal with a model-based controller. The proposed force 
control method suffers from stability, slow response and 
overshoot problems due to neglected disturbances such as 
backlash and stiction[3]. To tackle stability and performance 
problems, cascade force controllers (i.e. an inner-loop on 
motor velocity control and an outer-loop on force control) 
were proposed in [3, 18, 19]. However, the proposed cascade 
force controllers are sensitive to disturbances. A higher-
order DOb was proposed for the inner-loop on motor 
velocity control so that the robustness of the force control 
system was improved in [20]. Later, DOb-based robust force 
controller was applied to the University of Texas’ SEA (UT-
SEA) and NASA’s compliant humanoid robot Valkyrie [4, 
21]. In classical control, a higher-order DOb synthesis is not 
straightforward, and it may significantly suffer from 
conservatism [22]. Bae et al. reported the robust force 
controller’s unexpected stability problem and proposed an 
SMC force controller in [23]. To suppress the chattering of 
the SMC force controller, Wang et al. proposed a modified 
SMC controller by using nonlinear DOb and high gain 
control in [24]. Force control of an SEA was performed by 
using RRC in [7]. However, tuning the control parameters of 
RRC is not easy in force control. Authors recently proposed 
a new motion controller for SEAs in [25]. In this paper, an 
SEA’s force control problem is described by a fourth-order 
dynamic model which suffers from matched and mismatched 
disturbances. Another high-precision robust force controller 
was recently designed in [26].   
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A novel motion controller is proposed for SEAs in this 
paper. The position and force controllers are synthesized by 
combining DOb and SMC. The former not only improves 
the robustness by canceling disturbances but also allows to 
reduce the control signal chattering. Two continuous motion 
controllers are proposed by using Quasi-SMC and 
Continuous-SMC. The main drawbacks of continuous SMC 
control methods are: the former degrades the robustness and 
the latter requires the estimation of acceleration. Continuous 
and discontinuous SMC methods are experimentally 
compared for SEAs in section V. An SEA’s dynamic model 
is derived by considering its position and force/impedance 
control applications. It is shown that a second-order dynamic 
model, which suffers from only matched disturbances, can 
be used to represent the force control problem of an SEA. 
However, the dynamics of the position control of an SEA is 
of fourth-order and suffers from the mismatched 
disturbances in addition to matched disturbances. Therefore, 
an SEA’s robust position control is more complicated than 
its robust force control. The proposed robust motion 
controller provides high-performance without precise 
dynamic models of an SEA and environment. For example, 
the link of an SEA can precisely track desired trajectories 
and stably contact with an unknown and dynamic 
environment. The proposed controllers can be applied to 
different compliant robotic systems driven by SEAs; e.g., 
exoskeletons, humanoids and collaborative industrial robots. 
Position and force control experiments are presented to 
validate the proposed sliding mode motion controllers. 

The organization of the paper is as follows: an SEA’s 
dynamic model is presented in section II; a second-order 
DOb is synthesized in section III; sliding mode motion 
controllers are synthesized in section IV; the controllers are 
experimentally verified in section V; and conclusion is given 
in section VI.  

II. SERIES ELASTIC ACTUATORS 

In this section, an SEA’s dynamic model is derived for 
position and force/impedance control. 

A. Position Control: 

If an SEA does not physically interact with an 
environment (See Fig. 1a), then its dynamic model is: 
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where n
mJ  and n

lJ  are the nominal inertias of motor with 
speed reducer and link, respectively; n

mb  and n
lb  are nominal 

viscous friction coefficients; nk  is the nominal spring 
constant of the SEA;   and q  are the angles of motor and 
link sides, respectively;   and   are the first and second 
order derivatives of   (i.e., the speed and acceleration of the 
motor and link sides), respectively; m  is the applied torque 
at motor side; n

s  is the nominal spring torque; d
m  is the 

matched disturbance; and d
l is the mismatched disturbance.  

The matched and mismatched disturbances of an SEA are: 

            d n n n ud
m m m m m s s mJ J b b                         (2) 
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l l l l l g s s lJ J q b b q                      (3) 

where mJ  and lJ  are the uncertain inertias of motor with 

speed reducer and link, respectively; mb  and lb  are the 

uncertain viscous friction coefficients; k  is the spring 
constant of the SEA;  s k q    is the torque of the 

actuator’s spring; g  is the gravitational disturbance; and 
ud
m and ud

l are unknown disturbances, respectively. 

