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SUMMARY
A behavioral-based strategy for cooperative hunting using drones is proposed in this
paper. In this decentralized scheme, each drone acts as an individual agent computing its
guidance strategy toward the target based on the relative position of its neighbors without
the use of direct communication. The algorithm is based on the Deviated Pure Pursuit
methodology, and the emerged behavior mimics a natural hunting formation. Simulations
and real-time experiments with varying conditions were carried out to validate the
effectiveness of the proposed hunting scheme. Videos of the system in action can be
seen on: https://youtu.be/g2dODbd6ZLA.
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1. Introduction
The study and analysis of pursuit applied to mobile robots has been gaining the attention
of the research community, motivated by the increasing popularity of small robots,
especially drones. The need for surveillance of civil areas has motivated the application of
classical war-like pursuit techniques, see refs. [1–5]. Nevertheless, using a single agent for
pursuit has several limitations, such as when the target has a velocity equal or superior
to the pursuer, or a chaotic behavior. A recent alternative to overcome these limitations
is the use of multiple pursuers; see refs. [6–9], where it is possible to increase the spatial
distribution of the agents to allow for a more fault-tolerant system. However, with an
increase in the number of pursuers, the task increases in complexity - as the problem
now includes issues such as collision-free navigation, formation control, task, and roles
allocation. Many researchers approach this complex task in an approach base on collective
hunters in nature refs. [6, 7, 10–13].

The algorithms found in the literature can be distributed in four main categories:
pursuit, game theory, swarming, and bio-inspired group chasing.

1.1. Pursuit
The pursuit-evasion phenomena have been observed in almost all biological relations
and have been traditionally analyzed mathematically and applied to modern humans.
Since the classical and traditional analyses of Pierre Bourger, in Les courbes de Poursuite
(1732), where he describes the interception of merchant’s vessels by pirates ship, many
pursuit techniques have been formalized and implemented. Classical guidances laws, such
as the Deviated Pursuit Guidance (DPP), the Proportional Navigation Guidance (PNG),
and its variations, have been used notably in missile guidance; see refs. [14, 15].
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These guidance laws have been extensively explored for ground robots, see refs. [16–18].
In ref. [16], the authors explored the use of geometric rules to navigate a single agent
towards a target with unknown movements and in the presence of obstacles. They applied
two navigation approaches, the velocity pursuit guidance (a special case of PNG) and the
DPP methodology. In ref. [17], the authors implemented a controller that keeps a constant
line-of-sight from pursuers to the target, using the principle of parallel navigation to
ensure, under some conditions, the rendezvous course. Similarly, in ref. [18], the authors
applied a sliding-mode-based control to keep a constant line-of-sight.

In ref. [2], the author applied PP and PNG guidance algorithms into quadcopters
for target interception. They compared those techniques against an optimal control
trajectory planner, analyzing the time and energy required to achieve the task. However,
results are only presented in simulations. In ref. [5], the author analyses three missile
guidance laws in the case of a partially observable target. They formulate a pursuit-
evasion game to determine the guarantees of capture under evasive maneuvers, deriving
an optimal controller. However, during the approaching phase, the PP algorithm is used.

The classic guidance navigation approaches have been useful in more applications
than the pursuit problem; for example, in ref. [19] the authors used the PNG scheme in a
drone landing on a moving platform. Their final solution mixed PNG with proportional
derivative (PD) algorithms, effectively completing the task with less oscillation and
smaller errors than traditional tracking PD. The proportional navigation approach has
also been used as guidance law in autonomous racing of drones in ref. [20]. In that
case, the authors adapted the PNG algorithm to handle the decoupled dynamics of the
quadrotor.

1.2. Differential Games
Recently, the research community has been interested in a more complex version of the
pursuit problem, increasing the number of pursuers and evaders. This can be modelled
using a differential game, which uses game theory to model conflict in the context of a
dynamic system.

In ref. [21], the authors used a differential game formulation for multi-pursuers chasing
a single evader. In their approach, each agent minimizes the action area of the evader,
which is characterized by the Voronoi cells. Similarly, in ref. [22], a cost function is
proposed and computed based on the relative angle and distance between agents and
target. These methodologies guarantee the optimality input for pursuit. However, the
large amount of assumptions and precise knowledge needed about the whole system
makes it infeasible for application in the real-world.

1.3. Multi-agents
The benefits of the group work against the individual alone can be observed in many
social behaviors in nature. For example, in ref. [23], the authors completed quantitative
analysis of the probability to survive from predators, feeding, reproducing, and living in
a group; similarly, they have discussed how hierarchical systems emerge.

In ref. [24], the authors analyzed the cooperative chase with lionesses. Although
lions commonly chase alone, they can cooperate - which increases hunting success. The
formation of the lions, with center and wings lions, has inspired our approach.

