
Johnson, Colin G. and Marsh, Duncan (1999) Modelling robot manipulators
with multivariate B-splines. Robotica, 17 (3). pp. 239-247. ISSN 0263-5747.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21825/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1017/S0263574799001307

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21825/
https://doi.org/10.1017/S0263574799001307
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Modelling Robot Manipulators withMultivariate B-splines.Colin G. Johnson� and Duncan MarshySeptember 23, 1998AbstractIn programming robot manipulators to carry out a wide variety oftasks it would be desirable to create a cad system in which these taskscan be programmed at the task level, leaving the �ne-grained detailof path planning and collision detection to the system. This paperdescribes the theoretical background to such a system, by providinga model in which robot motions are represented using multivariateB-splines, a standard representation for free-form shapes in the cadenvironment. The paper also describes algorithms which take thisrepresentation and apply it to collision detection and path-planning.1 Introduction.Robots are typically programmed in one of two ways. The �rst of these isto guide the robot through a set of motions using a teach-pendant, whichtakes the robot out of the production line for the duration of the programmingtask. The second is to plan the motions using a robot programming language,possibly assisted by using a simulation package such as CimStation [1] in aniterative cycle of program-test-program-test-� � � .�Colin Johnson is a lecturer in the Department of Computer Science at the Universityof Exeter, The Old Library, Prince of Wales Road, Exeter, EX4 4PT, England.yDuncan Marsh is a lecturer in the Department of Mathematics at Napier University,219 Colinton Road, Edinburgh, EH14 1DJ, Scotland.1

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 2Much work (beginning with [2] and surveyed in [3, 4, 5, 6]) has come outof the arti�cial intelligence community over the last thirty years in increasingthe level of automation of robot programming|that is hiding details of theprogramming process such as collision detection and and calculating the �nedetails of velocity and acceleration, liberating the programmer to concentrateon the task itself. In this paper we look at the mathematical and algorithmicfoundation of how we can embed this style of robot programming in a cadenvironment, and describe some algorithms which use these ideas to tacklecollision detection and path-planning problems. This paper extends the workdescribed in [7, 8].2 B-spline curves and surfaces.In this paper we make use of B-spline curve, surfaces and higher-dimensionalshapes [9, 10]. These are a piecewise-polynomial representation used in free-form design, that is the design of arbitrary smooth shapes. The most popularkind of B-spline representation used in cad is the nurbs (non-uniform ra-tional B-spline) shape, which is easy to use for design and which allows therepresentation of circles, polyhedra and polynomial curves and surfaces.The mathematical description of these shapes uses a set of basis functions,a typical set being illustrated in �gure 1. A nurbs-curve consists of thesebasis functions combined linearly with respect to a number of control points,which are together termed a control polygon. The end-points of the controlpolygon describe the end-points of the curve, and the intermediate points areused as shape parameters to control the shape of the curve. Designing withthese curves is therefore somewhere between using an interpolating functionand freehand sketching.The curve is described mathematically by the following formulax(u) = Pni=0wiPiNi;p(t)Pni=0wiNi;p(t) (1)Where Pi are a set of control points. The wi are an additional set of controlparameters called weights, which in an intuitive sense are used to allow dif-ferent points to have a di�erent amount of in
uence on the shape of the curve[11]. More formally the wi are the fourth coordinate in a homogeneous coor-dinate system, the three-dimensional curve being described mathematically

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 3
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 1: B-spline basis functions.as the projection of a 4-dimensional non-rational curve into 3-dimensionalspace [12].The Ni;p(t) are the B-spline rational basis functions, de�ned recursivelyby Ni;0(t) = 8<:1 if ti � t < ti+1 and ti < ti+10 otherwise (2)Ni;p(t) = t� titi+p � tiN(t)i;p�1 + ti+p+1 � tti+p+1 � ti+1N(t)i+1;p�1(t) (3)Here the t0; : : : ; tn is a non-uniform knot vector which is a list of non-decreasing numbers, where the �rst and last numbers are repeated k times,where k is the order of the curve. We de�ne p to be the degree of the curve(i.e. p+1 = k). These are the basis functions described above and shown in�gure 1. A typical nurbs-curve is illustrated in �gure 2.It is also possible to de�ne higher-dimensional nurbs objects, for examplesurfaces (see �gure 3). There are two ways of doing this, the one adopted

