University of

"1l Kent Academic Repository

Johnson, Colin G. and Marsh, Duncan (1999) Modelling robot manipulators
with multivariate B-splines. Robotica, 17 (3). pp. 239-247. ISSN 0263-5747.

Downloaded from
https://kar.kent.ac.uk/21825/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1017/S0263574799001307

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21825/
https://doi.org/10.1017/S0263574799001307
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Modelling Robot Manipulators with
Multivariate B-splines.

Colin G. Johnson* and Duncan Marshf

September 23, 1998

Abstract

In programming robot manipulators to carry out a wide variety of
tasks it would be desirable to create a CAD system in which these tasks
can be programmed at the task level, leaving the fine-grained detail
of path planning and collision detection to the system. This paper
describes the theoretical background to such a system, by providing
a model in which robot motions are represented using multivariate
B-splines, a standard representation for free-form shapes in the caD
environment. The paper also describes algorithms which take this
representation and apply it to collision detection and path-planning.

1 Introduction.

Robots are typically programmed in one of two ways. The first of these is
to guide the robot through a set of motions using a teach-pendant, which
takes the robot out of the production line for the duration of the programming
task. The second is to plan the motions using a robot programming language,
possibly assisted by using a simulation package such as CimStation [1] in an
iterative cycle of program-test-program-test-- - - .

*Colin Johnson is a lecturer in the Department of Computer Science at the University
of Exeter, The Old Library, Prince of Wales Road, Exeter, EX4 4PT, England.
"Duncan Marsh is a lecturer in the Department of Mathematics at Napier University,

219 Colinton Road, Edinburgh, EH14 1DJ, Scotland.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 2

Much work (beginning with [2] and surveyed in [3, 4, 5, 6]) has come out
of the artificial intelligence community over the last thirty years in increasing
the level of automation of robot programming—that is hiding details of the
programming process such as collision detection and and calculating the fine
details of velocity and acceleration, liberating the programmer to concentrate
on the task itself. In this paper we look at the mathematical and algorithmic
foundation of how we can embed this style of robot programming in a CAD
environment, and describe some algorithms which use these ideas to tackle
collision detection and path-planning problems. This paper extends the work

described in [7, 8].

2 B-spline curves and surfaces.

In this paper we make use of B-spline curve, surfaces and higher-dimensional
shapes [9, 10]. These are a piecewise-polynomial representation used in free-
form design, that is the design of arbitrary smooth shapes. The most popular
kind of B-spline representation used in CAD is the NURBS (non-uniform ra-
tional B-spline) shape, which is easy to use for design and which allows the
representation of circles, polyhedra and polynomial curves and surfaces.

The mathematical description of these shapes uses a set of basis functions,
a typical set being illustrated in figure 1. A NURBS-curve consists of these
basis functions combined linearly with respect to a number of control points,
which are together termed a control polygon. The end-points of the control
polygon describe the end-points of the curve, and the intermediate points are
used as shape parameters to control the shape of the curve. Designing with
these curves is therefore somewhere between using an interpolating function
and freehand sketching.

The curve is described mathematically by the following formula

i wiPiN; (1)
Z?:O wlNva(t)

Where P; are a set of control points. The w; are an additional set of control
parameters called weights, which in an intuitive sense are used to allow dif-
ferent points to have a different amount of influence on the shape of the curve
[11]. More formally the w; are the fourth coordinate in a homogeneous coor-
dinate system, the three-dimensional curve being described mathematically

x(u) = (1)

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 3

Figure 1: B-spline basis functions.

as the projection of a 4-dimensional non-rational curve into 3-dimensional
space [12].
The N, ,(t) are the B-spline rational basis functions, defined recursively

by

(2)

() {1 i 6 <t< tivt and ¢; < tivt
iolt) =

0 otherwise

t—1; tipprt — 1
Nip(t) = ——Nt)ip-1 + —————N()ip1p1(t) (3)
tz-l—p — 1 t2+p+1 - tz+1
Here the tq,... ,t, is a non-uniform knot vector which is a list of non-

decreasing numbers, where the first and last numbers are repeated k£ times,
where k is the order of the curve. We define p to be the degree of the curve
(i.e. p+1 =Fk). These are the basis functions described above and shown in
figure 1. A typical NURBS-curve is illustrated in figure 2.

