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SUMMARY
This work focuses on the dynamic modeling of a flexible
robotic manipulator with two flexible links and two revolute
joints, which rotates in the horizontal plane. The dynamic
equations are derived using the Newton-Euler formulation
and the finite element method, based on elementary beam
theory. Computer simulation results are presented to
illustrate this study. The dynamic model becomes necessary
for use in future design and control applications.
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1. INTRODUCTION
One matter of increasing interest to control engineers are the
effects of flexibility in lightweight manipulators, machine
tools and space structures, etc. To achieve the high
performance requirements such as high-speed operation,
increased accuracy in positioning, lower energy consump-
tion, less weight, and safer operation due to reduced inertia
flexible manipulators are recommended. However, in mod-
eling and controlling this manipulator the flexibility of its
components must be considered.1–4 The incorporation of the
effects of the flexibility in the system model increases its
complexity which, in turn, complicates the problem of
controller synthesis. That is, due to the flexibility the
position controller of the flexible manipulator must be able
to control the motion of the rigid-body mode of the arm and
to suppress its vibration modes.5

The purpose of this work is to obtain a dynamic model for
the design and control of a flexible robotic manipulator. The
dynamic model will completely describe motions of a
manipulator with flexible links, including large motions,
small motions, and their interactions. The robotic manip-
ulator is modeled as being composed of two links attached
to each other, with the first link attached to a fixed base.
Each link is assumed to be symmetrical about its longitudi-
nal axis in the absence of deformation.

The equations of motion are obtained from the Newton-
Euler formulation and the finite element method is utilized
to discretize the displacements so that the small motion is
represented in terms of nodal displacements. A cubic shape
function is assumed for a single beam element in this

research. The simulation results were obtained using the
Simulink, extension to MatLab software.

2. THE MATHEMATICAL MODEL
In this work it is assumed that the manipulator consists of
two revolute joints, modeled as a rigid body, and two
flexible links as shown in Figure 1. The original lengths of
the upper arm and the lower arm are denoted by l1 and l2,
respectively. The motion of the manipulator is confined to
the horizontal (x,y) plane. This seen on the non-deformed
configuration in Figure 1, where the upper arm makes an
angle f with respect to the x-axis, and the angle between the
upper arm and the lower arm is denoted by g. The deformed
configuration of the flexible manipulator defines two new
coordinate systems, (x1,y1) and (x2,y2), such that the x1-axis
and x2-axis are parallel to the tangents of the upper arm and
the lower arm at the origin and at the joint between the two
links, respectively. Let the angle between the x2-axis and the
x-direction be denoted by b. The upper arm and the lower
arm are modeled by n beam elements and m beam elements,
respectively. Thus there are n+m+1 nodal points and each
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is associated with a lumped mass. The payloads may also be
simulated by the masses attached to some nodal points. The
position vector of the generic ith nodal point (i=0, 1, 2, . . .,
n) of the deformed upper arm can be expressed in the (x1, y1)
coordinate system as

p1
i ; (x1

i , y1
i ) = F X1

i

U1
i
G (1)

where U1
i is the displacement of the ith nodal point in the

direction of y1-axis and the lumped mass at this point is
denoted by M l

i. Similarly, the position of the jth nodal point
(j=0, 1, 2, . . ., m) of the deformed lower arm is,

p2
j ; (x2

j , y2
j ) = F X2

j

U2
j
G (2)

and the lumped mass at this point is denoted by M 2
j .

The position vector for any point on the upper arm,
expressed in the global coordinate system (x, y), may be
obtained as

p = F x
y G = F cf

sf

2sf

cf
G FX1

U1 G ; Q1 F X1

U1G ; Q1p1

(3)

where, Q1 is an orthogonal transformation matrix, and cf =
cos(f), e sf = sin(f). The velocity v and the acceleration a
can be obtained as,

v = F ẋ
ẏ G ; F 2ḟsf

ḟcf

2ḟcf

2ḟsf
G F X1

U1 G

+ Q1 F 0
U̇1 G ; Q̇1 p1 + Q1 n 1 (4)

a ; F ẍ
ÿ G = F 2f̈sf2ḟ2cf

f̈cf2ḟ2sf

2f̈cf+ ḟ2sf

2f̈sf2ḟ2cf
G F X1

U1 G

+ 2Q̇1n1 + Q1 F 0
Ü1 G ; Q̈ 1p 1 + 2Q̇1n1 + Q̇1a1

(5)