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 4
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

"control_points"
"curve"

Figure 2: A B-spline curve.here is to form the tensor product of k curves, the result being given by thefollowing equationx(u1; : : : ; uk) = Pn1i1=0 � � �Pnkik=0Pi1;::: ;ikwi1 ;::: ;ikNi1;p1(u1) : : : Nik;pk(uk)Pn1i1=0 � � �Pnkik=0 wi1;::: ;ikNi1;p1(u1) : : :Nik;pk(uk) (4)where the Pi1;::: ;ik are a topologically rectangular grid of points, with anassociated set of weights wi1;::: ;ik . These points can lie in a space of dimen-sionality less than k, and we use this idea below to embed the con�gurationspace [13] of a manipulator into the physical space R3.There are two particular properties of B-spline shapes that we shall usehere. The �rst is the convex hull theorem [12], which states that all pointson the B-spline shape lie within the convex hull of the control polygon. Theconvex hull is an easily computed object [14], with an O(n log n) complexityalgorithm for n 2-dimensional points, and at least an O(n2) complexity for 3-dimensional points. Therefore we have a powerful techniques for approximat-ing complex curved objects with simpler polyhedral objects for intersectiontesting.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 5
"control_points"

0
0.5

1 0

0.5

1
0

0.5

1

"surface"

Figure 3: Designing a B-spline surface.The second useful property here is the existence of a subdivision algo-rithm. By repeated linear interpolation along (in 2 dimensions) the edges ofthe curve, we can �nd an intermediate point on the curve, and also �nd twosub-control-polygons specifying the sub-curves on either side of that inter-mediate point. This can be extended to the subdivision of a nurbs-shape ofany dimensionality by an isoparametric hyperplane of codimension 1. Detailsof these algorithms can be found in [12, 10].This section has given a brief introduction to this large subject. Moredetails can be found in [9, 10, 12].3 A new model of workspace.In this section we give mathematical constructions which give multivariateB-spline mappings to describe the space swept out when a robot moves.Models are described of both the space consisting of all possible locations forthe robot in space (section 3.1) and the space swept out when a robot makesa given motion (section 3.2).

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 6The robot arms commonly used in industry have an open-chain kine-matic structure. Such mechanisms consist of a chain of links connected withjoints. These joints are either revolute joints which rotate around an axis, orprismatic joints which move along an axis.In order to specify the geometry and kinematics of such a robot needsthree items of information. Firstly, the spatial position/orientation of therobot is given by a cartesian coordinate frame. Secondly, the physical geom-etry of the links is given by by a nurbs surface Sl for each link l (it is simpleto extend this to several surfaces per link). Finally, we specify how the linksare connected together, using the Denavit-Hartenberg notation|the stan-dard notation used in kinematics [1, 15]. We describe this brie
y as follows(see �gure 4). We begin by taking a line `i through the axis of each joint ofthe mechanism, i.e. the axis that a link either rotates around (revolute joint)or slides along (prismatic joint). Each pair `i; `i+1 is joined by their uniquecommon perpendicular (unless they are parallel, in which case any commonperpendicular will su�ce). Next we specify the kinematic relationship be-tween these links exactly using four parameters. Two of these parameters,the link length ai�1 and the link twist �i�1 specify the �xed relationship be-tween the two axes forced by the physical link. The remaining two, the linko�set di (which is variable for a prismatic joint) and the joint angle �i (whichis variable for a revolute joint) specify the relationship between two adjacentlinks.3.1 Workspace generation.We use the Denavit-Hartenberg speci�cation to generate a set of mappings!i : R2 � Ri ! R3, where i ranges from 1; : : : ; d, where d is the numberof degrees of freedom of the robot. The function !i speci�es the region ofspace occupied by the robot in a particular position. Consider the mapping!i : (u; v) � (r1; : : : ; ri) 7! (x; y; z). This takes a value of the parameters(u; v) which specify a point in the domain of Si(u; v), and (r1; : : : ; ri), whichspecify the values of dj (for (j = 1; : : : ; i), when the jth link is prismatic) or�j (for (j = 1; : : : ; i), when the jth link is revolute). The image (x; y; z) is apoint in R3 which speci�es where the point Si(u; v) is found when the robotis in the position speci�ed by (r1; : : : ; ri).The next stage is to give these mappings are given a nurbs structure.Place the control net for the surface S1(u; v) as it would be when the robotis in its home position. Form the tensor product of S1(u; v) with a motion-