It is also possible to define higher-dimensional NURBS objects, for example
surfaces (see figure 3). There are two ways of doing this, the one adopted

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 4

4 T T T

"control_points" —
35 L "curve" -------]

Figure 2: A B-spline curve.

here is to form the tensor product of k curves, the result being given by the
following equation
X(Ug, ... up) =
2?11:0 T Z?::O Pi17~~~7ikwi17~~~7ik Nihpl (ul) s Nikﬂ?k(uk)
2?11:0 T Z?::O Wiy,... i Nihpl (ul) s Nikﬂ?k(uk)

where the P, ,; are a topologically rectangular grid of points, with an

(4)

associated set of weights w;, . ;. These points can lie in a space of dimen-
sionality less than %k, and we use this idea below to embed the configuration
space [13] of a manipulator into the physical space R”.

There are two particular properties of B-spline shapes that we shall use
here. The first is the convex hull theorem [12], which states that all points
on the B-spline shape lie within the convex hull of the control polygon. The
convex hull is an easily computed object [14], with an O(nlogn) complexity
algorithm for n 2-dimensional points, and at least an O(n?) complexity for 3-
dimensional points. Therefore we have a powerful techniques for approximat-
ing complex curved objects with simpler polyhedral objects for intersection
testing.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 5

"control_points" ——
"surface" -

Figure 3: Designing a B-spline surface.

The second useful property here is the existence of a subdivision algo-
rithm. By repeated linear interpolation along (in 2 dimensions) the edges of
the curve, we can find an intermediate point on the curve, and also find two
sub-control-polygons specifying the sub-curves on either side of that inter-
mediate point. This can be extended to the subdivision of a NURBS-shape of
any dimensionality by an isoparametric hyperplane of codimension 1. Details
of these algorithms can be found in [12, 10].

This section has given a brief introduction to this large subject. More
details can be found in [9, 10, 12].

3 A new model of workspace.

In this section we give mathematical constructions which give multivariate
B-spline mappings to describe the space swept out when a robot moves.
Models are described of both the space consisting of all possible locations for
the robot in space (section 3.1) and the space swept out when a robot makes
a given motion (section 3.2).

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 6

The robot arms commonly used in industry have an open-chain kine-
matic structure. Such mechanisms consist of a chain of links connected with
joints. These joints are either revolute joints which rotate around an axis, or
prismatic joints which move along an axis.

In order to specify the geometry and kinematics of such a robot needs
three items of information. Firstly, the spatial position/orientation of the
robot is given by a cartesian coordinate frame. Secondly, the physical geom-
etry of the links is given by by a NURBS surface S; for each link [(it is simple
to extend this to several surfaces per link). Finally, we specify how the links
are connected together, using the Denavit-Hartenberg notation—the stan-
dard notation used in kinematics [1, 15]. We describe this briefly as follows
(see figure 4). We begin by taking a line ¢; through the axis of each joint of
the mechanism, i.e. the axis that a link either rotates around (revolute joint)
or slides along (prismatic joint). Each pair ¢;, ;41 is joined by their unique
common perpendicular (unless they are parallel, in which case any common
perpendicular will suffice). Next we specify the kinematic relationship be-
tween these links exactly using four parameters. Two of these parameters,
the link length a;_1 and the link twist a;_q specify the fixed relationship be-
tween the two axes forced by the physical link. The remaining two, the link
offset d; (which is variable for a prismatic joint) and the joint angle 6; (which
is variable for a revolute joint) specify the relationship between two adjacent

links.

