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SUMMARY
The study of dexterous manipulation has provided important insights in humans
sensorimotor control as well as inspiration for manipulation strategies in robotic hands.
Previous work focused on experimental environment with restrictions. Here we describe a
method using the deformation and color distribution of the fingernail and its surrounding
skin, to estimate the fingertip forces, torques and contact surface curvatures for various
objects, including the shape and material of the contact surfaces and the weight of the
objects. The proposed method circumvents limitations associated with sensorized objects,
gloves or fixed contact surface type. In addition, compared with previous single finger
estimation in an experimental environment, we extend the approach to multiple finger
force estimation, which can be used for applications such as human grasping analysis.
Four algorithms are used, c.q., Gaussian process (GP), Convolutional Neural Networks
(CNN), Neural Networks with Fast Dropout (NN-FD) and Recurrent Neural Networks
with Fast Dropout (RNN-FD), to model a mapping from images to the corresponding
labels. The results further show that the proposed method has high accuracy to predict
force, torque and contact surface.

KEYWORDS: Fingertip forces; Machine learning; Image processing; Fingernail images.

1. Introduction
When humans grasp and manipulate objects, control of the fingertip forces is critical.1,2

While the positioning of fingertips on objects are important, the generated force
vectors not only define the manipulative action but are strictly controlled to ensure
grasp stability. Measuring these forces is, however, prohibitively difficult. Attaching
measurements instruments to objects is an obvious solution but makes it practically
impossible to include more than a few objects in experiments and also restricts the
position of contact between fingertips and objects. While gloves with force sensors at the
fingers make it possible to use a range of objects but with the obvious drawback that
tactile sensibility is impeded.

The starting point of the solution we propose is the changes in nail coloration that
are obvious when a fingertip applies different forces and torques to a contact surface.
Following up on the seminal work by Mascaro et al. (see, e.g., [3]), we use steady color
cameras to observe the nails of the fingers while in contact with an object (Fig. 1),
and learn the relationship between the nail coloration, the prevailing force vector, and
the curvature of the contact surface. We have investigated these in three previous
publications.4–6
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Fig. 1: Estimation of the finger force and torque from videos.

Our method does not require mounting a sensor at the finger or the object. Instead,
we localize the finger in an image, perform appropriate image transformations and
extractions, and predict fingertip force and torque along with the curvature of the contact
surface. A crucial aspect therefore is image alignment. Prior methods of fingernail image
registration are 2D-to-3D registration with a grid pattern and fiducial markers onto
the finger,7 2D-to-3D registration using Convolutional Neural Networks,5 rigid body
transformation including the Harris feature point based method,3 Canny edge detection,8

template matching using markers,4 non-rigid registration fitting a finger model,3 and
Active Appearance Models (AAM).9 Other methods use sensors mounted on the finger4

or require restrictions such as a bracket to support the hand7 or the finger.8 Analyses of
”natural” human grasping requires, however, a robust and generally applicable system
that does not obstruct movements or otherwise interferes with human performance. To
address this challenge, we align the images using non-rigid alignment techniques.10

Following preprocessing, various methods have been developed to estimate the force.
Model-based methods11 contain linearized sigmoid models, EigenNail models,12 and a
linear least squared method (LSM).13 [4] estimates force and torque using Gaussian
processes (GP) and neural networks. Given the high accuracy obtained in [4–6] we use
Gaussian processes to estimate force from the aligned images in this paper. We also
explore other methods for the estimation such as Neural Networks, Convolutional Neural
Networks and Recurrent Neural Networks.

Moving away from a constrained lab setting with perfect conditions and comfortable
restrictions – e.g., a finger brace, a fixed force/torque sensor on a table, or a fixed finger
location w.r.t. the camera9,13 – we extend this method to a more universal environment.
Prior works focused on a certain contact surface material, shape, recording time and
object weight;9,13 in this study, with these variables, we find our approach performs
accurately. The results show the first application of video-based finger force prediction.