The position vector of any point on the lower arm,
expressed in the global coordinate system (x,y), may be
obtained as

p = F x
y G = F cb

sb

2sb

cb
G F X2

U2 G
+ F cf

sf

2sf

cf
G F l 1

U* G
; Q 2 p 2 + Q 1 p 1

n (6)

where, U* ; U l
n. Then the velocity and the acceleration can

be obtained as

n = Q̇ 2 p2 + Q 2 n 2 + Q̇ 1 p 1
n + Q1 n 1

n (7)

a = Q̈ 2 p2 + 2Q̇ 2 n 2 + Q 2 a2 + Q̈1 p 1
n

+ 2Q̇1 n 1
n + Q1 a 1

n (8)

where,

n 2 ; F 0

U̇ 2 G, a 2 ; F 0

Ü 2G ,

n 1
n ; F 0

U̇ * G, a 1
n ; F 0

Ü 2G (9)

The total force acting on a generic point is equal to the
inertia force acting on the point, i.e.

f = 2M a (10)

The total force acting on ith nodal point of the upper arm,
expressed in the (x1, y1) coordinate system, can be calculated
as

f 1
i = (Q 1)T fi = 2M 1

i (Q1)T[Q̈ 1 p 1 + 2Q̇ 1 n 1 + Q 1a1] (11)

Explicitly, eq. (11) can be rewritten as

f 1
i (x) = M 1

i [U
1
i f̈ + X 1

i ḟ
2 + 2U̇1

i ḟ] (12)

f 1
i (y) = 2M 1

i [Ü
1
i + X 1

i f̈ 2 U1
i ḟ

2] (13)

The total force acting on the jth nodal point of the lower arm
can be expressed in the (x1, y1) coordinate system and the
(x2, y2) coordinate system, respectively, as follows

f 21
j =2M 2

j (Q
1)T [Q̈2 p 2 +2Q̇2n 2 +Q2a2

+ Q̈1p1
n +2Q̇1n 1

n +Q1a 1
n] (14)

f 22
j =2M 2

j (Q
2)T [Q̈2 p 2 +2Q̇2n 2 +Q2a2

+ Q̈1p1
n +2Q̇1n 1

n +Q1a 1
n] (15)

Explicitly, eqs. (14–15) can be rewritten as

f 21
j (x)=+M2

j [U *f̈+ l1ḟ2 +2U̇ *ḟ+SÜ2
j

+2CḃU̇2
j + (SX2

j +CU2
j )b̈

+ (CX2
j 2SU2

j )ḃ2 ] (16)

f 21
j (y)=2M2

j [Ü * + l1f̈2U *ḟ2 +CÜ2
j

22SḃU̇2
j + (CX2

j 2SU2
j )b̈

2 (SX2
j +CU2

j )ḃ2 ] (17)
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f 22
j (x)=+M2

j [U 2
j b̈+X2

j ḃ
2 +2U̇ 2

j ḃ2SÜ*

+2CU̇*ḟ2 (Sl1 2CU*)f̈

+ (Cl1 +SU* )ḟ2 ] (18)

f 22
j (y)=2M2

j [Ü 2
j +X2

j b̈2U 2
j ḃ

2 +CÜ*

+2SU̇*ḟ+ (Cl1 +SU*)f̈

+ (Sl1 2CU* )ḟ2 ] (19)

where, C ; cos(b2f) and S ; sin(b2f).
The total force acting on the lower arm is equivalent to a

force in the x1-direction, Fx, a force in the y1-direction, Fy,
and a bending moment T2, acting at the joint between the
upper arm and the lower arm (see Figure 2). These resultant
forces and moment may be written as

Fx = Om

j=1

f 21
j (x)=+G (U *f̈ + l1ḟ2 +2U̇ *ḟ)