3.1 Workspace generation.

We use the Denavit-Hartenberg specification to generate a set of mappings
w; : R? x R* = R? where : ranges from 1,...,d, where d is the number
of degrees of freedom of the robot. The function w; specifies the region of
space occupied by the robot in a particular position. Consider the mapping

wi @ (u,v) X (r1,...,r) = (x,y,2z). This takes a value of the parameters
(u,v) which specify a point in the domain of S;(w,v), and (ry,... ,r;), which
specify the values of d; (for (j =1,... ,1), when the jth link is prismatic) or

; (for (=1,...,1), when the jth link is revolute). The image (x,y, z) is a
point in R® which specifies where the point S;(u,v) is found when the robot
is in the position specified by (ry,...).

The next stage is to give these mappings are given a NURBS structure.
Place the control net for the surface S;(u,v) as it would be when the robot
is in its home position. Form the tensor product of S;(u,v) with a motion-

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 7

Parallel lines

Figure 4: Denavit-Hartenberg parameters.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 8

curve C'(ry), which is an arc (ranging between the upper and lower limits
of 01) of a unit circle around the base-axis if the joint 1 is revolute, and a
NURBS line (ranging between the upper and lower limits of d;) along the axis
if the joint is prismatic.

The penultimate part of the algorithm is to give a basic structure on
which to place the surface making up link 2. To do this a NURBS arc/line
segment D(ry) is constructed having a radius/length a,_y. The control net
S2(u,v) is placed at the base position, and then displaced by a;_1, rotated
by «;_1, and finally rotated/translated by whichever of 6; and d; is fixed.
Finally a tensor product between the line/arc C(ry) and the transformed
S, is formed, and a further tensor-product with D(ry) gives the 4-variable
NURBS function wy(ry,r2,u,v). We repeat this process until the occupancy
functions w, (71, ..., 7, u,v) for all links have been generated.

3.2 Modelling specific motions.

In addition to the mappings for workspace generation we define mappings
which give a NURBS model of the mapping which defines volume of space (or
space-time) occupied by the robot during the execution of a given trajectory.
More precisely for a given motion M, specified as a NURBS path in configura-
tion space [13], we define a function for each link €;(M) : R*x R — R?. This
function takes a pair (u,v) specifying a point in the domain of the S;(u,v)
and a parameter ¢ specifying the distance travelled along the motion M, to
obtain €;(M) : (u,v) x t — (x,y,z), where (z,y,z) is the point occupied
by the image of S;(u,v) when the link is at the point in configuration space
given by M(t).

We model this using a geometric swept-volume algorithm. This takes a
template surface S(x,y) and moves it along a trajectory T(¢) whilst also
executing a local motion of the surface, producing a swept volume V(z,y,1)
in space. We can express it thus

V(z,y,t)=T(t) + N(S(z,y),1)

where N is a transformation of the surface with respect to its fixed position,
which varies with changes in ¢. This has been used in planar kinematics,
where the motion N was a multiplication of the control net of S(x,y) by
control points in a of transformation matrices [16]. This allows us to calcu-
late the volume swept out when we move the surface through space whilst

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 9

simultaneously transforming the shape with respect to a moving coordinate
frame.

We calculate these ©;(M) in two stages. In the first stage we take the
link-surface S;(u,v), placed with respect to a coordinate frame at the origin.
If the ith joint is a revolute joint, we form a volume of revolution V;(u,v,t)
by forming a tensor product of S; with an arc of a circle in NURBS form
[10]. Similarly for a prismatic joint we tensor product the surface with a
straight line along the axis to form a volume of extrusion. The length and
parameterization of these lines and arcs are derived by reparameterizing a
standard NURBS circle or line by a function specifying the motion of the link.

