Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T20:44:17.469Z Has data issue: false hasContentIssue false

Mechanism design and dynamic switching modal control of the wheel-legged separation quadruped robot

Published online by Cambridge University Press:  22 December 2023

Jiandong Cao
Affiliation:
College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
Jinzhu Zhang*
Affiliation:
College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, 030024, China Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment, Ministry of Education, Taiyuan, 030024, China National Key Laboratory of Metal Forming Technology and Heavy Equipment, Taiyuan, 030024, China
Tao Wang
Affiliation:
College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, 030024, China Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment, Ministry of Education, Taiyuan, 030024, China National Key Laboratory of Metal Forming Technology and Heavy Equipment, Taiyuan, 030024, China
Jiahao Meng
Affiliation:
College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
Senlin Li
Affiliation:
College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
Miao Li
Affiliation:
College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
*
Corresponding author: Jinzhu Zhang; E-mail: zhangjinzhu@tyut.edu.cn

Abstract

Currently, most wheel-legged robots need to complete the switching of the wheel-and-leg modal in a stationary state, and the existing algorithms of statically switching the wheel-leg modal cannot meet the control requirements of multimodal switching dynamically for robots. In this paper, to achieve efficient switching of the wheel-and-leg modal for a quadruped robot, the novel transformable mechanism is designed. Then, a multimodal coordination operation control framework based on multiple algorithms is presented, incorporating the minimum foot force distribution method (algorithm No.1), the minimum joint torque distribution method (algorithm No.2), and the method of combining the single rigid body dynamic model with quadratic programming (algorithm No.3). In the process of switching wheel-leg modal dynamically, the existing algorithm No.3 is prone to produce the wrong optimal force due to the change of the whole-body rotational inertia. Therefore, an improved algorithm No.1 and algorithm No.2 are proposed, which do not consider the change in the body’s inertia. The control effects of the three algorithms are compared and analyzed by simulation. The results show that algorithm No.3 can maintain a small error in attitude angle and speed tracking regardless of whether the robot is under multilegged support or omnidirectional walking compared to the other two algorithms. However, proposed algorithms No.1 and No.2 can more accurately track the target speed when the robot is walking with wheels raising and falling. Finally, a multi-algorithm combination control scheme formulated based on the above control effects has been demonstrated to be effective for the dynamic switching of the wheel-and-leg modal.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V. and Hutter, M., “Learning quadrupedal locomotion over challenging terrain,” Sci. Robot. 5(47), eabc5986 (2020).Google Scholar
Bellicoso, C. D., Bjelonic, M., Wellhausen, L., Holtmann, K., Günther, F., Tranzatto, M., Fankhauser, P. and Hutter, M., “Advances in real-world applications for legged robots,” J. Field. Robot. 35(8), 13111326 (2018).Google Scholar
Halder, S., Afsari, K., Chiou, E., Patrick, R. and Hamed, K. A., “Construction inspection & monitoring with quadruped robots in future human-robot teaming: A preliminary study,” J. Build. Eng. 65, 105814 (2023).Google Scholar
