Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T01:34:27.464Z Has data issue: false hasContentIssue false

Research on workspace visual-based continuous switching sliding mode control for cable-driven parallel robots

Published online by Cambridge University Press:  25 September 2023

Sen Qian
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui, China
Zeyao Zhao
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui, China
Pengfei Qian
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui, China
Zhengyu Wang*
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui, China
Bin Zi
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui, China
*
Corresponding author: Zhengyu Wang; Email: wangzhengyu_hfut@hfut.edu.cn

Abstract

Achieving the high-precision control of cable-driven parallel robots (CDPRs) is complex because of their structural properties. In this paper, a quintessential redundant CDPR is designed as the research subject, and a continuous switching sliding mode controller based on workspace vision is implemented to enhance the accuracy and stability of trajectory tracking. In addition, a virtual prototype of the CDPR with uncertainties is created in the simulation analysis software ADAMS, and co-simulation is performed with the control system designed in Simulink to validate the effectiveness of the proposed control strategy. Furthermore, a CDPR platform is established for trajectory tracking experiments using the visual-based position feedback method. The trajectory tracking performance with the three control schemes is then evaluated. The experimental results show that the continuous switching sliding mode control algorithm can significantly decrease trajectory tracking errors and exhibit superior trajectory tracking performance compared to the other control strategies.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, Z. K., Shao, Z. F., You, Z., Tang, X. Q., Zi, B., Yang, G. L., Gosselin, C. and Caro, S., “State-of-the-art on theories and applications of cable-driven parallel robots,” Front. Mech. Eng. 17(3), 37 (2022). doi: 10.1007/s11465-022-0693-3.CrossRefGoogle Scholar
Qian, S., Zi, B., Shang, W. W. and Xu, Q. S., “A review on cable-driven parallel robots,” Chin. J. Mech. Eng. 31(1), 66 (2018). doi: 10.1186/s10033-018-0267-9.CrossRefGoogle Scholar
Zarebidoki, M., Dhupia, J. S. and Xu, W. L., “A review of cable-driven parallel robots typical configurations, analysis techniques, and control methods,” IEEE Robot. Autom. Mag. 29(3), 89106 (2022). doi: 10.1109/mra.2021.3138387.CrossRefGoogle Scholar
Lessanibahri, S., Cardou, P. and Caro, S., “A cable-driven parallel robot with an embedded tilt-roll wrist,” ASME J. Mech. Rob. 12(2), 021107 (2020). doi: 10.1115/1.4045937.CrossRefGoogle Scholar
Chesser, P. C., Wang, P. L., Vaughan, J. E., Lind, R. F. and Post, B. K., “Kinematics of a cable-driven robotic platform for large-scale additive manufacturing,” ASME J. Mech. Rob. 14(2), 021010 (2021). doi: 10.1115/1.4052010.CrossRefGoogle Scholar
Lee, C. H. and Gwak, K. W., “Design of a novel cable-driven parallel robot for 3D printing building construction,” Int. J. Adv. Manuf. Technol. 123(11-12), 43534366 (2022). doi: 10.1007/s00170-022-10323-y.CrossRefGoogle Scholar
Duan, B. Y., “A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis,” Mechatronics 9(1), 5364 (1999). doi: 10.1016/s0957-4158(98)00028-2.CrossRefGoogle Scholar
Park, K. Y., Sung, Y. H. and Han, J. H., “Development of a cable suspension and balance system and its novel calibration methods for effective wind tunnel tests,” Measurement 170, 108717 (2021). doi: 10.1016/j.measurement.2020.108717.CrossRefGoogle Scholar
Kim, M. C., Choi, H., Piao, J., Kim, E. S., Park, J. O. and Kim, C. S., “Remotely manipulated peg-in-hole task conducted by cable-driven parallel robots,” IEEE-ASME Trans. Mechatron. 27(5), 39533963 (2022). doi: 10.1109/tmech.2022.3150108.CrossRefGoogle Scholar
Metillon, M., Charron, C., Subrin, K. and Caro, S., “Performance and interaction quality variations of a collaborative Cable-Driven Parallel Robot,” Mechatronics 86, 102839 (2022). doi: 10.1016/j.mechatronics.2022.102839.CrossRefGoogle Scholar
Mao, Y., Jin, X., Dutta, G. G., Scholz, J. P. and Agrawal, S. K., “Human movement training with a cable driven ARm EXoskeleton (CAREX),” IEEE Trans. Neural Syst. Rehabil. Eng. 23(1), 8492 (2015). doi: 10.1109/tnsre.2014.2329018.CrossRefGoogle ScholarPubMed
Gao, H. B., Sun, G. Y., Liu, Z., Sun, C., Li, N., Ding, L., Yu, H. T. and Deng, Z. Q., “Tension distribution algorithm based on graphics with high computational efficiency and robust optimization for two-redundant cable-driven parallel robots,” Mech. Mach. Theory 172, 104739 (2022). doi: 10.1016/j.mechmachtheory.2022.104739.CrossRefGoogle Scholar