For the first joint this volume is ©4(M), the space swept out by S as
the first joint moves around a fixed coordinate frame. However for the other
joints the axis itself is moving, so we have a second stage. Take a point at
the ¢th joint and apply the rotation/extrusion to that, giving a NURBS-curve
T(¢) in space, having a knot vector which we shall call U;. Then use degree-
raising and knot insertion to equate U; with U,., the knot-vector of Vi(u,v,1)
in the t direction. This produces a new set of control points for T(¢) which

we call (Ty,...,T,,). Create a set of new points P,j; from the control points
Vijk of V(u,v,t) and the control points T; of T(¢).

Pijry = RVijp + 1,

Where R is the rotation matrix (an affine transformation) that carries the
frame based at the origin into the Frenet frame moving along the curve. The
desired swept surface V(u,v,t) is defined by

nt Nu Nu

V(u, v, t) = Z Z Z Piiji,du(u)R/j,dv (U)R”k,dt(t)
k=0 j=0 i=0
Where R;4,(u), R'jq,(v) and R"j 4, (t) are the non-uniform rational basis
functions defined over U, U, (the knot vectors of S(u,v)) and U; respectively.
Note that isoparametric surfaces for fixed ¢ values of V(u,v,t) consist of
S(u,v) transformed to an appropriate position along the curve. That the
placement of these surfaces at the control points is sufficient to describe the
entire motion follows from the the affine invariance property of B-splines [12].

3.3 Comments.

This representation restricts the motions allowed to those which can be rep-
resented in NURBS form. It could be well argued that this is not a restriction

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 10

at all. Firstly, we can approximate any motion as accurately as desired using
a NURBS path. Secondly, we have to design a motion using something, and
NURBS, with their properties of local control, control over their smoothness
and their ability to incorporate many other kinds of motion such as straight-
line interpolants and circles [9] offer an intuitive and geometrically elegant
method for this.

It can be seen that this can be extended to the case of creating a swept
volume in four-dimensional space-time [17]. This is important for studying
the interaction of a robot with other moving obstacles [18, 19, 20, 17|, or
attempting to detect self-intersections.

The main advantage of this representation is that it allows the motion,
the shape of the links and the resultant swept volume to be represented in a
common form, and has the added advantage that that form is a standard in
CAD. Such advantages are not to be found in other swept-volume models of
workspace such as [21].

4 Application to collision detection.

We now turn to applying this model to the collision detection problem. A
robot executes a motion M : [0, 1] — C, where ' is the configuration space
of the robot. We recall the workspace mapping Q;(M) : S; x [0,1] — R?
from above, where S; is the set of points on link 2 of the arm. Given a set
of k obstacle surfaces Oy,..., 0 in R? we say that there is a collision if the
set {Q(M)N{Oy,...,0r}} is non-empty.

We calculate this collision by subdividing the obstacles and workspace
image until either we are certain that there are no collisions or we have
subdivided down to a certain level of tolerance and there are still collisions
between approximating bounding regions. We use a linked-list structure to
structure the data efficiently. The pseudocode for the algorithm follows, and
the algorithm is summarized in diagrammatic form in 5.

Begin
Create the occupancy functions €2,
Remove all obstacles that are impossible for the robot to
reach in any configuration
For (1= 1;i < degrees_of-freedom;i + +)
Create an linked-list of obstacles obs_{list

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press.

Create a pair p := (obs_list, ();)
Push p onto an empty linked-list main_list
integer count:= 0
While main_list is non-empty and count < tolerance
pop a pair p := (current_list, current_patch)
from main_list
pbb := BoundingBox(patch)
While current_list is non-empty
pop a patch obstacle from current_list
0bb := BoundingBox(obstacle)
Test 0bb and pbb for intersection
If there is an intersection push obstacle
onto a list temp_obstacles
EndIf
EndWhile
If there have been any intersections
Subdivide patch into patchy
and patchy
Subdivide each obstacle on
temp_obstacles
Push (patchy, temp_obstacles)
onto the back of main_list
Push (patchsy, temp_obstacles)
onto the back of main_list
onto the back of main_list
EndIf
count := count + 1
EndWhile
If main_list is empty there is no collision,
so continue to link 7 + 1
Else if tolerance has been reached and there are
still things on main_list, then there is a collision
Report(collision) and Stop
EndIf
EndFor
Report(no collision)
End

11

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 12

Workgoace patches.
main,_list R
Y Y y Y Y Y A Y To each workspace
;' patch is associated
BL) L) E ! alist of obstacle
o i i ! patches with which
N ' that part of workspace
Obstacle .- o) A L) ! has a potential collision.
Patches |8y) !
N L) Due to be removed
\. : — next iteration.
obstacl é_I ists

Figure 5: The collision-detection algorithm.