Wisth, D., Camurri, M. and Fallon, M. F., “VILENS: Visual, inertial, lidar, and leg odometry for all-terrain legged robots,” IEEE Trans. Robot. 39(1), 309326 (2021).CrossRefGoogle Scholar
Ding, L., Deng, Z., Gao, H., Nagatani, K. and Yoshida, K., “Planetary rovers” wheel–soil interaction mechanics: New challenges and applications for wheeled mobile robots,” Intell. Serv. Robot. 4(1), 1738 (2011).Google Scholar
Ding, L., Deng, Z., Gao, H., Guo, J., Zhang, D. and Iagnemma, K. D., “Experimental study and analysis of the wheels’ steering mechanics for planetary exploration wheeled mobile robots moving on deformable terrain,” Int. J. Robot. Res. 32(6), 712–43 (2013).CrossRefGoogle Scholar
Zhang, C., Liu, T., Song, S., Wang, J. and Meng, M. Q.-H., “Dynamic wheeled motion control of wheel-biped transformable robots,” Biomim. Intell. Robot. 2(2), 100027 (2022).Google Scholar
Xu, K., Lu, Y., Shi, L., Li, J., Wang, S. and Lei, T., “Whole-body stability control with high contact redundancy for wheel-legged hexapod robot driving over rough terrain,” Mech. Mach. Theory 181, 105199 (2023).CrossRefGoogle Scholar
Li, J., Qin, H., Wang, J. and Li, J., “OpenStreetMap-based autonomous navigation for the four wheel-legged robot via 3D-lidar and CCD camera,” IEEE Trans. Ind. Electron. 69(3), 27082717 (2021).CrossRefGoogle Scholar
He, J., Sun, Y., Yang, L., Sun, J., Xing, Y. and Gao, F., “Design and control of TAWL—A wheel-legged rover with terrain-adaptive wheel speed allocation capability,” IEEE/ASME Trans. Mechatron. 27(4), 112 (2022).CrossRefGoogle Scholar
Du, W., Fnadi, M. and Benamar, F., “Rolling based locomotion on rough terrain for a wheeled quadruped using centroidal dynamics,” Mech. Mach. Theory 153, 103984 (2020).CrossRefGoogle Scholar
Bjelonic, M., Bellicoso, C. D., de Viragh, Y., Sako, D. and Tresoldi, F. D., “Keep rollin’—whole-body motion control and planning for wheeled quadrupedal robots,” IEEE Robot. Autom. Lett. 4(2), 21162123 (2019).CrossRefGoogle Scholar
Chi, W., Jiang, X. and Zheng, Y., “A Linearization of Centroidal Dynamics for the Model-Predictive Control of Quadruped Robots,” In: 2022 International Conference on Robotics and Automation (ICRA) (IEEE, 2022) pp. 46564663.CrossRefGoogle Scholar
Chen, S.-C., Huang, K.-J., Chen, W.-H., Shen, S.-Y. and Li, C.-H., “Quattroped: A leg-wheel transformable robot,” IEEE/ASME Trans. Mechatron. 19(2), 730742 (2013).Google Scholar
Kim, Y.-S., Jung, G.-P., Kim, H., Cho, K.-J. and Chu, C.-N., “Wheel transformer: A wheel-leg hybrid robot with passive transformable wheels,” IEEE Trans. Robot. 30(6), 14871498 (2014).Google Scholar
Liu, C., Tan, X., Yao, Y. and Fu, Z., “Design and analysis of a novel deformable wheel-legged robot,” J. Mech. Eng. 58(3), 6574 (2022).Google Scholar
Zheng, C., Sane, S., Lee, K., Kalyanram, V. and Lee, K., α-WaLTR: Adaptive wheel-and-leg transformable robot for versatile multiterrain locomotion. IEEE Trans. Robot. 39(2), 941958 (2022).Google Scholar
Wang, S., Cui, L., Zhang, J., Lai, J. and Zhang, D., “Balance Control of a Novel Wheel-Legged Robot: Design and Experiments,” In: 2021 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2021) pp. 67826788.Google Scholar
Bjelonic, M., Sankar, P. K., Bellicoso, C. D., Vallery, H. and Hutter, M., “Rolling in the deep - hybrid locomotion for wheeled-legged robots using online trajectory optimization,” IEEE Robot. Autom. Lett. 5(2), 36263633 (2020).Google Scholar
Bjelonic, M., Grandia, R., Harley, O., Galliard, C. and Zimmermann, S., “Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots,” In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2021) pp. 83888395.Google Scholar
Medeiros, V. S., Jelavic, E., Bjelonic, M., Siegwart, R. and Meggiolaro, M. A., “Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain,” IEEE Robot. Autom. Lett. 5(3), 41724179 (2020).CrossRefGoogle Scholar
