Representing and Reasoning with Situations
for Context-Aware Pervasive Computing:
a Logic Programming Perspective

Seng W. Loke
School of Computer Science and Software Engineering,
Monash University, Australia
swloke@csse.monash.edu.au

August 18, 2004

Abstract

Context-aware pervasive systems are emerging as an important
class of applications. We present a declarative approach to build-
ing context-aware pervasive systems, and introduce the notion of the
situation program which highlights the primacy of the situation ab-
straction for building context-aware pervasive systems. We show how
to manipulate situation programs using meta-programming within an
extension of the Prolog logic programming language which we call
LogicCAP. Such meta-reasoning enables complex situations to be de-
scribed in terms of other situations. We also discuss how the design of
situation programs can affect the properties of a context-aware system.
The approach encourages a high-level of abstraction for representing
and reasoning with situations, and supports building context-aware
systems incrementally by providing modularity and separation of con-
cerns.

1 From Context to Situations

Context-aware computing has enjoyed remarkable attention from researchers
in diverse areas such as mobile computing (Schilit et al., 1994) and human

computer interaction (Moran and Dourish, 2002). It is also an important idea
explored in connection with pervasive computing and ambient intelligence.!

The notion of context itself is not new and has been explored in areas
such as linguistics, natural language processing, philosophy, Al knowledge
representation and problem-solving, and theory of communication (Akman,
2002; Bouquet et al., 2003; McCarthy, 1993; Brezillon, 2003). In such work,
context is given focus and primacy (e.g., treated as first class objects in
a logic) enabling assertions to be made about contexts and context to be
explicitly reasoned about in applications.

The Free On-line Dictionary of Computing? defines context as

“that which surrounds, and gives meaning to, something else.”

Such a definition might be instantiated according to the need. Whether that
‘something’ is an assertion in a logic, an utterance, or a computer system,
with an appropriate definition for ‘meaning’, the intuition captured by the
word ‘context’ serves its purpose. The work by (Schilit et al., 1994) provides
an instantiation of that definition, from the perspective of distributed, mo-
bile, and ubiquitous computing (or pervasive computing®): a person is that
something and context refers to information about a person’s proximate en-
vironment such as location and identities of nearby people and objects. In
(Dey, 2001) is an operational (and arguably broader) definition of context:

“Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
s constdered relevant to the interaction between a user and an
application, including the user and applications themselves.”

Context-aware applications aim to use such contextual information to do the
right thing at the right time automatically for the user. There has been much
work in identifying what such information can be, the structure of the infor-
mation, how to represent such information, and how to exploit it for a specific
application. Such work might focus on a specific kind of contextual informa-
tion such as location models,* world models (e.g., Lehmann et al., 2004) and

!See the symposium at http://www.eusai.net

2 Access via http://www.dictionary.com

30ne view of pervasive computing is as a combination of mobile computing and ubiq-
uitous computing.

“For example, see http://research.microsoft.com/workshops/UbiLoc03/

activity models (e.g., Muhlenbrock et al., 2004; Koile et al., 2003; Tapia et
al., 2004),° or identify characteristics of contextual information (Henricksen
et al., 2004).

Pervasive computing utilizes contextual information about the physical
world. Hence, the connection of sensor information to context-aware perva-
sive computing is clearly important (Yoshimi, 2000; Barkhuus, 2003; Hopper,
1999; Patterson et al., 2003), and relates to what can be sensed, the best way
to acquire sensor information, and how to reason with sensor information to
infer context. In fact, any information which can be practically obtained via
sensors can be used as context including the emotional states of users (Pi-
card, 1997) and movements (Headon, 2003). Where the entity is an artifact
instead of a person, we have context-aware artifacts.

There is tremendous variety and diversity in what can be context, and
the way context can be acquired and modelled, and this is an avenue of
much interest and research. Recent workshops® have focused on just this
topic. Given the challenges in representing, structuring, managing and us-
ing context, it is not surprising that various knowledge representation for-
malisms and techniques have been applied, ranging from ontologies (Chen et
al., 2004b; McGrath et al. 2003; Wang et al., 2004; Matheus et al., 2003)
(that can provide concepts for describing context and enable reasoning with
and reuse of contextual information), first-order logic theories (Katsiri and
Myecroft, 2003; Ranganathan and Campbell, 2003), to conceptual graphs
(Peters and Shrobe, 2003). Such work, however, is not simply a return to
previous Al knowledge representation about context, but consider what as-
pects to sense of the physical world for a given application and how best
to represent such aspects, how to reason with sensed information, and the
software engineering of context-aware pervasive systems.

Related to the notion of context is the notion of situation. The relation-

5 Activity typically refers to some action or operation, undertaken by a human being,
such as ‘bathing’, ‘doing laundry’, ‘toileting’, ‘preparing breakfast’, and ‘listening to mu-
sic’, and so differs from situation. Perhaps one could conceive of a person in the state
of preparing breakfast as a situation. However, in general, ‘activity’ and ‘situation’ are
clearly not interchangeable, and we consider activity as a type of contextual information
which can be used to characterize the situation of a person (e.g., preparing breakfast means
the person is busy or has just woken up).

6Workshop on Context Modeling and Reasoning (CoMoRea 2004), Workshop
on Modelling and Retrieval of Context (MRC 2004) (http://mrc2004.wysart.de/),
and Workshop on Advanced Context Modelling, Reasoning and Management 2004
(http://pace.dstc.edu.au/UbiComp2004_Context Workshop.html)

ship between context and situation is illustrated in the above operational
definition. A definition of situation from the American Heritage Dictionary”
is as follows:

“The combination of circumstances at a given moment; a state
of affairs.”

Besides context, Dey (2001) also defines situation, as follows:
“a description of the states of relevant entities.”

Hence, the idea is of aggregating (perhaps varieties of) context information
in order to determine the situation of the entities (relevant to an application).
In this sense, the situation might be thought of as being at a higher level of
abstraction than context.

In philosophy and AI, much thought has gone into the idea of the situa-
tion, such as in situation theory (Barwise, 1989; Barwise et al. 1991) and the
situation calculus. This perspective considers the primacy of the situation
abstraction and noted that an agent (e.g., human) is able to individuate a
situation. According to Devlin (1991), a situation is a

“structured part of reality that it (the agent) somehow manages
to pick out”,

by “direct perception of a situation, perhaps the immediate environment, or
thinking about a particular situation,” and “individuation of a situation by
an agent does not (necessarily) entail the agent being able to provide an exact
description of everything that is and is not going on in that situation.” In
the case where the agent is a context-aware computer system, one can utilize
the situation as a programming abstraction represented in some formalism
to refer to something humans (e.g., the programmer) might naturally indi-
viduate. The idea is that the situation abstraction allows one to effectively
“carve the world up” into manageable pieces which a collection of sensors
of a system might recognize and respond to. It might also be possible to
compose such pieces to construct more complex models of situations.

Our working hypothesis is that, in the software engineering of context-
aware pervasive systems, the situation abstraction is useful. Not only can
the system developer naturally individuate and identify situations for an

" Accessed from http://www.dictionary.com

application, but thinking at the level of situations provides a high level of
abstraction for the developer.

In this paper, we present a novel way of representing situations taking
into account the structure of a context-aware system as comprising sensors
at one level and inference procedures to reason with context and situations
at another level. We also consider how to manipulate situations as first-
class entities and how to reason with our representation of situations within
a programming language. We clearly differentiate between sensor readings,
context, and situation in our model. Our model is also declarative and based
on logic programming ideas. The model provides a basis for programming
context-aware pervasive systems that emphasizes the primacy of the situ-
ation abstraction. Our approach encourages the separation of the different
concerns in building a context-aware pervasive system including representing
situations, representing context, relating context to sensors, building sensors,
and reasoning with situations.