The advantage of this algorithm (over, say, [13]) is that the amount of
subdivision is adaptive. Regions where there are many possibilities for colli-
sion get finely subdivided and approximated by very small bounding boxes,
whilst broad free regions or obstacles irrelevant to the particular problem at
hand are removed from (resp.) main_list and obs_list at an early stage of the
algorithm.

The BoundingBox procedure can be carried out in a number of different
ways, for example rectangular bounding-boxes, spheres, oriented bounding
boxes, swept spheres and convex hulls. This list is in rough order of com-
plexity, the earlier ones being fast to calculate but offering a cruder approx-
imation, the later ones offering tighter bounds but requiring more complex
intersection algorithms. Variations on these bounding-box methods are com-
monly found in computer graphics—see [22, 23, 24, 25, 26] for details.

5 Path planning and accessibility checking.

In this section we describe two algorithms which can be used for path-
planning. That is instead of using the computer to test human designed

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 13

paths, we specify the robot and its environment and the algorithm automat-
ically finds a free-space path between desired start and end points, or reports
that this is not possible.

5.1 Using a genetic algorithm.

The first algorithm uses a kind of genetic algorithm [27, 28] for path planning.
The algorithm begins by creating at random a large set of possible paths
without considering whether these paths cause collisions or not. These paths
are generated by selecting NURBS control points at random in configuration
space, then adding the desired start and end point to the list. A standard
Bézier-style knot vector is used. There then follows an iterative process, in
which the first stage is to combine at random pairs of paths by clipping the
control-point sets from each end, and concatenating these subsets together.
This set of solutions is then ranked by total amount of obstacle contact and
total length, such that a long path with large amounts of contact is ranked
low whilst a short path with small amounts of obstacle contact is ranked
high.
Here is the pseudocode for the algorithm.

Begin
Select a random set P of n paths in C
Set a tolerance = maximum number of iterations which will
be carried out before assuming that there is no collision-free path
Until (collision-free path found
or until tolerance number of iterations)
Empty the set Piew
For (i = 1;7 < 2nj1 + +)
Choose two members py, p; of P at random
Chop off a random number of control points
from the beginning of p,
Chop off a random number of control points
from the end of p,
Concatenate pi&py and put in a set Pyey
EndFor
Test each member of P, for collision
Rank the members of P,. 1n order of
amount of contact with obstacles

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 14

and by control-polygon length

Remove the n members of P, with
lowest ranking

Mutate a random selection from Ppew
by perturbing the control points

P = Phew

EndWhile

End

5.2 Trimming the workspace.

Another approach which captures the geometry of the situation in a better
way is to trim away those regions r C C where w;(r) N O; # () for some i, j,
where O; are the obstacles in the robot’s environment, leaving behind those
regions where the robot is free to move. The NURBS structure is particularly
valuable here, as we can apply the subdivision algorithm to split the obstacles
and the robot’s occupancy space into subregions . The basic idea is illustrated
in figure 6.

Essentially our algorithm works like this. Find the region wy(C), and
carry out intersection tests using bounding-boxes as in section 4 (see also
[22, 23, 24, 25, 26]). If there are any intersections, draw an isoparametric
line through C splitting it into C;,Cy and carry this split into R® by carrying
out the subdivision algorithm on w; to give wi(Cy) and wi(Cy). Then test
these against the obstacles, throwing away any obstacles which don’t collide.
Continue until a free-space region is found, or until a so many subdivisions
have been done that it is safe to say that there is no possibility of a free-
region being found within a certain tolerance. If there is a free region then
investigate the free regions for the next link, and so on until the algorithm
halts because it cannot find a free region for a given link or until it runs out
of links having found a free motion for each link. It is then a comparatively
simple task to interpolate a path through these free-space regions.

