

Version: 17.7.97

A Comparison of Languages which Operationalise
and Formalise KADS Models of Expertise

Dieter Fensel (*) and Frank van Harmelen (+)

(*) Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)

University of Karlsruhe, 76128 Karlsruhe, Germany

tel: +49-721/6084754, fax: +49-721/693717
e-mail: fensel@aifb.uni-karlsruhe.de

(+)Department of Social Science Informatics, SWI
University of Amsterdam, Roeterstraat 15, NL-1018 WB Amsterdam, The Netherlands

tel: +31-20/5256121, fax: +31-20/5256896

e-mail: frankh@swi.psy.uva.nl

Abstract.

In the field of Knowledge Engineering, dissatisfaction with the

rapid-prototyping

 approach
has led to a number of more principled methodologies for the construction of knowledge-
based systems. Instead of immediately implementing the gathered and interpreted knowledge
in a given implementation formalism according to the rapid-prototyping approach, many such
methodologies centre around the notion of a conceptual model: an abstract, implementation
independent description of the relevant problem solving expertise. A conceptual model should
describe the task which is solved by the system and the knowledge which is required by it.
Although such conceptual models have often been formulated in an informal way, recent
years have seen the advent of formal and operational languages to describe such conceptual
models more precisely, and operationally as a means for model evaluation. In this paper, we
study a number of such formal and operational languages for specifying conceptual models.
In order to enable a meaningful comparison of such languages, we focus on languages which
are all aimed at the same underlying conceptual model, namely that from the KADS method
for building KBS. We describe eight formal languages for KADS models of expertise, and
compare these languages with respect to their modelling primitives, their semantics, their
implementations and their applications. Future research issues in the area of formal and
operational specification languages for KBS are identified as the result of studying these
languages. The paper also contains an extensive bibliography of research in this area.

Appeared in: The Knowledge Engineering Review, 9(2), 1994.

Language Comparison 2

Introduction

One reaction to the so-called “software crisis” in the late sixties was the development of well-
structured process models, tools, and methods in the domain of software engineering which
should allow the construction of large, reliable, and maintable computer programs. During the
last years, significant effort has been spent to develop methodological foundations for the
construction of knowledge-based systems [DKS93]. Whereas most of this work aims at tool
support for specific subtasks of the development process, the KADS-I project ([WSB92],
[SWB93]) aimed at a general framework and methodological support for most of phases of the
development process of knowledge-based system.
One of the major results of the KADS-I project is the introduction of a life cycle oriented
methodology for developing expert systems, including a proposal for a so-called “model of
expertise” as the result of the knowledge acquisition phase. This model of expertise is based
on the identification of different types of knowledge, which are distinguished as four different
layers within the model of expertise. Accordingly, different modelling primitives have been
proposed to capture the different types of knowledge that are represented on the various layers
of a model of expertise. However, all these proposed modelling primitives have only been
defined informally. Thus, they lack a clear semantics and do not provide a basis for formally
analysing the modelled expertise or for evaluating it by executing the model. To remedy this
deficiency, a number of languages have recently been proposed in the literature that describe
KADS models more precisely and formally. Three different kinds of languages can be
identified:

• Languages which formalize KADS models of expertise,
• languages which operationalise KADS models of expertise, and
• languages which both formalize and operationalise KADS models of expertise.

Until now, the following languages have been discussed in the literature:
• FORKADS ([Wet90], [WeS91], [Wet92])
• KARL ([FAL91], [Ang93], [Fen93b], [AFS94])
• K

BS

SF ([JoS92], [VJS93])
• (ML)

2

([BaA92b], [HaB92], [AHS93])
• Model-K ([KVS91], [KaV92], [Kar93], [KaV93])
• Momo ([LKV92], [VoV93], [VVW93])
• OMOS ([Lin92a], [Lin92b], [Lin93])
• QIL ([ARS92], [AKS93]).

In addition, [Möl92] proposes KL-ONE as an operationalization and formalization language.
In a more elaborated way, this idea is realized by the language MODEL/KADS [Bar93].
[Gei92] defines an operational language in the domain of decision support systems which can
also be viewed as an operational knowledge specification language because it is based on the
KADS model of expertise. A further knowledge specification language which is not oriented
at the KADS model of expertise is DESIRE ([KoT90], [LPT92], [LPT93]). A KBS is
described via a set of interacting modules that each include an object-layer and a meta-layer.
A logical language is provided for describing each of these layers.
In this paper, we describe the eight languages mentioned above, and analyse their differences
and commonalities. To allow a meaningful comparison, we restricted ourselves to knowledge
specification languages which are oriented at the KADS model of expertise (thereby ignoring
languages like DESIRE) and from this subset of languages we chose the most prominent

Language Comparison 3

approaches, i.e. approaches which can report some applications.
The paper is organized as follows. The first section shows why there is a need for such
languages. These inquiries are used in the second section to develop criteria which can be used
to analyse the different languages. The third section discusses eight languages in detail using
these criteria. For every language we discuss their central idea and their main properties. A
survey is given in the appendix. The last section classifies and compares the different
languages.

Chapter 1
Why Do We Need Formal Specification Languages for
Knowledge-Based Systems?

1.1 The Necessity of Model-Based Knowledge Engineering

Traditional Software Engineering (SE) has long since recognised the value of two fundamental
premises that should underlie the construction of complex software systems:

• A clear distinction should be made between the functional specification of a software
system on the one hand, and its design and implementation on the other.

• Functional specifications should as far as possible be given in a precise, unambiguous and
preferably formal language that abstracts from implementation details.

Knowledge Engineering (KE) is the branch of SE which deals with the construction of
Knowledge Based Systems (KBS). As KE matures into a separate discipline, these two
fundamental premises of Software Engineering are increasingly acknowledged to be of similar
value to Knowledge Engineering. This has lead to a diminishing enthusiasm for so called rapid
prototyping as an approach to KE.

Rapid Prototyping

 means immediately implementing the
acquired knowledge in a computer program. The running system may then be used to evaluate
the gathered knowledge. This method for constructing a system reflects the cyclic nature of the
modelling process. The running system provides immediate feedback to the knowledge
acquisition process for revision or completion. For some time this method was therefore
applied, in most cases, to construct an expert system. Nevertheless, this method has some well-
known disadvantages (cf. [AFS90]):

• The knowledge engineer who implements the system has to perform many tasks at the
same time. He has to analyse the given information, as well as to design, implement, and
evaluate the system.

• Different knowledge aspects have to be considered and implemented simultaneously and
are therefore mixed.

• The running system is the only documentation of expertise.
• The view of knowledge is determined by the chosen implementation language, and

implementational details become mixed with aspects of the conceptual model.
This gave rise to the study of more principled methodologies for KBS construction. Central to
such more principled methodologies has been the first of the two premises above: the
separation of the functional specification of a KBS from its technical design and
implementation. What in SE is traditionally called a

functional specification

 has received a

Language Comparison 4

number of names in KE: a knowledge level description (after Newell’s distinction between
knowledge and symbol level [New82]), a

conceptual model

, or a

model of expertise

. Such an
abstract, implementation independent description of the functionality of a KBS has become the
basis of a number of KBS development methodologies (e.g. [AFL93], [ChJ93], [MDK92],
[PET92], [Ste92], [WSB92]).
Some care must be taken in this analogy between

 functional specification

 from SE and

conceptual model

or

model of expertise

 from KE. Traditionally, a functional specification is
taken to be a description of the I/O behaviour of the system without any reference to

how

 this
behaviour should be realised. In KE, however, a large amount of an expert is concerned with
the

how

, and this knowledge must be represented in the conceptual model. We must therefore
distinguish between the

how at the knowledge level

 (the

how

 which is concerned with
knowledge in order to solve a task effectively and efficiently), and the

how at the symbol level

(

how

 to implement effective and efficient algorithmic solutions of the specified problem-
solving method). The central idea of a model of expertise is then to specify the

what

 of a
system (it's I/O behaviour) and the

knowledge level how

, but to abstract from the symbol level
aspects [SAW89].

1

1.2 The Necessity of Formal and Operational Specification Languages

Since the construction of such model of expertise plays a central role in a number of KBS
methodologies, it is of prime importance that such a conceptual model can be formulated
clearly and unambiguously, as stated in the second of the two general SE principles given
above. The role of formal languages in the construction of a functional specification is widely
accepted in SE, and we only briefly summarise the well-known arguments in favour of the
formalisation of functional specifications:

• It reduces the vagueness and ambiguity of natural language descriptions by adding an
additional level of preciseness and uniqueness.

• Formal descriptions narrow the cognitive gap between a mental model of a system and its
implementation and can be used as a base line to verify the implemented system.

• A formalised specification allows for validation of completeness and consistency, either
through formal proofs, or through symbolic execution.

• A formalised specification can be mapped to an operational one, which allows
prototyping. An operational language integrates the flavour of model evaluation by
prototyping into a well-structured development process [Flo84].

Such formal or operational descriptions should not replace informal specifications but they can
be used to add an additional level of refinement to an informal or semiformal description.
In contrast with the long history of formal functional specifications in traditional SE, research
on formalising conceptual models in knowledge engineering has only recently received wider
attention. This development is witnessed by a number of recent publications and activities such
as the ECAI'92 Workshop on Formal Specification Methods for Complex Reasoning Systems
[TrW93].
This paper contributes to the research on specification languages for KBS by describing,
analysing and comparing a number of such languages. All the languages that we discuss aim

1. The term

knowledge level

 caused much confused debate in the AI community. In the context of this paper, no more should
be read in this term than that a

knowledge-level representation

 is an abstract representation of a system that captures the
functionality of such a system without defining how such functionality should be computationally realised. Knowledge level
does not mean that there are no symbols, but that there are the right (non-machine oriented) symbols (cf. [Fen93a]).

Language Comparison 5

at formalising/operationalizing a particular type of conceptual model, namely as proposed by
the KADS model of expertise. The fact that all the languages that we discuss in this paper share
the basic structure of the conceptual model they aim to formalise enables a meaningful
comparison of these languages.
Our choice for languages based on KADS model of expertise is not an arbitrary one. KADS
has been an influential methodology in research on KE, as witnessed by the large number of
groups (both in industry and in academy) who exploit KADS in the construction of KBS
[SWB93]. The widespread interest in KADS has also lead to a number of recent proposals for
competing formal languages all aiming at formalising KADS models of expertise, which
makes the comparison effort of this paper a timely one.

1.3 Principles of the KADS-I Project

In order to keep this paper self contained, we first give a brief description of the essential
aspects of KADS and especially of the model of expertise, because this model forms the
common framework for all the languages discussed in this paper.

Figure 1.

The four-layer model of expertise [WSB92].

Modelling Expertise.

 The significant distinction between conventional software systems and
knowledge-based systems is that the latter explicitly represent the significant amount of
knowledge which is necessary to solve the desired task effectively and efficiently. A very
important part of the KADS methodology is therefore the model of expertise which describes
the different kinds of knowledge required to solve the given tasks. The model of expertise
distinguishes different types of knowledge, it defines primitives to express them, and organizes
them into several layers. The model of expertise distinguishes static knowledge and three types
of control knowledge. The goal of a model of expertise is to provide a model of the problem
solving behaviour required of a knowledge-based system in an implementation independent
way. These models consist of four hierarchically organised layers and prescribe the contents
of the layers and the relations among them, as follows (see figure 1).

•

Domain layer:

 This is the

lowest

 of the four layers, and represents knowledge about the
application domain of the system. An important property of the domain layer is that the
knowledge should be represented in a way that is as independent as possible from the way
it will be used (i.e. the domain layer is a

declarative, relatively task-neutral representation

knowledge category organisation knowledge types

strategic strategies plans and meta rules

task tasks goals, control terms, and
task structure

inference inference structure inference actions, knowledge
roles, and domain view

domain domain theory concept, property, and relation

controls

applies

uses

Language Comparison 6

of the domain knowledge of a system). It has two main purposes. First, it should define a
conceptualization of the domain. Second, it should define a declarative theory of the
domain which must provide all the domain knowledge required to solve the given tasks.
All further layers of the model of expertise contain knowledge which

control

 the use of
the domain knowledge. The modelling primitives for the domain layer are concepts,
properties/values, relations, and structures.

•

Inference layer:

 This second layer defines the first type of control knowledge. It specifies
the inferences that constitute a problem-solving method and specifies how to

use

 the
knowledge from the domain layer for these inferences. This is done in two ways: the
inference layer specifies the

basic inference steps

 that can be made using the domain
knowledge, and the

knowledge roles

 model the premises and conclusions of the
inferences.
The inference steps are assumed to be elementary in the sense that they are completely
described by their names, an input/output specification and a reference to the domain
knowledge that they use. “

The actual way in which the inference is carried out is assumed
to be irrelevant for the purposes of modelling expertise

” [WSB92]. The inference layer
also specifies the data-dependencies between the steps and roles. These dependencies are
specified in a network of inference actions and knowledge roles known as an

inference
structure

. The inference layer

restricts

 the use of the domain layer knowledge and

abstracts

 from it. It restricts all possible inferences to the set of inferences which are
defined at the inference layer. This is done to improve the efficiency of the problem-
solving process. The inference layer abstracts from the domain layer by using task-specific
names for inferences and roles (e.g., patient data are referred as observables and diagnoses
are referred as hypotheses as shown in figure 2). The domain-independent formulation of
the inference layer should support its reuse, i.e. its application for similar tasks in different
application domains. The connection of a domain and inference layer is defined by the
domain view which defines a relation between an inference step and the domain
knowledge it uses and by the connection of the knowledge roles and the domain entities
which correspond to them. Although the inference layer specifies the basic inference steps,
it does

not

 specify any control knowledge defining their ordering: no ordering is imposed
on the various inference steps.

•

Task layer:

 A task represents a fixed strategy for achieving problem solving goals. The
purpose of the task layer is to specify

control

 over the execution of the basic inference
steps specified at the inference layer. It does this by imposing an ordering on these steps
in terms of execution sequences, iterations, conditional statements etc. “In KADS, tasks
only refer to inferences and not explicitly to domain knowledge” [WSB92]. For each task
there is a task structure, which hierarchically refines a given task by subtasks and
elementary steps, i.e. inference actions. In addition, the control flow between the sub-steps
which refine the task is defined.

•

Strategy layer:

 This highest of the four levels in a KADS models is concerned with

task
selection

: how to choose between various tasks that achieve the same goal.
The separation of domain knowledge on the one hand and knowledge which controls its task-
specific use on the other hand enables two kinds of reuse. Domain knowledge can be used for
several tasks and inference/task layers can be used for several domains. The following figure
2 shows a possible model of expertise of heuristic classification

2

 (cf. [Cla85]). The inference
layer contains the elementary inference steps and knowledge roles of this problem-solving
method. Observables are abstracted to more abstract descriptions of the case data, these
abstract descriptions are matched with hypothesis classes, and these classes are refined until a

2. The example does not include a strategy layer.

Language Comparison 7

final solution has been found. The control flow between these inferences is defined at the task
layer and the domain knowledge which is used by these generic inferences is defined at the
domain layer.

Figure 2.

An example for a model of expertise.

The model of expertise should not be used to model the cooperation of the systems with its
environment.

3

 This aspect is clearly separated and modelled in a separate model which is
called the

model of cooperation

 [GrB92]. Therefore, most of the languages which are
discussed in the following do not aim at representing the cooperation of the specified system
with further agents. As a result, they do not aim at representing the user-system-cooperation.
For a more detailed description of KADS, we refer to [WSB92].

Chapter 2
How to Analyse Formal and/or Operational Knowledge
Specification Languages?

For analysing the various languages, we require comparison criteria. The definition of these
criteria is important since it will clearly influence the result of our investigation. What are the
relevant criteria to investigate languages used to specify a model of expertise? Criteria which
can be applied to compare programming languages seem hardly suitable, since such languages
have entirely different purposes. Programming languages should allow an effective and
efficient realisation of the modelled expertise at the symbol level, and should therefore deal
with other aspects than the specification languages we are studying here.
As stated above, we are studying languages which allow a

formal

 and/or

operational

3. “The KADS model of expertise can be viewed as an autistic problem solver” [GrB92].

