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e-mail: chrpa@kti.mff.cuni.cz

Abstract

There are many approaches for solving planning problems. Many of these approaches are based

on ‘brute force’ search methods and they usually do not care about structures of plans previously

computed in particular planning domains. By analyzing these structures, we can obtain useful

knowledge that can help us find solutions to more complex planning problems. The method

described in this paper is designed for gathering macro-operators by analyzing training plans. This

sort of analysis is based on the investigation of action dependencies in training plans. Knowledge

gained by our method can be passed directly to planning algorithms to improve their efficiency.

1 Introduction

Planning is an important branch of Artificial Intelligence (AI) research. In planning, we define

states of ‘worlds’ described by logical facts or functions and actions (or operators) that can modify

these states. The purpose of planning is to generate a sequence of actions that transform the

‘worlds’ from some initial state to the given goal state.

Despite significant improvement in planning systems in the last few years, many automated

planning algorithms are still based on ‘brute force’ search techniques accommodated with heur-

istics guiding the planner toward the solution Bonet and Geffner (1999). Hence, an important

question is how such knowledge transformable into efficient planning heuristics can be found.

Several heuristics are based on the structure of a Planning Graph Blum and Furst (1997). While

these heuristics provide good results, an analysis of the Planning Graph does not seem to reveal

complete information hidden in the plan structures. One of the most significant works from the

past was a solver called REFLECT (Dawson & Siklóssy, 1977), which uses a preprocessing phase

to ease its own solving. Specifically, the preprocessing phase consists of detecting incompatible

predicates (i.e. predicates that cannot be simultaneously true) and building macro-operators

(described in greater depth in Section 3). System PRODIGY (Minton & Carbonell, 1987) focuses

on learning search control rules (i.e. logical rules describing relationships between predicates or

operators). Search control rules were also applied in a well-known planner called TALPlanner

(Kvanström & Magnusson, 2003). A newer approach presented in Hoffmann et al. (2004)

describes Landmarks—facts that must be true in every valid plan. Another work (Knoblock, 1994)

presents a structure called Causal Graph that describes dependencies between state variables. The

most recent studies (Gimenez & Jonsson, 2007; Katz & Domshlak, 2007) analyze the Causal

Graph with respect to complexity of planning problems. Both the Landmarks and the Causal

Graphs are tools based on analyzing literals, giving us useful information about planning

domains, but almost no information about the dependencies between actions in plans. One of the



most influential works from the area of action dependencies (McCain & Turner, 1997) defines a

language for expressing causal knowledge (previously studied in Geffner (1990) and Lin (1995))

and formalizes the actions in it. One of the newest approaches (Vidal & Geffner, 2006) is based on

plan space planning techniques over temporal domains. It gained very good results, especially in

parallel planning, because it handles supports, precedences and causal links in a better way. There

are other more practically oriented approaches, such as those described by Wu et al. (2005), where

knowledge is gathered from plans stochastically, and Nejati et al. (2006) where learning from

expert traces is adapted for acquiring classes of hierarchical task networks (HTN). Finally, papers

(Chrpa & Bartak, 2008a, 2008b) define relations describing action dependencies and present

methods based on these relations.

Another way to improve the efficiency of planners rests in using macro-actions or macro-

operators that represent sequences of primitive actions or operators (related works are discussed in

Section 3). In this paper, we provide a method generating macro-operators by investigation of

action dependencies in training plans (the method is an extension of the work presented in (Chrpa,

2008)). Our method is used for learning macro-operators from simpler training plans; the learned

macro-operators are encoded back into the domains and the primitive operators replaced by the

macro-operators are removed from the domains. Such domains can be passed to planners without

modifying their code. It means that our method is designed as a supporting tool for arbitrary planners.

The paper is organized as follows. In the next section, we introduce basic notions from the

planning theory. Then we discuss related works in the area of macro-operators. After that, we

provide a brief theoretical background of the problem of action dependencies in plans and then we

describe our method for gathering macro-operators from training plans. Then we present and

discuss the formal soundness and time complexity of our method. Finally, we discuss the

experimental results of our method, similarities and differences with existing approaches and

possible directions of our future research.

2 Preliminaries

Traditionally, AI planning (in state space) deals with the problem of finding a sequence of actions

transforming the world from some initial state to a desired state. State s is a set of predicates that

are true in s. Action a is a 3-tuple (p(a), e2(a), e1(a)) of sets of predicates such that p(a) is a set of

predicates representing the precondition of action a, e2(a) is a set of negative effects of action a,

e1(a) is a set of positive effects of action a. Action a is applicable to state s if p(a)� s. If action a

is applicable to state s, then new state s0 obtained after applying action a is s05 (s \ e2(a))[ e1(a).

A planning domain is represented by a set of states and a set of actions. A planning problem is

represented by a planning domain, an initial state and a set of goal predicates. A plan is an ordered

sequence of actions that lead from the initial state to any goal state containing all of the goal

predicates. For a deeper insight in this area, see Ghallab et al. (2004).

In this paper, we consider the classical representation of planing problems. This representation

allows the definition of planning operators, in which actions are their grounded instances. Our

approach supports the Typed STRIPS representation of PDDL (Planning Domain Definition

Language).

3 Related works

Macro-operators (macro-actions) represent sequences of primitive operators (actions), but behave

as common planning operators (actions). The advantage of using macro-operators is clear—

shorter plans are explored to find a solution. However, macro-operators usually have much more

instances than primitive operators, which leads to an increased branching factor for search.