The position accuracy of an SEA’s link may significantly 
deteriorate by external load and various internal disturbances, 
such as nonlinear frictions and hysteresis, due to its complex 
mechanical design [25]. To track the desired trajectory of an 
SEA’s link with high-accuracy  e.g., desq q d

m and d
l should 

be precisely suppressed/cancelled. 

B. Force/Impedance Control: 

Let us describe force/impedance control goal of an SEA by 
using Hooke’s law. 

                 desdes
s k q                               (4) 

where des
s  is the desired spring torque, and  des

q  is the 

desired deflection of the actuator’s spring [2]. 
With a simple mathematical manipulation and assuming 

that q  is known (i.e., the position of the SEA’s link is 

measured), Eq. (4) can be rewritten as follows: 
                  1des des

sk q                           (5) 

where des  is the desired  .  
Eq. (4) and Eq. (5) show that force/impedance control of 

an SEA can be conducted by precisely controlling its motor 

position/angle  i.e., des   [23, 25]. A precise force control 

can be performed by using acceleration feedback [27]. 
When the link of an SEA interacts with an environment, 

its dynamic model is derived from Fig. 1b as follows: 
                  n n n d d

l l s l extJ q b q                                (6) 
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Fig.1: Dynamic models of an SEA. 
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where d
ext  is the external disturbance torque; d

a is the 

applied external torque; ,e eJ D  and eK  are the inertia, 

damping and stiffness of the environment which SEA 
physically interacts, respectively; and eq  is the angle of 

environment. 
To obtain a practical model for an SEA which physically 

interacts with an unknown environment, let us assume that 
d
l and d

ext are unknown disturbances as shown in Fig. 1b.  If 

Eq. (6) is substituted into Eq. (1), then Eq. (8) is derived as 

                               n n d
m m m mJ b                                     (8) 

where d d n n d d
m m l l l extJ q b q          . 

Eq. (8) is a second-order dynamic model of a servo 
system which is disturbed by matched disturbances. In many 
advanced robot applications of SEAs, it is very hard to 
precisely model or measure the matched disturbances, e.g., 
the dynamics of human beings in human-robot interaction 
and rehabilitation. Such disturbances may significantly 
degrade the stability and performance of an SEA’s force/ 
impedance control if they are not treated in the controller 
synthesis [23]. To perform force/impedance control, i.e., to 
track the desired trajectory of the SEA’s motor with high-
accuracy  e.g., des  , the matched disturbance  d

m  should 

be precisely suppressed/cancelled. 

III. SECOND-ORDER DISTURBANCE OBSERVER 

In this section, a second-order DOb is synthesized so as to 
estimate an SEA’s matched and mismatched disturbances 
and their first and second-order time derivatives [17, 25]. 

The state space representation of Eq. (1) is 

            m  n n disξ A ξ b τ                              (9) 

where 
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Tn

mJ   nb  and 
T

q q     ξ  . 

The second-order DOb is synthesized by assuming that 

disturbance vectors are bounded, i.e., , ,  
dis disdis τ dis ττ τ   


disdis ττ  and  

disdis ττ  where   is the norm of  ; 

,dis disτ τ   and disτ  are the first, second, and third-order 

derivatives of disτ , respectively; and 0, 
disτ 0, 

disτ  

0 
disτ  and 0 

disτ  are real numbers. 

In order to estimate ,dis disτ τ  and disτ , auxiliary variable 

vectors are defined by using 
        1L  1 dis 2z τ ξ z                             (10) 

        2L  2 dis 3z τ ξ z                                (11) 

        3L 3 disz τ ξ                      (12)    

where 4jz   is the jth auxiliary variable vector; and jL   

is the jth control gain of DOb, yet to be tuned. 
Time derivatives of Eq. (10–12) are  
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where 4jz   is the time derivative of jz . 

The dynamics of the auxiliary variable observer is: 
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            3 3 1ˆ ˆ ˆ mL L L    3 1 2 n nz z z A ξ b ξ                     (18) 

where ̂  is the estimation of  . The second-order observer is 

synthesized by neglecting the estimation of disτ , i.e., ˆ disτ 0 . 