2. Methods

2.1. Setup
Hardware setup. The setup consisted of two stationary cameras and two force/torque
sensors (see Fig. 2(a)). The cameras recorded the distal phalanges of the index finger and
thumb, illuminated with diffuse light, as well as calibration markers on the respective
nails. Video data was captured by two POINTGREY cameras at c:a 24 fps with a
resolution of 1280× 980 pixels. At the same time, ATI Nano-17 six-axis force/torque
sensors located under the two contact surfaces measured ground truth forces and torques
at 100 Hz.

The whole setup is depicted in Fig. 2. Camera 1 captured the images of the rectangular
marker 1, LED 1 and the index finger, while camera 2 captured the images of marker 2,
LED 2 and the thumb. Marker 3 was attached to the side of object (Figs. 2(a), 2(b)).
Niobium magnets guarantee the distance between the two contact surfaces to be 49.5 mm.
The object (Fig. 2(c)) allowed easy adjustment of its weight and contact surfaces. The
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camera 2

camera 1

marker 1 marker 3

(a) Recording system. (b) Recording system (Cont’d).

Polhemus 
position/orientation
sensor (diameter 11 mm)

ATI Nano 17 6-axis
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(c) The grasped object. The object above the table is
visible for the subjects.
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(d) Contact surfaces for the index finger. Odd
rows are the front view, and even rows are the
top view. # 1 to # 11 are sandpaper and # 12
is silk. r represents the radius of the surface.
# 5 to # 8 are flat in the x or y direction;
therefore, r only represents the radius of the
non-flat direction.

Fig. 2: Setup. (b) F refers to the forces of the fingertips, where x and z represent lift and
grip directions, respectively.

12 types of curvatures and surface used in the experiments (Fig. 2(d)), represent a wide
range of commonly grasped objects. The surface on the sensor of the thumb is flat
sandpaper.
Data synchronization. The image data and force/torque data were synchronized using
two light-emitting dioides (LEDs) for each camera. For each pair, one LED was always
on and the other off but they switched at random with a mean frequency of 4Hz. The
state of the LEDs was stored along the force data. The sequences of LED signals collected
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from images and along with the forces data were scaled to the same frequency and then
synchronized based on the cross-correlation.

2.2. Image Alignment
Image alignment was developed to reduce the variance caused by the finger orientation
and location in the visual data. Before this, however, the mean shift algorithm14 was used
to track the finger in the video stream. The fingernail and its surrounding skin were then
segmented from the background based on the edge, and the fingernail geometry centers
were shifted to the same position in the images. To segment the finger image robustly, we
transferred the image from RGB to HSV, and changed hue and saturation to distinguish
the finger from the background and then transferred the segmented image back to RGB.
With this approach it was possible to segment a fingernail from a background color very
close to skin color.

Earlier we have demonstrated alignment with convolutional neural networks5 but the
method we now propose achieves a high quality without reconstruction of a 3D finger
model. To this end – applying the method described below – alignment transformations
were generated using the blue channel of the image since it (as well as the red channel)
varied little with contact forces.

Given a reference image R, every subsequent image J was aligned using non-rigid
image alignment.10 In short, assume that the two images have the following intensity
relationship:

R = J(T ) + v + z (1)

where v is an intensity correction field, z ∼ N (0, σ2) is zero-mean Gaussian noise, and
T is the geometric transformation that registers J onto R. To estimate v and T , we
minimized the objective function

E(v, T ) = D(v, T ) + w‖Pv‖2 (2)

where

D(v, T ) = ‖R− J(T )− v‖2 (3)

is a measure of the similarity of R and J, and ‖Pv‖2 is a regularization term that
penalizes some properties of v, e.g., unsmoothness (the scalar w thus parameterizes the
trade-off between the data fitness and regularization).

We modeled the transformation T by using the free-form deformation transformation
with three hierarchical levels of B-spline control points and updated the transformation
parameters via gradient-descent optimization.

2.3. Predictors
The fingernail and surrounding skin color distribution and deformation reflected the
changes of contact force. Several variants of predictors were developed to construct
the mappings from the finger images to the fingertip contact force/torque and contact
surface curvatures. Below we describe in detail the four prediction methods: Gaussian
Process (GP) regression and Convolutional Neural Networks (CNN), Neural Networks
(NN) and Recurrent Neural Networks (RNN).