One of the oldest approaches, STRIPS (Fikes & Nilsson, 1971), generates macro-actions from

all subsequences of plans. It leads to plenty of useless macro-actions. REFLECT (Dawson &

Siklóssy, 1977) builds macro-operators from pairs of primitive operators that are applied successively
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and share at least one argument. In this case, macro-operators are learned directly from a domain

analysis. However, it may lead to the generation of useless macro-operators. FM (McCluskey,

1987) follows the ideas used by STRIPS, but instead of STRIPS, FM compiles learned sequences

of operators into one single operator representing the whole sequence of primitive ones. In

addition, FM learns b-chunks that help it with instantiating of macro-actions. Even though FM

gained a significant improvement against STRIPS, still it produced many useless and too complex

macro-operators. MORRIS (Minton, 1985) learns macro-operators for STRIPS from parts of

plans appearing frequently or being potentially useful (but having low priority). Macro Problem

Solver (MPS), presented in Korf (1985), learns macro-actions only for particular goals. It needs

different macro-actions when the problem instances scale or goals are different. MACLEARN

(Iba, 1989) generates macro-actions that can ‘traverse’ from one peak of a particular heuristic

function to another peak. A domain-dependently oriented work (Iba, 1985) discusses the usability

of macro-operators in puzzle worlds (for instance, Peg Solitaire).

One of the state-of-the-art approaches, MARVIN (Coles & Smith, 2007; Coles et al., 2007)

learns macro-operators online from action sequences that help FF-based planners to escape

plateaus. It also learns macro-operators from plans of reduced versions of the given problems. One

of the most outstanding works in the area of macro-actions is Macro-FF (Botea et al., 2005), a

system for generating macro-operators through the analysis of static predicates. In addition,

Macro-FF can learn macro-operators from training plans by analyzing successive actions. Macro-

FF is produced in two versions. CA-ED version is designed for arbitrary planners where changing

their source code is not necessary and SOL-EP version (planner dependent) where a planner (in

this case, FF) is enchanted for handling macro-operators. WIZARD (Newton et al., 2007) learns

macro-actions from training plans by genetic algorithms. There are defined several genetic

operators working over action sequences appearing in training plans. WIZARD is designed for

arbitrary planners. DHG (Armano et al., 2003, 2005) is able to learn macro-operators from static

domain analysis by exploring a graph of dependencies between operators.

Our method is designed for domain-independent planning and for arbitrary planners like

the other systems. Macro-operators can be assembled only from operators that are dependent, in

terms that one operator provides a predicate (or predicates) to the other operator. It is similar to

existing approaches. Nevertheless, there are some differences between our method and the existing

approaches. We are able to detect pairs of actions that can be assembled into macro-actions, but

the actions do not have to be necessarily successive in training plans. In addition, we are able to

update the training plans in such a way that the updated training plans consider generated macro-

operators. Therefore, it is not necessary to run the planners again. This can help us with another

issue, the removal of unnecessary primitive operators that can be replaced by generated macro-

operators. Despite the potential loss of completeness of some planning problems, planners benefit

from the removal of primitive operators and the experiments we made on International Planning

Competition (IPC) domains did not reveal any problem that became unsolvable. In addition,

our method can reveal a suitable set of macro-operators in very little time. A more thorough

comparison of our method with the existing ones is done in Section 8.3 (last paragraph).

4 Action dependencies in plans

Action choice is the key part of planning. Plans often contain sequences with dependencies

between actions in the sense that one action provides predicates serving as preconditions for the

other actions. In this section, we formally describe this dependency relation and present some of its

useful features.

Every action needs some predicates to be true before the action is applicable. These predicates

are provided by the initial state or by other actions that were performed before. If we have a plan

solving a planning problem, we can identify which actions are providing these predicates to other

actions that need them as their precondition. The following definition describes this relation

formally.
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DEFINITION 1.1. Let /a1,y , anS be an ordered sequence of actions. Action aj is straightly dependent

on the effects of action ai (denoted as ai- aj) if and only if i, j (e1(ai)\ p(aj)) 6¼ | and

ðeþðaiÞ \ pðajÞÞ 6�
S j� 1

t¼ iþ 1 e
þðatÞ.

Action aj is dependent on the effect of action ai if and only if ai- *aj where -* is a transitive

closure of the relation-.

The relation of straight dependency on the effects of action (hereinafter straight dependency

only) means that ai- aj holds if some predicate from the precondition of action aj is provided by

action ai and ai is the last action before action aj providing that predicate. Notice that an action

may be straightly dependent on more actions (if it has more predicates in the precondition). The

relation of dependency on the effects of action (hereinafter dependency only) is a transitive closure

of the relation of straight dependency.

Remark 1.2. Negation of the relations of straight dependency and dependency is denoted in the

following way:

> aiQ aj means that aj is not straightly dependent on ai (i.e.

d

(ai- aj)).
> aiQ* aj means that aj is not dependent on ai (i.e.

d

(ai- *aj)).

Let us define the complementary notion of action independency. The motivation behind this

notion is that two independent actions being adjacent can be swapped in the action sequence

without influencing the plan (lemma 1.4 (see below) which has been formally proved in Chrpa and

Bartak (2008b).

DEFINITION 1.3. Let /a1,y , anS be an ordered sequence of actions. Actions ai and aj (without loss

of generality, we assume that i, j) are independent on the effects (denoted as ai aj) if and only if

aiQ *aj, p(ai)\ e2(aj)5 | and e1(aj)\ e2(ai)5 |.

LEMMA 1.4. Let p 5/a1,y , ai 2 1, ai, ai 1 1, ai 1 2,y, anS be a plan solving planning problem P and

ai ai1 1. Then plan p05/a1,y, ai 2 1, ai 1 1, ai, ai 1 2,y, anS also solves planning problem P.

The symbol for relation of independency on the effects (hereinafter independency only) evokes a

symmetrical relation even though, according to Definition 1.3, the relation of independency does

not have to be necessarily symmetrical. The reason for using the symmetrical symbol is hidden in

the previously mentioned property of the independency relation (lemma 1.4).

Remark 1.5. Since the relations of dependency and independency are not complementary, we

define the following symbol:

> ai2aj means that aj is not independent on ai (i.e.

d

(ai aj)).