The attempt to use a group of robots to stalk a moving target started early, basing
on the extensive multi-agents formation theory, and using a feedback controller to haunt
tasks and keep formation; see refs. [7, 25,26].

Although the hunting task can be performed in argued to be completed in all above
cases, all of them rely on fixed encirclement points around the target and keeping
formation, making the system not so flexible to a dynamical and real-world application.
Some improvements to these strategies have been made in refs. [8, 27], although these
propositions do not rely on keeping formation, they require fixed encirclement points
around the target.
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These points are virtual and global information, which requires, for instance, the
centralization of information. Nevertheless, the complexity of these algorithms, which
require optimization for path planning, is not scalable (in both cases, only four agents
were used) and would be unfeasible to implement in a bigger group.

1.4. Bio-inspired group chase
Another relevant field to group pursuit is artificial swarming and flocking. This approach
considers each agent as an autonomous entity, following similar rules based on local
interaction, resulting in emergent collective behaviors. This methodology is based on
theoretical work as in refs. [28, 29], where the authors proposed complex collectives
behaviors, for flocking and herding, starting from simple local rules.

Several works consider the agent-based model to represent multi-agent pursuit; in ref.
[12], the author designed an algorithm based on the Vicsek particle model. In ref. [13]
the authors modeled a predation system using agents inspired by swarms of bats. In ref.
[30], the authors studied the emergent behavior of agents with an interaction between
pursuers in a discrete environment (two-dimensional square lattice). The simplicity of
the model allowed simulations with large numbers of players (e.g. 10e4). In ref. [31], the
hunting behavior of agents is studied in a more realistic environment using a framework
to simulate a fleet of UAVs (see ref. [32]). In this methodology, the interaction of each
agent is represented by physical forces in bi- and tri-dimensional space with boundary
conditions. The action of each agent is calculated by the sum of different interaction
factors: chase, inter-agent repulsion, alignment and, short-range collision. The ‘chase’
factor assumes access to information about the position and velocity vector of the evader,
this allows the agent to predict of the future position of the target. Although the work
showed a powerful algorithm to analyze realistic pursuit with robots, they have strong
assumptions, and neglected the limited perception of the robot (often using a camera) and
the coupled dynamics between perception and motion (when using drones). Furthermore,
results are only validated in simulations.

In ref. [9], the author proposed a model inspired by wolf pack hunting to design
a multi-robot application. This involves a hierarchical system containing at least one
alpha and one beta agent and a finite state machine that determines the robot’s motion.
Nevertheless, the system relies on a fixed formation and fixed roles for the agents reducing
the flexibility in a more reactive application. In ref. [10], they are again inspired by
strategies observed in a wolf pack. They observed interaction between agents in a wolf
pack which allowed them to encircle the prey and start to attack it. However, the
algorithm’s simplicity does not fully capture the complexity of a coordinated pursuit
of a faster prey, which requires more sophisticated techniques to track and ambush the
target.

1.5. Authors’ contribution
Our approach is a cycling hierarchical agent-based methodology to implement behavior
for a group of chasing robots. The bio-inspiration lies in allocating dynamically changing
roles, and the pursuit itself. The pursuit behavior is given by the Deviated Pure Pursuit
(DPP) technique. Furthermore, our approach introduces an alternative to conventional
approaches based on attraction-repulsion forces to reduce the recurrent problem of
oscillations. In addition, the technique is flexible to the number of pursuers and robust to
abrupt changes in the formation. Moreover, the approach has no explicit communication
between agents and is closer to individual pursuer agents

Our approach avoids two common problems in multi-robot cooperation: oscillations
and the observation of neighbors. The first is produced by the spring effect caused by
the repulsive/attractive forces. This problem is accentuated in real-world applications
where delays, loss of data, or long sample times are presented. To account for this,
the behavior of our system is not controlled by repulsive/attractive forces. Secondly, we
model the observation of neighbors just using bearing-only information, which can be
easily obtained from a single camera. This provides a more realistic observation model
simplifying transfer to real-world applications.
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Finally, we provide a numerical validation with different pursuers and experimental
results for three different scenarios.

The paper’s outline is presented as follows. Section 2 introduces the methodology and
the dynamics of the agents. In Section 3, the structure of the pursuit control strategy
is described. Numerical validations are done describing the performance of the proposed
algorithms are shown in Section 4. Flight tests are carried out to validate the pursuit
strategy. Section 5 illustrates the behavior when a drone fleet is pursuing an intruder
drone, before concluding in Section 6.

2. Setup and Problem Statement
The objective of pursuit is that at least one pursuer intercepts the target. We adopt the
terminology target to describe the target of the pursuit. This is not a fixed target, but
has different behaviors described in Section 3. This problem can be stated as follows.