Here is the pseudocode for the algorithm.

Begin

Create the occupancy functions w;

Remove all obstacles that are impossible for the robot to
reach in any configuration

Create an linked-list of obstacles obs_{list

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press.

Create a triple p := (obs_list,wy, 1)
Make p the root of a tree main_tree
Mark this root as the current_node,
and make it a grey node
While main_tree still contains grey nodes
take the triple p := (current_list, current_patch, depth)
from current_node of main_tree
pbb := BoundingBox(patch)
While current_list is non-empty
pop a patch obstacle from current_list
0bb := BoundingBox(obstacle)
Test 0bb and pbb for intersection
If there is an intersection push obstacle
onto a list temp_obstacles
EndIf
EndWhile
If there have been any intersections
Subdivide patch into
patchy . .. patchy;
Subdivide each obstacle on
temp_obstacles
Place (patchy, temp_obstacles, depth + 1)
on a new daughter-node of main_tree
onto the back of main_tree

Place (patchy, temp_obstacles, depth + 1)
on a new daughter-node of main_tree
onto the back of main_tree
EndIf
If depth+1 = tolerance
mark current_node as blocked and traverse the
tree until another grey-node is found
EndIf
If no collisions were detected
If current_node is on last link
mark the current_node as free and traverse the
tree until another grey-node is found
Else create 27! daughter nodes,

15

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 16

initialized to (w;t1, 0bs_list, 1)
EndIf
EndWhile
End

We have used a tree-structure [29] to store information about the patches
as we continue subdividing (see figure 7). Each node of the tree (correspond-
ing to a patch of the occupancy mapping) is shaded grey (if more subdivision
is needed), blocked if an obstacle prevents than patch of C from being ac-
cessed) or free if that region is known to be accessible. This allows us to use
the algorithm of [30] to find a connected path through the various subdivided
regions.

One major advantage of this (compared with, for example, [13]) is that
the same structure works on any scale. If a large amount of space is free
then these regions are marked off as free near the beginning of the algorithm,
rather than being pointlessly further subdivided. Equally the algorithm con-
centrates on small regions where this is necessary, and the level of detail is
decided automatically as the algorithm progresses—there is no need to set
an initial level of desired detail.

6 Conclusions and future directions.

In this paper we have outlined some of the mathematical and computational
background needed to develop a robot programming system based on free-
from CAD modelling. In order to develop this into a complete system a
number of advances need to be made.

One key to the application of these techniques in real environments is to
including sensing in order to free the system from the constraint of working
in a wholly designed environment. One promising method here is to combine
our model of robot workspace with a NURBS-based surface reconstruction
method such as those described in [31, 32], which take visual or range data
and interpret it to produce a model of the world in terms of NURBS-surfaces.
Another exploration in this direction would be to consider ways of represent-
ing uncertainty about the environment in a geometrically intuitive way.

The next stage in this would be to combine this model and the sensing
work into a unified interactive graphical environment for robot task design.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press.

-
—

a) Robot arm moves b) Sweeps out
occupancy region

/T~
\
\
4
-7
|

c) Subdivideto find d) Remaining free
clear regions space

€) Sweep out next link
along free-space curve

Figure 6: Trimming away to find free-space.

17

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 18

Figure 7: Tree structure after the first few stages of the free-space algorithm.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 19

The aim here is to combine the traditional cAD-designed environment for
representing real objects in the working environment with wvirtual objects
representing the way in which the robot should respond to changes in the
environment. An example could be the graphical representation of attractive
and repulsive forces within the environment using pictures of springs (using
the algorithms in [33] to compute the resultant motions). Virtual walls (ap-
pearing as translucent walls in the system) could represent no-go areas for
the robot. This works towards an ideal of robot programming by specify-
ing the minimal constraints such that the task occurs, then introducing new
constraints on-line using sensors, rather than fixing a way of going a task in
advance then changing it when new constraints are introduced.