Computation of the relation of straight dependency is quite straightforward. The idea is based

on storing of indices of the last actions that created the particular predicates. Concretely, each

predicate p is annotated by d(p), which refers to the last action that created it. We simulate

execution of the plan and when action ai is executed, we find the dependent actions by exploring

d(p) for all predicates p in the precondition of ai. The relation of straight dependency can be

naturally represented as a directed acyclic graph, so the relation of dependency is obtained as a

transitive closure of the graph Mehlhorn (1984). The relation of independency can be easily

computed by checking every pair of actions ai and aj (i, j) on satisfaction of the conditions from

Definition 1.3. It is straightforward that the time complexity in the worst case is O(n2) where n

represents the length of the sequence of actions (plan).

5 Identifying actions that can be assembled

We obtain a new macro-action by assembling two primitive actions. The result of applying a

macro-action to some state is identical to the result of applying the primitive actions in the given
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order to the same state. A macro-action obtained by assembling of actions ai and aj (in this order)

will be denoted as ai,j, formally:

> p(ai, j)5 p(ai)[ (p(aj)\ e1(ai))
> e2(ai, j)5 (e2(ai)[ e2(aj))\ e

1(aj)
> e1(ai, j)5 (e1(ai)[ e1(aj))\ e

2(aj)

This approach can be easily extended for more actions; see Chrpa et al. (2007).

It is clear that we have to decide which actions can be assembled. We can analyze several previously

found plans (training plans), where we focus on actions (instances of operators) that are (or can be)

often successive. We can analyze the plans by looking for successive actions only. However, in such a

case, we may miss many pairs of actions that can be performed successively, but in the plans, there are

some other actions placed between them. If the intermediate actions can be moved before or behind

the chosen pair of actions without losing plan validity, then we can assemble even non-successive

actions. We use the main property of independent actions (can be swapped if adjacent) for detection if

a pair of actions can be assembled (we can make them adjacent). To get more insight regarding

permutations in plans, see Fox and Long (1999). Figure 1 shows four different situations (actually two

situations and their mirror alternatives) for moving the intermediate actions. Clearly, if the inter-

mediate action is adjacent and independent on the boundary action, we can move this action before or

behind one of the boundary actions (according to lemma 1.4). If the intermediate action is not

independent on one of the boundary actions, then we have to move it only before or behind the other

boundary action, which means that this intermediate action must be independent on all actions in

between (including the boundary action).

The algorithm (Figure 2) is based on repeated application of the above steps. If all intermediate

actions are moved before or behind the boundary actions, then the boundary actions can be

assembled (become adjacent). If some intermediate actions remain and none of the steps can be

performed, then the boundary actions cannot be assembled. Anyway, if the algorithm returns true

(i.e. actions can be assembled), we also obtain lists of action indices representing (intermediate)

actions that must be moved before (respectively behind) actions ai and aj. Usage of these lists will

be explained in the following section.

6 Generating macro-operators

As mentioned earlier, planning domains include planning operators rather than ground actions.

Assembling operators rather than actions is more advantageous, because macro-operators can be

more easily converted into more complex problems than macro-actions. The idea of detecting such

operators, which can be assembled, is based on the investigation of training plans, where we

explore pairs of actions (instances of operators) that can be assembled more times.

DEFINITION. 2.1. Let M be a square matrix where both rows and columns represent all planning

operators in the given planning domain. If field M(k, l) contains a pair /N,VS such that:

> N is a number of such pairs of actions ai, aj that are instances of k-th and l-th planning operator

(in order), ai- aj and both actions ai and aj can be assembled in some example plan.

Figure 1 Four different situations for moving the intermediate actions (gray-filled) before or behind one of

the boundary actions (black-filled)
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In addition, ai (resp. aj) cannot be in such a pair with the other instances of l-th (resp. k-th)

operator.
> V is a set of variables shared by k-th and l-th planning operators.

Then M is a matrix of candidates.

In other words, the matrix of candidates contains proper pairs of actions (instances of planning

operators) for assembling (or becoming macro-actions). The algorithm (Figure 3) constructs the

matrix of candidates from the given set of training plans solving the planning problems in the same

domain. Computation of the sets of variables that operators share needs to be clarified. For

example, in a variant of a well-known BlockWorld domain, there are operators PICK (box,

hoist and surface) and DROP (box, hoist and surface). If we decide to make a macro-operator

PICK-DROP (consisting of PICK and DROP operators in this order), then we can also see that

the box and hoist are always the same (we are picking and dropping the same box with the same

hoist in time), and only the surface may differ. Generally, we observe which parameters (objects)

are shared by actions and select such parameters that are shared by all pairs of actions (instances

of the given operators) that can be assembled.

Now, we explain the purpose of lists L and R that are generated in function DETECT-

IF-CAN-ASSEMBLE. If we have to update plans by replacing selected actions by macro-actions

(instances of generated macro-operators), then we must also reorder other actions to keep the

Figure 2 Algorithm for detecting pairs of actions that can be assembled
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(training) plans valid. The following approach shows how to reorder actions in plan

p5/a1 ,y , anS, if a pair of selected actions ai, aj is assembled into macro-action ai, j:

> actions a1,y ai21 remain in their positions
> actions listed in L are moved (in order) to positions i,y,1|L|21
> macro-action ai, j is added to i1|L|-th position
> actions listed in R are moved (in order) to positions i1|L|11,y, j21
> actions aj 1 1,y, an are moved one position back (to positions j,y, n21)

To generate macro-operators from training plans (in the given domain), we can use the fol-

lowing approach (formally in Figure 5). We create macro-operators repeatedly until no other

macro-operator can be created. At first, we have to compute the matrix of candidates from all the

training plans (CREATE-MATRIX). Then we select a proper candidate for creating macro-

operators (SELECT-CANDIDATE), which means that such a candidate must satisfy certain

conditions (which will be explained later). To ensure the soundness of the generated macro-

operators, we have to assign inequality constraints for macro-operator arguments. It prevents

a possible instantiation of invalid macro-actions if these arguments are set as equal. In Figure 4,

we can see an example of the PICKUP-STACK macro-operator. If the arguments are set as equal,

we can simply see that such an instance is applicable, but invalid (when unfolded). Inequality

constraints can be easily detected by simulation of performance of the operators that are going

to be assembled. After a creation of the macro-operator from the selected candidate, we must

update all training plans (UPDATE-PLANS), which means that we replace particular pairs

Figure 3 Algorithm for creating the matrix of candidates for assemblage

Figure 4 Example of PICKUP-STACK macro-operator
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of actions by the corresponding instances of the new macro-operator. UPDATE-PLANS

procedure can be easily implemented by application of the previously described approach (reor-

dering actions after assembling) on every pair of actions (instances of the selected operators) in

every plan.