Constructing context-aware pervasive systems is generally a complex task
and involves knowledge engineering, sensor data analysis, inferencing, and
application programming. A broader aim of this work is to provide insight
into systematically designing and constructing such systems. We contend
that a key abstraction is the situation.

The rest of this paper is organized as follows. Section 2 presents how we
represent situations using logic programs which we call situation programs.
We give a denotational semantics of situation programs, aiming to say more
precisely what a situation program is and what we intend to represent us-
ing it. In Section 3, we proceed to embed situation programs within a logic
programming language, and provide programming examples. Section 4 dis-
cusses the relationships between the situations a system designer would like
to model and the situation programs of a system, formulating useful prop-
erties of a context-aware system. Section 5 discusses related work and we
conclude in Section 6.

2 A Logic Programming Approach to Char-
acterizing Situations

There are many ways to describe a situation depending on the application.
Here, we involve sensors in our definition of situation. We use a broad defini-

tion of sensor, which is taken to mean not only temperature, heat or motion
sensors but any device or mechanism that is used to provide contextual in-
formation. This means that a positioning engine (which provides location
information about a device and user) is also called a sensor. The clock in
the computer with its associated operating system call can be considered a
sensor if it used to return time which is used as contextual information in an
application.

We provide a characterization of a situation by observing that a situation
(when it occurs) effectively imposes constraints on the output or readings that
can be returned by sensors, i.e. if S is the current situation, we expect the
sensors to return values satisfying some constraints associated with S. We
also represent such constraints as a logic program.

Our rationale is that, given a set of sensors, and a situation, when the
sensors are working within that situation, the readings will necessarily fall
within certain values. For example, if the situation is that a person (called
Kenny, say) is attending a seminar in the university grounds, it is neces-
sary that his location be that of some seminar room in the university, and
that there are other people in the seminar room (e.g., a weight sensor in the
floor of the room would give a reading larger than that of Kenny’s weight).
Hence, the location sensor’s reading is constrained and so is the room’s weight
sensor given the occurrence of the situation. The necessary conditions are
knowledge engineered into the system so that the situation is represented in
the system. Different situations can then be characterized by different con-
straints imposed on the sensors. Two situations differ if they impose different
constraints on the sensors - which implies that two situations might be in-
discernible to the system given that they result in the same sensor readings,
and in our case if they impose the same constraints on sensor readings. This
way of characterizing situations provides a means to determine at any given
time, what situation is being sensed, namely, the current situation (that is
being sensed) is any one situation whose constraints are satisfied by the sen-
sor inputs at that time. It is either the case that several such situations are
equally valid simultaneously or only one (or some) are - knowledge must be
engineered into the system to determine which is the case.

2.1 The Situation Program

Let each sensor be represented by a sensor predicate® of the form:
(sensor_id)*(({inputs), (output readings)).

The output from a sensor is represented by a variable, and inputs to sensors
by parameters. Then, a situation program S is defined as a collection of
rules (or a logic program), which we call a situation program, each rule of the
form:

if A then G

where G is given by
G = A|S|(G,6)| Sx»FE

A is an atomic goal formula (an ordinary Prolog-style term), S is a sensor
predicate, “” denotes conjunction, S is a situation identifier and F is an
entity (e.g. user, device, or software agent) identifier. We call the operator
“in-situation” denoted by “*>”. A goal of the form S*>F, read as a query
“F in situation S7?”, is a meta-level goal that succeeds if the contextual infor-
mation about E is provable from S in the way we describe later. Because S
represents clauses (facts and rules that would hold) about the situation, the
intuition of this operator is that E is in the real world situation represented
by S if the contextual information about £ holds in S. This is analogous
to the supports operator “E” in situation theory (Tin and Akman 1994;
Barwise, 1989), where a situation s supports an infon i (representing a piece
of information) is denoted by s = i, except here we have a computational
interpretation, so that a situation supports an infon if the infon (represented
by a goal) is validated by the situation (represented by a logic program).
There must also be at least one distinguished rule (which we call the situa-
tion rule) whose premise is a predicate naming the situation and, optionally,
have a parameter denoting the entity. Also, we assume that the premises of
the rules within a situation program are all different - we do not deal with
disjunction; we return to this restriction in Section 6. The idea is that the
collection of rules specifies constraints on the sensors’ readings, analogous to
a logic program in constraint logic programming languages where constraints
are essentially relations on the variables.

8“Predicate” as in first order logic: http:/ /mathworld.wolfram.com /First-
OrderLogic.html

The rules of a situation program permit natural expression of expla-
nation capabilities of a situation, i.e. if a situation occurs, then cer-
tain conditions and constraints should hold. As an example, we can de-
fine a in_meeting now situation as follows. The sensor predicates are
location*(E,L) which returns the location of an entity E in variable
L, diary*(E, Event, entry(StartTime, Duration)) which returns diary
entries for entity E for a matching Event, people_in_room*(L,N) which re-
turns the number of people at a location, and current_time* (T) which takes
no inputs and returns the current time in a variable. The constraints the situ-
ation imposes on such sensors’ readings can then be modelled by the following
logic program:

if in_meeting_now(E) then

with_someone_now(E),
has_entry_for_meeting_in_diary(E).

if with_someone_now(E) then

location*(E,L) ,people_in_room*(L,N), N > 1.

if has_entry_for_meeting_in_diary(E) then
current_time*(T1),

diary*(E, 'meeting’,entry(StartTime,Duration)),
within_interval(T1, StartTime, Duration).

The program is viewed as a constraint in the sense that if the entity is
in that situation, various relationships as specified above should hold. We
could have written the rules as follows but it is less readable:

if in_meeting_now(E) then
location*(E,L),
people_in_room*(L,N), N > 1, current_timex*(T1),
diary*(E, 'meeting’,entry(StartTime,Duration)),
within_interval(T1, StartTime, Duration).

By using several rules, we can define constraints in a more readable style.
Our syntax of rules allow situation programs that refer to other situation
programs. The above program might be rewritten as follows.

if in_meeting_now(E) then
with_someone_now*>E,
has_entry_for_meeting_in_diary*>E.

where with someone now is a situation with its own situa-
tion program containing the rule if with_someone now(E) then
location*(E,L) ,people_in room*(L,N), N > 1, and similarly, the
situation has_entry_for_meeting in_diary. The advantage of being able to
split rules into separate situation programs is modularity which encourages
reuse.

We consider this question: given current sensor readings, is guessing the
current situation based on these readings the inference process of deduction or
abduction?® A different way of writing the rules that relate sensor readings
with situations is as below, where sensor readings are stated as sufficient
conditions for situations. For example:

if location*(E,L) and people_in_room(L,N)
and N > 1 then with_someone_now(E)

The above rule states that if the sensors return certain readings, then the
situation occurs. But the sensors could not have caused nor explain the
situation. It is more accurate to say that if the sensors observed certain
values, we would like to find an explanation or cause for the observations,
i.e., in our case, what situation led to such sensors’ observations. There
may be more than one situation that would lead to the same observations.
Then, determining which situation is most likely is required. The analogy
is with diagnostic systems, where we try to find or guess the cause of an
observed fault - it is the cause that determines what is observed. It is the
occurrence of a situation that causes the sensors to observe certain values
(i.e. have certain readings), rather than conversely, or in other words, the
occurrence of a situation is an explanation for the sensor readings that are
being obtained. Hence, we write rules where the situation is the premise and
the expected sensor readings are the conclusions, capturing the knowledge
that if a situation occurs, the sensors should have certain values.