Task layer

Inference

Domain

begin
abstract ()
match ()

end

temperature

patient data
indicate

refine ()

Observables

abstract

Abstract match Hypotheses

refine

Solution

classObservables

diagnoses

layer

layer

Language Comparison 8

specification of models of expertise

at the knowledge

level

. Therefore, three different kinds of
questions seem relevant in the comparison of these languages [Bra79]:

•

Epistemological view:

 From an epistemological viewpoint, we are interested in what the
modelling primitives are that a language offers. As argued in the previous section, our
comparison is made possible by the fact that all languages are based on a single underlying
conceptual framework, namely the KADS model of expertise. Thus, at this level, we are
specifically interested in (i) what the modelling primitives of a language are for each part
of a KADS model; (ii) how close these primitives approach the KADS models as
described in the literature, and (iii) whether the language in any way extends the
prescriptions given by KADS models.

•

Formal view:

 In a second set of comparison criteria, we will compare languages as
mathematical constructs, and we will address questions concerning formal expressive
power, semantics, types of formal constructions employed in the language, etc.

•

Operational view:

 In a final set of criteria, we will view languages as means of
operationalizing models of expertise. Questions concerning executability, computational
power and efficiency will be of main concern in this view on the various languages.

The following subsections discuss a list of comparison criteria which are organised according
to these three views.

2.1 The Epistemological View

The epistemological view most strongly exploits the fact that all languages in our comparison
are based on KADS models. The correspondences in their underlying conceptual models make
it possible to compare the languages on the basis of their modelling primitives, and allow us
to structure our epistemological comparison criteria in a very specific way. For each of the
major components of a KADS model (the layers and their connections) we will ask three types
of questions:

•

Type 1:

What

 are the modelling primitives of a language for this part of a KADS model?
•

Type 2

: How closely do these modelling primitives

approximate

 the properties of this part
of a KADS model (as described in e.g. [WSB92])?

•

Type 3:

How much do the modelling primitives of a language

extend or modify

 the
structure, contents or properties of this part of a KADS model?

While the type 1 criteria are purely descriptive in nature, the type 2 and 3 criteria are more
normative. However, we do not want to suggest that any deviation from the theory of KADS
models is necessarily negative. In fact, we would expect that the formal investigations of
KADS models through these languages would indeed lead to modifications of the KADS
framework.
Clearly, the criteria in this epistemological view on specification languages are very KADS
specific (and more so than the criteria from the other views). However, we claim that our
comparison has general value because (i) KADS models are widely used in the European KBS
community; (ii) KADS models embody general principles which also feature in other
approaches to KBS modelling (albeit possibly in a different form) and (iii) the organisation of
our criteria may serve as an example for similar comparison work based on other conceptual
models.

Criteria for the

domain

layer

4

•

D1 (Type 1):

 What are the language primitives to express the domain conceptualisation

Language Comparison 9

and the domain theory. Are they rich in the sense that they allow the expression of different
kinds of knowledge by different language primitives? In particular, how does the language
represent concepts, properties, values, relations and structures?

•

D2 (Type 2):

 Can domain knowledge be expressed independently from its use? Is it free
from control knowledge?

•

D3 (Type 2):

 Does the language distinguish between domain-specific knowledge and
case-specific data?

•

D4 (Type 3):

 Are there any assumptions about the domain which determine the kinds of
knowledge that can and cannot be modelled (e.g. change over time, monotonicity,
uncertainty)?

•

D5 (Type 3):

 Does the domain layer only act as a storage for domain knowledge, or does
is also have a set of legal inferences that can be made with this knowledge?

•

D6 (Type 3):

 Does the language offer any constructions for modularisation or
decomposition of the domain knowledge?

Criteria for the

inference

layer

•

I1 (Type 1):

 How are primitive inference actions represented? How is their input/output
behaviour described?

•

I2 (Type 1):

 How are the knowledge roles represented (i.e. the case-specific inputs and
outputs of the inference actions)?

•

I3 (Type 1):

 How is the domain view (i.e. access to static domain knowledge)
represented?

•

I4 (Type 2):

 Is the inference layer generic, i.e. is it free from domain specific expressions?
•

I5 (Type 2):

 Are inference actions free from control knowledge, i.e. can the input/output
behaviour be described without reference to a particular computation strategy?

•

I6 (Type 2):

 Is the inference structure free from control knowledge? Can (or must) any
control knowledge be modelled through the dependencies described in the inference
structure?

•

I7 (Type 2):

 Can inference actions communicate in any other way then through their
connection knowledge roles?

•

I8 (Type 2):

 Does a language have a predefined set of inference actions, and if so, how are
they organized?

•

I9 (Type 3):

 Are inference actions deterministic or non-deterministic (i.e. are they
functions or relations)?

•

I10 (Type 3):

 Does the language offer any constructions for hierarchical decomposition
at the inference layer?

Criteria for the

task

layer

•

T1 (Type 1):

 What primitives are used to represent control knowledge?
•

T2 (Type 1):

 How are task-structures and subtask-decomposition represented?
•

T3 (Type 1):

 How are the different states of the problem-solving process represented?
•

T4 (Type 1):

 What types of conditional expressions can be used at the task-layer?
•

T5 (Type 2):

 Is the formulation of task knowledge domain independent (i.e. free from
references to the domain layer)?

4. We number each of our criteria, and we will use these numbers to refer to these criteria in later sections.

Language Comparison 10

•

T6 (Type 3):

 Can non-determinism be expressed at the task layer?

Criteria for the

connections

•

C1 (Type 1):

 How is the connection between inference and domain layer represented?
•

C2 (Type 1):

 How is the connection between task and inference layer represented?
•

C3 (Type 2):

 Do the connections enable the reusability of the layers? (Can a domain layer
be re-used by multiple inference layers; can an inference layer be re-used for multiple
domain layers; can an inference layer be re-used under multiple task-layers)

Because the

strategic layer

 is rather underspecified in the KADS literature, and because many
of the languages discussed in this paper do not deal with the strategic layer (we suspect for the
very reason of its unspecificity), we will not include the strategic layer in our comparison.
Unless stated otherwise, languages do not have any provisions for representing a strategic
layer.

2.2 The Formal View

When we view languages as purely formal constructions (that is: independently from the fact
that they are intended to specify or operationalise KADS models), we can compare the
languages on the basis of the following general criteria:

•

F1:

 Is the language

aimed

at formalising

 KADS models of expertise (i.e. aiming at
precision and disambiguity, and allowing formal reasoning about models without regard
to the computational aspects of such a formalism)?

•

F2:

 What are the

mathematical constructs

that form the basis of the language? Of
particular interest will be the constructs used to represent

dynamic behaviour.

•

F3:

 Has a declarative

semantics

 been defined for the language, and if so, what is the nature
of this semantics?

•

F4:

 What is the formal

expressive

power

 of the language? Note that expressive power in
this formal sense is very different from the epistemic modelling power discussed in the
previous set of criteria. For example, predicate calculus and modal logic have equal formal
expressive power, since each can be translated into the other (by an embedding in one
direction and by reification in the other), but notwithstanding this formal equivalence, the
epistemic power of the languages is very different: modal logic introduces concepts and
distinctions which disappear when translated into predicate calculus.

2.3 The Operational View

When viewed as a computational mechanism (in order to make a model of expertise
executable), the following general criteria apply to a language:

•

O1:

 Is the language

aimed

 at operationalizing KADS models of expertise?
•

O2:

 What is the

computational

paradigm

 of the language (e.g. logical, functional,
procedural)?

•

O3:

 Has an

operational

semantics

 been defined for the language, and if so, what is its
relation with the declarative semantics?

•

O4:

 What is the

computational

power

 of these constructs? In general, this computational
power will determine the

effective

computability

of the language. (Note that this

Language Comparison 11

computational power is again different from both the formal and the epistemological
expressive power discussed above)

•

O5:

 How

efficiently

 can the language be implemented? This is related both to the
computational paradigm and to the computational power of the language.

An additional question could have been whether there are

tools

 which support the application
of the languages like editors, or whether there are tools which check modelled expertise for
consistency, correctness or completeness. We deleted this topic from our comparison because
of space limitation and because the developed tools are not an inherent feature of the
languages. For each language we will briefly report on any tool development that has taken
place, but this is not done as part of our systematic comparison because a serious discussion of
this topic would require a paper on its own. Similarly, we will briefly mention reported
applications for each language, without systematically comparing these (although, of course,
their use in applications is ultimately the most important criterion in the long run).

Chapter 3
The Languages in More Detail

“Come, let us go down, and there confound their language, that they
may not understand one another's speech!” [Genesis, 11:7]

This section will discuss in detail each of the languages addressed in our comparison. Because
our comparison criteria are divided into three viewpoints, and to facilitate the application of
these criteria, we will describe each language from these three points of view: epistemological,
formal and operational. In section 4 it will turn out useful to group the languages on the basis
of their main purpose, which can be either the

operationalization

 of a KADS model, the

formalisation

 of such a model, or

both

 of these. In section 4 we will order the languages on a
continuum from operational to formal, and this ordering will be one of the major explanatory
factors for many of the commonalities and differences between the languages. In this section,
we will anticipate that ordering of the languages by presenting the languages from most
operational to most formal.

3.1 Operational Models of Problem-Solving (OMOS)

Operational Models of Problem-Solving (OMOS)

 ([Lin92a], [Lin92b], [Lin93]) is a language
to operationalise KADS models of expertise. It was developed at the German National
Research Center for Computer Science, GMD, in Bonn.
The main point of OMOS is to extend the Role-Limiting Methods [Mar88] or Method-to-Task
approach [Mus89] by integrating them into a KADS framework. The Role-Limiting Methods
approach provides shells with corresponding knowledge acquisition tools like MOLE, MORE
or SALT [Mar88]. The shells contain a fixed data structure and an algorithm which works on
it. The knowledge acquisition process consists of two activities. First, a proper shell must be
chosen, and second, this shell must be filled with cases, i.e. with assertional knowledge.
The approach is not meaningful if no previously developed shell fits the chosen task.
Therefore, OMOS allows a bottom-up development of such problem-solving methods and

Language Comparison 12

provides some tools which support the acquisition of assertional knowledge. A problem-
solving process can be modelled by using role and value changes of given instances. Besides
extending existing expert shell approaches OMOS is based on the KADS model of expertise
and therefore makes it possible to evaluate such models using explorative prototyping.

3.1.1 The Epistemological View

OMOS is implemented on top of BABYLON [CPV89]. BABYLON provides frames, rules,
Prolog, and constraints and is implemented in Common Lisp. OMOS exploits frames and
Prolog for the domain layer, and rules for the inference layer

The Domain-Layer Primitives

At the

domain layer

 terminological knowledge can be modelled by concept hierarchies and
relationships between concepts. Frames available in BABYLON are used to model concepts.
These frames can form a hierarchy with multiple inheritance. Relationships between concepts
are defined by a Prolog predicate with the corresponding concepts as argument types.
Assertional knowledge can be modelled at the domain layer using instances of concepts and
relations between them. This can be done extensionally by enumerating the elements of a
relation or intensionally by using Prolog clauses. OMOS requires finite extensions of relations.

The Inference-Layer Primitives

As explained, the inference layer contains inference actions and roles as modelling primitives.
The functionality of an inference action in OMOS is defined by stating:

• the type of value-assignment it implements (no

value-assignment

, an

initialization

, or a

modification

 of an existing value),
• its type of role-assignment (

no change

,

transfer

 a domain instance from one role to
another,

assign

 it to a new role without undoing its old role-assignment, or

substituting

 a
new concept for a concept that previously played that role),

• whether the inference action queries the user for missing knowledge or not

5

,
• the domain-layer relation used by the inference action,
• and the input, output, and control knowledge roles.

Because each of these properties has a finite number of values, there are a finite number of
inference actions that can be built by combining these properties. A compiler translates these
definitions into a forward rule-scheme.

Figure 3.

An inference action in OMOS.

5. Because the type of inference actions indicates whether they include user interaction or not, part of the user/system
interaction may be modelled by OMOS (cf. chapter one).

diagnose
value = false
role = transfer

possible
hypotheses

symptoms

solution

Language Comparison 13

The inference which is drawn by an inference action is described by the domain relation it uses.
Therefore a high amount of the problem-solving knowledge must be represented as tuples of
domain relations. It is not possible to represent problem-solving knowledge generically by
describing the inference which is drawn by an inference action. Only the interaction of the
inference actions can be represented generically through network of control, input, and output
knowledge roles.
A knowledge role can be associated with instances of concepts of the domain layer and contain
input, control information, or output of inference actions. The execution of an inference action
can have two possible consequences: it can change the attribute values of instances of its input
knowledge role and it can assign instances (probably with changed attribute values) of its input
knowledge role to its output knowledge role. In addition, the domain layer is used as a global
store. All inference actions can read it and write on it.
An inference action has exactly one input and one output role and several control roles. Only
instances of the input role can be transformed to the output role. The members of a control role
only control the inference but cannot be removed by it.
A small example of an inference layer in OMOS is given in figure 3. The inference action

diagnose

 has the

possible hypotheses

 as an input role, the

symptoms

 as a control role and
inferred

solution

 as output role. Its value-assignment is

false

 because there is no value change.
Its role-assignment is

transfer

 or

assign

 because an element of

possible hypotheses

 is inferred
as a new element of

solution

. In the first case, the element would be deleted from

possible
hypotheses

. A domain relation must specify the relationship between possible hypotheses and
the control role

symptoms

. The domain relation could contain this knowledge encoded as
tuples where the first element is a hypothesis and the second one is a symptom. Then the role

solution

 is filled with all elements of the input role which are the first element of a tuple having
the second element as an element of the control role

symptoms

.

The Task-Layer Primitives

The names of the inference actions define primitive actions at the task layer. These primitive
actions can be combined by sequence, branch, and loops.

The Primitives Connecting the Layers

A knowledge role at the inference layer can be connected with a domain concept while an
inference action must be connected with a domain relation. To define a mapping of an
inference action, one must specify the corresponding domain relation and the correspondence
between input and control knowledge roles of the inference action and the arguments of the
domain relation. This mapping is defined through a direct naming of the domain-layer
relations and arguments.
For the mapping between inference and task layer, inference actions return a boolean value
indicating whether a change took place or not. In addition, every knowledge role can be
evaluated to a boolean value (to indicate if the knowledge role is empty or not).

3.1.2 The Formal and Operational View

OMOS is not discussed as a formal specification language, but rather as an operationalization
language. Therefore, no formal semantics for the modelling primitives is given.
OMOS is implemented using BABYLON, and therefore, BABYLON’s environment is
available to OMOS. In addition, three tools for knowledge level analysis of OMOS

Language Comparison 14

specifications were developed, which check completeness of domain concepts and domain
relations (in combination with their use at the inference layer). These tools are straightforward
because they use the 1:1 mapping of domain layer and inference layer and the finite extensions
of concepts and relations at the domain layer.

3.1.3 Applications and Discussion

OMOS has been applied to a number of problems with a finite problem space, such as

planning

(the remodelling of parts of ONCOCIN [LiM92], in particular skeletal-plan-refinement);
s

election

 (selecting clamping tools for lathe turning [KLS91]), and a

ssignment

 (the so-called
Office-Plan or Sisyphus Problem, consisting of searching for an assignment of employees to
appropriate offices under given constraints [Lin91], [Lin92e]).
The application of OMOS is limited to problems with a predefined problem space because no
new instances of domain concepts or domain relations can be created during the problem-
solving process. Therefore, only problems requiring selection and combination among a finite
and predefined set of alternatives can be solved.
The intermediate results of the problem-solving process are changes in the value of domain
elements and changes in their knowledge roles, but no traces of this are available to guide the
further problem-solving process and no elements can be deleted or created during the problem-
solving process. It is therefore difficult to model a problem-solving process which investigates
several alternative paths.
OMOS provides restricted modelling primitives for representing problem-solving knowledge
and its connection with domain knowledge. Every inference action has exactly one input and
one output knowledge role. It is not possible to describe the inference drawn by an inference
action in a generic manner, because inference actions have to refer directly to relations and
instances at the domain layer.