Our multi-agents pursuit-evasion problem involves N pursuers and a single target
moving in a horizontal plane. The pursuit takes place inside a bounded work-space
W in IR2. We consider different bounded workspaces in this paper (square and a

R#2Q8circle). The final goal for the pursuer team is riT < Rcap , i.e. that at least one of the
pursuers has a relative distance (riT ) towards the target less than a threshold Rcap. The
target trajectories are described by PT (t) = [xT (t), yT (t)], where (xT , yT ) is its Cartesian
coordinates inW . Similarly, the pursuer paths are described as Pi(t) = [xi(t), yi(t)], where
i ∈ 1, 2, ...N .

We aim to validate the approach experimentally in real time, hence, for the safety of
our prototypes, the capture radius in final capture of the intruder (target) drone will not
be included in this work, i.e., the interception of the target will occur just in simulations,
in the experimental results, the goal will be to corral the target.

2.1. Agent
The term agent, in this work, is equivalent to the self-propelled particles proposed by
Vicsek, [31], in the sense that each individual is autonomous, has a limited range of
actuation, and they are driven by simplistic rules. We extend this definition to include
the definition of an agent by Muro in ref. [10]. Therefore, we consider that the agents are
homogeneous (neither physically differentiation or a static hierarchy), do not use explicit
communication and no explicit cooperation. All agents have a common goal, and they
can differentiate between neighbors and target, however, not between individuals.

The aerial drones used in this work are quadcopter vehicles as shown in Figure 1-left.
From the Newton-Euler approach, the mathematical equations for this vehicle can be
written as:

mv̇ = F + RTFg

η̇ = B(η)Ω

JΩ̇ = τ − [Ω]×JΩ
(1)

Fig. 1. The drone formation (left) mimics the behavior of lionesses hunting in group (center and right).
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The bold letters represent vectors. F denotes the thrusts generated by the motors,
Fg is the gravity force. η represents the vector of Euler angles, Ω represents the angular
velocity in the body frame. m indicates the mass of the drone, and v = [u v w]T defines
the velocity vector of the aerial robot in the body system, R describes the rotation
matrix generated in the order yaw-pitch-roll. B(η) represents the matrix that relates the
angular velocity and the derivative of the Euler angles. J is the inertia matrix of the
drone. [Ω]× represents the skew-symmetric matrix of angular velocity and τ defines the
torques applied to the vehicle.

As previously mentioned, we focus on pursuing an intruder drone, assuming it is flying
at a constant altitude. We use a nonlinear controller to stabilize the orientation in the
axes x, y and the altitude of the aerial vehicles. The desired altitude will be given by
the z position of the intruder drone. The remaining states for the agents are ψ, x, and
y as illustrated in Figure 2. The goal of this work is not to propose a control regulation
for the desired trajectory; but the collective tracking of a mobile target with unknown
movements in the x− y plane.

Fig. 2. Agent performance in the plane x, y. Its perception is limited for a vision field. The longitudinal
velocity vx and lateral vy are defined in the body frame.

From Figure 2, the kinematics of the vehicle are as follows

ẋi =vi cosψi, (2a)

ẏi =vi sinψi (2b)

where xi, yi defines the position of the agent in the plane x, y, vi denotes the magnitude
of the vector velocity vi = [vxi

, vyi ]
T in the body frame, and ψi represents the yaw angle

of the agent i to the horizontal axis x. The linear and angular velocities define the control
inputs such that

vi =fi, (3a)

ψ̇i =fψi
(3b)

where fi = [fui
, fvi ] signifies the control inputs for the longitudinal and lateral velocities,

respectively and fψi
introduces the control input for the yaw rate.

This motion constraint has an interesting property while considering the frontal camera
as a navigation sensor: the drone will displace only in the direction of the field of vision,
tightly coupling the perception to the motion.

For the same reason, this kind of drone motion is commonly observed in first-person-
view piloting, where the only information for the pilot is the frontal camera image. In
this case, the remote-pilot cancels the drone’s lateral drift by combining a roll movement
while turning the drones heading (yaw).
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2.2. Target
The ultimate advantage of using multi-agents in pursuit is the possibility of cooperative
ambushing for intercepting a more agile target. The term ”agile” can mean having
superior velocity or having more degrees of freedom. We assume both of these hypotheses
in our work.

We consider the target will have a velocity up to twice as large as the pursuers.
Furthermore, the intruder will not be constrained to non-holonomic equations (2) but
by a simple particle model, which gives locomotion advantages. This configuration is a
well-studied problem in differential games, commonly called ”the homicidal chauffeur”,
see ref. [36].