Last but not least, the remaining unexplained issue is the function for selecting the proper

candidate for assemblage (SELECT-CANDIDATE). We suggested selecting such a candidate that

satisfies the following conditions (let f(O) represent the frequency of operator O (how many

instances of operator O occur in all the training plans), a(O) represent the arity of operator O

(number of arguments of O), Ni, j represent the number N in field Mi, j of the matrix of candidates

and Vi, j represent the set of variables shared by i-th and j-th operator):

max
Ni; j

f ðOiÞ
;
Ni; j

f ðOjÞ

� �
Xb ð6:1Þ

Ni; jP
k

f ðOkÞ
Xc ð6:2Þ

aðOiÞ þ aðOjÞ� jVi; j jp d ð6:3Þ

Condition 6.1 says that we are looking for such operators whose instances usually appear (or

can appear) successively. Constant bA/0; 1S represents a pre-defined bound that prevents

selecting such operators whose instances do not appear successively so often. It is clear that if

the bound is too small, many operators may be assembled. It usually causes that generated

macro-operators are representing almost the whole training plans, which does not bring any

contribution to planners. On the other hand, if the bound is too big, almost no operators may

be assembled, which means that the domains may remain unchanged. However, in some cases

we are not able to prevent the generation of such macro-operators representing a huge part of

some training plan, even though b is set quite big. The reason for this rests in the fact that

sometimes only one (or a very few) instances of some operator occur in all the training plans.

Almost always, we can find some other action that can be assembled with this instance, because

the ratio between the number of candidates (stored in the matrix of candidates) and the fre-

quency of the operator becomes 1. It means that the operator will be certainly selected for

assemblage. To prevent this unwanted selection, we can add condition 6.2 allowing only the

selection of such operators whose ratio between the number of instances being able to be

assembled (stored in Ni, j) and the number of all actions from all the training plans reaches a

predefined constant c.

Another problem we are facing rests in the fact that many planners use grounding. It means

that the planners generate all possible instances of operators that are used during planning.

However, macro-operators usually have more parameters than primitive operators, which means

that macro-operators may have much more instances than primitive operators. To avoid troubles

with planners regarding grounding, we should limit the maximum number of parameters for each

macro-operator by a pre-defined constant d (condition 6.3). If there are more candidates satisfying

all the conditions, then we prefer the candidate with the maximum value of the expression listed in

condition 6.1.

We must also decide which macro-operators can be added to the domain and which primitive

operators can be removed from the domain. Here, we decided to add every macro-operator whose

frequency in the updated training plans is non-zero. Similarly, we decided to remove every pri-

mitive operator whose frequency in the updated training plans becomes zero. It is clear that it may

cause a possible failure when solving non-training problems. Fortunately, in IPC benchmarks, it

does not happen (we did not experience any such problem during the experiments). If for some

problem planners fail to find a solution, then it is possible to bring the removed primitive

operators back to the domain and run the planners again.
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7 Soundness and complexity discussion

We assume that all plans used for analysis by our algorithms are valid. To ensure the validity of

the plans, we can simply extend the algorithm for computing the relation of straight dependency

by checking the satisfiability of action preconditions. It is quite straightforward that the algo-

rithms for computing the relations of (straight) dependency and independency (sketches of the

algorithms are discussed at the end of Section 3) are sound and can be computed in O(n2) steps (in

the worst case), where n represents the length of the input plan. Soundness and time complexity of

the other presented algorithms are justified in more detail.

PROPOSITION 3.1. The algorithm DETECT-IF-CAN-ASSEMBLE (Figure 2) is sound and can be

computed in the worst case in O(l2) steps where l is the number of intermediate actions (actions

between ai and aj).

Proof. The idea of the algorithm is based on moving intermediate actions before or behind defined

actions. It is clear that a pair of adjacent actions can be assembled into a macro-action (we must

follow their order) without loss of validity of the examined plan. The moving of intermediate

actions can be done in the four cases (Figure 1), where two of them are a mirror of the other two.

Without loss of generality, we prove the soundness and complexity only in two cases (on the left-

hand side on Figure 1), because the soundness and complexity of the other cases can be proved

analogically. First, if ai ai1 1, then by applying lemma 1.4, we can move ai1 1 before ai without

loss of the plan’s validity and it takes a constant time (i.e. O(1)). Second, assume that ai2 ak, k, j

and k is the greatest possible value. If ak al 8l : k, l, j, then by repetitively applying lemma 1.4,

we can move ak behind aj also without loss of the plan’s validity. It can take at most O(l) steps. The

algorithm always terminates because in each run of the loop we remove at least one intermediate

action. When no intermediate action remains, the loop ends. It means that the cycle is performed

at most l times. Hence, in the worst case the algorithm requires O(l2) steps to perform. &

PROPOSITION 3.2. The algorithm CREATE-MATRIX (Figure 3) is sound and can be computed in the

worst case in O(n4) steps where n is the total length of all the training plans.

Proof. For each training plan, the algorithm explores each pair of actions being in the relation of

straight dependency by the algorithm DETECT-IF-CAN-ASSEMBLE (Figure 2), which is sound

(proposition 3.1). It is clear that by using this approach, we can build the matrix of candidates

consistent with the previously stated conditions. It is also clear that in the worst case we can have

O(n2) relations of straight dependency and the algorithm DETECT-IF-CAN-ASSEMBLE in the

worst case can be performed in O(n2) steps (proposition 3.1—considering that l can be close to n).

Summarized, it gives us the time complexity O(n4) in the worst case. &

THEOREM 3.3. The algorithm GENERATE-MACRO (Figure 5) is sound and can be computed in the

worst case in O(n5) steps, where n is the total length of all the training plans.