Let us describe auxiliary variable estimation errors by 
using ˆ 1 1 1e z z , ˆ 2 2 2e z z  and ˆ 3 3 3e z z . If Eq. (13–

15) are subtracted from Eq. (16–18), then we obtain 
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   Tt  D dis dis disτ τ τ τ   , 4I  is a 4 4 identity matrix, and 40  is 

a 4 4 null matrix.  
The eigenvalues of Ψ correspond to the bandwidth of the 

observer and are derived by solving:  

           43 2
1 2 3det 0L L L          12Ψ I Ψ       (20) 

where  . The bandwidth of DOb is DObg  rad/s when its 

control gains are 2
1 23 , 3DOb DObL g L g   and 3

3 DObL g . 

One can easily adjust disturbance estimation dynamics by 
tuning the control gains of DOb, i.e., assigning the 
eigenvalues of Ψ . If the observer gains are properly tuned 
so that Ψ  is negative definite, then input to state stability of 
Eq. (19) is achieved. In other words, all estimation errors 
which start in a circular plane whose radius is 

   1
minot  

disτe Ψ   exponentially converge to a smaller 

circular plane whose radius is  1
min 

disτΨ  . The convergence 

rate and accuracy of estimation are simply improved by 
assigning larger eigenvalues to Ψ , i.e., using higher 
bandwidth  DObg  in the design of the observer. However, it 

cannot be freely increased due to practical constraints such 
as encoder resolution and sampling time. A DOb becomes 
more noise-sensitive as its bandwidth is increased.  

As  t e 0 , ˆ 1 1z z , ˆ 2 2z z  and ˆ 3 3z z . The estimations 

of disturbances and their successive derivatives are obtained 
by using Eq. (10-12). 

Since force control dynamics has only matched 
disturbances (See Eq. (8)), conventional, i.e., zero-order, 
DOb can be used in the robust force controller synthesis 
[28]. 
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IV. ROBUST MOTION CONTROLLER SYNTHESIS 

Sliding mode position and force controllers are designed 
for SEAs in this section. Continuous control signal is 
obtained by using two different methods, namely Quasi-
SMC and Continuous-SMC. The stability of the proposed 
motion controllers is proved via Lyapunov’s second method.  

A. Robust Position Controller Synthesis: 

Eq. (1) can be rewritten by using 
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     is the matched disturbance in 

the control input channel, i.e., the fourth-channel.  
The trajectory tracking error of the actuator’s link and its 

successive time derivatives are: 
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where desq is the desired trajectory of the actuator’s link, and 

,des desq q   and desq  are the successive time derivatives of desq .  

Let us describe a sliding variable in terms of the trajectory 
error and its successive time derivatives by using 
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where 
0 1,
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0P SMCc g  where SMCg   represents the bandwidth of the 

performance controller. As SMCg is increased the position 

control error converges to zero faster, yet the control system 
becomes more noise-sensitive [29]. It should be tuned by 
considering the practical constraints of the system, such as 
the resolutions of encoders.  

The derivative of Eq. (23) is  
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The robust position control signal is generated as follows: 
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where 0P   is the discontinuous control gain of SMC, 

 sgn  is the signum function, and  
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where 2 2 2
ˆ ˆˆ , ,d d d   and 4d̂  are the estimations of 2 2 2, ,d d d   and 

4d , respectively.  

B. Robust Force Controller Synthesis: 

Eq. (8) can be rewritten by using 
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where 1x  ; 2x   ; and 2
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d x

J J


 


 is the matched 

disturbance in force/impedance control.  
The trajectory tracking error of the SEA’s motor, i.e., the 

trajectory tracking error of the actuator’s spring force/torque, 
and its derivative are 

             1

2

des
F
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F

e x

e x





 

 
                               (28) 

where des is given in Eq. (5), and des is the derivative of des . 
Let us define a sliding variable in terms of the trajectory 

error and its time derivative by using Eq. (28). 
             

0FF F Fe c e                                  (29) 

where 0F
c  is a nonnegative real number. The convergence 

rate of the force control error can be similarly adjusted by 
tuning 0F

c , e.g., as 0F
c  is increased the force control error 

goes to zero faster yet the noise-sensitivity deteriorates.   
The derivative of Eq. (29) is  
             F F m F                                     (30) 

where 1 n
F mJ  , and 0 0 2F F

des des
F c c x d       . 