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 7

Parallel lines

Axis

d i

a i-1

α i-1

i

i-1

Link i-1

Axis i

Link

iθFigure 4: Denavit-Hartenberg parameters.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 8curve C(r1), which is an arc (ranging between the upper and lower limitsof �1) of a unit circle around the base-axis if the joint 1 is revolute, and anurbs line (ranging between the upper and lower limits of d1) along the axisif the joint is prismatic.The penultimate part of the algorithm is to give a basic structure onwhich to place the surface making up link 2. To do this a nurbs arc/linesegment D(r1) is constructed having a radius/length ai�1. The control netS2(u; v) is placed at the base position, and then displaced by ai�1, rotatedby �i�1, and �nally rotated/translated by whichever of �i and di is �xed.Finally a tensor product between the line/arc C(r2) and the transformedS2 is formed, and a further tensor-product with D(r1) gives the 4-variablenurbs function !2(r1; r2; u; v). We repeat this process until the occupancyfunctions !n(r1; : : : ; rn; u; v) for all links have been generated.3.2 Modelling speci�c motions.In addition to the mappings for workspace generation we de�ne mappingswhich give a nurbs model of the mapping which de�nes volume of space (orspace-time) occupied by the robot during the execution of a given trajectory.More precisely for a given motionM, speci�ed as a nurbs path in con�gura-tion space [13], we de�ne a function for each link
i(M) : R2�R! R3. Thisfunction takes a pair (u; v) specifying a point in the domain of the Si(u; v)and a parameter t specifying the distance travelled along the motion M, toobtain
i(M) : (u; v) � t 7! (x; y; z), where (x; y; z) is the point occupiedby the image of Si(u; v) when the link is at the point in con�guration spacegiven by M(t).We model this using a geometric swept-volume algorithm. This takes atemplate surface S(x; y) and moves it along a trajectory T(t) whilst alsoexecuting a local motion of the surface, producing a swept volume V(x; y; t)in space. We can express it thusV(x; y; t) = T(t) +N(S(x; y); t)where N is a transformation of the surface with respect to its �xed position,which varies with changes in t. This has been used in planar kinematics,where the motion N was a multiplication of the control net of S(x; y) bycontrol points in a of transformation matrices [16]. This allows us to calcu-late the volume swept out when we move the surface through space whilst