Proof. From the soundness of the algorithms DETECT-IF-CAN-ASSEMBLE (proposition 3.1)

and CREATE-MATRIX (proposition 3.2), we know that each candidate for assemblage repre-

sents a pair of actions that can be assembled without loss of the plan’s validity. If we generalize it

and consider the inequality constraints, then we can simply see that each macro-operator pro-

duced by this algorithm is valid. The algorithm also always terminates because in each step of the

loop the length of the training plans decreases at least by one, which means that the loop can be

performed in the worst case n2 1 times. Together with the complexity of the algorithm CREATE-

MATRIX (proposition 3.2), it gives us the time complexity O(n5) in the worst case. &

It is well known that if we add a generated macro-operator into the domain, then the domain

remains valid. We can also remove the primitive operators fully replaced by the generated macro-

operators. It brings us an improvement of the performance of the planners. However, it may cause

an insolvability of some problems that were solvable in original domains. Hopefully, in all tested
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cases it did not happen as we can see in the experiments (Section 8). Despite the high time

complexity of our method (in the worst case), the experiments showed that our method is fast

(tenths of a second for one run of the GENERATE-MACRO procedure).

8 Experimental evaluation

In this section, we present the experimental evaluation of our method. We compare the perfor-

mance of the given planners between the original domains and the domains updated by our

method. The planning domains and planning problems that we used here are well known from the

IPC. We have done the evaluation in the following steps:

> Generate several simpler training plans as an input for our method.
> Generate macro-operators by our method and add them to the domains. Remove such primitive

operators that no longer appear in the updated training plans.
> Compare running times for more complex problems between the original domains and the

updated domains. The time limit was set to 600 seconds.

We used SATPLAN 2006 (Kautz et al., 2006) and SGPLAN 5.22 (Hsu et al., 2007) both for the

generation of the training plans (for the learning phase) and for the comparison of the running

times and quality of plans. We also used LAMA (Richter & Westphal, 2008), Filtering and

Decomposition for Planning (FDP) (Grandcolas & Pain-Barre, 2007) and LPG-td (Gerevini &

Serina, 2002) for the comparison of running times and quality of plans (not for the learning

phase).1 The choice of the planners was motivated by great results that the planners achieved on

the (several last) IPCs. Since SATPLAN and FDP cannot handle negative preconditions (which

are necessary for representation of inequality constraints), we used a tool called ADL2STRIPS2

that can produce grounded STRIPS domain from ADL domain.

For the evaluation, we used IPC domains Blocks, Depots, Zenotravel, Rovers, Gripper, Satellite

and Goldminer.3

8.1 Generating macro-operators and updating the domains

As mentioned earlier, the generation of macro-operators depends on pre-defined bounds b, c and d

(conditions 6.1, 6.2 and 6.3). The number of training plans for each domain differs from 3 to 6

with respect to their lengths. The average time taken by both SGPLAN and SATPLAN to

Figure 5 Algorithm for generation of macro-operators

1 The results of LPG are only briefly reported.
2 Available on IPC4 website.
3 Can be obtained on http://ipc.icaps-conference.org
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generate a training plan was (mostly) within tenths of a second.4 Despite the high (worst-case) time

complexity O(n5) (Theorem 3.3), the average time taken by one run of our method (GENERATE-

MACRO procedure) was within tenths of a second.5

We used different settings of bounds b, c and d and two different planners (SATPLAN 2006,

SGPLAN 5.22) for the generation of the training plans. First, bound d was set to N11 (except for the

Satellite domain and Gripper domain for SATPLAN’s training plans), where N represents the greatest

number of arguments of operators in the particular domain, because we did not want to generate too

complicated macro-operators. If bound b was set too low, then many useless macro-operators were

generated. We found out that a reasonable value of bound b can be almost in all cases 0.8; only in the

Gripper domain (for SATPLAN’s training plans), we lowered it to 0.6. Setting bound c was not as

definite as setting the other bounds. Usually, the reasonable value was between 0.1 and 0.05, but in the

Gripper domain it was set to 0.03. The reason for keeping bound c low (0.03–0.05) rested in the fact

that in the Blocks and Gripped domains, all the primitive operators were replaced by generated macro-

operators. The choice of a planner for the generation of training plans brought several differences—

only in the Blocks domain, it resulted in the same result. In the Depots domain, we were not able to

remove some primitive operators when SATPLAN’s training plans were used as we did when

SGPLAN’s training plans were used. In the Zenotravel and Rovers domains, we were not able to learn

any suitable set of macro-operators when SATPLAN’s training plans were used. Likewise, in the

Satellite domain, when SGPLAN’s training plans were used. In the Gripper domain, the results of

learning differed with respect to planners’ strategies—SATPLAN prefers to carry balls in both robotic

hands, SGPLAN prefers to carry balls just in one robotic hand. In the Gold Miner domain, the

planners preferred different operators, which resulted in slightly different results of learning.

The results of learning (best for the particular domains) are showed in Table 1. We stated

only such alternatives that provided the best results in the running times and quality of plans

comparison for the particular domains.

8.2 Comparison of running times and quality of plans

In this evaluation, we used SGPLAN 5.22, an absolute winner of the IPC 5, SATPLAN 2006, co-

winner of optimal track in the IPC 5, LAMA, winner of the IPC 6 suboptimal track and FDP,

participant of the IPC 5 and LPG-td, awarded on the IPC 4. The benchmarks ran on XEON

2.4GHz, 1GB RAM and Ubuntu Linux. The results are presented in Tables 2 and 3. We chose

such problems (in most domains) that were neither so easy nor so hard for the particular planners,

because the evaluation of these problems usually tells us the most about the particular domains.