Gaussian Process Regression (GP). GP is a widely used stochastic process.15 It is
completely defined by its mean m(x) and covariance k(x,x′) functions,

m(x) = E[f(x)], (4)

k(x,x′) = E
[(
f(x)−m(x)

)(
f(x′)−m(x′)

)]
. (5)
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A basic assumption of GPs is that the target values are similar for similar inputs.
A smooth function that measures the closeness or similarity of inputs is the squared
exponential (SE) covariance:

k(x,x′) = σ2
f exp

(
− 1

2l2
‖x− x′‖2

)
, (6)

where the signal variance σ2
f and length-scale l are hyperparameters.

In our implementation, the inputs X := (x1,x2, . . . ,xN)T were aligned images
reshaped to 1D vectors. The associated targets y := (y1,y2, . . . ,yN)T were the measured
forces and torques and the curvature of the surface in contact with the fingertip. Based
on a training set {(xi,yi), i = 1, 2, . . . , N}, we obtained the predictive mean and variance
of the function values f∗ at testing locations of the data points x∗ by using

E[f∗] = k∗T (K + σ2
nI)−1y, (7)

Var[f∗] = k(x∗,x∗)− k∗T (K + σ2
nI)−1k∗, (8)

where Kij = k(xi,xj), k
∗
i = k(xi,x

∗), σ2
n is the noise variance, and I represents identity

matrix.
The optimal values for the hyperparameters {σ2

f , l, σ
2
n} were evaluated from the

training set by maximizing the log likelihood function

log p(y|X) = −1

2
yT (K + σ2

nI)−1y − 1

2
log

∣∣K + σ2
nI
∣∣− N

2
log 2π. (9)

The GP predictor was able to train one model for all participants but then the
data set increased, of course, to tens of thousands of images. A critical issue with GP
methods is that large computations are required: O(N3) for training and O(N2) for per
testing case, where N is the number of training samples.15 To reduce the computational
costs, we implemented the fully independent training conditional approximation (FITC)
(a.k.a. sparse pseudo-input GP16). The inducing points are a small amount of inputs M
that summarize a large number of inputs N . By using inducing points we reduced the
training and testing cost to O(NM2) and O(M2), respectively. FITC was implemented
by randomly selecting a subset of the training data as the inducing points: X :=
(x1,x2, . . . ,xm)T . A more efficient likelihood approximation is then given by

p(y|f) ' q(y|u) = N (Kf,uK
−1
u,uu,diag[Kf,f −Qf,f + σ2

noiseI]), (10)

where u is the corresponding latent values of X, f = {fn}Nn=1 are latent values based
on xn ∈ X, the covariance function Kf,f is the Gram matrix of all pairs (xi,xj), and
diag[*] is a diagonal matrix, and Qf,f

.
= Kf,u.

Convolutional Neural Networks (CNN). CNN17 is another approach for regression
and classification that potentially suitable for predicting forces from our video streams.
It is relatively robust to shifts, scales and distortions of the input data and, importantly,
can be efficiently trained on large data sets.

Fig. 3 illustrates the architecture of the proposed network for finger images. It contains
six layers: a first convolutional layer followed by a first max-pooling layer, another
convolutional layer followed by a second max-pooling layer, and two fully connected
layers. In our experiments, both convolutional layers had 5×5 sized filters. The first
convolutional layer employed 8 kernels, the second layer used 25.

We now describe convolutional neural networks more formally. Typically, a CNN is
designed as subsequent stages of convolution and max-pooling. The top layers are usually
ordinary multi-layer perceptrons.
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input
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output

2×2
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Fig. 3: Architecture of convolutional neural networks for fingernail images.

The convolution of a 2D image for a feature map h is

h(m,n) =
lx∑
u=0

ly∑
v=0

w(u, v) g(u+m, v + n) + b, (11)

where g is the input map, w the kernel weights, and b the bias. (lx, ly) is the size of the
filter. (m,n) is the pixel position on the feature map.

