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Abstract 

Individual Evolutionary Learning (IEL) is a learning model based on the evolution of a population of 
strategies of an individual agent. In prior work, IEL has been shown to be consistent with the behavior 
of human subjects in games with a small number of agents. In this paper, we examine the performance 
of lEL in games with many agents. We fmd lEL to be robust to this type of scaling. With the 
appropriate linear adjustment of the mechanism parameter, the convergence behavior of l EL in games 
induced by Groves- Ledyard mechanisms in quadratic environments is independent of the number 

of participants. 

1 In troduction 

In Arifovic and Ledyard (2011), we study Individual Evolutionary Learning (l EL), a behavioral 
learning model that is applicable to repeated games with large strategy spaces, including the 
continuum. In that paper, we used IEL in the games generated by Groves-Ledyard (GL) 
mechanisms in a quadratic environment. The GL mechanism solves the free-rider problem for 
public goods. Agents send messages that determine the size of the public good. Agents are taxed, 
based on the messages they send and on the difference between their message and the average of 
the other agents' messages. The mechanism is balanced and efficient. That is, the mechanism 
collects exactly the taxes needed to pay for the amount of the public good produced and, at the 
Nash Equilibrium messages, the allocation implied by the public good choice and the taxes is 
Pareto-optimal. One distinctive feature of the GL mechanisms is a punishment parameter, 'Y· As 
this parameter is increased, it creates stronger incentives for each agent to match the average 
message of the other agents. The particular value of 'Y does not affect the static properties of the 
mechanism. It is balanced and efficient for all positive values of y . 

However, dynamic properties, such as the time to converge to Nash Equilibrium in repeated 
play, do depend on the particular value. T ime to converge is very important if these mechanisms 
are to be used in practice. The welfare (utility or payoff) of the agents is higher the closer to 
Pareto-optimal allocations they are. Since Nash Equilibria are Pareto-optimal, the faster the 
agents converge to Nash Equilibrium, the better ofT they will be over time. Standard theories of 
dynamics, based on best-reply dynamics and strategic complementarities, suggest that, for these 
games, there is a number such that if 'Y is larger than that number then convergence occurs and if 
'Y is smaller then convergence will not occur. Contrary to these standard theories, the prediction 
from the IEL behavioral model is that the average time to convergence varies smoothly and is 
U-shaped in 'Y· We validated these predictions with data from economic experiments with human 
subjects. However, all of the modeling and experiments were done with five players. Real 
economies involve many more than that. 
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ln this paper we investigate what happens when the number of players increases. One can 

imagine many possible conjectures about the effect of numbers on the learning behavior of agents 
operating in a repeated game context. For example, it is possible that with boundedly rational 
agents who make mistakes, as occurs in IEL, an increase in numbers could lead to more errors and 
more erratic behavior by compounding the errors. Alternatively, an increase in numbers could, 
through the law of large numbers, reduce the variability seen by any one agent, which would 
enable them to be closer to fully rational behavior. 

In this paper we show that if the increase in agents occurs through replication and if the 
mechanism parameter is normalized for the population size. then the convergence properties of 
IEL do not depend on the size of the population. That is, let -y be the mechanism parameter. N be 
the number of agents, and 7J be the time of convergence'. Then Tj. = f(yj N), so that if strategies 
converge to stage game equilibria in 10 rounds when N = 5 and -y= 50, then strategies will 
converge in I 0 rounds when N = 100 and y = 1000. Interestingly, the size of the economy does not 
seem to affect the rate of behavioral learning by IEL. 

1.1 Environments, mechanisms, and games 

Public-good emironments. There are N agents, ie{l, ... ,N}. Let z=(X,y1
, ... ,y'''). where X is the 

amount of the public good and/ is ts net consumption of the private good. Each agent i begins with 
an initial endowment of the private good ci. Agent ts consumption of the private good is c/ + /. The 
per-person cost of production for one unit of the public good is c. The set of feasible allocations is 

Z = {z = (X,y)IX ~ O,NcX + tl = o} 
I-I 

Each consumer i has a utility function: V; (X, a1 + yi) = A' X - B X2 + a1 + ;I. 
We use the notation (N, Z, V) to denote an environment. One allocation of interest in an 

environment is the one that maximizes the sum of the utilities subject to feasibility. 1t is easy to see 
that the X that does this is 

Groves-ledyard Mechanisms2
. Begin with a language, a space of messages, M = (-X>, +ex;) 

and m1 EM can be thought of as i's incremental demand for the public good. 
Given a vector of messages m = (m 1, ... , mN), the public good produced is 

N 

X (m) =E m' 
i=l 

The tax to be paid by i is 

. [N-1(. 2 2] T'(m,y)=X(m)(cJN) + (y/2) ~ m'-fL_;) -a- t 

where y is an arbitrary free parameter greater than 0, 11-j = Lh'~"i 1rr J(N - I) is the mean value of 

the messages of the other agents, and 0:., = E ... ~~;~'-•1 is the squared deviation from this mean. 

A G L mechanism is (M, g(m,y)), where g(m, y) = (X(m),y1 (m, y), ... , I"' (m, y)) = 
(X(m),- T 1 (m, y), ... , - T N (m, y)). 