There are also some simple algorithmic extensions which could be made.
For example we can extend the algorithms above to carry out collision de-
tection and path-planning in a known dynamic environment, for example
to plan the coordinated motion of multiple robots. This would require the
use of extrusion operators, as described in [10] to create four-dimensional
space-time workspaces akin to those described in [20, 17].

Other avenues may be worthy of exploration. Some of these are computa-
tional, for example the use of parallel processing to enable these algorithms
to work quickly in complex, dynamic environments. The algorithms above
are amenable to parallelization at various levels, ranging from the parallel
implementation of the individual small-scale algorithms such as subdivision
or intersection checking, up to breaking down the problem itself by solving
for different links or obstacles in parallel. Similarly it may be possible to use
dedicated hardware to carry out the small-scale algorithms, as has been done
for some computer graphics applications. Another direction would be to ex-
tend this modelling technique to encompass other mechanical problems, such
as the design and analysis of closed-chain mechanical systems or carrying out
more complex workspace analyses such as those described in [34].

Throughout all of this work the key concept is to remain within a small,
closed set of representations which allow fundamental algorithms to be devel-
oped to a high level of efficiency and then applied to a wide range of problems.
This has been emphasized by Farouki and Hinds in their landmark paper [35]
on geometric design:

“Since the unified approach (to geometric modeling) guarantees the func-
tional equivalence of all geometric entities of a given type, geometric opera-
tions can be performed with equal facility on simple primitives and complex
sculptured geometries. Furthermore, this versatility is realized with consid-

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 20

erable conciseness of coding : A small family of geometric-function routines
accepting generic geometry inputs and yielding generic geometry outputs,
forms the core of the modeler.”

In this paper we have described a foundation for systems which provide
the context to apply the power and intuition of geometric algorithms within
a new problem domain, leading towards the ideal of a single geometric design
concept for both motion and shape.

References

[1] John Craig. Introduction to Robotics. Addison-Wesley, second edition,
1989.

[2] Nils J. Nilsson. A mobile automaton : An application of artificial in-
telligence techniques. In First International Conference on Artificial

Intelligence, pages 509-520, Washington D.C., 1969.

[3] J.T. Schwartz and M. Sharir. A survey of motion planning and related
geometric algorithms. Artificial Intelligence, 37:157-169, 1988.

[4] M. Sharir. Algorithmic motion planning in robotics. [EEE Computer,
22:9-20, March 1989.

[5] Y.K Hwang and N. Ahuja. Gross motion planning—a survey. ACM
Computing Surveys, 24(3):219-291, 1992.

[6] Stephen Cameron. Obstacle avoidance and path planning. Industrial
Robot, 21(5):9-14, 1994.

[7] Colin G. Johnson and Duncan Marsh. Modelling robot manipulators
in a CAD environment using B-splines. In N.G. Bourbakis, editor, Pro-
ceedings of the IEEFE International Joint Symposia on Intelligence and
Systems, pages 194-201. IEEE Press, 1996.

[8] Colin G. Johnson and Duncan Marsh. A robot programming environ-
ment based on free-form CAD modelling. In Proceedings of the IFEE
International Conference on Robotics and Automation, pages 194-199,

Leuven, Belgium, 1998. IEEE Press.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 21

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Les Piegl. On NURBS : A survey. I[EEE Computer Graphics and Appli-
cations, pages H55-71, January 1991.

Les Piegl and Wayne Tiller. The NURBS Book. Springer, 1995.

L. Piegl. Modifying the shape of rational B-splines. part 1 : curves.
Computer Aided Design, 21(8):509-518, 1989.

Gerald Farin. Curves and Surfaces for Computer Aided Geometric De-
stgn. Academic Press, third edition, 1993.