Table 1 Suggestion of our method—the best results for the particular domains

Domain Added macro-operators Removed primitive operators

Blocks PICKUP-STACK, UNSTACK-STACK,

UNSTACK-PUTDOWN

PICKUP, PUTDOWN, STACK,

UNSTACK

Depots LIFT-LOAD, UNLOAD-DROP LIFT, LOAD, UNLOAD, DROP

Zenotravel REFUEL-FLY REFUEL

Rovers CALIBRATE-TAKE-IMAGE CALIBRATE, TAKE-IMAGE

Gripper PICK-MOVE-DROP, MOVE-PICK-MOVE-

DROP

MOVE, PICK, DROP

Satellite SWITCH-ON-CALIBRATE SWITCH-ON, CALIBRATE,

SWITCH-OFF

Gold miner MOVE-PICKUP-LASER, MOVE-

DETONATE-BOMB-MOVE-PICK-GOLD

PICKUP-LASER, PICK-GOLD,

DETONATE-BOMB

4 Performed on XEON 2.4GHz, 1GB RAM, Ubuntu Linux.
5 Performed on Core2Duo 2.66GHz, 4GB RAM, Win XP SP2.
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Table 2 Comparison of running times and plans lengths (we assume that macro-actions are unfolded into primitive actions) for SGPLAN (left-hand side) and SATPLAN

(right-hand side)

SGPLAN SATPLAN

Time (in seconds) Plan length Time (in seconds) Plan length

Problem orig upd-SG upd-SAT orig upd-SG upd-SAT Problem orig upd-SAT upd-SG orig upd-SAT upd-SG

Blocks14-0 .600.00 0.03 0.03 NA 48 48 Blocks14-0 23.58 3.14 3.14 38 56 56
Blocks14-1 .600.00 0.03 0.03 NA 44 44 Blocks14-1 38.06 3.84 3.84 36 88 88

Blocks15-0 .600.00 0.32 0.32 NA 88 88 Blocks15-0 46.90 7.24 7.24 40 60 60
Blocks15-1 179.84 0.05 0.05 114 54 54 Blocks15-1 45.68 7.63 7.63 52 142 142

depots1817 24.56 15.52 20.71 100 104 94 depots4321 5.24 4.40 2.07 43 41 38
depots4534 .600.00 0.53 54.71 NA 112 110 depots5656 222.42 .600.00 143.33 70 NA 59

depots5656 410.94 0.32 7.70 133 132 82 depots6178 6.82 43.14 26.11 51 50 42
depots7615 8.48 1.88 2.14 98 102 91 depots7654 10.04 25.96 16.45 41 56 39

zeno-5-20a 0.88 0.75 – 98 101 – depots8715 35.96 46.95 err 50 38 err
zeno-5-20b 1.07 0.77 – 92 97 – zeno-3-10 3.77 – 4.17 31 – 35

zeno-5-25a 1.74 1.05 – 124 122 – zeno-5-10 34.07 – 48.19 42 – 38
zeno-5-25b 0.57 0.58 – 117 125 – zeno-5-15a 92.13 – 30.93 50 – 51

rovers4621 2.31 0.03 – 48 44 – zeno-5-15b err – err err – err
rovers5624 0.10 0.02 – 52 52 – rovers4621 182.20 – .600.00 47 – NA
rovers7182 4.32 0.12 – 90 91 – rovers5624 4.30 – .600.00 62 – NA

rovers8327 3.53 0.06 – 78 71 – rovers8327 1.17 – .600.00 45 – NA
gripper16 0.05 0.05 1.11 135 135 101 gripper8 .600.00 8.14 0.03 NA 53 71

gripper17 0.06 0.06 1.31 143 143 107 gripper9 .600.00 12.86 0.06 NA 59 79
gripper18 0.06 0.07 1.56 151 151 113 gripper10 .600.00 19.78 0.04 NA 65 87

gripper19 0.06 0.07 1.83 159 159 119 gripper11 .600.00 err 0.07 NA err 95
gripper20 0.07 0.08 2.13 167 167 125 gripper12 .600.00 err 0.06 NA err 103

satellite26 3.73 – 29.99 138 – 138 satellite15 82.79 88.25 – 68 70 –
satellite27 4.73 – 13.20 138 – 139 satellite16 .600.00 115.07 – NA 69 –

satellite28 12.87 – 260.26 193 – 193 satellite17 129.39 127.62 – 74 73 –
satellite29 18.69 – 70.36 195 – 195 satellite18 25.05 24.40 – 44 43 –

satellite30 31.57 – 117.52 231 – 231 satellite19 .600.00 574.46 – NA 66 –
satellite31 56.65 – 201.36 272 – 272 gminer737-06 6.00 5.07 6.34 33 35 34
gminer737-06 err 0.01 0.01 NA 33 30 gminer737-07 6.08 4.91 5.82 38 38 37

gminer737-07 err 0.02 0.01 NA 34 65 gminer737-08 3.06 2.08 2.81 25 25 25
gminer737-08 err 0.01 0.01 NA 25 26 gminer737-09 4.24 3.47 4.26 33 30 29

gminer737-09 err 0.01 0.01 NA 29 32 gminer737-10 5.96 4.83 6.05 35 35 35
gminer737-10 err 0.01 0.02 NA 33 43
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Table 3 Comparison of running times and plans lengths (we assume that macro-actions are unfolded into primitive actions) for LAMA (left-hand side) and FDP (right-

hand side)

LAMA FDP

Time (in seconds) Plan length Time (in seconds) Plan length

Problem orig upd-SG upd-SAT orig upd-SG upd-SAT Problem orig upd-SG upd-SAT orig upd-SG upd-SAT

Blocks14-0 0.12 0.08 0.08 84 84 84 Blocks10-1 .600.00 11.82 11.82 NA 34 34

Blocks14-1 0.13 0.06 0.06 52 44 44 Blocks10-2 .600.00 6.57 6.57 NA 34 34
Blocks15-0 0.44 0.10 0.10 144 52 52 Blocks11-0 .600.00 178.31 178.31 NA 36 36