We consider two strategies regarding the target behavior: (1) predefined trajectories
and (2) a reactive target. First, the trajectories can be defined off-line; for example,
by collecting real-flight data, or using fixed paths, e.g, circular or square trajectories.
A repulsion model defines the reactive behavior of the target. Each pursuer and the
arena border exert a repulsive force towards the target. Details about this repulsive force
implementation is given in the subsection 3.5.

2.3. Relative Engagement
In this work, the pursuer behavior is given by a modified version of a classical guidance
law, DPP. The relative kinematic engagement is a useful way to analyze convergence
conditions in a pursuit-evasion problem. The kinematics equation can be deduced from
the geometrical engagement of the pursuer-target, as represented in Figure 2.

From Figure 2, the Line-of-Sight (LOS) connecting the pursuer and target is denoted
by riT . The bearing angle, defined between the LOS and the inertial axis-x, is denoted
by λiT . The vector vi is the velocity in the body frame, and ψi represents the heading
(yaw) of the pursuer i.

As shown in ref. [14, 37], from the engagement a relative kinematic model can be

obtained. Considering the relative velocity between, ṙiT = ṖT − Ṗi. The relative velocity
can be decomposed along (v‖) and perpendicular (v⊥) to the LOS :

v‖ = ṙiT = vT cos(αT )− vi cos(αi),

v⊥ = riT λ̇iT = vT sin(αT )− vi sin(αi).
(4)

where αT = ψi − λiT and αi = ψT − λiT . This equation represents the velocities of target
seen by the pursuer along the the LOS.

3. Pursuit strategy
In the following, we introduce our group pursuit strategy. Firstly, we will describe the
Deviated Pure Pursuit (DPP) guidance law, the base method for our proposition. Then,
we discuss the hierarchy and the roles in our pursuit methodology, relating them with
the different offsets in a DPP. Finally, our group pursuit will be explored, and details of
the implementation, such as collision avoidance, will be given.

3.1. Deviated Pure Pursuit - DPP

As stated in ref. [14], the DPP can be seen as a variation of the classical Pure Pursuit
(PP); it can be a result of manufacturing flaws or can be intentionally designed in order
to point the agent towards a position ahead of the target, causing a ”lead pursuit.”
However, if the offset drives the agent towards a position behind the target, it causes a
”lag pursuit.”

The basic principle relies in driving the heading error to a constant offset angle (φi −
λiT )→ α0. Considering this principle, the relative kinematics become:

R#2Q3
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ṙiT = vT cos(αT )− vi cos(α0),

riT λ̇iT = vT sin(αT )− vi sin(α0).
(5)

The above equations establishes one necessary condition about the offset angle: |α0| <
π/2. Nevertheless, under this strategy the capture cannot be guaranteed for all vT > vi.

R#2Q2

R#2Q4
Our work explores the idea that each agent can assume different offset angles, therefore,

each agent will have different degrees of “lead”, and “lag” pursuit. This will cause
spreading of the pursuers around the target, as shown in Figure 3. In ref. [14], an intuitive
law to apply the DPP is given as

R#2Q3

fψi
= −Kdpp (ψi − λiT − α0) (6)

where Kdpp defines a positive constant gain.

Fig. 3. Paths of deviated pursuit agents according to different angle offsets α. The agents begin the
trajectory at a fixed position, given by the black dot and keep a constant velocity until reaching the
target.

3.2. Hierarchy
Our system has a mixed hierarchical architecture. The homogeneity of the agents means
that all agents are physical equals, and no identification is required. We define a hierarchy
based on the advantage of information, i.e., one agent with better information will lead
the group, this makes a kind of cycling hierarchy. On the other hand, they play a role
in differentiation, where each agent can assume different behavior depending only on the
current relative position of the pursuer to its neighbors and target.

As shown by Stander, see ref.[24], in natural systems, the central position is commonly
related to dominance. In our system, the central agents have priority in moving and
capturing since they have a more direct trajectory towards the target. We differentiate
roles based purely on agent positioning and not due to social or biological factors
(compared to natural systems). Here, each agent’s trajectory is determined by computing
the DPP angle assumed in the pursuit.

In Figure 4, each agent has a different angle offset, hence, each agent has a different
role. The agent i (blue) and agent k (green) have consecutively positive and negative
offset, therefore, they do not go in a straight line to target, rather, they ambush it from
left and right, respectively. In ref. [24], the author identified this pattern in a group of
hunting lionesses and called the agents at the extremities as ”wings,” alluding to football
players’ roles.
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The differentiation in roles has a significant effect on the performance of the pursuit of
the target since the ”wings”-agents do not follow a straight line to the target but enclose
it depending on the offset angle. The roles are defined such that the condition for an
agent to be considered the ‘center’ is based on the proximity to the intruder. This allows
that an agent very close to the target can execute a terminal attack independently of the
position of its neighbors.