The max-pooling activation can be computed as

p(m,n) = maxr1i=1

(
maxr2j=1 h(r1m+ i, r2n+ j)

)
, (12)

where (r1, r2) is the pooling size and p is the feature map in the max-pooling layer. Max-
pooling, a non-linear down-sampling method, decreases the computational complexity.
These layers take the output of convolutional layers as input, and reduce the resolution
of the input.

The fully-connected MLP contains 100 hidden units. The last layer is linear and has 8
outputs ŷ := {fx, fy, fz, τx, τy, τz, c1, c2}T . In our model, the activation of MLP layer was
tanh, and the activation of the output layer was identity. The outputs of the MLP were
the input of linear regression.

We use the chain rule to backpropagate error gradients back into the network to
minimize the square error loss:

L =
1

N

N∑
i=1

‖y − ŷ‖2, (13)

where y is the ground truth of the outputs.
Fast Dropout Neural Networks.

2.3.1. Neural Networks (NN). Given training image vector x, we have a neural network:

f(x) = σ(Wx + b) (14)

where {W,b} are the parameters, and σ is the activation function. It can be extended
to multi-layer neural networks with more hidden layers by taking the output of one layer
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as the input of another layer. The parameters of the network are obtained by minimizing
the loss function

L =
1

N

N∑
i=1

‖y − f(x)‖22. (15)

2.3.2. Fast Dropout (FD). Random dropout18 of the neurons during training process
in the last layer of neural networks prevents complex co-adaptations and reduces over-
fitting. Compared with random dropout, fast dropout19 is more efficient to train a model
by sampling from a Gaussian approximation.
zi ∼ Bernoulli(pi) is sampled to determine whether the input xi is dropped out, where

pi is the rate of not dropping out. The output y is derived by

a = wTDzx (16)

y = σ(a) (17)

where w is a weight vector and Dz = diag(z) ∈ Rm×m. m is the data dimension.
The input of the output layer takes a random variable for every hidden unit. Under fast

dropout training, we can assume its input as a Gaussian distribution X ∼ N (x|µ, s2).
For any hidden unit, the mean and variance of output y are ν and τ 2. Using sigmoid
activation function σ, we have:

ν =

∫ ∞
−∞

σ(x)N (x|µ, s2)dx ≈ σ(
µ√

1 + πs2/8
), (18)

τ 2 = Var
X∼N (µ,s2)

[σ(X)] = E[σ(X)2]− E[σ(X)]2. (19)

We draw samples of a Gaussian approximation for a = wTDzx. The mean and variance
of a can be obtained. We assume that x components to be independent; therefore, the
central limit theorem of Lyapunov condition is satisfied with m→∞. Consequently, a
is approximately Gaussian.

The neural networks with fast dropout can be trained to update w through back-
propagation.
Recurrent Neural Networks (RNN) with Fast Dropout. Since picking up and
placing is a sequence movement, recurrent neural network is employed to process the
sequence data.

We have a sequence of finger images xt ∈ Rl(t = 1, 2, . . . T ) and corresponding forces,
torques and surface curvatures yt ∈ Rm (t = 1, 2, . . . T ). ŷt ∈ Rm (t = 1, 2, . . . T ) is the
output of RNN which has hidden layers ht ∈ Rn (t = 0, 1, . . . T ). fh and fy are transfer
functions, the constant T is the sequence length and l, m, n are the input, output and
hidden dimensions at every time step. With one hidden layer, we have

ht = fh(xtWin + ht−1Wrec + bh),

ŷt = fy(htWout + by) (20)

where θ = {Win,Wout,Wrec,bh,by} are the parameters. The gradients are calculated
by back-propagation through time. The parameters are obtained by minimizing the loss
function

L(θ) =
∑
i

‖ŷ(i) − y(i)‖2. (21)

RNN with fast dropout (RNN-FD)20 can be straightforwardly implemented as FD
applied to NN, both described above.
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2.4. Calibration and postprocessing
The output of the F/T sensors consisted of the forces and torques applied on each sensor,
but these were not exactly equal to the fingertip forces and torques because of the shift of
the contact position and the rotation of the finger with respect to the sensor. Therefore,
we calibrated separately the forces and torque to correct the fingertip forces and torques.
After training a force/torque predictor by the calibrated training and validation data,
calibration of the testing data was only for the purpose of checking the accuracy of the
results. When the system is used “in production”, the calibration process is not required.
Our approach to compute fingertip force and torque does not depend on knowing the axis
of the fingertip nor on knowledge of the spatial orientation of the manipulated object.
Torque calibration. We summarize forces on a contact surface into a three-dimensional
force vector and a three-dimensional torque vector at a reference point. The first contact
point of a trial is set to the reference point. To compute the torques at the reference
point, the location of the point with respect to the sensor coordinate is required.