2.2 A Denotational Semantics for Situation Programs

A designer of a system creates a situation program as a representation of
a situation the system should be made to recognize. This subsection says

9 Abduction refers to the process of inferring case(s) from rules and an observed result,
i.e. computing explanations for observations, whereas deduction is inferring a result from
rules and cases.

more precisely in what way a situation program represents situation(s) by
providing a denonational semantics for situation programs.

We use the notion of the Herbrand model (Lloyd, 1984). Let £ be a
first-order language with a set of constants. The Herbrand base of L is the
set, of all ground atomic formulae of L. A Herbrand interpretation for L is a
subset of the Herbrand base of L.

We consider a situation to be a part of the way the world happens to
be (Barwise, 1989). Since we are dealing with logic programs, the inputs
as provided to the sensor predicates by sensors can be treated as ground
atomic formulae. More precisely, one could think of a situation (occur-
ring as sensed by the system) as assigning Herbrand interpretations to the
situation programs (stored in the system), for the sensor predicates; we
say that the situation yields the Herbrand interpretation (by the process
of sensing). A perceived situation'® s, can be thought of as the function
s : SituationPrograms — P(HB), where HB is a Herbrand Base (for some
suitably encompassing language £).

A perceived situation is said to satisfy a situation program if it yield inputs
to the sensors referred to in the situation program in such a way that the
constraints (as represented by the situation program) are satisfied. We make
this more precise. Let sit, be the (ground) predicate in the premise of the
situation rule, then a perceived situation is said to satisfy a situation program
P if and only if the situation yields a Herbrand interpretation H, for P, which
grounds P and is a model for P. Stated differently, the situation provides
the sensor readings in such a way that sit, can be inferred by abduction.

Given a context-aware system [' with certain sensors and situation pro-
grams, we define the meaning of a situation program P (with respect to I'),
denoted by [P]r, as the set of all perceived situations that satisfy P.

One could think of a situation program as a situation type (in the
situation-theoretic sense (Barwise and Perry, 1983)), and the process of a
context-aware system attempting to understand an actual situation (occur-
ring in a given time and sensed) is that of finding matches between the
sensed situation and situation programs (stored in the system). Each situa-
tion program divides up the situations that the system can sense, according
to whether the situation satisfies the constraints on sensor readings encoded

10A perceived situation is analogous to the idea of scemes in (Barwise, 1989), which
are visually perceived situations. In our case, it is the system and not a human which is
perceiving the situation.

10

in the situation program.

2.3 Executing Situation Programs: Evaluating S*>F

Because we represent situations as explanations for observations, we describe
the procedure for evaluating the in-situation goal by forward-chaining over
rules in situation programs. It is similar to the standard forward-chaining
reasoning algorithm and follows the definition of the satisfy relation between
perceived situations and situation programs described in the previous subsec-
tion. This algorithm effectively infers the constraints, and at the same time,
checks if the sensor readings satisfy the constraints: (1) Initialise the set of
inference rules and goals (i.e. assumptions and constraints in this case). (2)
Determine which inference rules are applicable given the current set of goals.
If no rules are applicable, evaluate the goals. If several rules are applicable,
we use all the rules - the goals inferred from the conclusion of each rule is
added. (3) Apply the rule to infer one or more new goals. (4) Repeat from
step 2. For the example in Section 2.1, the algorithm will execute in this way
for the goal in_meeting now*>john:

1. Initialise the set of inference rules and goals. We start with the predi-
cate describing the situation (i.e., in_ meeting now(FE), with E instan-
tiated to john) as the initial goal, i.e. we basically assume the situation
and then explore its implications by forward chaining on the rules.

2. Determine which inference rules are applicable given the current set of
goals. Starting from the initial assumption, the only rule applicable is
the first one.

if in_meeting_now(E) then
with_someone_now(E),
has_entry_for_meeting_in_diary(E).

3. Apply the rule to infer one or more mnew goals.
In this case, we infer with_someone now(john) and
has_entry_for meeting_in_diary(john).

4. (Repeat from step 2 of the algorithm.)
Starting from with_someone now(john) and
has_entry_for meeting in diary(john), the applicable rules

are the next two as shown earlier.

11

5. Now, we infer the constraints on the sensor readings from each rule:
(a) location*(john,L), and people_in room*(L,N), N > 1, and (b)
current_timex*(T1), diary*(john, ’meeting’, entry(StartTime,
Duration)), and within_interval(T1, StartTime, Duration).

6. There are no rules applicable for these and so we evaluate them. We
query the sensors for the readings and check the readings against the
constraints. We assume that there are built-in predicates to compute
“>” and within interval/3.

If all the constraints are satisfied, then E would be recognized (by a system
[, say) to be in the situation represented by the program S; we denote
such a relation by S llF E' (which by definition holds exactly when the goal
S*>E succeeds according to the procedure above). Also, note that S Il E
whenever s € [S]r, where s is the perceived situation as perceived by I'. The
definitions provide an account, within our framework, of what it means by
the sentence “the system I recognizes that E is in situation S.”

3 LogicCAP: Embedding Situation Pro-
grams in Prolog

Two common questions reasoning with situations attempts to answer are:
(1) Given an entity, a set of known situations, and contextual information
about the entity obtained from sensors, determine which situation(s) (of
those which are known, if any) the entity is in. (2) Given an entity, a sit-
uation, and contextual information about the entity obtained from sensors,
determine if the entity is in that situation. A solution for (2) can be used in
(1) by iterating over the set of situations. Once the situation of the entity
is inferred (or computed), situation-actions rules can be applied and actions
selected for the system.

We contend that logic programming is generally useful for such reasoning
and for supporting the rule-based programming paradigm in context-aware
applications. Moreover, as also proposed by Henricksen (2003), situations
(there represented as predicates) are a useful programming abstraction for
context-aware applications.

In this section, we show how situation programs can be manipulated as
first-class entities within a programming language. We embed goals of the

12

form S*>E into a popular rule-based language such as Prolog so that rule-
based context-aware applications can be written. Effectively, we reason with
situations by meta-reasoning with situation programs in LogicCAP.

3.1 Syntax

A LogicCAP program comprises rules of the form:
A:-G

where “:="is “if” | G == A|(G,G) | S¥>E, Ais an atomic goal formula, ”,”
denotes conjunction, S is a situation identifier and E is an entity identifier.
Rules are facts when A is true.

3.2 Operational Semantics

We give the operational semantics of LogicCAP as an extension of that of
pure Prolog as follows which defines the relation -, where P is a LogicCAP
program.

[true] P+, true
[atom]P Fo H:-G N ~v=mgu(A,HI) N Pt;Gly
Plgys A
. : . .ground(S) A ground(E) AN SIFE
[in — situation] Pr. SoE
[conjunction]P PG N P Hy Gof
P g, G1,Go

The rule for in-situation maps the goal to another evaluation procedure.
Hence, LogicCAP rules use backward chaining like Prolog but then utilizes
forward chaining in determining situations, i.e. a mix of backward and for-
ward chaining is used in evaluating LogicCAP programs. Note that in this
rule, we require that E and S be ground before being used in establishing
IIF. We review this requirement later.

13

3.3 Programming Idioms and Examples

We show several examples of LogicCAP programs in this subsection. For
an application, the programmer needs to develop a (or reuse an existing)
collection of situation programs and at least one LogiCAP program.

3.3.1 Reasoning with Situations

We can declaratively and concisely reason over situations in LogicCAP. Be-
cause situations are represented as situation programs, we perform metalevel
reasoning over situation programs.