R#2Q4

Fig. 4. Three agents pursuit an intruder drone playing different roles.

.3.3. Pursuit control algorithm
The objective of the control scheme is not to control the position of each agent as it is
likely to produce oscillations, due to the random and fast movements of the intruder.
The control scheme’s goal is to follow a deviate pursuit towards the target, with a given
angle offset which will avoid collisions with the neighbors.

The heading of agent i will be controlled by its angular rate related to the pursuit
conditions as shown in Figure 4. Each agent has different offset angles (α), causing
different trajectories for each agent, aiming to increase the possibility of capturing the
intruder using an ambush strategy. Therefore, rewriting (6) for the whole system yields

R#2Q5

fψi
= −Kp

λiT + α
∑
j 6=i

Nδi,j(ξi, ξj)

 , (7)

δi,j =

{
−1, if j is in the left side
1, if j is in right the side

δi,j can be obtained from visual information, for this work we computed it by

δi,j =
rij × riT
‖rij × riT‖

(8)

where rij = [xj − xi, yj − yi, 0]T and riT = [xT − xi, yT − yi, 0]T , correspond to the
planar vector of the positions for neighbor j and to target T , respectively, in the body
coordinates of the pursuer i.

From Figure 4 and equation (3a), we can deduce that the longitudinal control input
fui

varies with respect to the magnitude of the desired vector velocity vi of the pursuer
and also is related with the target and neighbors distances.

R#2Q6
Thus, we propose

fui
= umaxσa

(
diT −Rcap
Rcap

)
[Crep, Cwall]min (9)
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where umax is the maximal velocity imposed to the agents, diT defines the distance
between agent i and the target T and Rcap denotes the radius to capture the intruder.
0 ≤ [Crep, Cwall]min ≤ 1 is a safety coefficient that regulates the linear velocity of the
agent i when approaching to agent j (collision avoidance) or when the agents are close
to the limits of the workspace. Similarly, the term σa(...), with a = 1, is set to saturate

the normalized distance error (diT−Rcap

Rcap
).

R#2Q7
The saturation function, σa(.), can be defined as follows.

σa(x) =


a, if x > a

x, if a ≥ x ≥ −a
−a, if x < −a

(10)

R#2Q9Please note that controlling the velocity of the pursuers become relevant mainly when
physical integrity of the materials are considered, such as in our experimental validations.
However, in the further numerical simulation, where the collision is not a concern, the
velocity of the pursuer is set constant.

3.4. Collision Avoidance
Most works in artificial flocking use the principle of attraction-repulsion to keep the
cohesion of the group. However, those forces might cause oscillatory responses that could
allow for an over-damped response of the fleet. As a consequence, this will reduce the
velocity response of the agents.

We do not use attraction-repulsion principle between pursuers, but use an attraction
factor towards the target, which acts as the point of convergence for all pursuers. For
practical safety, a short-range repulsion was implemented, however, this is not responsible
for the hunting formation.

There are two terms representing the collision avoidance (Crep and φrepi). The first one
acts as a brake coefficient, limiting the velocity input (fui

) to zero. The second imposes
a boundary in the lateral velocity, and it will be explained in Section 3.6.

For the longitudinal part this term can be denoted by

Crep =
[
Crepi,j , Crepi,k , ...

]
min

(11)

Crep defines a term acting in a small rage and only aims to avoid agents collision. When
an agent i detects agent j inside its repulsion area (delimited by the field of vision and
a radius rrep) it decreases its velocity. The coefficient of repulsion takes the minimum
value of the individual repulsion from agent i to all neighbors inside the repulsion area,
and it is represented as

Crepi,j =

{
1, if dij < Rcol + a0

dij−a0
Rcol

, otherwise
(12)

where Rcol means the radius of collision (see Figure 4) while a0 a constant offset. When
the agents are moving, the distance dij between agents i and j could be smaller than
the radius of collision, then the term a0 will impose a distance where the velocity of the
agents will be completely null. This term can be defined as the shortest distance possible
between two agents.

3.5. Virtual wall
Consider the scenario when the drones’ fleet is approaching the workspace boundary (e.g,
surveillance area). We implement a virtual repulsion force when an agent is getting closer
to the border of its workspace or even a forbidden area. Along this paper, we consider
two shapes for the workspace, square and circular arena.

R#2Q8
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For designing the virtual forces, we consider a projection of the agent in the border of
the workspace, see Figure 5. Since we have one virtual agent for each agent, the break
coefficient Cwall is computed in the same way of the agent’s collision avoidance.

Fig. 5. Virtual wall projected when the drones approaching the border of the square workspace. Virtual
agents are projected into the virtual cage

3.6. Lateral control
We design a controller to eliminate the lateral drift caused by the inertia of the drone.
The drift occurs when an agent changes in its heading while moves forward. In addition,
this controller also implements a lateral short-range force repulsion between two drones
or between the drone and a virtual wall.