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 9simultaneously transforming the shape with respect to a moving coordinateframe.We calculate these
i(M) in two stages. In the �rst stage we take thelink-surface Si(u; v), placed with respect to a coordinate frame at the origin.If the ith joint is a revolute joint, we form a volume of revolution Vi(u; v; t)by forming a tensor product of Si with an arc of a circle in nurbs form[10]. Similarly for a prismatic joint we tensor product the surface with astraight line along the axis to form a volume of extrusion. The length andparameterization of these lines and arcs are derived by reparameterizing astandard nurbs circle or line by a function specifying the motion of the link.For the �rst joint this volume is
1(M), the space swept out by S1 asthe �rst joint moves around a �xed coordinate frame. However for the otherjoints the axis itself is moving, so we have a second stage. Take a point atthe ith joint and apply the rotation/extrusion to that, giving a nurbs-curveT(t) in space, having a knot vector which we shall call Ut. Then use degree-raising and knot insertion to equate Ut with Ur, the knot-vector of Vi(u; v; t)in the t direction. This produces a new set of control points for T(t) whichwe call (T0; : : : ; Tnt). Create a set of new points Pijk from the control pointsVijk of V(u; v; t) and the control points Ti of T(t).Pijk = RVijk + TiWhere R is the rotation matrix (an a�ne transformation) that carries theframe based at the origin into the Frenet frame moving along the curve. Thedesired swept surface V(u; v; t) is de�ned byV(u; v; t) = ntXk=0 nuXj=0 nvXi=0 PijkRi;du(u)R0j;dv(v)R00k;dt(t)Where Ri;du(u), R0j;dv(v) and R00k;dt(t) are the non-uniform rational basisfunctions de�ned over Uu, Uv (the knot vectors of S(u; v)) and Ut respectively.Note that isoparametric surfaces for �xed t values of V(u; v; t) consist ofS(u; v) transformed to an appropriate position along the curve. That theplacement of these surfaces at the control points is su�cient to describe theentire motion follows from the the a�ne invariance property of B-splines [12].3.3 Comments.This representation restricts the motions allowed to those which can be rep-resented in nurbs form. It could be well argued that this is not a restriction

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 10at all. Firstly, we can approximate any motion as accurately as desired usinga nurbs path. Secondly, we have to design a motion using something, andnurbs, with their properties of local control, control over their smoothnessand their ability to incorporate many other kinds of motion such as straight-line interpolants and circles [9] o�er an intuitive and geometrically elegantmethod for this.It can be seen that this can be extended to the case of creating a sweptvolume in four-dimensional space-time [17]. This is important for studyingthe interaction of a robot with other moving obstacles [18, 19, 20, 17], orattempting to detect self-intersections.The main advantage of this representation is that it allows the motion,the shape of the links and the resultant swept volume to be represented in acommon form, and has the added advantage that that form is a standard incad. Such advantages are not to be found in other swept-volume models ofworkspace such as [21].4 Application to collision detection.We now turn to applying this model to the collision detection problem. Arobot executes a motion M : [0; 1]! C, where C is the con�guration spaceof the robot. We recall the workspace mapping
i(M) : Si � [0; 1] ! R3from above, where Si is the set of points on link i of the arm. Given a setof k obstacle surfaces O1; : : : ; Ok in R3 we say that there is a collision if theset f
i(M) \ fO1; : : : ; Okgg is non-empty.We calculate this collision by subdividing the obstacles and workspaceimage until either we are certain that there are no collisions or we havesubdivided down to a certain level of tolerance and there are still collisionsbetween approximating bounding regions. We use a linked-list structure tostructure the data e�ciently. The pseudocode for the algorithm follows, andthe algorithm is summarized in diagrammatic form in 5.BeginCreate the occupancy functions
iRemove all obstacles that are impossible for the robot toreach in any con�gurationFor (i = 1; i � degrees of freedom; i++)Create an linked-list of obstacles obs list

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 11Create a pair p := (obs list;
i)Push p onto an empty linked-list main listinteger count := 0While main list is non-empty and count < tolerancepop a pair � := (current list; current patch)from main listpbb := BoundingBox(patch)While current list is non-emptypop a patch obstacle from current listobb := BoundingBox(obstacle)Test obb and pbb for intersectionIf there is an intersection push obstacleonto a list temp obstaclesEndIfEndWhileIf there have been any intersectionsSubdivide patch into patch1and patch2Subdivide each obstacle ontemp obstaclesPush (patch1; temp obstacles)onto the back of main listPush (patch2; temp obstacles)onto the back of main listonto the back of main listEndIfcount := count+ 1EndWhileIf main list is empty there is no collision,so continue to link i+ 1Else if tolerance has been reached and there arestill things on main list, then there is a collisionReport(collision) and StopEndIfEndForReport(no collision)End