Determining actions. We can write rules to select the right actions based
on the current situation of an entity. For example, if were writing the logic
for a context-aware mobile phone. We could utilize the following rule that
says the phone should be in quiet mode if the user is in the meeting and so
on.

required_phone_mode (quiet) :-
my_current_user (E), in_meeting_now*>E.

required_phone_mode (quiet) :-
my_current_user(E), in_lecture*>E.

required_phone_mode (noisy) :-
my_current_user (E), restaurant*>E.

required_phone_action(change (FromMode,ToMode)) :-—
current_phone_mode (FromMode) ,
required_phone_mode (ToMode) ,
FromMode \= ToMode.

A query to required_phone_action/1 is used to determine what action
(if any) is required for the phone. We assume that there are built-in pred-
icates to return the current user of the phone and predicates to tell what
mode the phone is currently in.

Determining situations. We can write rules to search over situations
to determine what situation the entity is currently in. For example, the
following rule takes a list of possible situations and returns the first situation
that the entity matches with.

14

determine_situation(PossibleSituations,E,S) :-—
member (S, PossibleSituations), S*>E.

One could also write rules to return all possible situations the entity is in.
Given compatibility constraints between situations that says when situations
can occur simultaneously or not, one can then determine the conjunction of
situations the entity is currently in.

can_be_concurrent (eating, driving).
can_be_concurrent (walking, talking).

determine_situations(PossibleSituations,C,E,L) :-
setof (S, (member(S, PossibleSituations),
can_occur_concurrently(C,S), S*x>E), L),

The rule determines all situations that the entity is in which are compat-
ible with a current situation C. We can also write a rule such as the following
that captures selecting the most likely situation out of those which match -
which is akin to abductive reasoning in selecting the best explanation.

most_likely_situation(PossibleSituations,E,M) :-
setof (S, (member(S, PossibleSituations), S*>E), L),
most_likely(L,M). % select the most likely situation from the

most_likely/2 can be application-specific. One could extend
most_likely/2 to return all sets of compatible situations (from L).

We can also write rules to query who out of a given set of entities is in a
given situation:

sleeping_now(Es,E) :-
member (E,Es), sleeping*>E.

We can also reason about the situations of several users. For example,
this rule states that a given message should only be displayed when John
and Mary are both in the Chadstone shopping center.

display_msg :-
in_chadstone*x>john, in_chadstone*>mary.

15

list L

Relations on situations. Given a collection of identified situations,
already represented as situation programs, besides incompatible/2, we
can define other relationships between situations such as the relation
can_be_concurrent/2. Other kinds of relationships include composite (or
more complex) situations and sub-situations.

sleep_walking(sleeping,walking,E) :-
sleeping*>E, walking+*>E.

busy(in_a_meeting, sleeping, on_the_phone, E) :-
in_a_meeting*>E
; sleeping+*>E % using Prolog’s ’or’
; on_the_phone*>E.

sub_situation_of(R,S,E) :-
(R*¥>E) ->(S*>E) . % Prolog built-in conditional ’->’

More complex combinations of situations involving conjunction and dis-
junction can be defined at the LogicCAP (or meta-) level. The
sub_situation_of/3 predicate can be used to verify if the definitions for
R and S were correct. For example, if situation programs have been written
for these two situations, and to the programmer, one is a sub-situation of
the other, then one could represent this in a rule as above and verify if that
was true for a given entity. Such relationships between situations can be
used to define a lattice of situations from a given knowledge base of situation
programs.

3.3.2 Situation-Driven Behaviour

So far, in the above programs, we perform backward-chaining on LogicCAP
rules, and then forward-chaining with situation programs. The former follows
ordinary Prolog execution behaviour and the latter is due to the way we write
the rules - with situations implying (causing and/or explaining) the expected
observations in sensor readings. We can use such LogicCAP programs to
develop a system that provides situation-driven behaviour by inspecting the
appropriate sensors frequently.

Suppose we want to develop a system that sends out drink advertisements
to a mobile device belonging to a user John when appropriate. For example,
consider the following example.

16

display_drink_ad :-
likely_to_need_drink(john),
show_drink_ad.

likely_to_need_drink(User) :-
in_open_air_shopping_mall*>User,in_hot_day*>User.

For a user John, this might involve periodically firing a goal such as
display-drink_ad/0 which continually queries the system (and subsequently
taking sensor readings) to see if John is likely to need a drink, and only if
so, downloads and renders the advertisement. The frequency in which we
execute such a goal can be set. The following uses Prolog backtracking and
the repeat/0 predicate which always succeeds on backtracking to continu-
ally evaluate display_drink_ad/0 until it eventually succeeds. The result is
effectively polling the appropriate sensors once every second.

loop_until_succeed :-
repeat, sleep(1), % delay 1 second
display_drink_ad, !.

Alternatively, it is useful to have events drive the system. Simply forward-
chaining over the rules cannot provide the appropriate behaviour. For ex-
ample, the goal to retrieve the advertisement should not be carried out until
John is detected to likely need a drink. The problem is that both conditions
and actions are specified as premises in a rule and are syntactically indis-
tinguishable. As done by Henricksen (2003), and in active databases, rules
of the form “on event if cdn then action” can be used to a similar effect.
In our context, for such rules to work, changes in sensor readings must be
detected and then evaluated against the event description to see if the rule
should fire. However, in order to detect a change in sensor readings (when
John steps into a particular area), the location sensor needs to be read at
some frequency. We might recode the rules as follows.

on likely_to_need_drink(john) if true
then
show_drink_ad,
render (Text) .
likely_to_need_drink(User) :-
in_open_air_shopping_mall*>User,
in_hot_day*>User.

17

In-situation goals are then treated as high-level events. For example,
in_open_air_shopping mall*>User evaluating to true can be read as the
occurrence of the event that the user is in shopping mall. How does one
compute these high-level events? One technique is to periodically evaluate
the goal 1ikely_to_need_drink(john). Various optimizations are possible.
One is to suspend execution during the evaluation of situation programs if
constraints are not satisfied, and then to wait until constraints are satisfied.
A goal such as in_open_air_shopping mall*>User will not return a result
until it evaluates to true (or a timeout occurs). This technique is useful when
interfacing with sensors supporting the publish-subscribe model. For such
sensors, we modify the evaluation of situation programs to wait on results
from sensors. For example, consider the goal location*(john,chadstone)
which determines if John is in Chadstone. This could be computed as a
query to the positioning engine or a subscription to the positioning engine
to notify when the event occurs. We need only modify the way sensor pred-
icates are computed in our model, i.e. evaluation of a sensor predicate will
result in a subscription to the sensor and evaluation will block within the
sensor predicate until a notification is received, afterwhich the sensor predi-
cate returns with the results. Hence, our reasoning is forward chaining until
a sensor predicate is evaluated wherein execution is suspended until an event
(of results being returned from the sensor) occurs. For optimization, multi-
threaded querying of sensors based on ideas from parallel logic programming
(Gupta et al., 2001) can be employed.

4 Designing Situation Programs and Proper-
ties of a Context-Aware System

We view a context-aware system as containing a number of situation pro-
grams which it uses to recognize real-world situations. This section considers
the question of what makes a good context-aware system and outlines general
requirements on situation programs in order to provide useful and effective
behaviour of such a system.

We consider relationships between (i) the situations the developer of a
context-aware system wants to model and have the system recognize, and
(ii) the situation programs built into the system, giving rise to a statement
of favourable properties of a context-aware system. For example, a designer

18

might want the system to be able to recognize situations when they occur and
when they do not occur, and to be able to distinguish between two different
situations, or to regard two situations as same. Moreover, it would useful to
build situation programs which are reusable for modelling different complex
situations.

4.1 Soundness and Completeness

As suggested earlier, a context-aware system effectively tries to recognize
situations in the real world: the system therefore links the occurrences of
situations in the world to the situations programs it contains.

Given the occurrence of a (real-world) situation ¢ (related to an entity
E) and a system I is subjected to i, we denote by satisfied(P) the case of
P IIF E holding.