The robust force control signal is generated as follows: 

                1 1 ˆsgnm F F F F F                               (31) 

where 0F   is the discontinuous control gain of SMC, and  

              0 0 2
ˆˆ

F F

des des
F c c x d                            (32) 

where d̂  is the estimation of d . 
It is noted that Eq. (31) requires the acceleration 

measurement of the SEA’s link [27]. The control signal can 
be generated without acceleration measurement by using  

          0 0 2
ˆˆ

F F

des
F c c x d                             (33) 

The block diagram of the proposed motion controller is 
illustrated in Fig. 2. 

C. Stability Analysis of the Robust Motion Controllers: 

Let us consider the following Lyapunov function 
candidate. 
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Fig. 3: A prototype of the novel series elastic actuator. 
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Fig. 2: Block diagram of the robust motion controller. * is P in position 

control and F in force control. desχ represents reference trajectories, i.e., it is  

[ ]des des des des desq ,q ,q ,q ,q    in position control and [ , , ]des des des    in force control. 
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2
V                                      (34) 

where   is P  in position control and F  in force control.  
The derivative of Eq. (34) is  

                            ˆsgnV                                (35) 

         ˆV                                     (36) 

Since disturbance estimation error is bounded when the 
observer is properly tuned,   is also bounded. It can be 

expressed as follows: 
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where 0
P

    and 0
F

   are real numbers.  

If SMC gain is 
2


 

    where 0  , then  t  

converges to zero in a finite time, i.e.  

                0

2
T t

                                   (38) 

where T  is the maximum convergence time, and 0t  is the 

arbitrary initial time. Hence, the trajectory tracking errors 
given in Eq. (22) and (28) exponentially go to zero [29, 30]. 

Compared to the robust position control problem of an 
SEA, its robust force control problem suffers from only the 
matched disturbances. Although the matched disturbances 
can be directly suppressed by using conventional SMC, the 
force controller may suffer from chattering due to high SMC 
gain in practice. In the proposed robust motion controllers, 
DOb not only improves the robustness against disturbances 
but also suppresses the chattering by allowing to lower the 
discontinuous SMC gain constraint.   

D. Continuous Robust Motion Controller Synthesis: 

Quasi-SMC:  
Continuous control signal can be obtained by using the 

approximation of the signum function as follows: 

              sgn



 









                        (39) 

where 0   .  

There is a trade-off between the control signal chattering 
and the robustness against disturbances in Quasi-SMC. As   
is increased, the fluctuation of the control signal is 
suppressed yet the robustness deteriorates. However, as   is 
decreased, the robustness improves yet the fluctuation of the 
control signal is increased.  

Continuous-SMC: 
Without degrading the robustness of the proposed motion 

controllers, continuous control signal can be obtained by 
using Continuous-SMC. 

Let us design new sliding variables by using 
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                  (40) 

where 0 1 2 3 0, , , ,
P P P P F

c c c c c      and 1F
c  are positive real numbers, 

and they can be similarly tuned to adjust the convergence 
rates of the position and force control errors. 

Continuous control signal, which forces sliding variables 
 andP F    to converge zero in a finite time, is designed as 

follows [30]: 
                 1 1 ˆsgnm dt      

                         (41) 

where   is P  in position control and F  in force control.  
Continuous control signal is obtained by integrating the 

signum function in Eq. (41). The main drawback of 
Continuous-SMC is that the acceleration measurement is 
required in the design of the sliding variables in Eq. (40). 

V. EXPERIMENTS 

This section verifies the proposed robust motion controller 
with the experimental results of a novel SEA illustrated in 
Fig. 3. The novel SEA has a two-state variable-stiffness 
actuation mechanism which consists of serially connected a 
hard torsional spring and a soft linear spring [25]. The 
position and force control experiments were conducted by 
neglecting the linear spring of the novel SEA; i.e., a 
conventional SEA structure with a torsional spring was used 
in the experiments. The nominal parameters of the SEA’s 
dynamic model are given in Table I. To implement the 
sliding mode motion controllers, a dSPACE real-time 
control system was used by setting its sampling frequency at 
2 KHz. The resolutions of the motor (Maxon EC-4pole) and 
link encoders were 2048 PPR and 1024 PPR, respectively.   