Ba, K.-X., Song, Y.-H., Shi, Y.-P., Wang, C.-Y., Ma, G.-L., Wang, Y., Yu, B. and Yuan, L.-P., “A novel one-dimensional force sensor calibration method to improve the contact force solution accuracy for legged robot,” Mech. Mach. Theory 169, 104685 (2022).Google Scholar
He, J. Y., Shao, J. P., Gao, B. W., Miao, B. Y., Shao, X. and Aguilar-Ibanez, C., “Suppression of quadruped robot body disturbance by virtual spring-damping model,” Complexity 2022, 112 (2022).Google Scholar
Chen, G., Guo, S., Hou, B. and Wang, J., “Virtual model control for quadruped robots,” IEEE Access 8, 140736140751 (2020).Google Scholar
Mingcheng, E., Liu, H., Zhang, X., Chenglong, F. and Hongxu, M., “Compliant gait generation for a quadruped bionic robot walking on rough terrains,” Robot 36(5), 584591 (2014).Google Scholar
Wang, P., Shi, Y., Zha, F., Jiang, Z., Wang, X. and Li, Z., “An analytic solution for the force distribution based on Cartesian compliance models,” Int. J. Adv. Robot. Syst. 16(1), 1729881419827473 (2019).Google Scholar
Zhang, G., Rong, X., Hui, C., Li, Y. and Li, B., “Torso motion control and toe trajectory generation of a trotting quadruped robot based on virtual model control,” Adv. Robot. 30(4), 284297 (2016).CrossRefGoogle Scholar
Chikun, G., Xunwei, W. and Lipeng, Y., “Control of quadruped robot based on impedance and virtual model,” J. Syst. Simul. 34(10), 2152 (2022).Google Scholar
Gu, S., Meng, F., Liu, B., Zhang, Z. and Sun, N., “Stability control of quadruped robot based on active state adjustment,” Biomimetics 8(1), 112 (2023).CrossRefGoogle ScholarPubMed
Wang, K., Zhao, H., Meng, F. and Zhang, X., “Research on the jumping control methods of a quadruped robot that imitates animals,” Biomimetics 8(1), 36 (2023).CrossRefGoogle ScholarPubMed
Qin, H., Zhu, Y., Zhang, Y. and Wei, Q., “Terrain estimation with least squares and virtual model control for quadruped robots,” J. Phys. Conf. Ser. 2203(1), 012005 (2022).CrossRefGoogle Scholar
Focchi, M., Prete, A. D., Havoutis, I., Featherstone, R. and Caldwell, D. G., “High-slope terrain locomotion for torque-controlled quadruped robots,” Auton. Robot. 41(1), 259272 (2017).Google Scholar
Wang, S., Shi, Y., Wang, X., Jiang, Z. and Yu, B., “State Estimation for Quadrupedal Using Linear Inverted Pendulum Model,” In: 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM) (IEEE, 2017) pp. 1318.Google Scholar
Fink, G. and Semini, C., “Proprioceptive Sensor Fusion for Quadruped Robot State Estimation,” In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020) pp. 1091410920.CrossRefGoogle Scholar
Zhu, Q., Yu, B., Huang, Z., Kang, Y., Kong, X. and Ba, K., “State feedback-based impedance control for legged robot hydraulic drive unit via full-dimensional state observer,” Int. J. Adv. Robot. Syst. 17(3), 172988142092461 (2020).CrossRefGoogle Scholar
Roy, S. S., Singh, A. K. and Pratihar, D. K., “Estimation of optimal feet forces and joint torques for on-line control of six-legged robot,” Robot. Comput. Integr. Manuf. 27(5), 8 (2011).CrossRefGoogle Scholar
Li, Z., Ge, S. S. and Liu, S., “Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks,” IEEE Trans. Neural. Netw. Learn. Syst. 25(8), 14601473 (2014).CrossRefGoogle ScholarPubMed
Rudin, N., Kolvenbach, H., Tsounis, V. and Hutter, M., “Cat-like jumping and landing of legged robots in low gravity using deep reinforcement learning,” IEEE Trans. Robot. 38(1), 317328 (2021).Google Scholar
Zhang, J., Li, M., Cao, J., Dou, Y. and Xiong, X., “Research on bionic jumping and soft landing of single leg system in quadruped robot,” J. Bionic Eng. 20(5), 20882107 (2023).Google Scholar