A system designer tries to represent real world situations via situation
programs. For example, given a real-world situation 7+ which the designer
can individuate, the designer defines a corresponding situation program for
i (assuming particular sensors and sensor predicates in the system), denoted
by P;. At this point, the only link between ¢ and P; is in the mind of the
designer. The system needs to correctly make this link.

It would be a correct design of a system, if when ¢ occurs, we have
satisfied(P;). Conversely, whenever the system determines satisfied(P;),
we would like it to be the case that ¢ occurs. We denote these two relation-
ships as ¢ = P; and P; =3 i, respectively.

In general, with respect to a set of n situations (denoted simply by num-
bers {1,...,n}), we say that a context-aware system is

e complete if it contains a corresponding set of situation programs
{P,..., P} such that Vi, i = P,, which means that all the intended
situations are recognized (in terms of at least one situation program,
and this should be P;), and

e the system is sound if Vi, P; = ¢, which means that the system does
not give false positives - recognizing a situation as occurring when it is
not.

Note that it is up to the designer to verify soundness and completeness
of a given system, with respect to various situations, and this could be done
during experimental testing of the system. The designer has to subject the

19

system to various situations and see what the system recognizes. Also, in
general, it is difficult to be exhaustive since one cannot subject a system
to every possible situation (e.g., to test soundness). Moreover, a real world
situation is what the user individuates and there is an element of imprecision
about what is conceived in the imagination as a situation. The designer
might need to modify the definition of situation programs or employ more
sensors to establish a degree of soundness and completeness of the system.

4.2 Perceptual Distinguishability

Given the occurrence of a situation ¢, there could be several situation pro-
grams (e.g., P; and P;) that are satisfied. This could be a case of the situation
programs each describing an aspect of the real situation occurring, and one
could interpret this as two (compatible) situations simultaneously occurring,
i.e. that 1 somehow involves j in the real world. Or it could be that the sit-
uation programs P; and P; represent overlapping parts of the world, or that
the programs P; and P; are in error especially if ¢ and j are not compatible
(e.g., one is the situation of a person dancing and the other is the situation
of the person being dead). In the case of incompatible situations, then, some
arbitration is required to choose the best explanation (or situation program)
for the given sensor readings. We provided an example on how to do this at
the meta-level in Section 3. Here, we note that the incompatibility relation-
ship is clearly not reflexive, is symmetric, and is not transitive in general. For
example, a person being in an airplane 10000km above ground is incompat-
ible with the person being on the ground, and a person being on the ground
is incompatible with the person being detected by a positioning system as
being 10000km above ground, but a person being in an airplane 10000km
above ground is compatible with the person being detected by a positioning
system as being 10000km above ground. However, one could think of a spe-
cific set of situations being represented where the transitive relationship does
hold - hence, the designer might use the transitivity property depending on
the application.

Also, two different (according to a human perspective) situations might
cause the same situation program to be satisfied. For example, ¢ and j both
caused P; to be satisfied. It could be that P; is not discriminating enough
(constraints on the sensor readings are too weak); this is true provided that
7 and j are indeed incompatible situations. For example, consider two situa-
tions, one is the situation of a person dancing and the other is the situation

20

of the person being dead. If the situation program for dancing is satisfied in
both situations, that situation program is clearly not discriminating enough
and needs to be improved. However, if we have two situations, one is the
situation of a person sitting down on a chair and the other is the situation
of the person being dead, then the situation program for sitting down on a
chair can be satisfied in both cases.

4.3 Perceiving Non-Occurrence of Situations

If a system is sound and complete, it is already to an extent distinguishing
between situations - by correctly matching the situation with the situation
program; a different situation should match with a different situation pro-
gram. However, we might want to build the system in such a way that it does
not distinguish between two given situations, or it recognizes the mutual ex-
clusivity (or impossibility of co-occurrence) of two situations. We show how
to engineer these stronger perceptual powers by having situation programs
that enable the system to recognize the non-occurrence of situations.

What does it mean for the system to distinguish between two situations,
or when are two situations undistinguished by the system? Given a system
with a set of situation programs, one way to define the relation undistin-
guished between two situations i and j (denoted by UD(3, j)) is to say that
UD(i, j) holds whenever both 7 and j causes exactly the same programs to be
satisfied. But this leads to transitivity of UD and to a paradox.'! An impli-
cation of this for the developer is a lesson about what not to do: a system, in
general, should not be made to infer that two situations are undistinguished
using a transitivity of UD rule, since this might cause the system to behave
in an unintuitive manner.

To provide a more sensible definition of UD which avoids the paradox,
we define the perceptual indistinguishability of a system, in a similar way to
Shoham and del Val (1991). In particular, we provide a definition of the
relation undistinguished between two situations in such a way as to avoid
transitivity.

We first note that if a situation program P; is not satisfied (e.g., the
system fails to detect that a person is in a meeting, where a meeting is
represented according to P), it might or might not mean that situation i

"1 The ‘heap paradox’ - if two piles of sand differring by one grain cannot be distinguished,
then no two piles of sand can be distinguished.

21

is not occurring (e.g., the person might still be in a meeting even though
undetected).'? Hence, we do not assume negation by failure. Thus, for
each situation 7, we might not only define P; but also a situation program
which represents the situation that i is not occurring (denote this by NOT%)
- denote this program by Pyor;. By an abuse of notation (we substitute
NOT(NOT4) by i in formulas below) since we take the situation where “the
situation that 7 is not occurring” is not occurring as meaning the situation
that 7 is occurring, i.e. we define P, = Pyor(vors)- So if ¢ refers to the person
being in a meeting, Pyor; refers to a situation program where the person is
not in a meeting, and the system has to detect that. To avoid confusing and
contradictory results, the designer should strive to define P; and Pyor; such
that always
—(satisfied(P;) A satis fied(Pyori))

holds, i.e. it is never the case that both are satisfied. We call this the
consistency condition. But note that it might be the case where both F; and
Pyor; are not satisfied - P; is not satisfied does not automatically mean that
Pyor; will be - when, for example, neither 7+ nor NOT are judged to be
possible explanations for the sensed information.

Assuming that a system being designed to recognize situations 1 to n
has now the situation programs {P,..., P,} (and their corresponding com-
plements {Pyor1,---, Pvorn}). We then define UD as follows based on
(Shoham and del Val, 1991):

UD(i,7) =4ef —(satisfied(P;) A satisfied(Pyor;))
A= (satis fied(P;) A satisfied(Pyori))

In other words, two situations ¢ and j are distinguished by a system if the
system’s situation programs are such that ¢ = P; and ¢« = Pyorj, ie., 1
occurring causes P; to be satisfied and Pyor; to be satisfied, or j = P;
and j = Pyori, i.e., j occurring causes P; to be satisfied and Pyor; to be

12This is consistent with our view of the situation rules in an abductive manner: given
“if situation then observation” and “observation”, we infer “situation”. But given “if
situation then observation” and “not observation”, where “not p” means that p is not
provable (as different from — p) we do not necessarily infer the non-occurrence of the
situation by abduction (since we do not use deduction (modus tollens) here). We assume
that the rule captures the idea that the situation is a possible explanation for the given
observation, but if that observation is not observed, the non-occurrence of the situation
may not necessarily hold.

22

satisfied. This means that the recognition of one situation should come with
the recognition of the non-occurrence of another (rules out the other).

This definition of UD is not transitive (following the proof in (Shoham
and del Val, 1991)) for suppose that at a given point in time, the system
shows that —satis fied(P;) and —satisfied(Pyori) are true, i.e. the system
is not able to say anything about a situation ,'* but is recognizing j (i.e.
satis fied(P;)), then UD(j,¢) and UD(i, NOTj) are true but UD(j, NOT}j)
is false. Also, note that reflexivity of UD is preserved provided the consis-
tency condition holds, i.e. UD(4,1%) holds for any ¢, and symmetry holds.