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 12
 next iteration.
Due to be removed

Patches
Obstacle

Workspace patches.

main_list

To each workspace

obstacle_lists

 has a potential collision.
 that part of workspace
 patches with which
 a list of obstacle
 patch is associated

Figure 5: The collision-detection algorithm.The advantage of this algorithm (over, say, [13]) is that the amount ofsubdivision is adaptive. Regions where there are many possibilities for colli-sion get �nely subdivided and approximated by very small bounding boxes,whilst broad free regions or obstacles irrelevant to the particular problem athand are removed from (resp.) main list and obs list at an early stage of thealgorithm.The BoundingBox procedure can be carried out in a number of di�erentways, for example rectangular bounding-boxes, spheres, oriented boundingboxes, swept spheres and convex hulls. This list is in rough order of com-plexity, the earlier ones being fast to calculate but o�ering a cruder approx-imation, the later ones o�ering tighter bounds but requiring more complexintersection algorithms. Variations on these bounding-box methods are com-monly found in computer graphics|see [22, 23, 24, 25, 26] for details.5 Path planning and accessibility checking.In this section we describe two algorithms which can be used for path-planning. That is instead of using the computer to test human designed

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 13paths, we specify the robot and its environment and the algorithm automat-ically �nds a free-space path between desired start and end points, or reportsthat this is not possible.5.1 Using a genetic algorithm.The �rst algorithm uses a kind of genetic algorithm [27, 28] for path planning.The algorithm begins by creating at random a large set of possible pathswithout considering whether these paths cause collisions or not. These pathsare generated by selecting nurbs control points at random in con�gurationspace, then adding the desired start and end point to the list. A standardB�ezier-style knot vector is used. There then follows an iterative process, inwhich the �rst stage is to combine at random pairs of paths by clipping thecontrol-point sets from each end, and concatenating these subsets together.This set of solutions is then ranked by total amount of obstacle contact andtotal length, such that a long path with large amounts of contact is rankedlow whilst a short path with small amounts of obstacle contact is rankedhigh.Here is the pseudocode for the algorithm.BeginSelect a random set P of n paths in CSet a tolerance = maximum number of iterations which willbe carried out before assuming that there is no collision-free pathUntil (collision-free path foundor until tolerance number of iterations)Empty the set PnewFor (i = 1; i � 2n; i++)Choose two members p1; p2 of P at randomChop o� a random number of control pointsfrom the beginning of p1Chop o� a random number of control pointsfrom the end of p2Concatenate p1&p2 and put in a set PnewEndForTest each member of Pnew for collisionRank the members of Pnew in order ofamount of contact with obstacles

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 14and by control-polygon lengthRemove the n members of Pnew withlowest rankingMutate a random selection from Pnewby perturbing the control pointsP := PnewEndWhileEnd5.2 Trimming the workspace.Another approach which captures the geometry of the situation in a betterway is to trim away those regions r � C where !i(r) \Oj 6= ; for some i; j,where Oj are the obstacles in the robot's environment, leaving behind thoseregions where the robot is free to move. The nurbs structure is particularlyvaluable here, as we can apply the subdivision algorithm to split the obstaclesand the robot's occupancy space into subregions . The basic idea is illustratedin �gure 6.Essentially our algorithm works like this. Find the region !1(C), andcarry out intersection tests using bounding-boxes as in section 4 (see also[22, 23, 24, 25, 26]). If there are any intersections, draw an isoparametricline through C splitting it into C1; C2 and carry this split into R3 by carryingout the subdivision algorithm on !1 to give !1(C1) and !1(C2). Then testthese against the obstacles, throwing away any obstacles which don't collide.Continue until a free-space region is found, or until a so many subdivisionshave been done that it is safe to say that there is no possibility of a free-region being found within a certain tolerance. If there is a free region theninvestigate the free regions for the next link, and so on until the algorithmhalts because it cannot �nd a free region for a given link or until it runs outof links having found a free motion for each link. It is then a comparativelysimple task to interpolate a path through these free-space regions.Here is the pseudocode for the algorithm.BeginCreate the occupancy functions !iRemove all obstacles that are impossible for the robot toreach in any con�gurationCreate an linked-list of obstacles obs list