3.2 MODEL-K

MODEL-K

 ([KVS91], [KaV92], [Kar93], [KaV93]) is a language for operationalizing KADS
models of expertise. It has been developed at the German National Research Center for
Computer Science, GMD in Bonn. It is again implemented in BABYLON [CPV89].
The main point of MODEL-K is the use of an existing AI shell, i.e. BABYLON, to
operationalise KADS models of expertise. This is done by introducing KADS-specific
modelling primitives in BABYLON. An operational model can then be built by attaching
BABYLON code to these modelling terms. Similar to OMOS, MODEL-K allows the
evaluation of the model of expertise by prototyping. Additionally, MODEL-K is considered as
a language for the implementation of a final expert system. The incremental development of
an expert system which reflects the conceptual structure of the knowledge level description of
the expertise becomes possible. The conceptual structure thus becomes a tool for improving
understandability and maintenance.
Another important feature of MODEL-K is its possibility of modelling reflective problem
solving. This can be regarded as a step in the direction of a strategic layer.

Language Comparison 15

3.2.1 The Epistemological View

MODEL-K consists of two sub languages (cf. figure 4). MODEL-K provides a

specification
language

 which allows an informal description of the expertise. In addition, MODEL-K
provides an

operationalization language

 which can be used to operationalise the terms defined
by the specification language.

Figure 4.

The two sub-languages of MODEL-K

The Domain-Layer Primitives

The specification language can be used to model terminological knowledge by concept
hierarchies with inheritance and relationships between concepts. Frames of BABYLON are
used to model concepts and relationships.
Assertional knowledge can be modelled with the operationalization language by instances of
concepts and tuples which are elements of relations. These relations can be described
extensionally or intensionally.

The Inference-Layer Primitives

The specification language can be used to define names of inference actions and their input and
output knowledge roles. The external behaviour of an inference action is defined as well as the
whole inference structure, but the way in which an inference action draws an inference is not
specified: actions are regarded as black boxes.
The operationalization language allows the operational refinement of inference actions by
adding an inference-action body. This body implements the behaviour of inference actions
using BABYLON code, including Lisp, Prolog, constraints, etc.

The Task-Layer Primitives

The specification language can be used to describe tasks and their hierarchical refinement. The
operationalization language adds task bodies allowing the specification of control knowledge.
It provides a procedural language consisting of sequence, branch, and loops.

The Strategic-Layer Primitives

MODEL-K is one of the few languages with a strategic layer. This layer is used to model

Task layer:
 Tasks

Inference layer:
Knowledge roles,
inference action names

Specification language

Task layer:
 Task bodies

Inference layer:
Inference action
bodies

Operationalization language

Domain layer:
Concepts, relationships

Domain connection

Domain layer:
Instances, relations

Domain connection

implemented by

implemented by

implemented by

extensions

Language Comparison 16

reflective problem-solving. A model of expertise containing reflective modules consists of
three different levels (see figure 5):

• An object system is modelled which consists of domain layer, inference layer, and task
layer.

• One or more reflective modules are specified, which again consist of domain layer,
inference layer, and task layer. The difference is the fact that their domain layers contain
the model of the object system.

• A scheduler defines the control flow between the reflective modules.
An example of reflective problem-solving is given in [KaV93]. The reflective modules control
the required run-time of the object-system, and try to decompose complex problems into
subproblems which can each be solved efficiently by the object-system. An object system
should assign employees to places in consideration of several constraints (i.e., the
Sisyphusproblem [Lin92c]). The reflective problem-solver then deals with the following
questions:

• One reflective module enables the user to restrict the maximal number of seconds to be
spent and the maximum number of solutions to be found by the object-system.

• If the input problem is too complex it might be useful to decompose this problem into a
sequence of increasingly complex sub-problems and solve those stepwise.

The modelling primitives for reflective problem-solving do not increase the expressive power
of the modelled problem-solver. However, they allow modelling reflective problem-solving at
the conceptual level and therefore support understandability and reusability.

Figure 5.

Modelling reflective problem-solving with MODEL-K

The Primitives Connecting the Layers

The names that the specification language introduces to express knowledge roles at the
inference layer can be regarded as formal names which are associated in the operationalization
language with their actual values at the domain layer. This association is realised by expressing
the relation in BABYLON code.

Task
Inference

Domain
Connection

i-th reflective
domain

1st reflective
domain

domain connection

1st reflective Task

1st reflective Inference

i-th reflective Task

i-th reflective Inference....

Scheduler

....

Language Comparison 17

As the knowledge roles are modelled as containers, two update commands are given. A
knowledge role can be filled with domain knowledge, and the contents of a knowledge role can
be written back to the domain layer.
The connection between task and inference layer is realised by using the names of inference
actions as primitive subtasks in the task-decomposition. The condition in branches and loops
at the task layer are arbitrary BABYLON expressions which can refer to the domain layer and
to the contents of the knowledge roles.

3.2.2 The Formal and Operational view

MODEL-K is intended as an operationalization language, and not as a formal specification
language. The knowledge model receives an operational semantics if the inference action and
task bodies are implemented in BABYLON. The operational semantics is defined by the
BABYLON interpreter.
MODEL-K provides the expressive power of programming languages like Lisp and Prolog.
Special tools for supporting knowledge formalization, evaluation, assessment, or error
correction are not discussed. MODEL-K contains the environment of BABYLON.

3.2.3 Applications and Discussion

MODEL-K has been applied to

assignment

problems, namely

the Sisyphus problem
([VKS91], [DKV92]) and the assignment of airplanes to gates [VoK93]. In addition,

reflective
modules

 have been developed in the context of the Sisyphus problem [KaV93]: a case-based
reasoner, a scheduler for the management of computing time, and several modules which
transform or simplify problem descriptions.
MODEL-K uses its specification language to describe the structure of a model of expertise,
and uses BABYLON to operationalise this model. In this way, MODEL-K attempts to smooth
the transition from knowledge-level description to symbol-level implementation. MODEL-K
is intended for implementing running expert systems while preserving the structure of the
model of expertise. However, because of its use of BABYLON to express the bodies of
inference actions, MODEL-K requires the user to make quite specific implementation
commitments in the description of such actions.

3.3 MoMo

MoMo

 ([LKV92], [VoV93], [VVW93]) is a language to operationalise KADS models of
expertise. It is developed at the German National Research Center for Computer Science,
GMD in Bonn and is the successor of OMOS and MODEL-K. MoMo aims to extend the
limited expressiveness of OMOS, and to restrict the unlimited computational power of
MODEL-K. The degree of elaboration of a model depends on what is considered as essential.
MoMo aims at allowing models at any desired grainsize. The parts that are unspecified can
either be “executed” interactively by the user, e.g. for testing partial models, or they can be
attached to available pieces of code reachable from its implementation environment CLOS
(Common Lisp Object System, [Kee89]).

Language Comparison 18

3.3.1 The Epistemological View

MoMo relies on Petri-nets for the inference layer, and leaves the choice of the domain-layer
language open. The task layer provides the usual procedural constructs sequence, branch, and
loop.

The Domain-Layer Primitives

MoMo does not come with a fixed domain layer language. It aims to allow the use of any
language that is reachable from the CLOS environment. As a default, a language with
concepts, instances, relations and rules is provided. No use of domain languages other than the
default has been reported

The Inference-Layer Primitives

MoMo’s inference layer is an extension to coloured Petri-nets. Petri-net places are used to
model knowledge-roles, and consist of strongly typed multi-sets. Petri-net actions model
primitive inference actions. On their input arcs, these actions can restrict the types of their
input places and express further preconditions to the action by guard-predicates. The output
arcs are labelled with expressions composed of procedures acting upon the input variables.
Thus, an inference action is modelled by an action described by (i) variable names which label
the arcs from the input places, (ii) a guard predicate which describes the precondition of the
action, and (iii) arcs to the output places, labelled by terms built from input variables and
operations on them. An inference structure behaves like a Petri-net: if from the input places
elements can be matched that satisfy the type restrictions and the guard predicates, the action
is enabled. If the action is executed, these elements are removed, and elements as specified by
the output terms are moved into the output places.
As an extension to this standard Petri-net interpretation, MoMo provides variables that match
the entire multiset of the input places, arbitrary subsets, or subsets of specified size.

The Task-Layer Primitives

The Petri-net specified at the inference layer is often non-deterministic, and allows a large
number of possible execution paths (at any moment more than one action might be enabled).
Rather than restriction this non-determinism by extending the net with control-flow actions (as
would be the usual approach in Petri-nets), MoMo instead enforces additional control on the
network through separate expressions at the task-layer. In these control expressions, primitive
operations refer to inference actions, and these can be combined by sequence, branch and loop
instructions.

The Primitives Connecting the Layers

The types, places and procedures of the inference layer must be connected to the domain layer.
Such connections can be made either by a renaming operation (if there is a direct match with
a domain layer construct), or the connect can be programmed in Lisp. This type of connection
is necessarily much less restricted than in the other languages, because MoMo aims at using
arbitrary domain-layer languages.
The connection between inference and task layer is through the identification of primitive tasks
with inference actions. Furthermore, inference actions return a boolean value and predicates
can be defined over the contents of knowledge roles.

Language Comparison 19

3.3.2 The Formal and Operational View

MoMo was not conceived as verification language for KADS models. Hence, little attention
has been paid to defining its semantics formally. However, being an extended coloured Petri-
net, the inference layer has the usual Petri-net semantics. The task layer could be formally
defined as a restriction on the non-determinism of the inference layer, but this has not been
elaborated.
The open ended choice of the domain layer precludes the definition of a fixed semantics for
this layer, as well as for its connection with the inference layer and therefore for the entire
specification.
For its operational semantics and its execution, MoMo relies on CLOS. Visual editing and
simulation tools are provided.

3.3.3 Application and Discussion

In [LKV92] the selection of clamping tools for lathe turning and in [VVW93] the scheduling
problem of the ECAI'92 Workshop on Formal Specification Methods for Complex Reasoning
Systems [TrW93] is sketched.
MoMo allows the integration of prototyping into the modelling process. By doing this, MoMo
tries to integrate several principles of software engineering like graphical representation of
modelling primitives, object-orientation, or typing.
Coloured Petri-nets are used in MoMo to represent the inference structure. This is a
nonstandard use of such nets, since inference layers should not represent any control, but such
knowledge could in principle be expressed in Petri-nets. This makes it hard to decide where in
a model to express certain knowledge. The expressive power of the pre- and post-conditions
of the coloured Petri-nets allows the inference layer of MoMo to specify all the control which
should normally be specified at the task layer.
MoMo aims to remove the restrictions imposed by OMOS’ limitations on the type of inference
actions, and MODEL-K’s heavy reliance on the underlying implementation language for
defining inference action bodies. MoMo does indeed extend the restricted expressive power
and flexibility of OMOS. However, it is not really clear how MoMo restricts MODEL-K
(MoMo’s second rationale) since the operations which label the output arcs of an action can
be arbitrary complex programs.

3.4 FORKADS

FORKADS

 has been developed at the IBM Germany Scientific Center in Heidelberg. It was
one of the first published approaches to formal KADS models ([Wet90], [WeS91], [Wet92]).
Contrary to the languages described so far, FORKADS aims not only at operationalizing
KADS models, but also at giving formal foundations to KADS models. Furthermore, the aim
is to use this language as a (or perhaps even the only) communication medium between the
people responsible for knowledge acquisition and those responsible for system design. For this
purpose, the main foundation of FORKADS is a first-order logical language which is extended
with notions of concept heterarchies and procedural attachment. In many respects FORKADS
is rooted in the L

LILOG

 language [HeR91].

Language Comparison 20

3.4.1 The Epistemological View

FORKADS is based on order-sorted logic with certain extensions, based on LILOG.

The Domain-Layer Primitives

In FORKADS, concepts are represented as sorts, and instances of a concept as constants of that
sort. Sorts (concepts) can have a lattice-like subsumption relation to model subconcepts. So-
called features and roles of concepts are represented by one-place functions and two-place
relations over sorts. Other relations are modelled as n-place predicates.
The features mentioned above represent the general

domain model

 of a FORKADS domain
layer. Properties of individual instances of sorts, or the truth conditions on relations, roles and
features are specified by a set of first-order axioms.

The Inference-Layer Primitives

FORKADS is the only language which has a predefined and fixed set of primitive inference
steps. These primitive inferences are represented as predicates, and non-primitive inferences
can be modelled as logical sentences built from these primitive inferences. Two types of
primitive inferences are distinguished at the inference layer:

terminological

 and

referential

inferences. The terminological inferences deal with properties represented in the sort-
structure. Examples of such terminological inferences are to assign a sort to a variable, to
create a constant of a given sort, and to bind a variable to a direct subsort of a given sort. These
are rather non-standard operations in a logical language. They are based on the LILOG
language, where they were introduced for describing the semantics of natural language.
The referential inferences infer properties of specific individuals. The main primitive
referential inferences are to prove a goal (possibly establishing a value for a variable) and to
test if a variable has a value.
These primitive inference actions are used to build non-primitive inferences. Each non-
primitive inference is modelled as a logical sentence using primitive inferences, and has a so-
called “inference-head”, which consists of the name of the inference and its parameters which
can be used for calling the inference.

The Task-Layer Primitives

As with inferences, tasks, and subtasks are also expressed by means of a task-head and a task-
body. The task-head contains name and parameters and can be used to call the (sub)task.
Bodies of tasks and subtasks are a sequence of statements which consist of calls to other
(sub)tasks or inferences (which are regarded as primitive tasks). Furthermore, task bodies can
contain loop-statements (for iterating over all elements in a sort) and conditional statements.
Two other types of statements are allowed in task bodies, and these are applied to affect the set
of axioms used for proving inferences: it is possible to either restrict or enlarge the set of
axioms in the knowledge-base used for proving a goal.

The Primitives Connecting the Layers

FORKADS distinguishes between a specific domain model and a generic

stereotype

. Both are
sort structures with their associated relations, but a domain model describes a specific
application domain, while a stereotype describes a generic structure. Such stereotypes are used
to define domain-independent inference structures and task layers (interpretation models). The
connection between a specific domain model and the generic sort model of a stereotype is
made by statements of the form

role_of(.,.)

, which link sorts and relations of the domain model
to their counterparts in the sort model of the stereotype. FORKADS requires that this mapping

Language Comparison 21

is a homomorphism between the two sort models when both are interpreted as graphs.
Since inferences are regarded as primitive tasks, and no further separation is made between
task and inference layer, no separate mechanism is required to connect the task and inference
layers.

3.4.2 The Formal and Operational View

The domain layer of FORKADS consists of an order-sorted, first-order predicate calculus. It
is the only layer in FORKADS with a declarative semantics. The inference layer and task
layers are only given a operational semantics in terms of an abstract interpreter. However, the
properties of these semantics are hard to assess since their construction is along rather
unconventional lines.
[BüW92] sketch an implementation of FORKADS consisting of a graphical modelling
component GCONMOD and a code generator LCONMOD. LCONMOD generates Prolog
code which is used to execute FORKADS inferences. It can use procedural attachments to
predicates implemented in C and uses the inference machine of the knowledge representation
language L

LILOG

 [HeR91]. The graphical tool GCONMOD allows editing and browsing of
FORKADS structures either in terms of formulae, or in terms of a graphical representation of
the dependencies in a FORKADS model.

3.4.3 Application and Discussion

FORKADS has been used in a commercial banking application project [Wet92].
FORKADS closely follows the usual KADS interpretation of domain layers in terms of
instances and concepts, representing them by well-understood notions such as constants and
sorts. The procedural form of the task layer is different from that of some of the other
languages (e.g. the iteration over all elements of a sort), but otherwise contains common
notions such as sequence, branching, and subroutining.
FORKADS' most striking features appear in the inference layer. The referential inference
constructs like testing if a variable has a value

and terminological ones like creating a new
constant, as well as the possibility for procedural attachment require a nonstandard semantics
which is considerably different from a standard semantics, thereby reducing the value of the
semantic account. After all, one of the aims of a formal semantics is to clarify one formalism
by describing it in terms of another, better known formalism.

3.5 KARL

The

Knowledge Acquisition and Representation Language (KARL)

 ([FAL91], [Ang93],
[Fen93b], [AFS94]) is a language used to formalize and operationalise KADS models of
expertise and is developed in the context of the MIKE approach (Model Based and Incremental
Knowledge Engineering) [AFL93]. A formal description of the expertise is automatically
mapped to an operational one. KARL utilizes results of software engineering and information
system design. The domain layer of KARL applies ideas of

semantic

and

 object-oriented data
models

 ([Bee90], [ElN89]) to represent the static knowledge. The inference layer applies ideas

Language Comparison 22

of

structured analysis

 [You89] and the task layer language is influenced by languages like

RSL

[Alf90].