UD relationships might be used as part of the specification of a context-
aware system, with implications on what situation programs the system
should have. For example, the system which needs to distinguish between
the situations walking and running, and the situations in_a meeting and
available, can be specified with the statements —U D(walking, running),
and ~UD(in_a_meeting, available). From the definition of UD above, the
programs Pwalkinga Prunninga PNOTwalkinga and PNOTrunning need to be deﬁned and
in such a way that —UD(walking, running) holds, and similarly, the four
programs for in_a_meeting and available. For example, if the system is
build this way, in a run of the system, when we have satis fied(Piaixing), then
the system would also conclude satis fied(Pyorrunning)- This implies that the
system (with its sensors and set of situation programs) has adequate per-
ceptual ability to “see” not only the occurrence of a situation but also the
non-occurrence of another situation implied by the occurrence of the first.
If the system is not able to also conclude satis fied(Pyorrunning) OF the sys-
tem does not contain a definition for Pirruming, then the system is leaving
open the possibility that while the person is walking, he or she might also
be running (i.e. satisfied(Pruning) is possible) or the person is not running
but the system is not detecting it, i.e. the system is unable to recognize the
close relationship between walking and running that the occurrence of one
situation always excludes the other. It is one level of perceptual ability for
a system to recognize a situation, and another (higher) level of perceptual
ability if the system recognizes not only the situation but (concurrently) also
recognizes the non-occurrence of another situation (ruled out by the occur-
rence of the first) - the system is supplying more information in the latter
case.

We also note that the above completeness and soundness definitions can

13This could be due to a number of reasons including a faulty definition of P; or Pxyori.

23

be applied for a system containing not only situation programs but also the
corresponding “NOT” situation programs. Given that the real-world is such
that ¢ occurring means that j is not occurring, completeness implies that
the UD relationships are indeed upheld, since both the occurrence and non-
occurrence of situations will be detected.

The ability to distinguish between situations does not help to determine
if two situations are compatible or incompatible. If two situations are distin-
guished, they may still be incompatible or compatible. For example, driving
and sitting might be distinguished by the system, but they can both occur at
the same time - they are compatible. For each pair of incompatible situations
7 and j, and if needed for an application, we would like the condition that
=UD(i,7) to be added to the specification of the system. However, if two
situations ¢ and j are compatible, it is not sensible to have the system satisfy
~UD(3, j) since the occurrence of one does not imply the non-occurrence of
the other.

Based on Barwise (1989), it would also be useful if a situation i (e.g., a
soccer game is on between Brazil and Japan) can reasonably be viewed (by
a human) as containing j (e.g., Brazilian players are running around in the
field), then whenever ¢ = P;, then ¢ = P}, or that this “containment” can be
represented by a rule such as “whenever satisfied(P;), then satisfied(P;)”.
However, whether such a rule holds depends on the exact definition of P; and
P; chosen by the designer. One can define such relationships between situa-
tion programs at the meta-level as we showed using sub_situation_of/3 in
Section 3.3.1.

4.4 Modularity

One might wish to add new situation programs and remove existing programs
over time. For example, a context-aware system might already have a number
of sensors and a set of situation programs. As new situations need to be
recognized, new situation programs that utilize existing sensors (and sensor
predicates) can be defined.

New sensor predicates which process sensor readings (from existing sen-
sors) into context might be added. Existing sensors can be replaced, possibly
without affecting the structure (or signature) of existing sensor predicates,
and therefore, leaving situation programs unchanged. If new context infor-
mation need to be considered, new sensor predicates can be added. And if
new sensors or sensor predicates are added affecting the definition of situa-

24

tion programs, then only the affected situation programs (those with sensor
predicates using the new sensors) need to be changed.

Since LogicCAP programs refer to situation programs by their names
at the meta-level, situation programs can be modified internally without
affecting the LogicCAP rules. For example, in the mobile phone program in
Section 3.3.1, the situation program for in_lecture might be changed (e.g.,
a new sensor is added which will improve the certainty of recognizing this
situation) without affecting the program.

We have also shown how to represent complex situations in terms of other
situations in Section 3.3.1. Situation programs can be built which are reused
(as constituents) to recognize different complex situations. For example, as
shown earlier, sleeping was used both to define sleeping walking, and
busy.

4.5 Discussion

In summary, the designer should build situation programs (with their cor-
responding NOT duals) into a context-aware system in such a way that
the system will distinguish between situations that it should distinguish and
should not distinguish between situations that it should not distinguish - the
situation programs are defined such that UD (as defined above) holds under
the right circumstances: when two situations ¢ and j are not to be distin-
guished, then UD(i, j) should hold, and conversely. Moreover, the situation
programs should enable the system to respect the containment relation be-
tween real-world situations.

A context-aware system should be sound, complete, and have adequate
perceptual power, as least for the application intended. The situation pro-
grams should also be built with reuse in mind. As mentioned earlier, it is
generally difficult to test that a system satisfy such properties since it is
not possible to artificially subject a system to all possible situations one can
conceive. While our discussion has been theoretical, we have provided a for-
mulation of these properties (within our representation of situation) which
are typically not stated explicitly, or merely stated informally in the liter-
ature. Also,we envision that limited testing by subjecting the system to a
limited set of situations is possible once a system is built - in which case the
situation programs might be modified (or even sensors replaced, or added to
the system) in order for the system to work correctly.

25

5 Related Work

Research has begun to look at frameworks for context-aware systems more
generally, independently of specific applications, including context middle-
ware, infrastructures and toolkits (e.g., (Dey, 2000; Henricksen, 2003; Biegel
and Cabhill, 2004; Hong and Landay, 2001)). Such work facilitates the build-
ing of context-aware systems. Tools for end-users to program context-aware
systems are also being built on top of these infrastructures. For example,
iCAP (Sohn and Dey, 2003) allows end-users to program a context-aware
application by specifying rules. Indeed, such rule-based programming seems
intuitive and well-suited to context-aware applications. We take rule-based
programming further with our approach by representing situations and not
only programming rule-based triggers for context-aware actions.

There has been work by Ranganathan and Campbell (2003) and Katsiri
and Mycroft (2003) where first order logic is used for representing and rea-
soning with context, and work in (Henricksen, 2003) where first-order logic
is used to describe and reason with situations. However, they do not use a
modular approach or meta-reasoning as we do in LogicCAP. Moreover, they
do not consider an abductive semantics as we do for our situation rules.

As mentioned in the introduction, related is work on using ontologies and
the Semantic Web for representing and reasoning with context (e.g., (Chen
et al., 2003)). We have so far not utilized ontologies, but feel our work is
complementary to such work. For example, we can use ontologies to provide
a vocabulary for situation predicates in our situation programs, so that such
programs might be shared across different systems (or even retrieved from
a store over the Web). Also, ontologies can provide vocabularies and addi-
tional semantics to sensor predicates - such predicates can represent context
attributes specified by an ontology. Standard signatures for sensor predi-
cates facilitates reuse of situation programs. Moreover, we acknowledge that
there could be many different ways (different sensors and different context at-
tributes used) for recognizing a situation. To quote Woods (1978) long before
the advent of pervasive computing: “...there are in general many different
ways in which the current situation might be described, and it is not clear
how one should construct such a description.” For example, to recognize
if there is a meeting going on, there could be several approaches (as can be
viewed from the current literature). One approach is to use weight sensors on
the floor. Another approach might be to track the location of participants.
A third approach is to track the co-location of filled coffee cups in a room

26

(Gellersen et al., 2002). A fourth approach might be to combine location and
time, characteristics of devices in the room (e.g., powerpoint is being used,
light is on, etc) and personal diaries and schedules of participants (Chen et
al., 2004a; Ranganathan and Campbell, 2003). The actual approach em-
ployed might depend on the sensors available and the infrastructure at hand,
and other pragmatic considerations. Such approaches can be combined but
an ontology can be useful for describing the situation of a meeting using a
common vocabulary of concepts, or to represent that the different notions
of meeting do coincide (e.g., all the different approaches could refer to the
concept of meeting in the same ontology).