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 15Create a triple p := (obs list; !1; 1)Make p the root of a tree main treeMark this root as the current node,and make it a grey nodeWhile main tree still contains grey nodestake the triple � := (current list; current patch; depth)from current node of main treepbb := BoundingBox(patch)While current list is non-emptypop a patch obstacle from current listobb := BoundingBox(obstacle)Test obb and pbb for intersectionIf there is an intersection push obstacleonto a list temp obstaclesEndIfEndWhileIf there have been any intersectionsSubdivide patch intopatch1 : : : patch2iSubdivide each obstacle ontemp obstaclesPlace (patch1; temp obstacles; depth+ 1)on a new daughter-node of main treeonto the back of main tree: : :Place (patch1; temp obstacles; depth+ 1)on a new daughter-node of main treeonto the back of main treeEndIfIf depth+1 = tolerancemark current node as blocked and traverse thetree until another grey-node is foundEndIfIf no collisions were detectedIf current node is on last linkmark the current node as free and traverse thetree until another grey-node is foundElse create 2i+1 daughter nodes,

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 16initialized to (!i+1; obs list; 1)EndIfEndWhileEndWe have used a tree-structure [29] to store information about the patchesas we continue subdividing (see �gure 7). Each node of the tree (correspond-ing to a patch of the occupancy mapping) is shaded grey (if more subdivisionis needed), blocked if an obstacle prevents than patch of C from being ac-cessed) or free if that region is known to be accessible. This allows us to usethe algorithm of [30] to �nd a connected path through the various subdividedregions.One major advantage of this (compared with, for example, [13]) is thatthe same structure works on any scale. If a large amount of space is freethen these regions are marked o� as free near the beginning of the algorithm,rather than being pointlessly further subdivided. Equally the algorithm con-centrates on small regions where this is necessary, and the level of detail isdecided automatically as the algorithm progresses|there is no need to setan initial level of desired detail.6 Conclusions and future directions.In this paper we have outlined some of the mathematical and computationalbackground needed to develop a robot programming system based on free-from cad modelling. In order to develop this into a complete system anumber of advances need to be made.One key to the application of these techniques in real environments is toincluding sensing in order to free the system from the constraint of workingin a wholly designed environment. One promising method here is to combineour model of robot workspace with a nurbs-based surface reconstructionmethod such as those described in [31, 32], which take visual or range dataand interpret it to produce a model of the world in terms of nurbs-surfaces.Another exploration in this direction would be to consider ways of represent-ing uncertainty about the environment in a geometrically intuitive way.The next stage in this would be to combine this model and the sensingwork into a uni�ed interactive graphical environment for robot task design.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 17

e) Sweep out next link
along free-space curve

a) Robot arm moves

d) Remaining free
 space

b) Sweeps out
 occupancy region

c) Subdivide to find
 clear regions

Figure 6: Trimming away to �nd free-space.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 18
[0,1]

Stop! [1/2,3/4]
[0,1]
[1/2,1]

[1/2,1][0,1/2]