This controller is proposed as:

fvi =

{
0, if dij < Rcol

δij
Rcol−dij
Rcol

, otherwise
(13)

where φrepi = Rcol−dij
Rcol

. The lateral velocity increases linearly when the neighbors invade

the collision radius (dij < Rcol). The function δij was defined in (equation (8)), and gives
the direction of the velocity in the opposite side of the collision.

4. Simulations
In order to analyze our proposition, we implemented the framework in MATLAB. The
agents were modeled as a particle with constant velocity and moving in a 2D plane.
We use a bounded circular workspace for these simulations. The sample period (Te) in
simulations is 0.01s. For simulation purposes, the crosses (red) represent the path of the
target, while the path of the pursuers is illustrated by the diamond (blue), the asterisk
(black), the circle (green), and the square (yellow). The black arrows denote the final
heading (yaw) of each pursuer. The stop condition in the simulation is that the target
is in a distance less than the capture radius Rcap = 0.3m of at least one agent. Three
scenarios are considered:r Fixed target and three pursuers, to illustrate the formation pattern in a simple case;r Escape trajectories, varying number of agents, to show the flexibility of the strategy;r Swarm of pursuers, to show our approach of these properties to deal with scalability

issues, involving large amount of agents.

Finally, we analyse the effect of the angle offset in the capture rate and on the effect
on collisions between pursuer.
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4.1. Fixed target
The first simulation is where the target remains in a fixed position. Figure 6 shows that
the patterns of the pursuers drones is similar to the trajectories executed by a group of
hunter animals.

Fig. 6. Trajectories generated for three agents and a fixed target. The pursuers start in the bottom of
the square and they pursuit the target with constant velocity. The deviation offset (α0) for this pursuit
is 30 degrees.

4.2. Escape trajectories
Due to this strategy’s flexibility and decentralized nature, it can be easily transferred
between environments with a different amount of agents. Several simulations were carried
out with different numbers of pursuers (1, 2, 3 and 4), see Figure 7. For these simulations,
the intruder velocity was set to 10m/s and for the pursuers 5m/s (half of the target
speed). For visualization’s sake, the maximum time for simulation was limited to 4s.
In addition, in this scenario, we propose reactive escape behavior for the target. The
behavior is described in Section 2.2, all the pursuers and the borders exert a repulsive
force towards the target.

Fig. 7. Snapshots for pursuits with different numbers of agents (1, 2, 3 and 4). The target in all cases
does an escape trajectory based in repulsion forces, with velocity of 2 times bigger than the pursuers,
i.e., vT = 2vi. The end of the target trajectories is signalized by the red circles.
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From Figure 7, in the two firsts cases (A and B), the target was not caught until the
end of simulations. However, in the two lasts cases (C and D), the target was successfully
intercepted before the limit of time, this shows the importance of the increasing number
of pursuers in the success of the chase. In addition, in Figure 7 the velocity of the agents
is implicitly indicated in the diagram. The positions of agents are shown at a constant
time stamp, therefore, the sparser a trajectory of an agent, the faster it is. In Figure 7-A,
for example, we can see that the target (red cross) has superior to the single pursuer
(blue diamond).

4.3. Swarm
Although collective hunting is usually employed to small groups of pursuers; our
algorithm can easily be applied to larger groups of agents. In the following simulation
(Figure 8), we illustrate the pursuit behavior applied to a group of 15 pursuers. The agents
demonstrate an emergent flocking pattern, where each agent computes independent
trajectories following the target with no information of the neighbors distance.

Fig. 8. Case of 15 pursuers and an intruder. The pursuers intercept the target early in their trajectory.

4.4. Effect of the offset angle on the capture
This quantitative evaluation aims to assess the effect of the angle offset (α0) on the
total number of successful captures. To this end, we subject our strategy to a group
pursuit benchmark, previously proposed in ref. [34]. This benchmark consists of a
circular bounded arena. We tested different angle offset values, incrementally from π/32,
measuring the number of captures, as indicated in Figure 9.

For each benchmark evaluation, 700 pursuit episodes are completed, with a variable
target relative velocity, vT/vi = 0.8, 1.0, ..., 2. More details about the benchmark
implementation is given in ref. [34].

Figure 9-left shows the number of captures as function of the amount of pursuers.
Figure 9-right, represents the average time taken to capture.

The first value (α0 = 0) is equivalent to the classic Pure Pursuit, where all agents point
to the target’s current position. However, applying this configuration, the cooperative
behavior does not emerge, therefore, the total catches remain practically the same during
all the numbers of agents.