3.5.1 The Epistemological View

KARL contains the two sub languages

Logical-KARL (L-KARL)

 and

Procedural-KARL (P-
KARL)

 to model the KADS layers, and combines techniques from logic programming and
deductive databases.

The Domain-Layer Primitives

KARL uses L-KARL to describe the domain layer. It provides predicates, classes, class
hierarchies, single- and set-valued attributes with domain and range restrictions, and multiple
attribute inheritance for modelling terminological domain knowledge. The derivation of new
object denotations can be expressed by functions. KARL uses O-logic [KiW93] and F-logic
[KLW93] as a model for the integration of object-orientation in a logical framework.The Horn
clauses of L-KARL are extended by stratified negation (cf. [Prz88]) and a richer logical
language is provided for formulating constraints (necessary conditions for concepts and
relationships).

The Inference-Layer Primitives

KARL distinguishes elementary and composite inference actions. An

elementary inference
action

 is described by a set of Horn clauses with stratified negation, again in L-KARL.
A subset of an inference structure can be arranged to form a

composed inference action

. These
composed inference actions can be used as elementary elements to specify further inference
steps, which gives a mechanism for hierarchical decomposition at the inference layer.

6

KARL distinguishes three types of knowledge roles.

Views

 define an upward translation from
the domain layer to the inference layer (giving read-access).

Terminators

 define a downward
translation from the inference layer to the domain layer (giving write-access).

Stores

 provide
the input or output of inference actions. Whereas views and terminators are used to link a
domain layer with a generic inference layer, stores are used to model the dataflow
dependencies between inference actions.

The Task-Layer Primitives

KARL uses the logical language

Procedural-KARL (KARL)

 at the task-layer. It is a variant of
dynamic logic ([Har84], [Koz90]) and therefore allows the declarative description of control
flow. Extended by additional syntactical sugar it can be used in a similar way to procedural
languages.
The primitive programs correspond to

calling an inference action

, and atomic formulae
indicate whether knowledge roles contain elements of a given class. Such primitive programs
and atomic formulae can be arranged into sequence, loop, and alternative. Programs may be
combined to named

subtasks

, similar to procedures in programming languages. Subtasks must
correspond to composed inference actions at the inference layer.

The Primitives Connecting the Layers

Views and terminators constitute KARL’s mechanism to connect domain and inference layer.
Horn clauses with stratified negation of L-KARL are used to translate domain-expressions (or

6. This idea is identical to levelled dataflow diagrams in Structured Analysis [You89].

Language Comparison 23

combinations of them) onto the contents of knowledge roles or support knowledge on the
inference layer. A knowledge role need not correspond to a predefined domain concept and an
inference action need not correspond to a predefined domain relationship. Several domain
expressions can be combined to form a new expression by means of a view definition (cf.
[ElN89]).
The connection between inference and task layer is formed by (i) the fact that primitive
programs correspond to primitive inference actions; (ii) composed programs must correspond
to composed inference actions, and (iii) state variables of dynamic logic store the contents of
knowledge roles. A one-to-one correspondence must exist between the decomposition
hierarchies at both layers.

3.5.2 The Formal and Operational View

The logical language L-KARL used to describe the domain, the inference layer, and their
connection has a Herbrand model semantics [Llo87]. KARL allows stratified negation under
the closed-world assumption using the minimal (i.e. perfect) Herbrand model as semantics
[Prz88]. Constraints check this model for correctness. In contrast to Prolog, the evaluation of
these clauses is set-oriented [Ull88]: not one but all instantiations of a predicate are computed.
The procedural knowledge is represented by P-KARL. It is a variant of Dynamic Logic which
has a modal semantics [Koz90]. The integration of the modal semantics of the task-layer and
the Herbrand models of L-KARL is as follows: the models of L-KARL are used to define an
interpretation for a P-KARL language, i.e. the perfect Herbrand model of a set of clauses is
used to interpret a function symbol occurring in value assignments in P-KARL.
An interpreter for KARL has been implemented which includes a debugger. A hypertext-based
tool has been implemented which makes it possible to structure verbal protocols in a so-called
semiformal Hyper model [NeM93]. This semiformal model can be used to built up a formal
specification with KARL by refining the informal specification.
KARL provides graphical representations of most modelling primitives: a kind of Enhanced-
Entity-Relationship (EER) diagrams for the domain layer, a kind of levelled dataflow diagrams
for the inference layer, and a kind of program flow diagrams for the task layer. All three
graphical representations include hierarchical refinement to allow them to represent the system
at different levels of granularity.

3.5.3 Applications and Discussion

KARL has been applied in more than ten case-studies (e.g. [AFL91a], [AFL92b], [Ang92],
[LHS92], [KFG92], [FEM93], and [LFA93]).
KARLS’s major aim is to combine both formalisation

and

 operationalization of models of
expertise. This aim calls for a delicate balance of choices in the language. An example of this
is the restriction on Horn logic with stratified negation and the choice for the perfect Herbrand
model as semantics. This might be the correct choice for the declarative semantics, but it is less
clear that the decision to regard the whole model (chosen to ensure that the procedural
interpretation is guaranteed to compute the perfect Herbrand model) is also the most
appropriate choice from an operational point of view.
A further concern in this same area is the fact that the set-oriented evaluation strategy restricts

Language Comparison 24

KARL to predicates with a finite extension. Whether or not this formal restriction will be a
problem remains to be seen.
A positive result of the concern of the KARL-designers with the practical usability of their
language is the introduction of hierarchical refinement constructs at all levels in their language.
No doubt this is a useful addition to the KADS framework.

3.6 (ML)

2

(ML)

2

 ([BaA92b], [HaB92], [AHS93]) is a language for formalizing KADS models of
expertise. It was developed in the course of the ESPRIT Projects 3178 “REFLECT” and 5248
“KADS-II” and a bilateral research project of the Netherlands Energy Research Foundation
ECN and the University of Amsterdam. Although a subset of (ML)

2

 can be operationalised to
allow explorative prototyping it is mainly introduced as a formalization language.

3.6.1 The Epistemological View

(ML)

2

 uses logic as its foundation, and combines different logical formalisms to model the
structure of a KADS model.

The Domain-Layer Primitives

The sublanguage of (ML)

2

 used to model a domain layer is order-sorted first-order logic
extended by modularisation. Instances are modelled by constants, and sorts can be used to
model classes of such constants. Sorts can be arranged in an is-a hierarchy. Relationships
between concepts are modelled by predicates. Attributes of concepts are modelled by
functions. Arbitrary first-order theories can be used to specify the defined relationships. The
specification of a domain layer can be divided into several modules. Such a module or theory
defines a signature (i.e. sorts, constants, functions, and predicates) and defines axioms (i.e.
logical formulae). These modules, i.e. subtheories, can be combined by a union operator.

The Inference-Layer Primitives

In (ML)

2

 every inference action and every knowledge role is described by a theory similar to
domain layer theories. An inference action is described by an implication whose conclusion is
a predicate naming the action and its input-and output-terms. The premises of such an
implication describes the relation that must hold between input- and output-terms. Figure
figure 6 illustrates an inference layer modelled in (ML)

2

.

Figure 6.

An inference action in (ML)

2

The inference action

diagnose

 diagnoses a

solution

 using

symptoms

 and a

cause relationship

as input. This inference action

diagnose

 is modelled by a predicate:

diagnose(symptoms(X), cause_relationship(symptoms(X),Y),

diagnose solutionsymptoms

cause
relationship

Language Comparison 25

solution(Y))

For a description of an inference it is possible to use a set of clauses with this predicate as their
conclusions. The whole description of the inference action

diagnose

 is:

theory

diagnose

use

 symptoms, cause_relationships

signature
predicates

 pia

diagnose

variables

 X, Y

axioms

pia

diagnose

(
symptoms(X),
cause_relationship(symptoms(X), Y),
solution(Y)

)

 ←

input

symptoms

(symptoms(X))

∧

input

cause_relationship

(cause_relationship(symptoms(X), Z)

∧

Y=Z.

A theory which describes a knowledge role defines a translation of domain layer expressions
to terms used at the inference layer (see below). Thus, each role and action is modelled by a
separate theory, and a theory describing a primitive inference action imports all theories of its
input- and output-knowledge roles.

The Task-Layer Primitives

Quantified-dynamic logic ([Har84], [Koz90]) is used to specify dynamic control at the task
layer. Every predicate specifying an inference action at the inference layer together with the
test operator “?” is regarded as an elementary program statement and the knowledge roles are
used as input and output parameter of such programs. For every such elementary program a
history variable is defined which stores the input-output pairs for every execution step. The key
idea is to nondeterministically choose a value binding of a logical variable by the test operator
and store this value in a state variable:

inference_action_predicate(input,output)?;
history_variable := append(history_variable | (input,output))

Four types of task-layer operations are available for each inference action: checking if a given
Input/Output-pair (I/O-pair) has already been computed, checking if uncomputed I/O-pairs
still exist, actually computing a new I/O-pair (and storing it in the corresponding history
variable), and checking if a given I/O-relation holds (without storing it). These primitive
programs and predicates can be combined using sequence, non-deterministic iteration and
non-deterministic choice. These combinations are rich enough to model more standard
constructions like deterministic iteration and conditional statements.

The Primitives Connecting the Layers

The inference and task layers are modelled as a meta-language of the domain layer. This meta-
relation allows the inference-layer to specify properties of relations over domain-layer
formulae without resorting to second order logic. Object- and meta-language are connected by
a naming relation and reflection rules.
At the inference layer a lift operation is defined for every knowledge role which is connected
to the domain layer. The lift operator defines a naming relation by mapping expressions of the
domain layer to variable-free terms at the inference layer. This lift-operator is defined as a
rewrite-rule system that translate domain-layer sentences into inference-layer terms.
This naming relation is used in three reflective predicates which can inspect or alter the domain

Language Comparison 26

layer from the inference layer. One reflective predicate inspects the axioms of the domain
layer, a second inspects the set of consequences of the domain layer,

7

 and a third predicate
extends the set of axioms at the domain layer. Therefore, the first two predicates are used to
read from the domain layer whereas the last one can be used to write on it.
The connection between inference and task layer is realised by introducing primitive programs
and predicates for each inference action, and by the history variables which represent the
contents of the knowledge roles.

3.6.2 The Formal and Operational View

(ML)

2

 provides three kinds of logical languages to describe models of expertise:
•

Order-sorted first-order logic

 extended by modularisation at the domain layer. This
language is equivalent to normal first-order logic, and therefore semi-decidable. Of all the
languages discussed so far (ML)

2

, is the first where the expressive power of finite axiom
sets exceeds Turing completeness.

•

Meta-logic

 at the inference layer.
•

Quantified-dynamic logic

 at the task layer. It is a modal extension of first-order logic,
which can be given a possible-world semantics.

With their combination of semi-decidable formalisms, (ML)

2

 models cannot expected to be
fully executable. [THR91] discusses a prototype interpreter for a subset of (ML)

2

, where the
main restriction is to reduce the domain layer to Horn clauses, and to interpret negation as
negation as failure. More recent work [AbH92] describes a second interpreter, this time for full
(ML)

2

. It uses a full first-order theorem prover, and guarantees neither efficiency nor
termination. [BaA92a] describes TheME, which supports the formalization of models of
expertise using (ML)

2

. It allows a graphical representation of (ML)

2

 expressions and, for
example, checks for syntactical correctness.

3.6.3 Applications and Discussion

(ML)

2

 has been applied in a dozen formalizations of models of expertise [HaB92], e.g., for
making predictions about physical systems by means of qualitative reasoning [BRW90]. The
problem-solving methods

Cover and Differentiate

and

Heuristic Classification

[SWA92] are
formalized in (ML)

2

. A scheduling task with simple search heuristics has been specified in
[BHA93].
(ML)

2

 applies different types of logic for formalizing a model of expertise. First-order logic,
meta-logic and quantified-dynamic logic are means for the different layers. (ML)

2

 was the
only language which provided a logical description for the control knowledge at the task layer
(this solution has later been adopted by KARL). The application of meta-logic to represent
knowledge at the inference layer comes close to the meaning of this layer.
A disadvantage of (ML)

2

 is that it is only semi-decidable and it is not possible to evaluate it
efficiently. It is no surprise that the operationalised subset of (ML)

2

 is restricted to Horn logic
and has a different semantics (i.e., negation as failure). In general, (ML)

2

 is designed mainly
as a formalization language allowing the declarative description of models of expertise. But it

7. In general, this predicate is only semidecidable.

Language Comparison 27

becomes very difficult even for experts in logic to really understand the meaning of formally
specified knowledge, especially if the models become very large and operationalizing a subset
of the language under a different semantics cannot really overcome this problem.

3.7 QIL

QIL

 is a language developed at the University of Nottingham. Although QIL is originally
intended as a model for multi-agent systems, where multiple agents can have beliefs that
evolve over time, [ARS92] shows how QIL can be used to describe KADS models.
Of the languages discussed in this paper, QIL and K

BS

SF are the only languages that were
originally designed for general knowledge-representation purposes, whereas the other
languages were specifically developed to represent KADS-models.

3.7.1 The Epistemological View

QIL

 is based on a multi-modal logic, combining epistemic and temporal modalities. First-order
logic is used to represent the declarative aspects of expertise, and the dynamic nature of
problem solving is represented as the evolution of the beliefs of an agent over time.
KADS models are represented as the beliefs of an agent. The beliefs of the agent change when
inference actions are applied. The application of such inference actions is modelled by logical
deduction, while strategic knowledge is represented by planning.

The Domain-Layer Primitives

QIL uses a

reified

8

 first-order logical language for the representation of domain layer
knowledge. All first-order formula are encoded as terms which are represented as arguments
to the special predicate

domain-theory

. Thus, the formula

domain-theory(respiratory-tract, implies(airways-obstruction, less-than(fev1,70%)))

encodes what would more traditionally be written as the formula

airways-obstruction

→

 fev1 < 70%

in a theory called

respiratory-tract

.
No proof-theory is defined in QIL for function symbols as

implies

, and consequently, no
inference can be done at the domain layer.

The Inference-Layer Primitives

In QIL, the inference layer is represented in the same language as the domain layer: it is also
a first order language, and all symbols for the domain layer could be referred to in the inference
layer.
Knowlege roles are modelled as arguments to the special predicate

current-hypothesis

, and
inference actions are modelled as implications between occurrences of this predicate. Such
implications can also refer to the relations that are constructed out of domain-layer formula by
means of the special predicate

knowledge-theory

. This predicate represents the link between
domain and inference layer (see below). For example, as in figure 6 an inference action called

diagnose

, which uses domain relations to map the knowledge-role

symptoms

 to the

8. In a

reified

 language, formulae from another language are treated as terms.

Language Comparison 28

knowledge-role

solution

 would be represented as follows:

∀

 X

∀

 Y (current-hypothesis(solution(Y))

←

current-hypothesis(symptoms(X))

∧

knowledge-theory(causal,symptoms(X),Y)).

The Task-Layer and Strategy-Layer Primitives

QIL does not represent fixed task-decompositions (the usual contents of a KADS task-layer)
but instead constructs sequences of subtasks dynamically, as part of the reasoning process.
Such planning of subtask-sequences is typically seen as the role of the KADS strategy layer.
This planning process is specified by planning rules, encoded in QIL using the temporal
modality. For instance, the planning rule

i-future(sub-task

1

,instantiated(solution))

←

 always(instantiated(symptom))

states that whenever the knowledge role

symptom

 is instantiated, then immediately after
execution of

sub-task

1

, the knowledge role

solution

 will be instantiated. General rules for the
construction of plans specify how the above specific planning rules can be used to form a plan
that will satisfy the goal. For instance, the modal formula:

always(bel(kbs,

∀

 X

∀

 ACT:
execute(ACT)

 ←

task-goal(X)

∧

 i-future(ACT, true(X))))

states that any action

ACT

 that leads to the satisfaction of goal

X

 will be executed. The
expression

bel(kbs,

φ

)

 states that the KBS-agent believes

φ

. Thus, planning rules are
represented as beliefs of an agent about the future. Rules as this one can specify which actions
should be executed, but QIL does not currently include facilities for choosing among actions
if more than one action is executable at the same time.