+ Om

j=1

M 2
j [SÜ 2

j + (SX 2
j +CU 2

j )b̈

+2CḃU̇ 2
j +(CX2

j 2SU2
j )ḃ2] (20)

Fy = Om

j=1

f 21
j (y)=2G (Ü * + l1f̈ 2U *ḟ2)

2 Om

j=1

M 2
j [CÜ 2

j + (CX 2
j 2SU 2

j )b̈

22SḃU̇ 2
j 2 (SX2

j +CU2
j )ḃ2 ] (21)

T2 = Om

j=1

[ f 22
j (x)U2

j 2 f 22
j (y)X2

j ]

=Om

j=1

M 2
j {X 2

j Ü 2
j + (CX2

j 2SU2
j )Ü*

+ (Cl1X2
j + SU*X2

j 2Sl1U2
j +CU*U2

j )f̈

+ ((X2
j )2 + (U2

j )
2)b̈+2U̇*(SX2

j +CU2
j )ḟ

+ (Sl1X2
j 2CU*X2

j +CllU2
j +SU*U2

j )ḟ
2

+2U2
j U̇2

j ḃ} (22)

where, G = Om

j=1

M2
j .

Similarly, the total moment acting on the origin, T1, can
be obtained as

T1 = On

i=1

[ f 1
i (x)U1

i 2 f 1
i (y)X1

i ]+Fy l1 2FxU
* + T2

=+On21

i=1

M 1
i X

1
i Ü 1

i + (M1
n +G )l1Ü*

+ (Cl1 +SU*)Om

j=1

M2
j Ü2

j

+ f̈F G ((l1)2 + (U*)2)+ On

i=1

M1
i ((X

1
i )

2 +(U1
i )

2) G
+ b̈HOm

j=1

M2
j [(Cl1 +SU*)X2

j 2 (Sl1 2CU*)U2
j ] J

+2ḟ(GU*U̇* + On

i=1

M1
i U

1
i U̇

1
i )

22ḃ(Sl1 2CU*)Om

j=1

M2
j U̇

2
j

2ḃ2 HOm

j=1

M2
j [(Cl1 +SU*)U2

j +(Sl1 2CU*)X2
j ] J

+T2 (23)

3. ANALYSIS BY FINITE ELEMENT METHOD
Now, the two link manipulator can be treated as two
cantilever beams on which the forces and moment, are
acting, as shown in Figure 2. Following standard procedures
in finite element analysis6 and the elementary beam theory,
one may obtain the governing equations for the lower arm
(beam 2), as follows7

K2U2 = f 22 (24)Fig. 2. The forces and moment acting on the two links.
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where

U2 ; (U2
1 , U2

2, U2
3, . . ., U2

m)T (25)

f 22 ; [ f 22
1 (y), f 22

2 (y), f 22
3 (y), . . ., f 22

m (y)]T (26)

and K2 is the (m3 m) stiffness matrix for a cantilever beam
subjected to applied forces only. For the upper arm (beam
1), because there is a bending moment, T2, acting at the free
end of beam 1 (see Figure 2), following the same procedure
outlined in reference 7, the governing equations may be
written as

F K9

KT

K
k G F U1

s G = F f9
T2
G (27)

where

U1 ; (U1
1, U1

2, U1
3, . . ., U1

n )T (28)

f9 ; ( f 1
1 (y), f 1

2 (y), f 1
3 (y), . . ., f 1

n (y)+Fy ) (29)

and s is the slope at the free end of beam 1; K9 is a (n3 n)
matrix; K is a vector of length n and it can be written as (K1,
K2 , . . ., Kn )T. By eliminating s from equation (27), the
following is obtained

K1U1 = f92
KT2

k
(30)

and, K1 = K92
KK T

k
.