Stop!Stop! Stop!Figure 7: Tree structure after the �rst few stages of the free-space algorithm.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 19The aim here is to combine the traditional cad-designed environment forrepresenting real objects in the working environment with virtual objectsrepresenting the way in which the robot should respond to changes in theenvironment. An example could be the graphical representation of attractiveand repulsive forces within the environment using pictures of springs (usingthe algorithms in [33] to compute the resultant motions). Virtual walls (ap-pearing as translucent walls in the system) could represent no-go areas forthe robot. This works towards an ideal of robot programming by specify-ing the minimal constraints such that the task occurs, then introducing newconstraints on-line using sensors, rather than �xing a way of going a task inadvance then changing it when new constraints are introduced.There are also some simple algorithmic extensions which could be made.For example we can extend the algorithms above to carry out collision de-tection and path-planning in a known dynamic environment, for exampleto plan the coordinated motion of multiple robots. This would require theuse of extrusion operators, as described in [10] to create four-dimensionalspace-time workspaces akin to those described in [20, 17].Other avenues may be worthy of exploration. Some of these are computa-tional, for example the use of parallel processing to enable these algorithmsto work quickly in complex, dynamic environments. The algorithms aboveare amenable to parallelization at various levels, ranging from the parallelimplementation of the individual small-scale algorithms such as subdivisionor intersection checking, up to breaking down the problem itself by solvingfor di�erent links or obstacles in parallel. Similarly it may be possible to usededicated hardware to carry out the small-scale algorithms, as has been donefor some computer graphics applications. Another direction would be to ex-tend this modelling technique to encompass other mechanical problems, suchas the design and analysis of closed-chain mechanical systems or carrying outmore complex workspace analyses such as those described in [34].Throughout all of this work the key concept is to remain within a small,closed set of representations which allow fundamental algorithms to be devel-oped to a high level of e�ciency and then applied to a wide range of problems.This has been emphasized by Farouki and Hinds in their landmark paper [35]on geometric design:\Since the uni�ed approach (to geometric modeling) guarantees the func-tional equivalence of all geometric entities of a given type, geometric opera-tions can be performed with equal facility on simple primitives and complexsculptured geometries. Furthermore, this versatility is realized with consid-