The Primitives Connecting the Layers

The domain and inference layer in QIL are represented in the same language. The rules that
link domain and inference layer ensure that the domain specific terms used in the domain layer
segment of the language are translated to the generic terms used in the inference layer segment
of the language. This translation is done via implications between the predicate

domain-theory

(whose arguments represent (reified forms of) the domain formula) and the predicate

knowledge-theory

, whose arguments are names of knowledge roles etc. For example:

∀

 X

∀

 Y (knowledge-theory(causal,symptoms(X),Y)

←

 domain-theory(respiratory-tract,implies(X,Y)))

This way of connecting domain and inference layer is strongly reminiscent of the view-
mechanism in KARL and the lift definitions in (ML)

2

.
The connection between inference and task layer in QIL consists of rules that define the special
predicate

instantiated

 which is used in the planning rules, as shown above. For each knowledge
role at the inference layer, the task layer contains a constant with the same name, and the
predicate

instantiated

 holds for such constant exactly when a value for that knowledge role has
been derived at the inference layer (indicated by the predicate

current-hypothesis

. For
example, for the knowledge role

observation

, there is an implication of the form:

instantiated(symptoms)

←

∃

X current-hypothesis(symptoms(X))

Language Comparison 29

3.7.2 The Formal and Operational View

QIL is based on a first-order multi-modal logical language, containing both epistemic and
temporal modalities. Domain and inference layer are modelled in a classical first-order logic
with function symbols. Task and strategy layer are modelled in a modal language, containing
the epistemic modality

believe

, and the temporal modalities

future

 (at some point in the future),

always

 (at all time points), and the nonstandard operator

 i-future.

 This latter operator takes two
arguments, an action and a proposition, and its intended meaning is that the proposition is true
immediately after performing the action. QIL is given a standard possible-world semantics,
using the system K for the epistemic modality, and a forward branching model of time for the
temporal modality. For quantification, a constant universe of discourse is assumed in QIL. The
combination of the two modalities is completely orthogonal, and QIL makes no assumptions
about persistency or otherwise of belief over time.
Like any modal logic, QIL can be given a reified definition inside a first-order language, and
[ARS92] have investigated several resolution based theorem-proving methods for automating
proofs in such reified logics. Such theorem provers will in general be neither efficient nor
complete.

3.7.3 Applications and Discussion

[ARS92] gives a formulation of heuristic classification in QIL and [AKS93] gives a model of
hierarchical skeletal planning.
An interesting aspect of QIL is that it shows how a non-KADS-specific language can be
configured to capture KADS models. In QIL this is done by giving prescriptions for how the
various theories should be organised, and by prescribing special predicates and implications to
be used in these theories to model the different aspects of KADS models, in particular the
predicates

domain-theory, knowledge-theory, current-hypothesis, instantiated,

 the
implications that model inference actions, and those that model the links between domain,
inference and task layer.
The use of a temporal logic to model the procedural aspects of KADS models is similar in spirit
to the use of dynamic logic in (ML)

2

 and KARL, although rather different in technical detail.
QIL is one of the few languages that tries to dynamically construct task-decompositions in a
KADS model of expertise.
An omission in the strategic layer of QIL would seem to be the inability to specify preferences
over multiple plans that achieve the same goal. The choice among such alternative plans is
currently relegated to the specific implementation of the theorem-proving machinery that
would process a QIL model. It would be desirable if such knowledge could instead be
explicitly included in QIL formulations of KADS models.

3.8 K

BS

SF

K

BS

SF

9

 is developed by PTT Research in Groningen, The Netherlands as the language for
describing conceptual models in the VITAL project [JSV91]. Thus, like QIL, K

BS

SF is not
originally intended to describe KADS models, but the conceptual models of VITAL are very

9.

Knowledge Based Systems Specification Language, pronounced as “KSF”.

Language Comparison 30

close in spirit to those in KADS, and [JoS92], [VJS93] show how K

BS

SF can be used to
represent KADS models.
K

BS

SF is primarily aimed at formalising conceptual models, and thus shares this aim with
languages like (ML)

2

 and QIL. K

BS

SF has many of its roots in software engineering, notably
the techniques of algebraic specification languages.

3.8.1 The Epistemological View

K

BS

SF uses techniques from algebraic specifications for data-specification, a logical
formalism for knowledge specification, and an imperative procedural language for control
specification.

The Domain-Layer Primitives

The domain layer in K

BS

SF is modelled by a set of so-called Dmodules (Data-modules). A
Dmodule consists of sort, function and predicate declarations which define the language used
by the module; a set of equations which define equality among terms; theories which are sets
of first-order sentences defining the truth conditions on the predicates, and signature types,
which define the signatures used in those theories. A domain theory similar to the one give for
QIL above would be:

Dmodule respiratory_tract
import Numbers
predicates >: Numbers, Numbers, airways_obstruction
functions fev1: -> Numbers
sigtypes T1 = [sorts Numbers, predicates > airways_obstruction]
theories T1_th = {airways_obstruction -> fev1 > 70}

The Inference-Layer Primitives

To model knowledge roles, K

BS

SF uses parameterized signature types. These parameterized
signature types define formal sorts and formal predicates that will be used in the inference
actions to describe the inference steps. Thus, generic terms in KADS inference structures like

hypothesis

 correspond in K

BS

SF to a single signature type, typically defining a single formal
predicate name to model the knowledge role, plus the required formal sorts for the arguments
of the formal predicate. The connection between a generic inference layer and a specific
domain layer is then obtained by binding the formal predicate and sorts from the inference
layer to actual predicates and its sorts from the domain layer.
Inference actions in K

BS

SF are modelled by a Bmodule (Behaviour module). A Bmodule
consists of a name, a set of typed input and output parameters, a set of local variables, and a
behaviour description in a procedural language containing assignments, loops, conditionals
and a mechanism for calling other task as subroutines. Furthermore, special operations like
intersection, union and selection can be performed on either the axiom sets of theories or their
deductive closures.
A inference action thus corresponds to a Bmodule with an input and output parameter for each
input and output knowledge role, plus a task-body that specifies a procedure for computing the
output values from the input values.

Language Comparison 31

The Task-Layer Primitives

K

BS

SF does not distinguish between task and inference layer, and simply regards inference
actions as primitive subtasks (i.e. those tasks that do not call other subtasks). Thus, a task
structure is represented in the same way as the inference action, namely as a set of Bmodules.

The Primitives Connecting the Layers

As stated above, a generic inference layer (in terms of parameterized signature types) is
connected to a specific domain layer by binding the formal sorts and predicates of the
parameterized signature types (representing the knowledge roles) to actual predicates and sorts
of the domain layer. Thus, the connection between domain and inference layer is obtained
through parameter binding.
Since no distinction is made between inference and task layer, no connecting primitives
between these layers are required.

3.8.2 The Formal and Operational View

The algebraic components of K

BS

SF (used for data representation) consist of terms and
equations over these terms. These can be given the usual initial algebra semantics, meaning
that terms are equal only when they can be proven equal by the equations. Elements of a sort
then consist of all the equivalence sets of terms in that sort, and only these.
The domain knowledge in K

BS

SF is represented by theories. Since these are sets of first order
sentences, the usual Tarskian model theoretic semantics applies.
For the imperative language in task bodies no declarative formal semantics is given, but the
properties of such simple imperative languages are well known [Dij76].
Given the very powerful primitives in K

BS

SF (algebraic rewrite rules, deductive closures of
full first-order theories) K

BS

SF could not be supported by an efficient interpreter, although
interpreters for subsets of the language would seem feasible. Tools like type- and syntax-
checkers are currently under development.

3.8.3 Applications and Discussion

[JoS92] gives a small formulation of a model for heuristic classification, while in [VJS93] a
simple time scheduling task is formalised.
The most striking thing about K

BS

SF is its strong exploitation of parameterization to formulate
generic models. The use of such parameterization for the link between domain and inference
layer seems an elegant and compact yet powerful solution.
K

BS

SF is not specifically designed with KADS model of expertise in mind, and therefore
departs in some places from this model: the lack of separation between inference and task layer
is a sharp example of this. This lack of distinction is particularly important since a procedural
language is used at this combined level, which leaves the KADS inference layer without a
declarative description and mixes control knowledge into the inference structure. This is in
contrast to many of the other languages. K

BS

SF also joins the ranks of KARL and MoMo by
providing graphical representations for almost all the language elements, so that visual
presentation and manipulation of K

BS

SF models is possible.
With its powerful representational mechanisms, K

BS

SF would seem more suited for formal

Language Comparison 32

analysis of a model than for simulation or prototyping. In this sense, it is close in motivation
to a language like (ML)

2

, although the actual formal constructions differ considerably between
the two languages. The current lack of a formal and complete semantics of K

BS

SF is therefore
an important shortcoming.

Chapter 4
How can these different languages be compared?

In this section, we will apply the comparison criteria from section 2 to the languages that have
been described in section 3. Rather than simply

discovering

 differences between the languages
through applying the comparison criteria, we are also interested in

explaining

 these
differences. One of the main explanatory forces behind the differences between the various
languages will be the different

aims

 of the various languages. We can distinguish three classes
of languages:

10

• Languages which aim to

operationalise

 models of expertise, like OMOS, MODEL-K and
MoMo. These languages add the advantages of prototyping, i.e. the evaluation by a
running program, to the modelling process.

• Languages which aim to

formalize

 models of expertise like (ML)

2

, QIL and K

BS

SF. These
languages allow a precise formulation of a model of expertise and enable checks for
consistency, redundancy, and correctness by verification techniques.

• Languages which attempt

both

, like FORKADS and KARL. These languages aim at
integrating the advantages of formal and operational languages.

Our comparison criteria in section 2 were organised in 3 groups: epistemological, formal and
operational. Clearly, the epistemological criteria apply to all languages. The formal criteria are
mainly relevant to languages of the last two classes mentioned above, while the operational
criteria are concerned with languages of the first and last class. Beyond simply limiting the
applicability of our criteria to the various classes of languages, this division between
operational and formalisation languages (or both) will also serve to explain many of the
differences to be found in the comparison of these languages in this section.

4.1 Comparison from the Operational View

Not all languages

aim

 to operationalise models of expertise (criterion O1). For example,
K

BS

SF is not discussed as an operational language and is therefore not included in this part of
the comparison. QIL and (ML)

2

 are executable in principle, requiring a theorem prover.
FORKADS, KARL, MODEL-K, MoMo, and OMOS are languages which aim to

operationalise

 models of expertise.
Concerning the

computational paradigm

(crit. O2), we can use the operational vs.
formalisation distinction among the languages. We see that all of the languages aiming at
formalisation have chosen logic as their main computational paradigm. Other paradigms (e.g.
functional) are chosen by the operationalization languages.
Significant differences exist concerning the

operational semantics

of the languages (crit. O3):

10. A similar point of view is taken in [Sch92].

Language Comparison 33

• All the operational languages have an operational semantics (OMOS, MODEL-K,
MoMO, FORKADS and KARL)

• Of the two languages that aim to combine operationalization and formalisation
(FORKADS and KARL) only KARL has both an operational and a declarative semantics,
and these coincide. Furthermore, it is the only language whose declarative semantics is
efficiently computable.

• Of the languages aiming at formalisation (FORKADS, KARL, (ML)

2

, QIL, K

BS

SF) all
but FORKADS have a declarative semantics, but the pure formalisation languages
((ML)

2

, QIL, K

BS

SF) either lack an operational semantics (K

BS

SF), or have an
operational semantics which is ineffective (QIL) or that is only a subset of the declarative
semantics ((ML)

2

).
The question whether a language is a means to operationalise a model of expertise is highly
related to its

computational power

 (crit O4). All languages which aim to operationalise models
of expertise have a computational power which is less or equal to Turing completeness
(OMOS is the only language which has a computational power less than Turing completeness).
QIL and (ML)

2

 (which could be executed by use of a theorem prover) have at least the
expressive power of first-order logic.
MODEL-K and OMOS are based on BABYLON and MoMo is based on Lisp (CLOS).

Efficiency

 (crit. O5) is not discussed for these languages but it is clear that the implementation
of inference actions in BABYLON or Lisp and the very limited manner of inference actions in
OMOS should allow an efficient evaluation. As a consequence, specifications in MODEL-K
or MoMo could contain a significant amount of symbol level control knowledge, i.e.
knowledge about the implementation of single inference steps by a programming language
(see [Sch92] for the distinction of symbol level and knowledge level control).

11

 FORKADS
bypasses this by a set of predefined and implemented primitive inference actions. The main
difference between a formal and operational language like KARL and an operationalization
language like MODEL-K is how they model inference action bodies. In KARL primitive
inference actions bodies are described declaratively whereas in MODEL-K they are
implemented algorithmically. Therefore, an operational knowledge specification in KARL
does not require specification of symbol level control. As a consequence, the evaluation of
declaratively described inference actions in KARL is less

efficient

 than the evaluation of
inference actions which are implemented by efficient algorithms and data structures as is
possible in MODEL-K or FORKADS by its procedural attachment. To bypass this problem,
KARL restricted the logical language to stratified Horn logic with finite models

12

 and applies
bottom-up evaluation techniques developed in the domain of deductive data bases. The
languages (ML)

2

 and QIL, which have the expressive power of first-order logic, require a
theorem-prover as operationalization, which in general allows neither an effective (because of

11. At the knowledge level there is a description of the domain knowledge and the used problem-solving method which is
required by an agent to solve the problem effectively and efficiently. At the symbol level there is a description of efficient
algorithmic solutions and data structures for implementing an efficient computer program, i.e. a very specific agent.
12. It is not the perfect models that are finite (because, for example, KARL contains all Integers) but the extensions of user-
defined predicates, which are computed by a fixpoint operator.

Language Comparison 34

the incompleteness of proof techniques for first-order logic) nor an efficient evaluation.

13

Table 1 summarizes this section. It shows the almost complete correspondence between the
aim of the language on the one hand, and the values of the various operational properties on
the other.

4.2 Comparison from the Formal View

Again, we have to ask for the

aim

 of the different languages (criterion F1). K

BS

SF, QIL, and
(ML)

2

 are developed for formalizing models of expertise. FORKADS and KARL both aim to
operationalise and to formalize models of expertise. MODEL-K, MoMo, and OMOS are not
discussed as formalization languages and are therefore not included in this section.
All of these languages use logic as their fundamental

mathematical basis

(crit. F2), either full
predicate logic, or restricted to Horn clauses. K

BS

SF also uses algebraic structures.
The essence of a formal language is its

formal semantics

 (crit F3). QIL, (ML)

2

 and KARL
fulfil this requirement by having a declarative semantics. At the domain and inference layers,
QIL and (ML)

2

 apply the standard Tarskian semantics for first order predicate logic, while
KARL uses the minimal, i.e. perfect, model semantics from logic programming and deductive

a. Efficiency of FORKADS is not discussed in the literature.

13. In [THR91]] a prototype interpreter Si(ML)

2

for a subset of (ML)

2

 is discussed. The main restriction is the restriction on
Horn logic. This subset of (ML)

2

 is quite similar to KARL.

1. Comparison at the operational level

Language
Executable

(O1)
Computat.
Par. (O2)

Semantics
(O3)

Expressiveness
(O4)

Effectiveness
/Efficiency

(O4,O5)

OMOS Yes Procedural Operational less than Turing
complete

Yes/Yes

MODEL-K Yes Functional Operational Turing complete Yes/Yes

MoMo Yes Functional Operational Turing complete Yes/Yes

FORKADS Yes Logical Operational Turing complete Yes/?

a

KARL Yes Logical Operational
 and
declarative

Turing complete Yes/No

(ML)

2

Not
effectively

Logical Declarative more than Turing
complete

No/No

QIL Not
effectively

Logical Declarative more than Turing
complete

No/No

K

BS

SF No Logical Declarative more than Turing
complete

No/No

Language Comparison 35

databases. Strikingly, at the task-layer all of these languages use a Kripke-type semantics for
a modal logic (either temporal or dynamic). Some important differences are found in the
solutions for expressing

dynamic behaviour

 in a declarative framework (crit. F2):
• FORKADS and K

BS

SF do not have a declarative semantics for dynamic behaviour.
• (ML)

2

 and KARL use dynamic logic to model behaviour. Dynamic logic [Koz90] was
developed to describe procedural programs declaratively. Programs are interpreted by
binary relations which express the connection of input and output of a program. Whereas
(ML)

2

 stores the whole traces, i.e. all computed values, of a problem-solving process as
an increasing list of values in the variables, KARL stores the most recently computed
values, only.