The object is static with respect to the contact point of the finger. Therefore, the sum
of the torques at the reference point is zero:

∆τx = fzy − fyz, ∆τy = −fzx+ fxz, ∆τz = −fxy + fyx, (22)

where ∆τ = τ − τ ′, and {x, y, z} is the contact position in the sensor coordinate. τ ′ is
the finger torque. We calibrate the the torque using the data when the subject starting
touching the object. In this case, the contact surface approximates to a point and the
friction is not enough to generate a torque at the reference point. Thus, τ ′ approximately
equals to zero (∆τ ≈ τ).

Given the force and torque, there are infinitely many possibilities for the contact
positions computed from (22). In the training dataset, the contact surface is known, so
that we have z = h(x, y), where h is a function of the geometry of the surface. With h
and (22), we can compute the contact position {x, y, z}. In one trial of the experiment,
the contact point does not change. Consequently, after obtaining the contact position,
we can calibrate the torques for the entire trial. Additionally, the distribution of the
nail blood reflects the contact points, so that the prediction process is able to map the
fingernail image to the torque.
Force calibration. As the fingertips were rotated during grasping, the force vectors on
the fingertips were also rotated with respect to the sensor coordinate. The mapping from
the finger image to the force is a surjection for the rotation with respect to the x and y
axes, so that we only calibrate fx and fy, which are rotated with respect to the z axis.
We focused on force rotation calibration using two printed markers (cf., ig. 2(a)) for each
finger.

First of all, a rectangular marker (”Marker 3” in Fig. 2(a)) was attached to the
object such that its position and orientation could be detected by a 2D camera using
HALCON (MVTec). The four borders of the marker were detected, and the corresponding
intersections were taken as corners of the rectangle. Once the internal camera parameters,
the rectangle’s physical size, and the detected corners are known, the rectangle’s pose
in the camera space could be initially estimated. After that, a nonlinear optimization
approach updated the pose through minimization of the geometrical distance between
the detected borders and the back projection of the space rectangle onto the image.

The orientation θ of the fingertips with respect to the object was calculated as the
difference in position between ”Marker 3” and the marker fixated to the finger (e.g.,
”Marker 1” in Fig. 2(a)).

We selected a video frame as the reference frame and estimate the angle θr. Thus, fx
and fy were calibrated by a (θ − θr) rotation with respect to the z axis.
Marker Calibration. The marker location on the fingers could change between
recordings since they were pasted without calibration. This required some pre-processing
for the marker orientation calibration. To this end, we recorded a small data set and
rotated the ground truth of fx and fy with respect to the z axis in [−20, 20] degrees
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(a) Image alignment with mesh transformation illustration.5The columns from left to right are the
reference image, the images before alignment, the aligned images and the mesh transformation. The
finger images are in the green channel. The more deformation the image (row 2, column 2) has before
alignment, the more mesh transformation (row 2, column 4) it is.

(b) Image alignment of three subjects. The left columns of each subfigure are the reference images. The
upper and lower lines are images before alignment and aligned images, respectively.

Fig. 4: Image alignment.

in one-degree steps. The angle that resulted in the minimal mismatch was subsequently
used to match the finger marker orientation to the orientation in the training data set.
Postprocessing. To reduce the prediction noise, we smoothed the outputs from the
predictors. Weighted linear least squares and a 2nd-degree polynomial model were used
for local regression. In addition, it assigned lower weight to outliers in the regression to
smooth the data robustly.