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 20erable conciseness of coding : A small family of geometric-function routinesaccepting generic geometry inputs and yielding generic geometry outputs,forms the core of the modeler."In this paper we have described a foundation for systems which providethe context to apply the power and intuition of geometric algorithms withina new problem domain, leading towards the ideal of a single geometric designconcept for both motion and shape.References[1] John Craig. Introduction to Robotics. Addison-Wesley, second edition,1989.[2] Nils J. Nilsson. A mobile automaton : An application of arti�cial in-telligence techniques. In First International Conference on Arti�cialIntelligence, pages 509{520, Washington D.C., 1969.[3] J.T. Schwartz and M. Sharir. A survey of motion planning and relatedgeometric algorithms. Arti�cial Intelligence, 37:157{169, 1988.[4] M. Sharir. Algorithmic motion planning in robotics. IEEE Computer,22:9{20, March 1989.[5] Y.K Hwang and N. Ahuja. Gross motion planning|a survey. ACMComputing Surveys, 24(3):219{291, 1992.[6] Stephen Cameron. Obstacle avoidance and path planning. IndustrialRobot, 21(5):9{14, 1994.[7] Colin G. Johnson and Duncan Marsh. Modelling robot manipulatorsin a cad environment using B-splines. In N.G. Bourbakis, editor, Pro-ceedings of the IEEE International Joint Symposia on Intelligence andSystems, pages 194{201. IEEE Press, 1996.[8] Colin G. Johnson and Duncan Marsh. A robot programming environ-ment based on free-form cad modelling. In Proceedings of the IEEEInternational Conference on Robotics and Automation, pages 194{199,Leuven, Belgium, 1998. IEEE Press.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 21[9] Les Piegl. On nurbs : A survey. IEEE Computer Graphics and Appli-cations, pages 55{71, January 1991.[10] Les Piegl and Wayne Tiller. The NURBS Book. Springer, 1995.[11] L. Piegl. Modifying the shape of rational B-splines. part 1 : curves.Computer Aided Design, 21(8):509{518, 1989.[12] Gerald Farin. Curves and Surfaces for Computer Aided Geometric De-sign. Academic Press, third edition, 1993.[13] T. Lozano-P�erez. A simple motion-planning algorithm for generalrobotic manipulators. IEEE Journal on Robotics and Automation, RA-3(3):224{238, 1987.[14] Joseph O'Rourke. Computational Geometry in C. Cambridge UniversityPress, 1994.[15] J. Denavit and R.S. Hartenberg. A kinematics notation for lower-pairmechanisms based on matrices. Journal of Applied Mechanics (Trans-actions of the ASME), pages 215{221, June 1955.[16] Michael G Wagner. Planar rational B-spline motions. Computer-AidedDesign, 27(2):129{137, February 1995.[17] Stephen Cameron. Using space-time for collision detection : solving thegeneral case. In Kevin Warwick, editor, Robotics, Applied Mathematicsand Computational Aspects, pages 403{415. Clarendon/IMA, 1993.[18] M. Erdmann and T. Lozano-P�erez. On multiple moving objects. InProceedings of the IEEE International Conference on Robotics and Au-tomation, pages 1419{1424, 1986.[19] Stephen Cameron. A study of the clash-detection problem in robotics.In IEEE International Conference on Robotics and Automation, pages488{493. IEEE Press, March 1985.[20] Stephen Cameron. Collision detection by four-dimensional intersectiontesting. IEEE Transactions on Robotics and Automation, 6(3):291{302,June 1990.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 22[21] Z.-K. Ling and Z.-J. Hu. Use of swept volumes in the design of in-terference free spatial mechanisms. Mechanism and Machine Theory,32(4):459{476, 1997.[22] A.P. del Pobil and M.A. Serna. Spatial Representation and Motion Plan-ning. Number 1014 in Lecture Notes in Computer Science. Springer,1995.[23] R. Featherstone. A hierarchical representation of the space occupancyof a robot mechanism. In J.-P. Merlet and B. Ravani, editors, Compu-tational Kinematics (INRIA, September 1995), pages 183{192. Kluwer,1995.[24] Q.S. Peng. An algorithm for �nding the intersection lines between twoB-spline surfaces. Computer Aided Design, 16(4):191{196 and C1, July1984.[25] Thomas W. Sederberg and Scott R. Parry. Comparison of three curveintersection algorithms. Computer-Aided Design, 18(1):58{63, Jan-uary/February 1986.[26] Jonathan Yen, Susan Sprach, Mark Smith, and Ronald Pulleyblank.Parallel boxing in B-spline intersection. IEEE Computer Graphics andApplications, pages 72{79, January 1991.[27] David E. Goldberg. Genetic Algorithms in Search, Optimization andMachine Learning. Addison-Wesley, 1989.[28] Melanie Mitchell. An Introduction to Genetic Algorithms. Series inComplex Adaptive Systems. Bradford Books/MIT Press, 1996.[29] Hanan Samet. The quadtree and related hierarchical data-structures.ACM Computing Surveys, 16(2):187{259, 1984.[30] Hanan Samet. Connected component labeling using quadtrees. Journalof the Association for Computing Machinery, 28(3):487{501, 1981.[31] Y.F. Wang and J.F. Wang. On 3D model construction by fusing het-erogeneous sensor data. CVGIP-Image Understanding, 60(2):210{229,1994.

Johnson and Marsh: Manipulators and B-Splines. Robotica, in press. 23[32] S. Lavall�ee and P. Szeliski. Recovering the position and orientation offree-form objects from image contours using 3D distance maps. IEEETransactions on Pattern Analysis and Machine Intelligence, 17(4):378{390, 1995.[33] A. McLean and S. Cameron. The virtual springs method|path plan-ning and collision-avoidance for redundant manipulators. InternationalJournal of Robotics Research, 15(4):300{319, 1996.[34] K.C. Gupta. On the nature of robot workspace. International Journalof Robotics Research, 5(2):112{121, 1986.[35] Rida T. Farouki and John K. Hinds. A hierarchy of geometric forms.IEEE Computer Graphics and Applications, pages 51{78, May 1985.