• QIL uses temporal logic to model behaviour. Derived results are indexed by time-points,
and the dynamics of the computation are modelled by the sequence of these time-points at
which results are derived.

It is no surprise, that the two languages FORKADS and KARL which aim to operationalise
and formalize models of expertise provide the least

expressive power

 of all formalization
languages (crit. F4). FORKADS and KARL are Turing-complete, whereas the languages
K

BS

SF, (ML)

2

, and QIL are at least omega-complete (

∞

-complete), i.e. finite axioms sets in
these languages have at least the expressive power of finite axioms sets in first-order logic. It
should be remarked as a critical comment that none of all these languages specify their exact
degree of expressiveness.
Table 2 summarizes this section. It shows a remarkable degree of similarity between the formal
foundations of all these languages.

4.3 Comparison at the Epistemological level

In this section we will compare the languages on the basis of their different ways of
representing KADS models. It will turn out that there is rather widespread agreement about the
primitives required for the domain and task layers, and we will sketch these briefly. Most
interesting for the purposes of our comparison are the mechanisms used for representing the
inference layer. This is where we find the greatest variety of representations and
interpretations.

2. Comparison at the formal level

Language
Semantics of static
knowledge (F2,F3)

Semantics of dynamic
knowledge (F2,F3)

Expressiveness
(F4)

FORKADS Tarskian models No declarative semantics Turing complete

KARL Perfect Herbrand models Kripke models Turing complete

(ML)

2

Tarskian models Kripke models At least first-
order logic

QIL Tarskian models Kripke models At least first-
order logic

K

BS

SF Tarskian models and initial
algebras

no declarative semantics At least first-
order logic

Language Comparison 36

4.3.1 Domain layer

Apparently, much agreement exists over the

representation primitives

required at the domain
layer (criterion D1). The dominant choice here is some type of declarative formalism, based
on either logic or frames and hierarchies. An exception is MoMo, which deliberately leaves
the choice of the domain language open. Among the different languages, we find much
variation in syntactic form, but this is often only a superficial matter from a technical point of
view. From a conceptual point of view, one can distinguish between languages like QIL or
(ML)

2

which propose a uniform representation (e.g. logic extended by typing and
modularisation) and languages like MODEL-K or KARL which propose representations with
a greater number of different modelling primitives. This allows the expression of
epistemologically different types of knowledge by different modelling primitives. In contrast
with the original KADS literature, none of these languages has chosen a KL-ONE like
representation of concepts, instances, properties, values and relations, although all the
languages are rich enough to express these notions.
Because all these languages use some form of declarative formalism (logic or frames), it is
indeed possible to represent domain knowledge

independent from its use

 and free from control
knowledge (crit. D2). Some languages explicitly distinguish between

data and knowledge

 at
the domain layer (crit. D3), e.g. KARL and K

BS

SF, while other languages do not enforce this
distinction (although it is still possible to make such a distinction, e.g. in (ML)

2

 or QIL). This
distinction is indeed useful (it is also integrated in the new KADS-II framework [WVS93] as
the case-model), and it is therefore commendable to provide syntactic support for this
distinction within the language.
The choice for the language used at the domain layer immediately imposes a number of
assumptions about what

types of knowledge

 can and cannot be modelled at the domain layer
(crit. D4). In particular, none of the languages include mechanisms for dealing with uncertain
or time-dependent domain knowledge (although a number of languages could be easily
adapted to deal with such extensions). A more deeply rooted assumption (at least for the logic-
based languages) concerns the monotonicity of domain layer knowledge. The inheritance
mechanism of some of the frame-based languages can to some extent deal with non-monotonic
knowledge (by overriding of defaults)
A significant difference among the languages at the domain layer is perhaps the various
mechanisms that are employed for

modularisation

 of domain-layer constructs (crit. D6). These
vary from modules (subtheories) with a simple union operation to sophisticated
parameterization mechanisms as in K

BS

SF. All the languages besides QIL allow some form of

inferencing

 at the domain layer (crit. D5): either deduction in the logic-based languages, or
inheritance in the frame-based languages.
 Table 3 summarises the choices for the languages used at the domain layer. The table only

3. Comparison at the domain layer

Language
Language for domain layer

(D1)
knowledge/data
distinction (D3)

modularisation
(D6)

OMOS Frames, hierarchy, predicates no no

MODEL-K Frames, hierarchy, predicates no no

MoMo Open no no

Language Comparison 37

shows those criteria where there is some variation among the languages. There is widespread
agreement about the choices at this layer, with the only distinction being that the operational
languages use frames and the formalisation languages use logic as the main basis for this layer.

4.3.2 Inference Layer

Of all the layers of a KADS model, this layer accounts for the largest differences between the
various languages, not only in the syntactic constructions, but also in the interpretation of the
constituents of a KADS inference layer.
One of the central components of an inference layer are the

primitive inference actions

, the
others being knowledge roles. Rather widespread agreement exists on the choice of language
to represent these inference actions (criterion I1), and once again the distinction between
operational and formalisation language is crucial: table 4 shows that all operational languages
use a functional representation of an inference action, and all formalisation languages use a
logical representation.
Besides the inference actions, the

knowledge roles

are the other main modelling primitive at
the inference layer. Much more consensus exists on the representation of these knowledge
roles (crit. I2). Table 4 shows that all languages represent these as either sets or as lists of the
input and output elements of inference actions.
The large differences between the various languages in their interpretation of a KADS
inference layer are clearly illustrated by the relation between domain and inference layer in the
various languages (the

domain view

, crit. I3). A crucial aspect of the inference layer in a KADS
model is that it should abstract from the domain layer (crit. I4). In this way, the inference layer
can describe a generic inference model, which still has access to the contents of the domain
knowledge, but that does not depend on its specific contents. To achieve this aim, almost every
language introduces some mechanism to express a mapping between domain and inference
layer (see table 4). However, the details of these mechanisms differ greatly, and no two
languages use the same mechanism. No agreement exists on the relative merits of these
mechanisms. An exception to the use of a mapping mechanism is OMOS, which uses direct
references from the inference to the domain layer (thereby violating the requirements of a

FORKADS Sorted-logic no no

KARL Frames + Logic yes modules with
import/export

(ML)

2

Sorted-logic no subtheories
and union

QIL Logic no clause-index
arguments

K

BS

SF Logic and algebraic equality
theory

yes parameterized
theories

3. Comparison at the domain layer

Language
Language for domain layer

(D1)
knowledge/data
distinction (D3)

modularisation
(D6)

Language Comparison 38

KADS inference layer). In some other languages such direct reference to domain knowledge
is in fact possible (QIL, KARL), but would be regarded as abuse of the language.
The different representations of inference actions have consequences for another important
requirement of a KADS inference layer, namely that the inference actions be free from

internal
control

(crit I5)

.

 This requirement holds for the formalisation languages which use a
declarative logical formulation of the I/O-relation of an inference action, but does not hold for
the operational languages OMOS, MODEL-K, and MoMo, because the functional or
procedural representation makes a much greater algorithmic commitment. The description of
the model of expertise is mixed with implementational aspects. Clearly, this larger amount of
control knowledge inside an inference action is motivated by the operational aim of these
languages.
Another aspect of control at the inference layer is less clear, and concerns

control among the
inference actions

(such as the sequence they should be executed in, crit. I6). KADS states that
such control among inference actions should not be expressed at the inference layer. In some
languages (e.g. MoMo), it is possible to express such control, although this is not the intended
use of this language. In other languages (e.g (ML)

2

), it is impossible to express such control,
but the data-dependencies between inference actions (as expressed in the inference structure)
is taken as a restriction on the possible execution orders of these inference actions. Yet other
languages (e.g. KARL) leave even this representation of control among inference actions out
of the inference layer.
The network of knowledge roles and inference actions at the inference layer (the inference
structure) represents the data-dependencies between inference actions, and KADS states that
the only

communication between inference actions

 is through connecting knowledge roles
(crit. I7). Although unintended, in many languages it is in fact possible to have other
communications between inference actions (e.g. via shared access to the domain layer). Again,
we see a gap between the intended and the possible uses of a language.
The original KADS framework proposed a small set of

fixed inferences

 that should be used as
building blocks for inference structures (crit. I8). It is therefore rather surprising that most of
the languages actually allow an open-ended set of inferences to be specified by the user. The
only exceptions are OMOS and FORKADS, which do restrict the set of possible inferences.
OMOS provides a template for inference actions which must be parameterized and FORKADS
provides a set of predefined inference actions. Until now, it is not clear whether this set is
complete, or how large a complete set of elementary inference actions must be. Recent work
in the KADS-II project [Abe93] suggests that an open-ended set of schemes for inference
actions might be more appropriate than a closed set of fixed inferences.

14

The choice of representation of an inference action (as apparently determined by the
operational or formalisation aim of a language) also accounts for the degree of

non-
determinism

 of an inference action (crit. I9). In KADS, an inference action need not be
functional, in the sense that a single input value can result in a number of different output
values. Non-determinism at the inference layer is defined as the possibility to compute one of
these output values for a single input value, without specifying which particular output value
should be computed. Table 4 shows that none of the operational languages can express this
type of non-determinism (since they all use a functional representation of an inference action).
All the formalisation languages (who use a logical representation) can express this. An
exception to this pattern is KARL (a language aiming at both operationalization and
formalisation). KARL is deterministic since it always computes the entire extension of an
inference action (i.e. all input/output pairs). It is clear that the removal of non-determinism is

14. See also [Cla92a] who proposes a library of model construction operators instead of libraries of problem-solving methods
or inference actions.

Language Comparison 39

advantageous for operational languages.
Since the original KADS framework did not provide a mechanism for

hierarchical
decomposition

at the inference layer (an inference layer is a flat graph of inference actions and
knowledge roles), not many of the languages incorporate such a decomposition mechanism at
this layer (crit. I10). Exceptions are KARL (which does provide a decomposition mechanism
at the inference layer), and K

BS

SF, which does not distinguish between task- and inference-
layer, and is thus able to exploit its decomposition mechanism for the task layer at the inference
layer.
Looking at table 4, which lists the most varying criteria for the inference layer, we can say in
summary that the distinction between operational and formalisation languages can account for
many, although not all of the difference between the languages at the inference layer. The
representation of inference actions, the amount of control knowledge inside an inference action
and the possibility to represent non-deterministic inference actions can all be explained by
looking at the operational or formal aim of the language. Other differences however seem to
form genuinely different interpretations of the inference layer in the KADS model of expertise,
such as the need for a decomposition mechanism, a set of predefined inference actions, and the
description of control among the inference actions. A remarkable variety of mechanisms has
been employed to obtain an abstraction between domain and inference layer, which all more
or less agree on the overall aim of this mapping, but differ greatly on their technical details.

4.3.3 Task layer

As with the domain layer, and unlike the inference layer, much agreement again exists

4. Comparison at the inference layer

Language
Language for

inference
actions (I1)

Repre-
sentation of
knowledge
roles (I2)

Mapping to
domain layer

(I3)

Control
inside

inference
actions (I5)

Predefined
set of

inferences
(I8)

Non
determ.

(I9)

Decom-
position
mecha-

nism (I10)

OMOS Functional Set Direct naming yes Yes No No

MODEL-K Functional List Parameter
binding

yes No No No

MoMo Functional Multi-set LISP code yes No No No

FORKADS Logical Set Type-graph
morphism

no Yes Yes No

KARL Logical Set Stratified
clauses

no No No Yes

(ML)

2

Logical List Rewrite rules no No Yes No

QIL Logical Set Horn clauses no No Yes No

K

BS

SF Logical Set Parameter
binding

no No Yes Yes

Language Comparison 40

concerning the primitives to be used on the task layer, at least when looking at the languages
superficially. The dominant choice for the

representation primitives

(criterion T1) is a
procedural language with classical constructions from programming languages, such as
sequence, loop, branching, and some

decomposition mechanism

 like subroutines (crit. T2).
QIL is an exception since it computes task-structures dynamically.

When looking in slightly more detail, we should consider issues like the

mechanism used to
represent the state of the problem-solving process

(crit. T3), what types of

conditional
expressions

 can be used to inspect the contents of knowledge roles (crit. T4), and whether

specifications can be non-deterministic

 (crit. T6). The dominant view on how to represent the

state

 is clearly by the current contents of the knowledge roles. The only exceptions is (ML)

2

,
which has a richer representation, namely not only the current but also

all

 the past contents of
the knowledge roles. Concerning the type of

conditional

expressions

 allowed on the task layer,
we see that all languages restrict this to conditional expressions on the contents of knowledge
roles, but are otherwise rather liberal in the type of expressions that they allow. With the
exception of OMOS, MoMo, and KARL they allow arbitrary tests on the contents of the
knowledge roles. These liberal possibilities are in conflict with more recent KADS literature
which has proposed that such expressions should perhaps be limited to a fixed set of rather
simple tests on knowledge roles regarded as sets or lists, such as membership, cardinality,
element-selection, etc.
All of the languages maintain a strict

separation

 between task and domain layer (crit. T5).
As a final aspect, we see that only three languages allow for

non-deterministic

 specifications
of the control knowledge (that is to say: to leave certain control choices unspecified). All other
language enforce a deterministic control regime.
Table 5 summarises these distinctions. No important structural differences are found among
the languages at the task-layer, and both operational and formalisation languages have made
similar choices at this layer.

5. Comparison at the task layer

Languages
Conditional expressions

(T4)

Non-
determinism

 (T6)

OMOS Did most recent inference action change the
content of a knowledge role?

No

MODEL-K Arbitrary LISP predicates on knowledge roles No

MoMo Cardinality of knowledge roles plus success/failure
of inference actions

Yes

FORKADS Arbitrary test on knowledge roles No

KARL Does a knowledge role contain an element of a
specific class or not?

No

(ML)

2

Arbitrary predicates on knowledge roles Yes

QIL --- ---

K

BS

SF Arbitrary predicates on knowledge roles Yes

Language Comparison 41

4.3.4 Strategic Layer

MODEL-K is the only language that makes a serious attempt at providing constructs for the
strategic layer. The REFLECT project [HWB92]) has suggested that the strategic layer should
be regarded as a full KADS model in its own right, whose domain layer consists of the first 3
layers of the original model, and it has worked out this suggestion in MODEL-K. [HaB92]
speculatively regards the strategic layer in (ML)

2

as constructive theorem proving in dynamic
logic. QIL’s strategy layer as theorem-proving in a temporal logic is very similar in spirit.
However, no general agreement on the use of the strategic layer exists conceptually, and this
is the main reason that no detailed language constructs have been introduced for this layer.

4.3.5 The connections between the layers

As already discussed in the previous section, a large variety of mechanisms is employed to
achieve

the connections between inference and domain layer

 (criterion C1), without much
agreement on the relative merits of these mechanisms. Every language with the exception of
OMOS includes such a mechanism. In some languages, it is strictly speaking possible to
circumvent the connection mechanism, and to refer directly to the domain layer expressions
from the inference layer. OMOS is the only language in which this direct reference is the only
possibility. An important property of the relation between domain and inference layer in
KADS models is the fact that each knowledge role element is only allowed to refer to a single
domain-layer expression. In other words, the mapping from inference to domain layer must be
functional, but need not be injective. The languages differ in the extent to which they enforce
this constraint. For instance, the parameter binding mechanism from K

BS

SF guarantees that
the mapping from inference to domain layer is functional. In (ML)

2

, it is possible to specify a
non-functional mapping, but whether a specific mapping is functional or not is a decidable
property. A language like MoMo, with its very free-form specification of the mapping gives
no guarantee on the properties of the mapping.
Whereas a multitude of complex mechanisms is used to relate domain and inference layer,

the
relation between task and inference layer

 (crit. C2) is much simpler. All languages employ a
one-to-one relation between primitive tasks and inference actions for the relation between
these two layers, and most often this mapping is realised by simply identifying the names of
primitive tasks at the task layer with the inference actions at the inference layer. The presence
of a hierarchical decomposition mechanism at the inference layer (in KARL and K

BS

SF)
somewhat complicates the relation with the task layer. In KARL, the entire subtask-
decomposition must have a one-to-one relation with the decomposition at the inference layer.
In K

BS

SF, the two layers have simply been merged into one language, removing the need for
a mapping mechanism.
One of the reasons for separating the model of expertise into different layers is to allow these
layers to be independently reusable (crit. C3). Almost all languages allow the reuse of a single
domain layer by multiple inference layers, and, vice versa, the reuse of a single inference layer
for multiple domain layers. The exception is OMOS, whose inference layer makes direct
reference to domain layer terminology, so that its inference layer cannot be reused. Although
the reuse between domain and inference layer is possible in principle in almost all languages,
not many examples of such reuse have been reported: some inference structures have been
reused in multiple domains, but we have found no report on the reuse of a domain layer by
multiple inference layers. Because all task layers make direct reference to the primitive
inferences at the inference layer, task layers can in general not be reused for different inference

Language Comparison 42

layers. The extent to which an inference layer can be reused by different task layers directly
depends on the amount of control knowledge encoded in the inference layer in a particular
language.