3. Experiments and results

3.1. Data
Kinematic and kinetic data were acquired with an experimental setup used previously.21

In short, five healthy, right-handed participants (age 19–65; one female) were asked to
repeatedly grasp and lift an instrumented object using their thumb and index finger.
A light-emitting diode (LED) mounted into a translucent Perspex rectangle above the
object signaled the start of a trial and when the object should be replaced on the support
table (Fig. 2). The light intensity at the nails was 120 lux at the index finger and 150 lux
at the thumb.

The weight of the object varied between 165, 330 and 660 g. The contact surfaces at
the two digits could easily be changed between any of 12 surfaces all but one covered
with sandpaper (Fig. 2(d)): 4 spherical convex surfaces (c=12.5, 25, 50 or 100 m−1), 4
cylindrical convex surfaces (c1 and c2=0, 25 or 100), 2 surfaces with triangular surfaces,
and 2 flat surfaces (one with sandpaper and one with silk). There were thus 3 weights× 12
surfaces = 36 weight-surface combinations. Each participant repeated every combination
5 times in an unpredictable order, i.e., each participant completed a total of 180 grasp-
and-lift trials. Each of the two contact surfaces – one for the thumb and one for the index
finger – were coupled to a six-axis force/torque sensor (ATI F/T 17). The series of trials
were divided into segments by detecting the initial object contact and the moment of
object release.

Our experiments required the participants to apply up to ≈ 15 N surface normal force
to pick up the object (i.e., with silk surface), and this represents an extension of,4,8 which
restricted the normal force to ≤ 10 N and the shear force to ±2.5 N.
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(b) The output standard deviation.

Fig. 5: Predictor comparison for index fingers of all 5 participants. One of five series was
selected as testing data set for each kind of surface and object weight. Each subject has
one predictor model. (Since there is no standard deviation of the CNN output, it is not
included in the lower panel.)

Table I : Data set range.

fx [-0.9, 4] N fy [-2, 0.8] N fz [0, 15] N

τx [-22,26] Nmm τy [-30, 14] Nmm τz [-35, 27] Nmm

c1 [0, 200] m−1 c2 [0, 200] m−1

The testing samples were selected from time-continuous data, which increases the
prediction difficulty compared to when the testing data is randomly selected from the
whole data set as in.11

We used root-mean-square error (RMSE) to evaluate the results. The unit of force and
torque are N and Nmm, respectively, unless otherwise stated.

3.2. Image alignment
We aligned the images for each subject and each finger separately. Fig. 4 shows examples
of image alignment for visualisation.

3.3. Force/torque prediction
For evaluating GP, one of five series of each weight-surface combination was included in
the testing data set, i.e., 20% of the data was used for testing and 80% for training. In
addition, to avoid over-fitting with CNN, NN-FD and RNN-FD, 25% of the GP training
data was selected as validation data and the remaining 75% was training data while the
testing data set was the same as that for the GP evaluation. The architecture of CNN
was described in 2.3. RNN-FD had one tanh hidden layer with 100 units and an identity
output layer. The input and the hidden layers both had 0.5 probability to be dropped.
NN-FD had three tanh hidden layers with 170, 120 and 35 units and an identity output
layer. The input and the three hidden layers had 0.3 probability to be dropped. The
architectures were obtained by hyper-paramter search during training.
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Fig. 6: Results for index fingers across all 5 participants with individual GP predictor
models. One of five series was selected as testing data for each kind of surface and
object weight. (a)-(e): Each point represents a percentile of the values in the predicted
f or τ for the percentages in the interval from 0 to 100 with five-percentage steps. The
horizontal and the vertical axes are the mean values and the RMS errors of the percentiles
respectively.
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(b) The output standard deviation.

Fig. 7: Prediction of the thumbs across all 5 participants using GP.

Although each subject had a slight different range of force and torque, Table I provides
representative summary data. CNN, NN-FD and RNN-FD were implemented on deep-
learning frameworks. The outputs from the four predictor models for the index fingers
across all 5 participants are shown in Fig. 5.

The accuracy of GP was slightly higher than that of CNN (Fig. 5). On the other
hand, while CNN is unable to output error estimates, it was considerably faster than
GP. Because GP and CNN were more accurate than NN-FD and RNN-FD, we focused
our analyses on the former. Fig. 6 shows the results of individual GP predictor models
created for the index finger of each of the five participants.