TABLE I.  NOMINAL MODEL PARAMETERS OF SEA 

Parameters Description Values 
n
mJ   Inertia of motor 6 22.2 10 kgm  
n
lJ  Inertia of link 6 24 10 kgm  
nk  Torsional spring stiffness 0.14Nm rad  
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Let us begin by presenting position control experiments 
with discontinuous SMC method. Fig. 4a illustrates a 
trajectory tracking experiment when conventional sliding 
mode controller is implemented; i.e., the mismatched 
disturbances are neglected in the sliding mode controller 
synthesis. A constant weight was attached to the link of the 
actuator that did not interact with environment. To improve 

the robustness, the discontinuous control gain was gradually 
increased between 9 and 14 seconds. It is clear from the 
figure that the SEA’s link cannot track the reference sine 
wave by using a conventional sliding mode controller due to 
disturbances. As the discontinuous control gain was 
increased, the link of the actuator started to follow the 
sinusoidal reference input. However, the performance of the 
trajectory tracking control was very poor, and the chattering 
of the control signal was very high. It is illustrated between 
9 and 19 seconds in this figure. Fig. 4b illustrates a trajectory 
tracking experiment when the proposed sliding mode 
controller is implemented; i.e., the sliding surface is 
designed by using the estimations of the disturbances. The 
same weight was attached to the link of the actuator, and it 
was disturbed with random external disturbances between 10 
and 15 seconds as shown in the figure (see the estimations of 
the matched and mismatched disturbances). This figure 
shows that the link of the SEA can track the sine wave with 
high-accuracy when the disturbances are suppressed by 
using the proposed sliding mode controller. A regulation 
control experiment is illustrated in Fig. 4c. Similarly, the 
link of the SEA was disturbed with random external 
disturbances between 13 and 19 seconds (see the estimations 
of the matched and mismatched disturbances). As shown in 
the figure, the proposed controller can precisely suppresses 
disturbances, and the actuator’s link can track step input 
with high accuracy. The transient response of the SEA’s link 
suffered from vibration as the resonance modes of the 
compliant actuator were neglected in the sliding mode 
controller synthesis [9]. The vibration of the SEA’s link can 
be suppressed by either using a continuous trajectory as 
shown in Fig. 4b or implementing a damping controller. Fig. 
4b and Fig. 4c show that the discontinuous SMC-based 
robust position controller does not suffer from high control 
signal chattering since lower SMC gains can be used by 
cancelling disturbances via DOb. 

Let us now present position control experiments with 
continuous SMC methods, namely Quasi-SMC and 
Continuous-SMC. All the experiments were conducted by 
using the proposed sliding mode controller which treated the 
mismatched disturbances in the controller synthesis. The 
link of the SEA was similarly disturbed with random 
external disturbances between 7 and 14 seconds as shown in 
Fig. 5. Fig. 5a and Fig. 5b illustrate trajectory tracking 
experiments when Quasi-SMC is implemented with different 
approximations of the signum function. As   was increased, 
the sliding mode controller became more sensitive to 
disturbances, and the accuracy of the link trajectory 
deteriorated. The control signal fluctuations were similar 
when different   values were used in Quasi-SMC because 
low discontinuous control gains were applied by cancelling 
disturbances via DOb in the proposed sliding mode position 
controller. Fig. 5c illustrates trajectory tracking experiment 
when Continuous-SMC is implemented. The position control 
performance of the Continuous-SMC-based robust controller 
was better than that of the Quasi-SMC-based robust 
controller. The link of the SEA tracked the sine wave with 
high-accuracy. However, the Continuous-SMC-based robust 
controller suffered from noise because acceleration 

a)     Trajectory tracking control experiment via conventional sliding mode
position controller. Reference is a sine wave with 0.1592 rad
amplitude and 1 Hz frequency.  

 
b)     Trajectory tracking control experiment via the proposed sliding mode

position controller. Reference is a sine wave with 0.1592 rad
amplitude and 1 Hz frequency. qer = qdes – q. 

 
c)     Regulation control experiment via the proposed sliding mode position 

controller. Reference is a step input with 0.1592 rad magnitude. 
Fig. 4: Position control experiments when discontinuous SMC-based 
controllers are implemented. 0.001p  and 500 rad/sDObg  . 
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estimation, which was obtained by differentiating position 
measurement twice, was used in the controller synthesis.  