Therefore, with the smallest increment of offset (α0 = π/32), the size of the group
has an affect on the total amount of captures. The number of captures tends to increase,
culminating in a cumulative total of 4233 (76%) catches for an offset of π/8. For an angles
offset of α0 = 3π/32, our approached completed all captures during the benchmark for 5
pursuers onwards, therefore, this is as an effective strategy for chasing a faster target.
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For angle offsets larger than π/8 the capture’s performance tends to decay. This is due
to the fact that large offset values result in very open trajectories towards the target,
allowing the target to escape between two pursues.

Fig. 9. Effects of the offset value in the pursuit.

4.5. Effect of the offset angle on the collision
We use the same benchmark, to analyse the amount of collisions between two pursuers,
i.e., rij < Rcol, where the collision radius Rcol is equal to 0.15m. The graph on Figure 10
clearly illustrates the effect of the offset on collision avoidance. For α0 = 0, collisions tend
to grow exponentially, reaching values up to 395 times higher than using α0 = 3π/32.

Fig. 10. Effect of the offset value (α0) on the collision between pursuers.
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5. Experimental Validation
The proposed pursuit algorithm was also validated in a real-world experiments. We use
quadcopter Parrots - AR Drone 2 for aerial robots. We used Framework libre Air1 an open
source framework which provides a low-level connection to the drones. Opti-Track was
used for motion capture to locate each agent. For experimental validation and security
reasons, the final capture does not occur here; instead, the pursuers must stop at a
security distance of d = 1m. The drones operate in a 6m× 6m square workspace.

5.1. Drone control
In our application, the control of the quadcopters is divided into two levels, as illustrated
in Figure 11. The lowest level is the control for stabilizing the drone in orientation and
altitude. The higher level is responsible for controlling the pursuers (fψi, fui, fvi) in
desired angles (θid , φid and ψid). The pursuit algorithm (the green box) is responsible for
the ”flocking intelligence” for each individual. Each agent can perceive the environment
(neighbors, obstacles and target) and gives to the the lower levels the velocities references
(fψi, fui, fvi).

Fig. 11. Schema for the control levels for a given agent i.

Therefore, from (1) and using the PD controller in the altitude and the orientation2,
it follows that, wi → 0, zBi

→ zBid
, η̇i → 0 and ηi → ηid , where zBid

defines the desired
altitude of the aerial vehicle i and ηid represents its desired orientation. Choosing ηid = 0
the aerial vehicle is stabilized at hover. The goal is the capture of the target drone, thus
from (1) and without loss of generality for x and y (in the body frame) it follows that

u̇i ≈ −g sin θi

v̇i ≈ g cos θi sinφi

The prototype has an embedded controller for the attitude, thus η is small enough
such that cos Ξi ≈ 1 and sin Ξi ≈ Ξi, being Ξi a generic angle representing θi and φi.

ui = ẋiB vi = ẏiB

u̇i ≈ −gθi v̇i ≈ gφi

where xiB and yiB are the position coordinates in the body frame. From (3a) and (13),
it follows that the following stabilize the lateral dynamics

v̇i = −kvivi − fvi (14)

where kvi denotes a positive gain. Notice from (13) that fvi defines a position lateral
feedback for avoiding the obstacles. Thus, it is easy to deduce the desired roll angle as

φid = −kẏiv − kyifvi (15)

1 https://devel.hds.utc.fr/software/flair
2 Others controllers can be also used for this purpose.
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where kẏi =
kvi
g

and kyi = 1
g
. Similarly, from (3a) and (9), it follows that

u̇i = −kui
(ui − fui

) (16)

with kui
denotes a positive gain. Notice here that fui

defines the desired velocity of the
agent i that will vary with respect the position of the target T . Therefore,

θdi = kẋi
eui

(17)

where kẋi
=

kui

g
and eui

= ui − fui
. From (3b) and (7), it follows that

ψ̇i = −Kpeψi
(18)

where eψi
= ψi − ψid .

All control laws and pursuit algorithms are computed on-board each agent, the ground
station only analyzes the states and re-takes the control in manual mode in emergency
cases. For improving experimental validation, a Kalman Filter was implemented to
estimate states in cases where the agent does not receive the data, see ref. [33].

Lateral control takes great importance in real-world experiments, as lateral drifts
appear when the agents avoid obstacles which does not happen in simulation.

5.2. Experimental Evaluation
Two scenarios are proposed to validate the pursuit algorithms.

1. The intruder drone remains in a fixed position, and three pursuers drones track it.
2. The target, moving with random movements given by a user, is tracked for three

pursuers aerial drones.

5.3. Three pursuers and one static target
The target is placed in the ground at a distance of 6m from the pursuers. The pursuers are
placed in an initial triangular formation with a distance of approximately 2m from their
closest neighbors. This experiment aims to reproduce the pattern presented in simulation
(see Figure 6). The parameters used in this experiment are presented in Table I.