Now equations (24), (30), (22) and (23) may be rewritten
in a more compact form as follows

a1

0

bT

0

a2

cT

b
c
a3

v̈ ;V (31)

where

v ; (U1
l , U

1
2 , . . ., U1

n21, U2
1, U2

2, . . ., U2
m , U1

n , b, f)T (32)

a1 ;

M1
1

0

:

0

0

M1
2

0

…

…

…

0

0

M1
n21

(33)

a2 ;

M2
1

0

:

0

0

M2
2

0

…

…

…

0

0

M2
m

(34)

a3 ;
A1

A4

l1A1

A4

A2

A5

l1A1

A5

A3

(35)

b ;

0

0

:

0

0

0

:

0

M1
1X

1
1

M1
2X

1
2

:

M1
n-1X

1
n-1

(36)

c ;

C11

C12

:

C1m

C21

C22

:

C2m

C31

C32

:

C3m

(37)

V ; (p1, p2, . . ., pn21, q1, q2, . . ., qm, g1, g2, g3)T (38)

A1 ; M1
n +G (39)

A2 ; Om

j=1

M2
j [(X2

j )2 + (U2
j )2] (40)

A3 ; On

i=1

M1
i [(X1

i )
2 + (U1

i )2]+G [(l1 )2 + (U1
n ) 2] (41)

A4 ; COm

j=1

M2
j X2

j 2 SOm

j=1

M2
j U

2
j (42)

A5 ; (Cl1 +SU*)Om

j=1

M2
j X2

j 2 (Sl1 2CU*)Om

j=1

M2
j U

2
j (43)

c1j ; CM2
j , c2j ; M2

j X
2
j , c3j ; M2

j (Cl1 +SU*) (44)

pi ; 2 On

j=1

K1
ijU

1
j +M1

i U
1
i ḟ2 2S Ki

k DT2 (45)

qi ; 2 Om

j=1

K2
ijU

2
j 22SU̇*ḟM2

i + ḃ2U2
i M

2
i

2 (Sl1 2CU *)ḟ2 M 2
i (46)

g1 ; 2 On

j=1

K1
nj U

1
j + (M 1

n +G)U*ḟ 2

2 S Kn

k DT2 +2SḃOm

j=1

M2
j U̇

2
j

+ ḃ2 Om

j=1

(SX2
j +CU2

j )M2
j (47)

g2 ; T2 22U̇*ḟOm

j=1

M2
j (SX 2

j +CU 2
j )22ḃOm

j=1

M2
j U

2
j U̇

2
j

2ḟ2 Om

j=1

M2
j (Sl1X2

j 2CU*X2
j +Cl 1U 2

j +SU*U2
j )

(48)
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g3 ; T1 2T2 22ḟ SGU*U̇* + On

i=1

M1
i U1

i U̇1
1 D

+ 2ḃ(Sl1 2CU*)Om

j=1

M2
j U̇2

j

+ ḃ2HOm

j=1

M2
j [(Cl1 +SU*)U2

j +

(Sl1 2CU*)X2] J (49)

4. SIMULATION RESULTS
To illustrate the effects of the flexibility in the robotic
manipulator the parameters of Table I are used. The
simulation was done to maneuver the arm from fi =0 [rad]
to ff =0.768 [rad] and b i =0 [rad] to bf =0.384 [rad], during
1.5 seconds. Figures 3 and 4 show that the system response
is obtained with a simple joint control PD; this illustrates the
importance of the flexibility effects.

Figure 3 shows the response of the end-point of the
flexible manipulator (dashed plot) and the displacements of
the free end of the link 1 (joint 2). Figure 4 shows the effects
of these displacements in the joints during the maneuver.

5. CONCLUSION
In this work, we obtained a dynamic model of a planar
flexible robotic manipulator which has two revolute joints
and two flexible links. The governing equations of the
system are nonlinear. Axial deformations are neglected and
only the transverse bending displacements are dominant in
the theoretical modeling of this manipulator. Viscous
damping at the joints is ignored.

The flexibility of the system degrades the function of the
position controller of the end-effector; thus, it must be taken
into account, since flexibility limits the system stability, the
accuracy of operations and control gains. Here the flexible
manipulator is under a co-located PD output feedback
control using hub angle measurements. The PD controller
parameters are adjusted relative to the arm flexibility to
illustrate the effects of flexibility.

For digital control systems, flexibility will also affect the
sampling rate. However, one may have to construct an
estimator (observer) based on the linear version of the
system which involves few variables. Hence, for practical
purposes, real-time control of flexible robotic manipulator is
feasible.
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