Fig. 4b and Fig. 5 show that control signal chattering is not 
a severe problem in the proposed sliding mode controller. 
Since similar tracking performance can be achieved with 
practical control signal, authors recommend discontinuous 
SMC method for SEAs. 

Last, let us present force/impedance control experiments 
with discontinuous SMC method. Active and passive robust 
force/impedance control experiments were performed to 
validate the proposed sliding mode force controller. In the 

former, force trajectory tracking and regulation control 
experiments were performed by contacting with a passive 
stiff environment (metal). In the latter, a physical human-
robot interaction experiment was performed when zero-force 
control was implemented. Fig. 6a illustrates a force/ 
impedance trajectory tracking experiment when the SEA’s 
link initially contacts with the stiff environment. It is clear 
from the figure that the trajectory of the spring force is 
tracked with high-accuracy by suppressing the matched 
disturbances. Since the matched disturbances were cancelled 
by using DOb in the inner-loop, the robustness of the force 
control system was achieved without suffering from control  

a) Trajectory tracking control experiment via the proposed sliding mode 
position controller with Quasi-SMC. 0.1  . 

 
b) Trajectory tracking control experiment via the proposed sliding mode 

position controller with Quasi-SMC. 0.001  . 

 
c) Trajectory tracking control experiments via the proposed sliding mode 

position controller with Continuous-SMC. 
Fig. 5: Position control experiments when continuous SMC-based 
controllers are implemented. Reference is a sine wave with 0.1592 rad 
amplitude and 1 Hz frequency. 0.001p  and 500 rad/sDObg  . 

 
a) Trajectory tracking experiment. The reference is 2 + sin(2t) Nm. 

 
b) Regulation control experiment. Reference is 5 Nm step input. 

 
c) Physical human-robot interaction experiment.  
Fig. 6: Force control experiments via the proposed sliding mode force 
controller with discontinuous SMC. 0.0035F  and 500 rad/sDObg  . 
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signal chattering. Fig. 6b illustrates a force/impedance 
regulation experiment when the SEA’s link does not initially 
contact with the stiff environment. Since the approaching 
speed of the SEA’s link was neglected in this experiment, a 
high-overshoot was observed in the beginning of the contact 
motion. To eliminate or lower the overshoot in force control, 
one should treat approaching speed of the actuator’s link 
[25]. The figure shows that the regulation experiment can be 
conducted with high-accuracy by using the proposed sliding 
mode force controller. Compared to the position regulation 
experiment, the performance of the force regulation 
experiment did not suffer from vibration. However, the 
resonance modes influenced the system as a disturbance [9]. 
The control signal was automatically adjusted so that the 
disturbance, i.e., the vibration, was precisely suppressed. 
The results of the physical human-robot interaction 
experiment are illustrated in Fig. 6c. Passive force control 
experiment was performed by pushing/pulling the SEA’s 
link and applying zero-force reference input. As it is shown 
in the figure, the SEA can physically interact with a human 
being in a safe and sound manner when the proposed sliding 
mode force controller is implemented. 

VI. CONCLUSION 

This paper has proposed a robust motion controller for 
SEAs by using DOb and SMC. All disturbances are lumped 
into fictitious disturbance variables so that practical dynamic 
models are derived for position and force control 
applications. It is shown that the force control dynamics is of 
second-order and suffers from matched disturbances; 
however, the position control dynamics is of fourth-order 
and suffers from mismatched disturbances as well as 
matched ones. Therefore, an SEA’s position control problem 
is more complicated than its force control problem. By 
combining DOb and SMC, not only the disturbances of an 
SEA are precisely suppressed but also the discontinuous 
control signal chattering is significantly lowered. When the 
proposed sliding mode controllers are implemented, 1) the 
position and force trajectories of an SEA can be tracked with 
high-accuracy; 2) and an SEA can physically interact with 
active and passive environments in a safe and sound manner. 
Position and force control experiments are presented to 
validate the robust motion controllers.  
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