Multiple-finger prediction is crucial for manipulation applications. Figs. 8,7 show that
the GP accurately predicts the forces, torques and surface curvatures of the thumb.
Furthermore, Figs. 9(a),9(b) show an example of the prediction of participant P1 and
Figs. 15,16 illustrate further details of several trials of picking up and replacing an object.
The modle was able to predict normal forces of higher than 10 N, although when it was
close to 15 N it was not as accurate as at lower forces.

The predicted surface normal forces, fz, of the thumb and index finger were
approximately equal to each other (if not, it would imply that the object was accelerated
sideways). Moreover, when the object was held stationary in air, the sum of the vertical
forces applied by the thumb and index finger counteracted the weight of the object. This
also fitted well with model predictions: the x axes of the fingers were almost vertical and
the the sum of the estimated fx of the thumb and index finger was indeed approximately
equal to the force required to hold the object stationary in air.

In low force frames, the fingernail images of different surfaces were very similar to each
other, which caused the surface curvature predictions of c1 and c2 to be less accurate
than in high-force frames.

3.4. Surface cross validation
Our approach was capable of predicting the force and torque by surface cross validation
(see Fig. 10, 11). The testing data set not used during training or validation was in this
case surface 3 (cf., Fig. 2(d)).
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Fig. 8: Prediction of the thumbs across all 5 participants using GP. One of five series was
selected as testing data set for each weight-surface combination. More annotations can
be found in Fig. 6.
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(a) The result of force/torque prediction. In each
surface type the grasping is ordered by three types
of weights. For observation, the time between two
grasping is set to 0, and the grasping of different
surfaces is separated by dashed lines instead.

(b) The error of force/torque prediction.

Fig. 9: Prediction for participant P1 using GP. The grey areas are the 95% confidence
interval. There are 36 trials.

3.5. A single predictor model across all participants
In this experiment, the training, validation and testing data sets were the same as in
Section 3.3, but all participants were combined in one model. To handle the large dataset
size issue of GP, we randomly reduced the training data set to 30% and use GP-FITC
with 17% inducing points chosen from the training data. In contrast, CNN readily used
all training data. As illustrated in Fig. 12,13, CNN performed more accurately than
GP. GP was more accurate than other models in simple conditions, e.g., training each
participant separately with small data sets. CNN, on the other hand, was more robust
and faster when dealing with large data with more variables.
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Fig. 10: Predictions across all 5 participants for surface cross validation. The testing data
set was surface 3 (cf., Fig. 2(d)) across all 3 weights. More annotations can be seen in
Fig. 6.
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Fig. 11: Predictions across all 5 participants for surface cross validation using GP.

Table II : Time cross validation error. The interval of the training and testing data
recorded is 1 week. RMSE of force and torque estimation by GP, as well as the mean of
the estimated standard deviation (in brackets) given by the GP are listed below.

x y z

P3

f 0.778(0.500) 0.197(0.179) 1.33(1.46)
τ 3.86(4.16) 2.81(2.86) 3.80(3.29)

3.6. Time cross validation
Variables such as finger temperature and lighting varied, of course, over time. To
investigate the impact of such variations, training and testing was spaced 1 week for
participant P5. The result from the GP predictions are shown in Table II and Fig. 14.

3.7. Participant cross validation
In this experiment, we took participant P3 as the testing dataset, and the other four
participants as the training and/or the validation data sets. In this situation, CNN
could predict whether the force increased or decreased, but could not accurately estimate
the quantity of the forces: GP generated constant outputs. CNN functioned relatively
well regardless of changes to lighting, rotation and shift of the images. In contrast, GP
was sensitive to these variables and had difficulties when these variables were never
shown in the training data. In addition, the fingernail color distribution varied between
participants and was the main reason for the inaccurate predictions of both methods.

3.8. Human grasping analysis
The approach can be used in settings such as robot teleoperation, force-based control
and so on. As an example of the applications, we analyzed human grasping according
to1 using the result of our predictor.