Conclusion

In this concluding section of the paper, we will discuss the following topics: Have these formal
languages clarified the informal KADS models? How do these knowledge-engineering
languages relate to similar work in software engineering? How can we combine these different
languages? What themes for future work can we distil from all this?

Clarification of informal KADS models

One of the motivations for work on formal languages is to clarify the informal notions which
inspired them. This process has indeed taken place. By developing more precise languages to
express KADS model of expertise, multiple interpretations of these models were revealed. An
example of this are the multiple interpretations of inference structures, and different properties
of the connections between domain and inference layer. A second example of this is that in the
informal KADS literature, it was claimed that the domain layer “can be viewed as a declarative
theory of the domain, and adding a simple deductive capability would enable a system in
theory to solve all problems solvable by the theory” [WSB92]. More detailed analysis with the
formal languages described in this paper showed this not to be the cases (e.g. imagine a
deductive causal theory that is used abductively for diagnostic reasoning). Furthermore, the
development of these languages has shown the inadequacy of some aspects of KADS models,
since almost every language deviated in these aspects from the original KADS literature.
Example of this are the use of KL-ONE at the domain layer, and the notion of a fixed set of
inferences at the inference layer.

Comparison with software engineering and information systems development

One reaction to the so-called

software crises

 in the late sixties was the development of
informal, formal, and operational specification languages in the domain of software
engineering (SE) and later by the information systems development (ISD) community. In
[IEEE77] and in [ACM82] a survey on informal and operational specification techniques is
given. In [ThD90], [Zav91] the experiences with some of these approaches after a decade of
applications is reported. Currently, there exists a huge number of these languages.

15

Originally, two mainstreams of research were the development of informal or operational
specification techniques. More recently, the development of formal specification techniques,
i.e. specification languages with a declarative semantics, which also have a long tradition, has
become the most important line of research.

EREA

 [DHR91], the short-cut for Entity, Relation,
Attribute, and Event, the

Modal Action Logic (MAL)

 [FiP87],

OBJ

 [Shu89], the

Requirements
Modelling Language (RML)

 [GBM86], and

TROLL

 [HJS93],

VDM

, the short-cut for

Vienna
Development Methods

, and

Z

 (cf. [BHL90] for VDM and Z) are some examples for formal
specification languages in SE and ISD. Current lines of research are, for example, type-
checking of specifications and the development of mechanizable proof theories based on the
formal semantics of the languages [AGM93], [BFL93]. Although this is a very rough survey,
it illustrates that to a some extent research in knowledge engineering (KE) reinvents the wheel.

15. In [AFL92a] a comparison of KARL with the specification language of the INCOME project [LNO89], which is used to
specify information systems, can be found.

Language Comparison 43

This uncomfortable situation has been changed to some extent in the last years because the
number of publications has increased which relate the work in KE to work which has already
been done in the domain of SE and ISD ([AFS90], [JSV91], [Sch92], [FAL93]).
One point where the languages from KE may have an edge of those from SE is that the former
are strongly based on prescriptive conceptual models, such as the KADS model of expertise
for the languages discussed in this paper. A model in these languages is much closer to an
informal or semiformal description than models in low-level (i.e., general-purpose) languages
like Z, which can be used to describe arbitrary programs via finite set theory. KE languages
use the fact that they are used to describe a specific class of software artifacts. A lot of
approaches in SE like Structured Analysis and Object-Oriented Analysis are based on
semiformal methods only. Vice versa, most formal approaches do not aiming on integrating
formal models with informal or semiformal specifications. This does not only concern the
definition of graphical representations for the modelling primitives of a formal language but
touch the question how a description of a system at the conceptual level does correspond with
its description as a partial function. The tight integration of conceptual and mathematical
description techniques is something that could be learned by SE from KE. Admittedly this is
more easy in the case of KE, because its restricted class of software artefacts which are
modelled.

16

Combining the languages: the happy language family

Figure 7.

The happy family of the different languages

16. By the way, [FAL93] shows how KARL can be used to formalize and operationalise descriptions techniques of Struc-
tured Analysis [You89]. Therefore, the achieved results in KE can be generalized.

liguistical level =>

elicitation

conceptual level =>
interpretation

Experts

logical level =>
formalization

operational level =>

operationalization

Knowledge Acquisition

restricted natural language

(ML)2

KARL, for example

Design

MODEL-K,m
od

el
lin

g
ab

ili
ty

natural language

formal strength

MoMo

Language Comparison 44

As we have seen in the preceding section, many of the differences between the languages do
not arise from different solutions to the same goal, but instead from the different goals that the
languages have. Formal and operational languages are complementary, rather than
contradictory. This clearly opens the possibility of combining these languages in different
stages of the knowledge engineering process (see figure 7). For instance, first a language like
(ML)

2

 could be used to formalise a model of expertise, since for the translation of informally
specified expertise into a formal representation, it is helpful to have as much expressive power
as possible. A language like KARL can be used in a second step to make the model of expertise
executable. Finally, a language like MODEL-K could be used to increase the efficiency by
implementing the bodies of the inference actions efficiently (instead of describing them
declaratively, as done in KARL). This process of translating between these languages can
support the transition from specification to design and implementation without destroying the
conceptual structure of the modelled expertise.

Future work

From the analysis of the languages in this paper, three areas for future work in this field
become apparent.
The first area where further work is needed is

 applications

. Very few large-scale applications
of any of these languages has been reported. As a result, the claim of reusability of the generic
interpretation models expressed in these languages can not be validated. A point closely
related to this is the need for libraries of predefined models which are expressed in these
languages.
A second area where further work is required is

support

 for the use of these languages. The
specifications expressed in these languages quickly become large and complicated, and
automated support in the form of syntax- and type-checkers and dedicated editors is
indispensable. Much research in this area has already been done in the context of traditional
software engineering specification languages, and should be applied to the knowledge
engineering languages discussed here. Another form of support that is badly needed are

guidelines

 for the use of these languages. In all of the languages discussed in this paper, there
is a large difference between what

can

 syntactically be written down, and what

should

 be
written down if we want to respect the constraints of KADS models. Since the intended use of
the languages can not always be easily characterised syntactically, a further set of guidelines
are required on this intended use. Most languages give no such guidelines beyond the informal
text in the papers describing the languages. An early attempt at more systematic guidelines for
(ML)

2

 is the unpublished [Abe92], so much work remains to be done in this area.
A final area of further work is on the

formal semantics

 of the languages. Even those languages
that give some form of formal semantics (KARL, K

BS

SF, (ML)

2

) do so either only for
components of the language without describing how this component-wise semantics should be
combined (K

BS

SF, (ML)

2

), or use a nonstandard integration of the components of the
semantics which deserves further study (KARL).

Acknowledgement

We thank all participants of the workshops on languages for KADS models (at GMD,
Bonn in May 1992 and at the University of Karlsruhe in May 1993) for helpful and fruitful
discussions: Stuart Aitken (University of Nottingham); Manfred Aben and Peter Terpstra
(University of Amsterdam); Hans Akkermans and John Balder (ECN, Petten); Juergen
Angele, Joachim Geidel, Dieter Landes, Susanne Neubert and Rudi Studer (University of
Karlsruhe); Frances Brazier, Jan Treur and Mark Willems (Free University, Amsterdam);
Mikael Eriksson and Per Kreuger (SICS, Sweden); Mihai Barbuceanu (Institute of
Informatics, Bucharest); Willem Jonker, Jan Willem Spee and Linda in’t Veld (PTT

Language Comparison 45

Groningen); Werner Karbach, Marc Linster, Angi and Hans Voss (GMD Bonn); Thomas
Wetter (IBM Heidelberg).

References

[Abe92] M. Aben: Guidelines for the Formal Specification of KADS Models of Expertise. In [BaA92a].
[Abe93] M. Aben: Formally Specifying Reusable Knowledge Model Components. In

Knowledge Acquisition
Journal

, vol 5, no 2, 1993.
[AbH92] M. Aben and F. van Harmelen,

Design and Implementation of Si (ML)

2

2.0

 , technical report KADS-
II/T1.2/SP/UvA/030/2.0, SWI, University of Amsterdam, October 1992

[ACM82]

ACM SIGSOFT Software Engineering Notes

, vol 7, no 5, 1982.
[AFL91a] J. Angele, D. Fensel, D. Landes, and R. Studer: An Assignment Problem in Sisyphus - No Problem

with KARL. In [Lin92c].
[AFL92a] J. Angele, D. Fensel, and D. Landes: Two Languages to Do the Same? In

Proceedings of the 2nd
Workshop Informationssysteme und Künstliche Intelligenz

, February 24-26, 1992, Ulm, Informatik-
Fachberichte, no 303, Springer-Verlag, Berlin, 1992.

[AFL92b] J. Angele, D. Fensel und D. Landes: An Executable Model at the Knowledge Level for the Office-
Assignment Task. In [Lin92d].

[AFL93] J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer: Model-based and Incremental
Knowledge Engineering: The MIKE Approach. In J. Cuena (ed.),

Knowledge

Oriented Software
Design, IFIP Transactions A-27

, North Holland, Amsterdam, 1993..
[AFS90] J. Angele, D. Fensel, and R. Studer: Applying Software Engineering Methods and Techniques to

Knowledge Engineering. In D. Ehrenberg et.al. (eds.),

Wissensbasierte Systeme in der
Betriebswirtschaft, Reihe betriebliche Informations- und Kommunikationssysteme, no 15

, Erich
Schmidt Verlag, Berlin, 1990.

[AFS94] J. Angele, D. Fensel, and R. Studer: The Model of Expertise in KARL. In

Proceedings of the 2nd
World Congress on Expert Systems

, Lisbon/Estoril, Portugal, January 10-14, 1994.
[AGM93] D. J. Andrews, J. F. Groote, C. A. Middelburg (eds.):

Preliminary Proceedings of the International
Workshop on Semantics of Specification Languages SoSL

, Utrecht, The Netherlands, October 25-
27, 1993.

[AHS93] H. Akkermans, F. van Harmelen, G. Schreiber, and B. Wielinga: A Formalisation of Knowledge-
Level Models for Knowledge Acquisition. In

International Journal of Intelligent Systems

,

Special
Issue on Knowledge Acquisition

, no 2, vol 8, 1993.
[AKS93] S. Aitken, O. Kühn, N. Shadbolt, F. Schmalhofer: A Conceptual Model of Hierarchical Skeletal

Planning and its Formalization. In

Proceedings of the 3rd KADS Meeting

, Munich, March 8-9, 1993.
[Alf90] M. Alford: SREM at the age of eight; the distributed computing design system. In [ThD90], pp. 392-

402.
[Ang92] J. Angele: Cover and Differentiate Remodeled in KARL. In [BaK92].
[Ang93] J. Angele: Operationalisierung des Modells der Expertise mit KARL (Operationalization of a Model

of Expertise with KARL), Ph. D. thesis, University of Karlsruhe, 1993 (in German).
[ARS92] S. Aitken, H. Reichgelt, N. Shadbolt: Representing KADS models in QIL, AI Group, University of

Nottingham, Working Paper WP-006, 1992.
[BaA92a] J. Balder and H. Akkermans: TheMe: An Environment for Building Formal KADS-II Models of

Expertise. In

AI Communications

, vol 5, no 3, September 1992.
[BaA92b] J. Balder and H. Akkermans (eds.): Formal Methods For Knowledge Modelling in the

CommonKADS Methodology: A Compilation, report ECN-C-92-080, Netherlands Energy
Research Foundation ECN, ZG Petten, The Netherlands, December 1992.

[BaK92] C. Bauer and W. Karbach (eds.):

Interpretation Models for KADS - Proceedings of the 2nd KADS
User Meeting (KUM´92)

, Muenich, February 17-18, 1992, GMD report no. 212, 1992.
[Bar93] M. Barbuceanu: Models: Towards Integrated Knowledge Modeling Environments. In

Knowledge
Acquisition

, vol 5, no 3, 1993.
[Bee90] C. Beeri: A formal approach to object-oriented databases. In

Data and Knowledge Engineering

, vol
5, no 4, 1990.

[BFL93] J. C. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R. Moore, B. Ritchie:

Proof in VDM: A
Practitioner´s Guide

, Springer Verlag, Berlin, 1993.
[BHA93] J. Balder, F.v. Harmelen, and M. Aben: A KADS/(ML)

2

 Model of a Scheduling Task. In [TrW93].
[BHL90] D. Bjørner, C. A. R. Hoare, and H. Langmaack (eds.):

VDM´90. VDM and Z - Formal Methods in
Software Development

, Lecture Notes in Computer Science, no 428, Springer-Verlag, Berlin, 1990.
[Bra79] R. J. Brachman: On the Epistemological Status of Semantic Networks. In N. V. Findler (eds.),

Associative Networks: Representation and Use of Knowledge by Computers

, Academic Press, New

Language Comparison 46

York, 1979.
[BRW90] B. Bredeweg, M. Reinders, and B. Wielinga: GARP: A Unified Approach to Qualitative Reasoning,

report VF-memo 117, University of Amsterdam, 1990.
[BüW92] S. Bürsner and Th. Wetter: An Operational KADS Modelling Language and Tool Support for its

Application. In

Proceedings of the 7th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW´92)

, Banff, Canada, October 11-16, 1992.
[ChJ93] B. Chandrasekaran and T.R. Johnson: Generic Tasks and Task Structures: History, Critique and New

Directions. In [DKS93].
[Cla85] W.J. Clancey: Heuristic Classification. In

Artificial Intelligence

, vol 27, 1985.
[Cla92a] W. J. Clancey: Model Construction Operators. In

Artificial Intelligence

, vol 53, no 1, 1992.
[CPV89] T. Christaller, F. di Primo, and A. Voß:

Die KI-Werkbank BABYLON

 (The KI-Tool BABYLON),
Assison Wesley, Bonn, 1989 (in German).

[DHR91] E. Dubois, J. Hagelstein, and A. Rifaut: A Formal Language for the Requirements Engineering of
Computer Systems. In A. Thayse (ed.),

From Natural Language Processing to Logic for Expert
Systems

, John Wiley & Sons, Chichester, 1991.
[Dij76] E.W. Dijkstra:

A Discipline of Programming

, Engelwood Cliffs, N.J., Prentice-Hall, 1976.
[DKS93] J.-M. David, J.-P. Krivine, and R. Simmons (eds.):

Second Generation Expert Systems

, Springer-
Verlag, Berlin, 1993.

[DKV92] U. Drouven, W. Karbach, and Angi Voß: Solving the Office-Allocation Task in Reflective MODEL-
K. In [Lin92d].

[ElN89] R. Elmasri and S.B. Navathe:

Fundamentals of Database Systems

, The Benjamin/Cummings
Publishing Company, Houston, 1989.

[FAL91] D. Fensel, J. Angele, and D. Landes: KARL: A Knowledge Acquisition and Representation
Language. In

Proceedings of Expert Systems and their Applications, 11th International Workshop,
Conference Tools, Techniques & Methods

, May 27-31, Avignon, 1991.
[FAL93] D. Fensel, J. Angele, D. Landes, and R. Studer: Giving Structured Analysis Techniques a Formal and

Operational Semantics with KARL. In H. Züllighoven et al. (eds.),

 Requirements Engineering ´93:
Prototyping, German Chapter of the ACM Berichte

, no 41, Teubner Verlag, Stuttgart, 1993.
[FEM93] D. Fensel, H. Eriksson, M. A. Musen, and R. Studer: Description and Formalization of Problem-

Solving Methods for Reusability: A Case Study. In

Complement Proceedings of the European
Knowledge Acquisition Workshop (EKAW´93)

, Toulouse, France, September 6-10, 1993.
[Fen93a] D. Fensel: The Reconciliation of Symbol and Knowledge Level, research report, Instituts für

Angewandte Informatik und Formale Beschreibungsverfahren, University of Karlsruhe, no 266,
1993.