T. Lozano-Pérez. A simple motion-planning algorithm for general
robotic manipulators. IEEE Journal on Robotics and Automation, RA-
3(3):224-238, 1987.

Joseph O’Rourke. Computational Geometry in C. Cambridge University
Press, 1994.

J. Denavit and R.S. Hartenberg. A kinematics notation for lower-pair
mechanisms based on matrices. Journal of Applied Mechanics (Trans-

actions of the ASME), pages 215-221, June 1955.

Michael G Wagner. Planar rational B-spline motions. Computer-Aided
Design, 27(2):129-137, February 1995.

Stephen Cameron. Using space-time for collision detection : solving the
general case. In Kevin Warwick, editor, Robotics, Applied Mathematics
and Computational Aspects, pages 403-415. Clarendon/IMA, 1993.

M. Erdmann and T. Lozano-Pérez. On multiple moving objects. In
Proceedings of the IEEFE International Conference on Robotics and Au-
tomation, pages 1419-1424, 1986.

Stephen Cameron. A study of the clash-detection problem in robotics.
In IEEE International Conference on Robotics and Automation, pages
488-493. IEEE Press, March 1985.

Stephen Cameron. Collision detection by four-dimensional intersection
testing. IFEE Transactions on Robotics and Automation, 6(3):291-302,
June 1990.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 22

[21]

[22]

23]

Z.-K. Ling and Z.-J. Hu. Use of swept volumes in the design of in-
terference free spatial mechanisms. Mechanism and Machine Theory,

32(4):459-476, 1997.

A.P. del Pobil and M.A. Serna. Spatial Representation and Motion Plan-
ning. Number 1014 in Lecture Notes in Computer Science. Springer,

1995.

R. Featherstone. A hierarchical representation of the space occupancy
of a robot mechanism. In J.-P. Merlet and B. Ravani, editors, Compu-
tational Kinematics (INRIA, September 1995), pages 183-192. Kluwer,
1995.

Q.S. Peng. An algorithm for finding the intersection lines between two
B-spline surfaces. Computer Aided Design, 16(4):191-196 and C1, July
1984.

Thomas W. Sederberg and Scott R. Parry. Comparison of three curve
intersection algorithms. Computer-Aided Design, 18(1):58-63, Jan-
uary /February 1986.

Jonathan Yen, Susan Sprach, Mark Smith, and Ronald Pulleyblank.
Parallel boxing in B-spline intersection. IEEE Computer Graphics and
Applications, pages 72-79, January 1991.

David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, 1989.

Melanie Mitchell. An Introduction to Genetic Algorithms. Series in
Complex Adaptive Systems. Bradford Books/MIT Press, 1996.

Hanan Samet. The quadtree and related hierarchical data-structures.

ACM Computing Surveys, 16(2):187-259, 1984.

Hanan Samet. Connected component labeling using quadtrees. Journal

of the Association for Computing Machinery, 28(3):487-501, 1981.

Y.F. Wang and J.F. Wang. On 3D model construction by fusing het-
erogeneous sensor data. CVGIP-Image Understanding, 60(2):210-229,
1994.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 23

[32] S. Lavallée and P. Szeliski. Recovering the position and orientation of
free-form objects from image contours using 3D distance maps. [FEFE
Transactions on Pattern Analysis and Machine Intelligence, 17(4):378—
390, 1995.

[33] A. McLean and S. Cameron. The virtual springs method—path plan-
ning and collision-avoidance for redundant manipulators. International

Journal of Robotics Research, 15(4):300-319, 1996.

[34] K.C. Gupta. On the nature of robot workspace. International Journal
of Robotics Research, 5(2):112-121, 1986.

[35] Rida T. Farouki and John K. Hinds. A hierarchy of geometric forms.
IEEE Computer Graphics and Applications, pages 51-78, May 1985.