For observation, Fig. 15,16 only shows fx, fz and τz, which are most significant for
picking up and replacing in our experiments. They were evaluated using partidcipant P1

with two grasping surfaces in Fig. 15 and was evaluated for P1 and P2 grasping surface 3
in Fig. 16. From the figures, grasping can be seen in six steps: reaching, loading, lifting,
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torque.

Fig. 12: Predictions of a single model used across all participants. Testing data was one
of five repetitions of all weight-surface combinations. Annotations as in Fig. 6.
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(b) The mean standard deviation output by GP.

Fig. 13: Predictions of a single model used across all participants.

holding, replacing and unloading. Other surfaces have similar patterns for the steps.
Consider the index finger as an example: the loading starts from the critical near zero
force. Lifting occurred from fx peak to torque peak. While the object was held stationary
both forces and torques stable. Replacing occurred from torque peak until fx peak and
unloading from the lowest point of torque to zero forces.

4. Discussions and Conclusions
This paper presents a method measuring finger contact force, torque, and surface
curvature using the deformation and color distribution of the fingernail. Moving away
from constrained laboratory settings with perfect conditions and restrictions, we were
able to capture fingernail images when subjects made contact with varied surfaces.
After conducting non-rigid finger image alignments, we trained force/torque and contact
surface prediction models using the aligned images. The results show that the models
accurately predicted the force/torque used for picking up and replacing an object for
multiple fingers across multiple humans. The models were evaluated across surfaces and
variables (e.g., finger temperature and lighting).

We compared four machine learning methods on their ability to predict force, torque
and contact surface. GP and CNN performed best out of the four methods. In simple
conditions with relative small data sets, GP performed slightly better than CNN. In
more complicated conditions such as cross participant validation or with a large set of
training data, the CNN yielded more accurate results than the GP, and the CNN was
considerably faster.

The current data processing method run at approximately 30 Hz for an image
resolution of 111× 105 pixels, using an off-the-shelf GPU processor. Speedup would be
possible by, e.g., reducing the image resolution or using more advanced hardware.

In the future, we will explore the ability of a more robust model to predict fingertip
forces across participants never shown in the training data. A large data set of different
subjects would probably increase the accuracy.
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Fig. 14: Predictions for participant P5 for times cross validation. The interval of the
training and testing data recorded wass 1 week. Annotations as in Fig. 6.
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(a) Grasping the object with flat sandpaper surface.

0

5

10

lo
ad

 fo
rc

e 
[N

] index finger thumb

0

5

10

gr
ip

 fo
rc

e 
[N

]

0

20

40

po
si

tio
n 

[m
m

]

0

5

gr
ip

 fo
rc

e 
 lo

ad
 fo

rc
e

-1

0 1 2 3 4 5
time [s]

-50

0

50

z [N
m

m
]

a
b c

d e f
g
h i

(b) Grasping the object with flat silk surface.

Fig. 15: Grasping analysis of P1 with 330 g weight. The dashed lines are the ground truth
and the solid lines are the prediction. The load force is the force length magnitude of fx
and fy and the grip force is fz. The phases of the trials1 include: a - reaching phase; b -
preload phase; c - loading phase; d - transitional phase; e - static phase; f - replacement
phase; g - delay; h - pre-unload phase; i - unloading phase. h and i phases are possible
integrated into one phase, which depends on the placing behaviour of the participants.
With the decreasing of the friction, the ratio (grip force × load force−1) increases to
avoid slipping. Subfigures in the third row are the position of the object.
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(a) Grasping of P1 the object with 165 g
weight.
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(b) Grasping of P1 the object with 330 g
weight.
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(c) Grasping of P1 the object with surface
660 g weight.
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(d) Grasping of S2 the object with 660 g
weight.

Fig. 16: Grasping analysis of different participants with surface 2 (cf., Fig. 2(d)) and
different object weights. The sum of the load force of the thumb and index finger during
the hold phase corresponded approximately to the force required hold the object in air.
The difference of the load force of the thumb and the index finger was caused by the
inclination of the object. The grip forces of the thumb and the index finger were very
similar to each other. For more annotations, see Fig. 15.
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