Blocks15-1 0.27 0.14 0.14 112 62 62 Blocks11-1 .600.00 146.24 146.24 NA 34 34
depots1817 .600.00 93.68 .600.00 NA 122 NA Blocks11-2 .600.00 93.02 93.02 NA 38 38
depots4534 243.61 1.39 9.81 122 67 107 depotprob7512 1.66 0.10 0.37 15 15 15

depots5656 .600.00 0.53 7.70 NA 70 98 depotprob1935 .600.00 11.41 44.18 NA 27 27
depots7615 .600.00 5.71 61.61 NA 77 78 depotprob6512 .600.00 70.24 288.27 NA 30 30

zeno-5-20a 1.22 0.87 – 91 91 – depotprob1234 .600.00 29.18 147.31 NA 23 21
zeno-5-20b 1.55 0.75 – 83 91 – zeno-2-4 5.34 7.88 – 11 11 –

zeno-5-25a 2.85 0.98 – 95 105 – zeno-2-5 42.29 73.01 – 11 11 –
zeno-5-25b 7.18 1.42 – 100 115 – zeno-2-6 58.18 7.71 – 15 15 –

rovers4621 0.06 0.06 – 47 47 – zeno-3-6 551.53 .600.00 – 11 NA –
rovers5624 0.08 0.04 – 50 50 – gripper8 .600.00 0.04 8.98 NA 71 53

rovers7182 0.23 0.18 – 90 90 – gripper9 .600.00 0.06 16.91 NA 79 59
rovers8327 0.15 0.10 – 71 77 – gripper10 .600.00 0.08 32.66 NA 87 65
gripper16 0.05 0.06 3.76 101 135 101 gripper11 .600.00 0.10 55.57 NA 95 71

gripper17 0.05 0.07 4.49 107 143 107 gripper12 .600.00 0.13 92.14 NA 103 77
gripper18 0.06 0.08 5.26 113 151 113 satellite3 1.39 – 0.28 11 – 11

gripper19 0.07 0.08 6.13 122 159 119 satellite4 62.52 – 17.24 17 – 17
gripper20 0.07 0.10 7.02 128 167 125 satellite5 .600.00 – 264.06 NA – 15

satellite26 3.85 – 7.37 139 – 139 satellite6 .600.00 – .600.00 NA – NA
satellite27 2.80 – 3.63 135 – 139

satellite28 .600.00 – 11.76 NA – 194
satellite29 16.82 – 19.88 190 – 191

satellite30 72.18 – 32.63 229 – 229
satellite31 40.46 – 67.47 269 – 272

gminer737-06 0.22 0.04 0.03 170 31 31
gminer737-07 0.04 0.04 0.03 65 34 65
gminer737-08 .600.00 0.03 0.03 NA 25 26

gminer737-09 0.14 0.04 0.03 130 29 32
gminer737-10 0.30 0.04 0.03 176 31 43

G
en
era

tio
n
o
f
m
a
cro

-o
p
era

to
rs

via
in
vestig

a
tio

n
o
f
a
ctio

n
d
ep
en
d
en
cies

in
p
la
n
s

2
9
3



The less complex problems were solved in the updated domains almost as fast as or a bit slower

than in the original ones (except for the Rovers domain in SATPLAN’s evaluation). The hardest

problems (both original and updated) were not solved within the time limit of 600 seconds.

SGPLAN performed well in the original domains on almost all the tested problems except Blocks

problems, some Depots problems and Gold Miner problems. Running times in the updated domains

were always better except in the Gripper domain, where the running times were slightly worse, and the

Satellite domain where the results were significantly worse. The quality of the plans6 generated in the

updated domains was not much worse, however; sometimes, the quality was slightly better and,

surprisingly, in one Blocks problem it was more than twice better. The best results SGPLAN were

reached in the Blocks domain where the speed-up was quite impressive. The possible reason may rest

in the fact that SGPLAN’s heuristics (FF-based) do not handle well problems like Blocks or Depots,

because the plan quality was significantly better in the updated problems as well. SGPLAN’s behavior

in the Gold Miner domain was weird, because for all more complex (original) problems, SGPLAN

terminated without throwing any error message after about 3minutes of running.

SATPLAN, unfortunately, did not benefit often from our method. In the Blocks domain,

SATPLAN was able to generate plans faster, but at the price of significantly worse quality of

plans. However, SATPLAN produced very good results in the updated Gripper domain, where

the problems normally unsolvable (in 600 seconds) were solved in a couple of seconds (for the

domain updated on the basis of SATPLAN’s training plans) or in hundreds of a second (for the

domain updated on the basis of SGPLAN’s training plans). The reason for that rests in the fact

that SATPLAN uses a Planning Graph and each tested problem in the updated Gripper domain

can be solved in only two layers. SATPLAN also gained quite good results in the Satellite and

Gold Miner domains. Errors thrown by SATPLAN were caused by insufficient memory or a large

domain file (produced by the ADL2STRIPS tool).

FDP is a planner based on CSP techniques that guarantees optimal plans. Even though FDP

seems to be an ideal candidate for generating training plans for the learning phase, it fails to find a

reasonable number of training plans in reasonable time. However, the experiments showed that

the performance on the updated domains significantly increased in most of the tested problems.

Using macro-operators reduced the depth of the search, which expectedly increased FDP’s per-

formance. The worse results gained in the Zenotravel domain was caused by the fact that no

macro-action was used in the solutions of the updated problems (except zeno-2-6). An absence of

results on the Rovers and Gold Miner domains is caused by the inability of FDP to process the

domains descriptions (both for the original and updated ones) correctly.

LAMA is a planner that combines the Causal Graph heuristic and FF-based heuristics. In the

Depots, Blocks and Gold Miner domains, the quality of plans was significantly better in updated

domains. In addition, the time comparison for the Depots domain showed a significant increase in

performance. The results correlate a bit with the results achieved by SGPLAN, because SGPLAN

uses FF-based heuristics as well.

We also made experiments with the LPG-td (Gerevini & Serina, 2002) planner. LPG is based on

local search techniques. Our experiments showed significantly worse performance in the Blocks

and Depots domains; in the other domains, LPG performed almost the same. However, the results

of LPG had huge discrepancies (both the running times and the quality of plans) with respect to

the selected random seed.