[Fen93b] D. Fensel: The Knowledge Acquisition and Representation Language KARL, Ph. D. thesis,
University of Karlsruhe, 1993.

[FiP87] A. Finkelstein and C. Potts: Building Formal Specifications Using “Structured Common Sense”. In

Proceedings of th 4th International Workshop on Software Specification and Design

, Monterey,
California, April, 1987.

[Flo84] C. Floyd: A Systematic Look at Prototyping. In R. Budde et al. (eds.),

Approaches to Prototyping

,
Springer-Verlag, Berlin, 1984.

[GBM86] S. J. Greenspan, A. Borgida, and J. Mylopoulos: A Requirements Modeling Language and its Logic.
In

Information Systems

, vol 11, no 1, 1986.
[Gei92] J. Geidel: An Environment for Modelling and Solving Optimisation Problems. In

Proceddings of the
2nd IFIP WG 7.6. - Conference on Optimization-Based Computer Aided Modelling and Design,

Schloß Dagstuhl, Germany, 28th September - 1st October, 1992.
[GrB92] P. de Greef and J. A. Breuker: Analysing System-User Cooperation in KADS. In

Knowledge
Acquisition

, vol 4, no 1, 1992. See also J. Breuka and P. de Greef: Modelling System-User
Cooperation in KADS. In [SWB93].

[HaB92] F. v. Harmelen and J. Balder: (ML)

2

: A Formal Language for KADS Conceptual Models. In

Knowledge Acquisition

, vol 4, no 1, 1992. See also F. v. Harmelen and J. Balder: (ML)

2

: A Formal
Language for KADS Models of Expertise. In [SWB93].

[Har84] D. Harel: Dynamic Logic. In D. Gabbay and F. Guenthner (eds.),

Handbook of Philosophical Logic

,

Vol. II: Extensions of Classical Logic

, Reidel, Dordrecht, The Netherlands, 1984.
[HeR91] O. Herzog and C.-R. Rollinger (eds.):

Text Understanding in LILOG

, Lecture Notes in Artificial
Intelligence, no 546, Springer-Verlag, Berlin, 1991.

[HJS93] T. Hartmann, R. Jungclaus, and G. Saake: Spezifikation von Informationssystemen als
Objektsysteme: Das TROLL-Projekt (Spezification of Information Systems as Object Systems: The
TROLL-Project),

Emisa Forum

, no 1, 1993 (in German).
[HWB92] F. van Harmelen, B. Wielinga, B. Bredeweg, G. Schreiber, W. Karbach, M. Reinders, A. Voß, J. M.

Language Comparison 47

Akkermans, and B. Bartsch-Spörl, and E. Vinkhuyzen: Knowledge-level Reflection. In B. Le Pape
et al. (eds.),

Enhancing the Knowledge-Engineering Process - Contributions from ESPRIT

, Elsevier
Science Publ., B. V., Amsterdam, 1992.

[IEEE77] IEEE Transactions on Software Engineering, vol 3, no 1, 1977.
[JoS92] W. Jonker and J.W. Spee: Yet Another Formalisation of KADS Conceptual Models. In

Proceedings
of the 6th European Knowledge Acquisition for Knowledge-Based Systems Workshop (EKAW-92)

,
May 18-22, Heidelberg/Kaiserslautern, T. Wetter et al. (eds.),

Current Developments in Knowledge
Acquisition

, Lecture Notes in Artificial Intelligence, no 599, Springer-Verlag, Berlin, 1992.
[JSV91] W. Jonker, J.W. Spee, L. in ´t Veld, and M. Koopman: Formal Approaches Towards Design in SE

and Their Role in KBS Design. In

Proceedings of the IJCAI´91 Workshop on Software Engineering
for Knowledge-Based Systems

, Sydney, Australia, August 24th, 1991.
[Kar93] W. Karbach: MODEL-K: Modellierung und Operationalisierung von Selbsteinschätzung und -

Steuerung durch Reflexion und Metawissen, Ph. D. thesis, University of Bielefeld, Germany, 1993
(in German).

[KaV92] W. Karbach and A. Voß: Reflecting About Expert Systems in MODEL-K. In

Proceedings of Expert
Systems and their Applications, 12th International Workshop, vol 1 (Scientific Conference)

, June 1-
6, Avignon, 1992.

[KaV93] W. Karbach and A. Voß: MODEL-K For Prototyping and Strategic Reasoning at the Knowledge
Level. In [DKS93].

[Kee89] S. E. Keene:

Object-Oriented Programming in Common Lisp

, Addison-Wesley, Reading, 1989.
[KFG92] R. Köppen, D. Fensel, and J. Geidel: Modelling the Selection of Scheduling Algorithms with KARL.

In [BaK92].
[KiW93] M. Kifer and J. Wu: A Logic for Programming with Complex Objects. To appear in

Journal of
Computer and Systems Science

, 1993.
[KLS91] O. Kühn, M. Linster, and G. Schmidt: Clamping, COKAM, KADS, and OMOS: The Construction

and Operationalization of a KADS Conceptual Model. In

Proceedings of the 5th European
Knowledge Acquisition Workshop EKAW'91

, Crieff, Scotland, May 20-24, 1991, M. Linster et al.
(eds.), GMD-Studien, no 211, September 1992.

[KLW93] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented and Frame-Based
Languages, technical report 93/06, Department of Computer Science, SUNY at Stony Brook, NY,
April 1993. To appear in

Journal of the ACM

.
[KoT90] W. Kowalczyk and J. Treur: On the Use of a Formalized Generic Task Model in Knowledge

Acquisition. In B. Wielinga et al. (eds.)

, Current Trends in Knowledge Acquisition

, IOS Press,
Amsterdam, 1990.

[Koz90] D. Kozen: Logics of Programs. In J. v. Leeuwen (ed.),

Handbook of Theoretical Computer Science

,
Elsevier Science Publ., B. V., Amsterdam, 1990.

[KVS91] W. Karbach, A. Voß, R. Schuckey, and U. Drouven: MODEL-K: Prototyping at the Knowledge
Level. In

Proceedings of Expert Systems and their Applications, 11th International Workshop,
Conference Tools, Techniques & Methods

, May 27-31, Avignon, 1991.
[LFA93] D. Landes, D. Fensel, and J. Angele: Formalizing and Operationalizing a Design Task with KARL.

In [TrW93].
[LHS92] D. Landes, D. Hackenberg, and T. Schweier: An Inference Structure for a Configuration Problem.

In [BaK92].
[LiM92] M. Linster and M. Musen: The Inference Structure of K-ONCOCIN: Skeletal Plan Refinement. In

[BaK92]. See also M. Linster and M. Musen: A KADS Conceptual Model of the ONCOCIN Task.
In [SWB93].

[Lin91] M. Linster: Tackling the Office-Plan Problem with OMOS. In [Lin92c].
[Lin92a] M. Linster: Knowledge Acquisition Based on Explicit Methods of Problem Solving, Ph. D, thesis,

University of Kaiserslautern, February 1992.
[Lin92b] M. Linster: Linking Modeling to Make Sense and Modeling to Implement Systems in an Operational

Modeling Environment. In

Proceedings of the 6th European Knowledge Acquisition for Knowledge-
Based Systems Workshop (EKAW-92)

, May 18-22, Heidelberg/Kaiserslautern, 1992, T. Wetter et al.
(eds.),

 Current Developments in Knowledge Acquisition

, Lecture Notes in Artificial Intelligence, no
599, Springer-Verlag, Berlin, 1992.

[Lin92c] M. Linster (ed.): Sisyphus ́ 91: Models of Problem Solving, Arbeitspapiere der GMD, no 630, March
1992.

[Lin92d] M. Linster (ed.): Sisyphus ´92: Models of Problem Solving, Arbeitspapiere der GMD, no 663, July
1992.

[Lin92e] M. Linster: Using the Operational Modelling Language OMOS to Tackle the Sisyphus´92 Office-
Planning Problem. In [Lin92d].

Language Comparison 48

[Lin93] M. Linster: Using OMOS to Represent KADS Conceptual Models. In [SWB93].
[LKV92] M. Linster, W. Karbach, A. Voß, and J. Walther: An Analysis of the Role of Operational Modelling

Languages in the Development of Knowledge-Based Systems,

Proceedings of the 2nd Japanese
Knowledge Acquisition for Knowledge-Based Systems Workshop (JKAW´1992)

, Hatoyama, Japan,
November 9-13, 1992.

[Llo87] J.W. Lloyd:

Foundations of Logic Programming, 2nd Editon

, Springer-Verlag, Berlin, 1987.
[LNO89] G. Lausen, T. Nemeth, A. Oberweis, F. Schönthaler, and W. Stucky: The INCOME Approach for

Conceptual Modelling and Prototyping of Information Systems. In

Proceedings of the 1st Nordic
Conference on Advanced Systems Engineering CASE'89

, Stockholm, Sweden, May 9-11, 1989.
[LPT92] Izak van Langevelde, A. Philipsen, and J. Treur: A Compositional Architectures. In Proceedings of

the 10th European Conference on AI (ECAI-92), Vienna, Austria, August 3-7, 1992.
[LPT93] Izak van Langevelde, A. Philipsen, and J. Treur: Formal Specification of Compositional

Architecture for Simple Design Formally Specified in DESIRE. In [TrW93].
[Mar88] S. Marcus (ed.):

Automating Knowledge Acquisition for Experts Systems

, Kluwer Academic
Publisher, Boston, 1988.

[MDK92] D. Marques, G. Dallemagne, G. Klinker, J. McDermott, and D. Tung: Easy Programming:
Empowering People to Build Their Own Applications. In

IEEE Expert

, vol 7, no 3, 1992.
[Möl92] J.-U. Möller: Towards Declarative Programming in Conceptual Models. In

Proceedings of the 2nd
Workshop Informationssysteme und Künstliche Intelligenz

, February 24-26, Ulm, 1992, Informatik
Fachbericht, no. 303, Springer-Verlag, Berlin, 1992.

[Mus89] M. A. Musen:

Automated Generation of Model-Based Knowledge-Acquisition Tools

, Morgan
Kaufmann Publisher, San Mateo, CA, 1989.

[NeM93] S. Neubert and F. Maurer: A Tool for Model Based Knowledge Engineering. In

Proceedings of the
13th International Conference AI, Expert Systems, Natural Language (Avignon´93)

, Mai 24-28,
Avignon, 1993.

[New82] A. Newell: The Knowledge Level. In

Artificial Intelligence

, vol 18, 1982.
[PET92] A. R. Puerta , J. W. Edgar, S. W. Tu, and M. A. Musen: A Multiple-Method Knowledge-Acquisition

Shell For The Automatic Generation of Knowledge-Acquisition Tools. In

Knowledge Acquisition

,
vol 4, no 2, 1992.

[Prz88] T. C. Przymusinski: On the Declarative Semantics of Deductive Databases and Logic Programs. In
J. Minker (ed.),

Foundations of Deductive Databases and Logic Programming

, Morgan Kaufmann
Publisher, Inc., Los Altos, CA, 1988.

[SAW89] G. Schreiber, H. Akkermans, and B. Wielinga: On Problems with the Knowledge Level Perspective.
In

Proceedings of the 5th Knowledge Acquisition for Knowledge-Based Systems Workshop

, Banff,
Canada, November, 1989.

[Sch92] G. Schreiber:

Pragmatics of the Knowledge Level

, Ph. D. Thesis, University of Amsterdam, 1992.
[Shu89] R. N. Shutt: A Rigorous Development Strategy Using the OBJ Specification Language and the

MALPAS Program Analysis Tool. In

Proceedings of the 2nd European Software Engineering
Conference ESEC´89

, Warwick, UK, September 11-15, 1989,

Lecture Notes in Computer Science

,
no 387, Springer-Verlag, Berlin, 1989.

[Ste92] L. Steels: Reusability and Configuration of Applications by Non-Programmers, technical report
VUB AI-Memo 92-4, Free University of Brussel, Brussels, 1992. See also L. Steels: The
Componential Framework and its Role in Reusability. In [DKS93].

[SWA92] G. Schreiber, B. Wielinga, and H. Akkermans: Differentiating Problem Solving Methods. In

Proceedings of the 6th European Knowledge Acquisition for Knowledge-Based Systems Workshop
(EKAW-92)

, May 18-22, Heidelberg/Kaiserslautern, 1992, T. Wetter et al. (eds.),

 Current
Developments in Knowledge Acquisition

, Lecture Notes in Artificial Intelligence, no 599, Springer-
Verlag, Berlin, 1992.

[SWB93] G. Schreiber, B. Wielinga, and J. Breuka (eds.):

KADS. A Principled Approach to Knowledge-Based
System Development

, Knowled-Based Systems, vol 11, Academic Press, London, 1993.
[ThD90] R. H. Thayer and M. Dorfman (eds.):

System and Software Requirements Engineering

, IEEE
Computer Society Press, Washington, 1990.

[THR91] A. t. Teije, F.v. Harmelen, and M. Reinders: Si(ML)

2

: A Prototype Interpreter for a Subset of (ML)

2

,
ESPRIT project P5248 KADS-II, report KADS-II/T1.2/TR/UvA/005/1.0, University of Amsterdam,
1991.

[TrW93] J. Treur and Th. Wetter (eds.):

Formal Specification of Complex Reasoning Systems

, Ellis Horwood,
New York, 1993.

[Ull88] J. D. Ullman:

Principles of Database and Knowledge-Base Systems, vol I

, Computer Sciences Press,
Rockville, Maryland, 1988.

[VJS93] L. in ´t Veld, Willem Jonker, and J. W. Spee: The Specification of Complex Reasoning Tasks in

Language Comparison 49

K

BS

SF. In [TrW93]
[VKS91] A. Voß, W. Karbach, R. Schuckey, and U. Drouven: The Office Planning Problem in MODEL-K.

In [Lin92c].
[VoK93] A. Voß and W. Karbach: MODEL-K: Making KADS Run. In [SWB93].
[VoV93] H. Voss and A. Voss: Reuse-Oriented Knowledge Engineering with MoMo. In

Proceedings of the
5th International Conference on Software Engineering and Knowledge Engineering (SEKE´93)

, San
Fransisco Bay, June 14-18, 1993.

[VVW93] A. Voß, H. Voß, J. Walther, and T. Hemman: Model-Driven Prototyping - Prototyping-Driven
Modelling in Knowledge-Based System. In H. Züllighoven et al. (eds.),

 Requirements Engineering
´93: Prototyping, German Chapter of the ACM Berichte

, no 41, Teubner Verlag, Stuttgart, 1993.
[Wet90] T. Wetter: First Order Logic Foundation of the KADS Conceptual Model. In B. Wielinga et al.

(eds.)

, Current Trends in Knowledge Acquisition

, IOS Press, Amsterdam, 1990.
[Wet92] T. Wetter: FORKADS: An Executable Language for the KADS Conceptual and Interpretation

Models, Habilitationsschrift, University of Kaiserslautern, Germany, 1992.
[WeS91] T. Wetter and W. Schmidt: Formalization of the KADS Interpretation Models. In

Proceedings of the
8th Conference of the Society for the Study of Artificial Intelligence and Simulation of Behaviour
(AISB91)

, Leeds, GB, April 16-19, 1991.
[WSB92] B.J. Wielinga, A.Th. Schreiber, and J.A. Breuker: KADS: A Modelling Approach to Knowledge

Engineering. In

Knowledge Acquisition

, vol 4, no 1, 1992. Also appeared in [SWB93].
[WVS93] B. J. Wielinga, W. Van de Velde, A. Th. Schreiber, and J. M. Akkermans: Towards a Unification of

Knowledge Modelling Approaches. In [DKS93].
[You89] E. Yourdon:

Modern Structured Analysis

, Prentice Hall, Englewood Cliffs, 1989.
[Zav91] P. Zave: An Insider´s Evaluation of PAISLey. In

IEEE Transactions on Software Engineering

, vol
17, no 3, 1991.