Tazari (2003) gives a characterization of situation as ranges on sensor
readings as follows. Given a situation s, let ki,...,k, be a set of context
attributes (e.g., location is one attribute, and temperature might be another),
v(k;, t) denotes the value of k; at time ¢, and V; denotes the range of possible
values that are acceptable for k; within s. Then, s is recognized by the
following characteristic function which states that a situation is recognized
when the values of the context attributes are all within a certain range:
Xs : Time — {true, false}, defined as x,(t) = A;_,(v(ki,t) € Vi). Our
characterization can be viewed as a generalization of this approach; instead
of constraints on sensor readings (values returned by sensors for context
attributes) in the form of the sets Vs, we represent the constraints using
relations and variables in logic programming rules.

There has been other work on situation recognition, dating back a decade
and recently (Dousson et al., 1993; Mouthaan et al., 2003). Such work tend
to model situations as event patterns. Situation recognition boils down
to analysing real-time streams of sensor data (which might be abstracted
into events) and matching them with stored event patterns. Our approach
models situations differently, via situation programs, and also enable (meta-
)reasoning with situations within a declarative programming language. The
notion of events can be captured within sensor predicates as noted in Section
3.3.2.

Pinheiro (2002) discusses the use of situation theory to describe real-
world scenarios in a more formal way. A scenario description comprises
a title identifying the scenario, the scenario’s goal, the scenario’s context
(i.e. the scenario’s initial state, pre-conditions, and the space-time location),
resources, actors, and episodes (or actions of actors involving resources).
Goals and contexts are described by situations, where a situation is described
by a set of infons (each infon a relationship among individuals). There are

27

notions of inclusion, consistency, and part-of between situations within the
framework. They do not consider the notion of sensors in their scenario
representation (as their work is not tailored for context-aware computing),
and do not make connections with logic programming or meta-programming
as we do.

We have previously considered connnections with context-aware Web ap-
plications in (Loke, 2004). There, we introduced the idea of situation pro-
grams and LogicCAP, but did not discuss their denotational semantics or

properties of context-aware systems and emphasized integration with the
Web.

6 Conclusion and Future Work

We have presented a declarative approach to building context-aware per-
vasive systems. We introduced the notion of the situation program which
highlights the primacy of the situation program for building context-aware
systems. We provided semantics for situation programs and discussed how
the design of situation programs can affect the properties of a context-aware
system. The situation programs need to be defined in such a way as to pro-
vide favourable properties to the system. Such properties provide a general
guide as to design aspirations for situation programs.

We have also shown how to manipulate situation programs within Log-
icCAP, and illustrated the convenience of meta-reasoning with situations
within LogicCAP. The “in-situation” operator captures within the language
a common form of reasoning in context-aware applications, which is to ask if
an entity is in a given situation. The computation model for LogicCAP has
been backward-chaining on LogicCAP rules (following ordinary Prolog exe-
cution behaviour), and then forward-chaining with situation programs due
to the way we write the rules, with situations implying (causing/explaining)
the expected observations in sensor readings.

Three key benefits of our approach are as follows:

1. The approach encourages representing and reasoning with situations
using a declarative language, providing a high-level of abstraction.

2. The approach supports building context-aware systems incrementally
by providing modularity and separation of concerns.

28

3. The approach is amenable to formal analysis based on logic program-
ming theory.

There are several avenues for further work. While we can reason with
disjunctions of situations at the meta-level, we are investigating disjunctive
constraints within situation programs. It would be convenient to be able to
use “or” between goals in the rules. We have only dealt with in-situation
goals where the operands of S IIF E are grounded. Queries where S and
E are variables can be considered, to find all entities in a given situation
or all situations for a given entity’s context. Incorporating reasoning with
uncertainty can also be investigated. We are continuing to prototype more
situation programs and a complete context-aware system on the basis pro-
vided in this paper. Practical experiences will need to be gained. Since
situation programs are logic programs, it would also be interesting to con-
sider what new situation programs are formed if we composed these logic
programs according to operators similar to that described by Brogi (1993).
Lattices of situations might be constructed as lattices of situation programs
which can help the system understand and reason with relationships between
situations as noted by Woods (1978).

References

V. Akman. Context in Artificial Intelligence: A Fleeting Overview (En-
glish version of Contesti in intelligenza artificiale: una fugace rassegna). In
C. Penco, editor, La Svolta Contestuale. McGraw-Hill, Milano, 2002.

L. Barkhuus. Context Information vs. Sensor Information: A Model for
Categorizing Context in Context-Aware Mobile Computing. In Symposium
on Collaborative Technologies and Systems, pages 127-133, San Diego, CA,
2003.

J. Barwise. The Situation in Logic. CSLI, 1989.

J. Barwise, J.M. Gawron, G. Plotkin, and S. Tutiya, editors. Situation Theory
and its Applications. CSLI, 1991.

J. Barwise and J. Perry. Situations and Attitudes. Cambridge: MIT-
Bradford, 1983.

G. Biegel and V. Cahill A Framework for Developing Mo-
bile, Context-Aware Applications. In 2nd IEEE Conf. on Per-

29

vaswe Computing and Communications, March 2004. Available
at http://www.dsg.cs.tcd.ie/ “biegelg/research/publications/TCD-CS-2004-
04.pdf.

P. Bouquet, C. Ghidini, F. Giunchiglia, and E. Blanzieri. Theories and
Uses of Context in Knowledge Representation and Reasoning. Journal of
Pragmatics, 35(3), 2003.

P. Brezillon. Representation of Procedures and Practices in Contextual
Graphs. The Knowledge Engineering Review, 18(2):147-174, 2003.

A. Brogi. Program Construction in Computational Logic. PhD thesis, Uni-
versity of Pisa, 1993.

H. Chen, T. Finin, and A. Joshi. An Ontology for Context-Aware Perva-
sive Computing Environments. In Workshop on Ontologies and Distributed
Systems, IJCAI-2003, August 2003.

H. Chen, T. Finin, and A. Joshi. A Context Broker for Building Smart Meet-
ing Rooms. In Craig Schlenoff and Michael Uschold editors, Proceedings of
the Knowledge Representation and Ontology for Autonomous Systems Sym-
posium, 2004 AAAI Spring Symposium, pages 53-60, Stanford, California,
2004. AAAT Press, Menlo Park, CA.

H. Chen, T. Finin, and A. Joshi. An Ontology for Context-Aware Pervasive
Computing Environments. The Knowledge Engineering Review (special issue
on “Ontologies for Distributed Systems”), 18(3):197-207, 2004.

K.J. Devlin. Situations as Mathematical Abstractions. In J. Barwise, J.M.
Gawron, G. Plotkin, and S. Tutiya, editors, Situation Theory and its Appli-
cations. CSLI, 1991.

A.K. Dey. Providing Architecture Support for Building Context-Aware Ap-
plications. PhD thesis, Georgia Institute of Technology, 2000.

A.K. Dey. Understanding and Using Context. Personal and Ubiquitous
Computing Journal, 5(1):5-7, 2001.