Parameters Scenarios 1 and 3 Scenario 2
α 20o 10o

umax 1.3 1.3
Rcap 1.6 1.6
Field− vision 360o 120o

Rint 5 2
Rcol 1.5 0
a0 1 0
Table I . Control parameters used in the real-time scenarios..

Figure 12 shows the real-world result for this scenario. The agents take on a similar
strategy compared to the hunting pattern described in Figures 1 and 6. However, the
irregularities observed in the pursuer’s trajectories are caused by the airflow produced
by the proximity of the drones and the absence of position control.

5.4. Three pursuers and one faster intruder
An operator manually controls the target, trying to get away from the three pursuers’
drones. The goal for the pursuers is to track the target, limiting their distances to the
target to ensure no collisions. In addition, to further ensure the safety of our drones, the
target flies at a different altitude. We choose zd = 0.8m for the intruder and zdi = 1.7m
to the pursuers. The parameters for this flight are also shown in Table I.
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Fig. 12. Real-time performance when three aerial drones pursuit a fixed target. The first image (left)
shows the displacement of the drones in the flight arena. The second one is a picture of the experiment.

Fig. 13. Real-time performance when three aerial drones pursuit an aerial intruder drone with random
movements.

In Figure 13 some snapshots are shown which illustrate the real-world performance of
the drones pursuing the faster target. The figure is composed of 9 snapshots taken at an
interval of 2.75s. For each snapshot, the position of each agent was plotted ten times,
with a sample time of 0.275s. The larger velocity of the target (2m/s) is highlighted by
the distance traveled by it in each snapshot.

The collision avoidance property was implemented in the pursuers and can be seen
in Figure 14, where the inter-distances are plotted as a function of time. The minimum
distance between two pursuers throughout the episode was approximately 1m. However,
since the target was piloted manually, there were no guarantees of a collision-free
trajectory
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Fig. 14. Inter-distance between pursuers during the experimental test.

Observe from these figures that the cooperative hunting pattern emerged during these
real-world experiments. Even facing a complex pursuit with a faster reactive target,
the pursuer’s drones could track and intercept the futures movements of the target. No
formation is intended to be kept, instead, the drones re-arrange between themselves in
other to corral the intruder. The roles of positioning (center, left-, and right-wings) are
constantly changing as a function of the relative position of the fleet to the target.

Moreover, taking into account the size of the virtual arena (6× 6m) and the presence
of 4 drones flying inside, this approach has demonstrated a robust, practical performance
with respects to the disturbances produced by the airflow of the aerial vehicles.

The flight tests can be seen on: https://youtu.be/g2dODbd6ZLA.

6. Conclusion
A decentralized strategy for cooperative group pursuit against a single intruder has
been proposed and validated in this work. Our approach, inspired by lionesses’ hunting
behavior, applies the geometrical rules of Deviated Pure Pursuit to generate different
trajectories for each agent. This strategy avoids using attractive and repulsive forces for
pattern formation, which occasionally results in the system’s oscillations.

Numerical simulations were carried out to demonstrate the efficiency of the proposed
chase strategy. The effect of the angle offset was analyzed quantitatively through a pursuit
benchmark. We observed the emergence of the behavior of collective pursuit through
two main metrics, the increase in the number of target’s capture and the decrease in the
amount of collision between pursuers. Furthermore, a proof-of-concept with real drones
is shown, were we could verify the pursuit behavior in a real-world experiment with three
pursuers and one target.

This preliminary work focused mainly on the formalization of our algorithm and the
qualitative description of the emerging behavior. However, our proposal also proved to be
effective in capturing a faster target, as shown by the group pursuit benchmark described
in section 4. Furthermore, our proposal requires very minimal assumptions; the pursuit
algorithm, disregarding the safety layer of collision avoidance, requires only relative
bearing angle information in relation to the target and neighbors. This minimalism of
implementation puts our algorithm in a very advantageous position compared to the
previous ones, such as in ref [10,12,13], which requires more information from the target
and neighbors, such as position or speed in global coordinates.
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We believe that a more in-depth theoretical analysis of the collision-free phenomenon
observed in this work is also interesting and reaffirmed from simulations in the pursuit
benchmark.

Although these first experimental results indicate the viability of this algorithm,
several areas must be improved to obtain a fleet of autonomous chasing drones. The
first one is perception. Pursuers must be able to extract the bearing angle information
using only the embedded sensors, which are commonly the front camera and the Lidar.
However, using a camera-type sensor with limited FOV arouses the interest of another
field of investigation, the effect of limited visual sense on collective behavior. Recently,
works, as in ref. [35], have been dedicated to evaluating the impact of this non-linearity
in the observation, which could improve our work results.
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