Geng, X. Y., Li, M., Liu, Y. F., Li, Y. Y., Zheng, W. and Li, Z. B., “Analytical tension-distribution computation for cable-driven parallel robots using hypersphere mapping algorithm,” Mech. Mach. Theory 145, 103692 (2020). doi: 10.1016/j.mechmachtheory.2019.103692.CrossRefGoogle Scholar
Zhang, B., Shang, W. W., Cong, S. and Li, Z. J., “Dual-loop dynamic control of cable-driven parallel robots without online tension distribution,” IEEE Trans. Syst. Man Cybern. Syst. 52(10), 65556568 (2022). doi: 10.1109/tsmc.2022.3146919.CrossRefGoogle Scholar
Cuvillon, L., Weber, X. and Gangloff, J., “Modal control for active vibration damping of cable-driven parallel robots,” ASME J. Mech. Rob. 12(5), 051004 (2020). doi: 10.1115/1.4046434.CrossRefGoogle Scholar
Gao, J., Zhou, B., Zi, B., Qian, S. and Zhao, P., “Kinematic uncertainty analysis of a cable-driven parallel robot based on an error transfer model,” ASME J. Mech. Rob. 14(5), 051008 (2022). doi: 10.1115/1.4053219.CrossRefGoogle Scholar
An, H., Zhang, Y., Yuan, H., Xu, W. and Wang, X., “Design control and performance of a cable-driving module with external encoder and force sensor for cable-driven parallel robots,” ASME J. Mech. Rob. 14(1), 014502 (2021). doi: 10.1115/1.4051608.CrossRefGoogle Scholar
Sancak, C., Itik, M. and Nguyen, T. T., “Position control of a fully constrained planar cable-driven parallel robot with unknown or partially known dynamics,” IEEE-ASME Trans. Mechatron. 28(3), 16051615 (2023). doi: 10.1109/tmech.2022.3228444.CrossRefGoogle Scholar
Barhaghtalab, M. H., Bayani, H., Nabaei, A., Zarrabi, H. and Amiri, A., “On the design of the robust neuro-adaptive controller for cable-driven parallel robots,” Automatika 57(3), 724735 (2017). doi: 10.7305/automatika.2017.02.1793.CrossRefGoogle Scholar
Sancak, C., Yamac, F. and Itik, M., “Position control of a planar cable-driven parallel robot using reinforcement learning,” Robotica 40(10), 33783395 (2022). doi: 10.1017/s0263574722000273.CrossRefGoogle Scholar
Xiong, H., Zhang, L. and Diao, X. M., “A learning-based control framework for cable-driven parallel robots with unknown Jacobians,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 234(9), 10241036 (2020). doi: 10.1177/0959651819898945.Google Scholar
Shang, W. W., Xie, F., Zhang, B., Cong, S. and Li, Z. J., “Adaptive cross-coupled control of cable-driven parallel robots with model uncertainties,” IEEE Robot. Autom. Lett. 5(3), 41104117 (2020). doi: 10.1109/lra.2020.2988430.CrossRefGoogle Scholar
Sage, H. G., de Mathelin, M. F. and Ostertag, E., “Robust control of robot manipulators: A survey,” Int. J. Control 72(16), 14981522 (1999). doi: 10.1080/002071799220137.CrossRefGoogle Scholar
Korayem, M. H., Taherifar, M. and Tourajizadeh, H., “Compensating the flexibility uncertainties of a cable suspended robot using SMC approach,” Robotica 33(3), 578598 (2015). doi: 10.1017/s0263574714000472.CrossRefGoogle Scholar
Zi, B., Sun, H. H. and Zhang, D., “Design, analysis and control of a winding hybrid-driven cable parallel manipulator,” Robot. Comput.-Integr. Manuf. 48, 196208 (2017). doi: 10.1016/j.rcim.2017.04.002.CrossRefGoogle Scholar
Jia, H. Y., Shang, W. W., Xie, F., Zhang, B. and Cong, S., “Second-order sliding-mode-based synchronization control of cable-driven parallel robots,” IEEE-ASME Trans. Mechatron. 25(1), 383394 (2020). doi: 10.1109/tmech.2019.2960048.CrossRefGoogle Scholar
Ameri, A., Molaei, A., Khosravi, M. A. and Hassani, M., “Control-based tension distribution scheme for fully constrained cable-driven robots,” IEEE Trans. Ind. Electron. 69(11), 1138311393 (2022). doi: 10.1109/tie.2021.3125657.CrossRefGoogle Scholar
Lv, W., Tao, L. and Ji, Z., “Sliding mode control of cable-driven redundancy parallel robot with 6 DOF based on cable-length sensor feedback,” Math. Probl. Eng. 2017, 121 (2017). doi: 10.1155/2017/1928673.CrossRefGoogle Scholar
Zhang, B., Shang, W., Cong, S. and Li, Z., “Coordinated dynamic control in the task space for redundantly actuated cable-driven parallel robots,” IEEE-ASME Trans. Mechatron 26(5), 23962407 (2020). doi: 10.1109/tmech.2020.3038852.CrossRefGoogle Scholar
Dallej, T., Gouttefarde, M., Andreff, N., Herve, P. E. and Martinet, P., “Modeling and vision-based control of large-dimension cable-driven parallel robots using a multiple-camera setup,” Mechatronics 61, 2036 (2019). doi: 10.1016/j.mechatronics.2019.05.004.CrossRefGoogle Scholar
Utkin, V. I., “Variable structure systems with sliding modes,” IEEE Trans. Autom. Control 22(2), 212222 (1977). doi: 10.1109/tac.1977.1101446.CrossRefGoogle Scholar
Aghababa, M. P. and Akbari, M. E., “A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances,” Appl. Math. Comput. 218(9), 57575768 (2012). doi: 10.1016/j.amc.2011.11.080.CrossRefGoogle Scholar
Polycarpou, M. M. and Ioannou, P. A., “A robust adaptive nonlinear control design,” Automatica 32(3), 423427 (1996). doi: 10.1016/0005-1098(95)00147-6.CrossRefGoogle Scholar