C. Dousson, P. Gaborit, and M. Ghallab. Situation Recognition: Repre-
sentation and Algorithms. In Proceedings of the 13th International Joint

Conference on Artificial Intelligence (IJCAI’93), Chambry, France, pages
166172, 1993.

30

H-W. Gellersen, A. Schmidt, and M. Beigl. Multi-Sensor Context-Awareness
in Mobile Devices and Smart Artifacts. Mobile Networks and Applications
(MONET), 7(5):341-351, October 2002.

G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel
Execution of Prolog Programs: a Survey. ACM Transactions on Program-
ming Languages and Systems, 23(4):472-602, July 2001.

R. Headon. Movement Awareness for a Sentient Environment. In Proceed-
ings of the 1st Conference on Pervasive Computing and Communications
(PerCom 2003). IEEE Computer Society Press, March 2003.

K. Henricksen. A Framework for Context-Aware Pervasive Computing Ap-
plications. PhD thesis, University of Queensland, 2003.

K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling Context Infor-
mation in Pervasive Computing Systems. In Proceedings of the Workshop
on Context Modelling and Reasoning (CoMoRea’04) at the 2nd IEEE Inter-
national Conference on Pervasive Computing and Communications, pages
33-37, March 2004.

J.I. Hong and J.A. Landay. An Infrastructure Approach to Context-
Aware Computing. Human-Computer Interaction, 16, 2001. Available at
http://guir.berkeley.edu/projects/confab/pubs/context-essay-final.pdf.

A. Hopper. The Royal Society Clifford Paterson Lecture - Sentient Com-
puting. Phil. Trans. R. Soc. Lond, 358:2349-2358, 2000. Available at
http://www-lce.eng.cam.ac.uk/publications/files /tr.1999.12.pdf.

E. Katsiri and A. Mycroft. Knowledge Representation and Scal-
able Abstract Reasoning for Sentient Computing Using First-Order
Logic. In Proc. Challenges and Novel Applications for Auto-
mated Reasoning (CADE-19 Workshop), July 2003. Available at
http://www.cl.cam.ac.uk/users/am/papers/nads03.pdf.

K. Koile, K. Tollmar, D. Demirdjian, H. Shrobe, and T. Darrell. Activity
Zones for Context-Aware Computing. In Proceedings of the 5th International
Conference on Ubiquitous Computing (UBICOMP 2003), 2003.

O. Lehmann, M. Bauer, C. Becker, and D. Nicklas. From Home to World
- Supporting Context-Aware Applications through World Models. In Pro-
ceedings of the 2nd IEEE Annual Conference on Pervasive Computing and
Communications (PERCOM’04). IEEE Computer Society, 2004.

31

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

S.W. Loke. Logic Programming for Context-Aware Pervasive Computing:
Language Support, Characterizing Situations, and Integration with the Web
. In Proceedings of the IEEE/WIC/ACM Conference on Web Intelligence
(WI°04), 2004. (to appear)

C. Matheus, M. Kokar, and K. Baclawski. A Core Ontology for Situation
Awareness. In Proceedings of FUSIONO3, pages 545-552, July 2003. Avail-
able at http://vistology.com/papers/FUSION03.pdf.

J. McCarthy. Notes on Formalizing Contexts. In Ruzena Bajcsy, editor, Pro-
ceedings of the 13th International Joint Conference on Artificial Intelligence,
pages 555-560, San Mateo, California, 1993. Morgan Kaufmann.

R.E. McGrath, A. Ranganathan, R.H. Campbell, and M.D. Mickunas.
Use of Ontologies in Pervasive Computing Environments. Technical re-
port, UIUCDCS-R-~2003-2332 ULU-ENG-2003-1719, April 2003. Avail-
able at http://mummy.intranet.gr/includes/docs/MUMMY-D11y1-ZGDV-
CtxtAwr-v02.pdf.

T. Moran and P. Dourish, editors. Contezrt-Aware Computing. Lawrence
Erlbaum Assoc Inc, 2002.

Q.M. Mouthaan, P.A.M. Ehlert, and L.J.M. Rothkrantz. Situation Recogni-
tion as a Step to an Intelligent Situation-Aware Crew Assistant System. In
Proceedings of the 15th Belgium-Netherlands Conference on Artificial Intel-
ligence (BNAIC 2003), Nijmegen, The Netherlands, pages 219-226, October
2003.

M. Muhlenbrock, O. Brdiczka, and J-L. Meunier D. Snowdon. Learning to
Detect User Activity and Availability from a Variety of Sensor Data. In

Proceedings of the 2nd IEEE Annual Conference on Pervasive Computing
and Communications (PERCOM’04). IEEE Computer Society, 2004.

D.J. Patterson, L. Liao, D. Fox, and H. Kautz. Inferring High-Level Be-

haviour from Low-Level Sensors. In Proceedings of the 5th Annual Conference
on Ubiquitous Computing (UBICOMP 2003), 2003.

S. Peters and H.E. Shrobe. Using Semantic Networks for Knowledge Rep-
resentation in an Intelligent Environment. In Proceedings of the 1st IEEE
Annual Conference on Pervasive Computing and Communications (PER-
COM’03), pages 323-329. IEEE Computer Society, 2003.

32

R.W. Picard. Affective Computing. MIT Press, 1997.

F. Pinheiro. Preliminary Thoughts on Using Situation Theory for Scenario
Modelling. In Workshop on IDEAS 2002, La Habana, Cuba, 2002.

A. Ranganathan and R.H. Campbell. An Infrastructure for Context-
Awareness Based on First Order Logic. Personal and Ubiquitous Computing
Journal, 7:353-364, 2003.

B.N. Schilit, N.I. Adams, and R. Want. Context-Aware Computing Appli-
cations. In Proceedings of the Workshop on Mobile Computing Systems and
Applications, pages 85-90. IEEE Computer Society, December 1994.

Y. Shoham and A. del Val A Logic for Perception and Be-
lief. Technical Report STAN-CS-91-1391, Dept. of Computer
Science, Stanford University, September 1991. Available at
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/91/1391 /CS-TR-91-
1391.pdf.

T. Sohn and A.K. Dey. iCAP: An Informal Tool for Interactive Prototyping
of Context-Aware Applications. In Interactive Poster in the ACM Conf. on
Human Factors in Computing Systems, pages 974-975, April 2003.

E.M. Tapia, S.S. Intille, and K. Larson. Activity Recognition in the Home
Using Simple and Ubiquitous Sensors. In A., editor, Pervasive 2004, LNCS
3001, pages 158-175. Springer-Verlag, 2004.

S. Tazari. Context-Awareness and Knowledge Representation D11.
Technical report, MUMMY (IST-2001-37365), 2003. Available at
http://www.cs.uiuc.edu/Dienst/UI/2.0/Describe /ncstrl.uiuc_cs/UTUCDCS-
R-2003-2332.

E. Tin and V. Akman. Computational Situation Theory. SIGART Bulletin,
5(4):4-17, 1994.

X.H. Wang, T. Gu, D.Q. Zhang, and H.K. Pung. Ontology Based Con-
text Modeling and Reasoning using OWL. In Proceedings of the Workshop
on Context Modelling and Reasoning (CoMoRea’04) at the 2nd IEEE Inter-

national Conference on Pervasive Computing and Communications. IEEE
Computer Society Press, March 2004.

W.A. Woods. Taxonomic Lattice Structures for Situation Recognition
In Proceedings of the Theoretical Issues in Natural Language Processing,
Urbana-Campaign, Illinois, United States, pages 33 — 41, 1978.

33

B. Yoshimi. On Sensor Frameworks for Pervasive Systems. In Proceedings
of the Workshop on Software Engineering for Wearable and Pervasive Com-
puting at the 22nd International Conference on Software Engineering, 2000.

34