8.3 Additional remarks

The presented results showed an interesting improvement for more complex problems in the

domains updated by our method. Even though we used only at most six training plans for each

domain (depending on the length of the training plans), we usually gathered enough knowledge for

6 A ratio of the length of the plans in the original domains and the length of the plans in the updated

domains—macro-actions are unfolded into primitive actions.
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updating the domains. Even though we removed primitive operators from the original domains, we

were able to solve correctly each problem in the updated domains. The reason may be that planning

problems from the IPCs usually differ by the number of objects and not by different types of initial

states or goals. However, there exist domains (for instance, Freecell, Pipesworld, N-puzzle and

Sokoban) where our method did not manage to find any reasonable set of macro-operators (in

terms, that found macro-operators did not fully replace any primitive operator).

Generated macro-operators used in the comparison were in almost all cases combined only from

two primitive operators, except in the Gripper and Gold-Miner domains. Although the construction

of more complex macro-operators may reduce the depth of the search, such macro-operators may

have much more instances that can cause troubles to planners (increased branching factor).

The success of our method depends on several factors. First, training plans should be optimal

(shortest) or nearly optimal, because non-optimal plans may contain flaws (useless actions) that

may prohibit the detection of useful macro-operators or useless primitive operators. Second, we

have to decide what result of our method (generated macro-operators and removed primitive

operators) is the best. We followed the strategy where the particular generated macro-operator

replaces at least one primitive operator that is removed from the domain. The experiments showed

that our strategy is reasonable and contributive in many cases. Of course, there is a possible

improvement that considers planners’ specifics and strategies. SGPLAN is a planner that

decomposes a problem into subproblems and solves them by other planning techniques, mostly

FF-based. LAMA also uses FF-based heuristics and, in addition, Causal Graph heuristics. FF-

based planning techniques usually experience difficulties with plateaux. Therefore, if there are such

macro-operators that help the FF-based planner to escape plateaux, then the performance of the

planner should significantly increase. It has been already studied in Coles and Smith (2007).

SATPLAN is a planner that translates Planning Graph into SAT and then uses a SAT solver to

solve the problem. Potential success, in this case, mainly rests in the reduction of makespan (i.e.

the numbers of layers of the planning graph that must be explored). However, if makespan is

reduced only slightly, it may not result in speed-up, because the layers can be much more complex.

It also depends on the first appearance of instances of particular macro-operators in the Planning

Graph (the later the better).

For most of the older approaches (typically for STRIPS or MPS), it is quite common to

generate more complex macro-operators to penetrate the depth of the search as much as possible.

Our method is able to generate more complex macro-operators, if bounds b and c are kept lower

and bound d is kept higher. However, such macro-operators are very problem-specific, which

makes them unusable for a larger scale of problems in the given domain. Systems like PRODIGY

or DHG use static domain analysis and do not require training plans for their learning. Some

macro-operators learned by these systems may be unnecessary (i.e. instances of these macro-

operators usually do not appear in solutions of most of the problems). State-of-the-art systems

Marvin or Macro-FF (SOL-EP version) are built on the FF planner. These systems achieved very

promising results, but they cannot be applied with other planners. WIZARD and Macro-FF (CA-ED

version) are, like our method, designed as a supporting tool for arbitrary planners without

changing their code. WIZARD learns macro-operators genetically from training plans, which

follows quite a different policy than our method does. The usability of macro-operators is eval-

uated by the monitoring of running behavior of planners on updated training problems (by the

macro-operators). WIZARD, in comparison to our method, reported better results in the Satellite

domain or with the LPG planner, but WIZARD spends many hours on the learning phase,

whereas our method spends seconds. Macro-FF (CA-ED version) generates macro-operators

from an analysis of static predicates, then adds them into the domain and then generates training

plans (with the macro-operators). Unlike that, our method generates macro-operators from

training plans gathered from the original training problems and does not require to resolve them

(by the planners) in their updated form (with macro-operators). The idea, how the usability of

macro-operators is evaluated, is quite similar to our method, but a bit simpler—Macro-FF (CA-ED

version) picks the n most frequent macro-operators (assembled from two primitive operators).
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In addition, our method detects which primitive operators can be removed (with the risk of losing

completeness). For example, in the Depots domain, our method andMacro-FF (CA-ED version) found

the same macro-operators. Our method, in addition, removed four (resp. two) primitive operators by

using SGPLAN (resp. SATPLAN) for generating the training plans. Removing the primitive operators

brought much more benefit to the planners’ performance and often to the quality of plans.

9 Conclusion

In this paper, we presented a method for generating macro-operators and removing useless pri-

mitive operators from the planning domain. The method explores pairs of actions (not necessarily

adjacent) that can be assembled in the given training plans. It results both in the detection of

suitable macro-operators and primitive operators that can be removed. The method is designed as

a supporting tool for arbitrary planners. The presented evaluation showed that using our method

is reasonable and can transparently improve the planning process, especially on more complex

planning problems. Nevertheless, the results were obtained by evaluation of IPC benchmarks only.

Probably, the main disadvantage of IPC benchmarks rests in similarities of the planning problems

(the problems differ only in the number of objects), which makes the analysis of plans structures

much easier. In real world applications, it may be more difficult to use our method properly (e.g.

we need a set of good training plans, etc.). Classification of such problems where we can remove

particular primitive operators without loss of the problems’ completeness remains an open pro-

blem. Furthermore, more complex macro-operators may contain many parameters that may cause

big difficulties to planners. We are also investigating possibilities of pruning potentially useless

actions (operators’ instances), see Chrpa and Bartak (2009).

In future, we should also focus on a possible extension of our method for generating HTNs.

Then we can use some HTN planner, for example, SHOP2 (Nau et al., 2003). This idea partially

follows the idea listed in Nejati et al. (2006). In addition, we should investigate more deeply how

stochastic data gathered during the execution of our method (like the number of operators in

training plans, etc.) can be efficiently used. We should also study action dependencies more from

the side of predicates, because it may reveal knowledge that can be used as heuristics for planners.
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