1 These will be defined more precisely later. 
2 This section is intended mainly as a reminder to the reader of the formal structure of the problem. For 
more details, see Groves and Ledyard (1977) or Chen and Plott (1996). 
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Different values of y imply different outcome functions and, therefore. different mechanisms. 

So by letting 'Y range over values in (0, oo ), one creates an entire class of mechanisms. 
Games. An environment and a mechanism combine to create a game, G = {N, H , u}, where N is 

the number of players. a strategy of i is hie H' the strategy set of player i, and u1(h) is the payoff to i 
if players use /z . For the GL mechanism, (M, g(m.y)), in the public-good environment, (N, Z, V), 
combining is straightforward. TheN players in the game are theN agents in the environment. The 
strategy set of player i, H1 = Mi. Let f(m) = (J.I 1(m}, u:1(m)). T he payoff to i is u'(m) = 

W 1(m1lr1(m), ·1) where, because r1 does not depend on m1 and X(m) = m1 + (N- l)J.I_;, 

W' (m'lr'(m),y) = V1(m1 + (N - l )r\ (m),<X1
- T1(m',r' (m),y)) ( I) 

We let G(y) be the game derived this way. As y ranges over (0, ~ ) . a continuum of games is 
generated. The Nash equilibrium strategy for i in the game G(y) IS h1(y) where 

h(y)=X + A
1
- 2B

1X- c 
N y 

(2) 

Growing tbe economy. In this paper we are concerned with what happens as we increase the size 
of the economy. To keep things comparable as N grows, we consider economies in which larger 
economies contain replicates of the smaller economies. Let E = (N, Z, V) be an economy. The k-th 
replicate of E will have kN individuals. If v' is the utility of one person in £, there will be k people 
in the k-th replicate with that utility function. We let E(k) = (N(k). V(k), Z(k)) represent the k-th 
replicate of£. 

The level of public good that maximizes the sum of utilities in E(k) is 

• k(~A1) - kNc 
X(k) - ___o_'~::---,.-

- 2k'£B' 
I 

That is, the optimal level of p!Ublic good does not change as we increase the size of the economy. 
The reason is that we have assumed that the per-capita cost of a unit of the public good is the same 
in all replicates. l f, for example, there was a constant marginal cost for the public good, inde­
pendent of the size of the economy, then as the economy grew and the aggregate marginal benefit 
of the public good increased, the optimal level of the public good would increase. With a constant 
per-capita marginal cost, the marginal per-capita benefit and per-capita cost do not change as the 
economy grows and so the optimal level of public good does not change. 

The equilibrium strategy for i in the game generated by E(k) is 

.; X A1 - 2B1 X- c 
h (y) = kN + I' (3) 

We will see below that there will be a reason to normalize y by the size of the economy. That is, we 
will want to let y = ky as the economy grows. In this case, the equilibrium strategy fori in the game 
generated by E(k) is 

(4) 

..; 
so thatlz (y) ~ 0 ask_.. :x:. 

1.2 Prior results 

T he theoretical equilibrium properties of GL mechanisms are well understood. The tax and 
allocation mles are specifically designed so that, if the agents follow Nash equilibrium behavior, 
then the equilibrium outcome of a one-shot game will be a Pareto-optimal allocation. Formally, 
from (2). if m is a Nash equilibrium of G(y) then L; n/ = X. In environments with quasi-linear 
preferences, the Pareto-optimal level of public good is unique and the equilibrium outcome level of 
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the public good is independent of y. But if one is interested in actually using these mechanisms, it is 
necessary to understand their dynamics. for example, if one is interested in the ability of the 
mechanisms to attain optimal levels of utility in repeated situations, then one must ask whether 
and how fast individuals will converge to the Nash equilibrium, since faster convergence implies 
higher aggregate welfare. 

Theory is mostly silent on the dynamics of GL mechanisms. Three exceptions are papers by 
Chen and Tang ( 1998), Muench and Walker {1983), and Page and Tassier (2004), all of which 
suggest that the parameter y plays a major role in those dynamics for agen ts following adaptive 
strategies. Based on the work of Milgrom and Roberts ( 1990) on strategic complementarities. 
Chen and Tang ( 1998) derive a sufficient condition for quadratic preferences, yf N ~ 2R for all i, 

for the convergence of the mechanism in a sequence of repeated one-shot games if agents use 
adaptive learning3

. Another sufficient condition for global convergence to Nash equilibrium, 
if agents use best response, can be derived from a theorem of Gabay and Moulin ( 1980) using 
a dominant-diagonal condition4

. For quadratic preferences that condition holds if 
r/ N ~ [(N - 2)/(N - I )JR for all i. However, neither the strategic complementarity nor the 
dominant-diagonal condition provide any insight into bow the speed of convergence might depend 
on y. Such knowledge is particularly important for practical implementations. 

Muench and Walker (1983) examined the dynamics of G L mechanisms in large economies 
under best-response beh avior. They fou nd that if y were fixed as N grew, then there was a k such 
that fork> k the dynamics were unstable5

• They showed that this instability could be avoided if y 
were allowed to grow with the economy. Let y(k) = kNy. Then best-response dynamics are stable 
for our environments, as can be seen in the sufficient condi tion of Gabay-Moulin. If y ~max; Ei, 
then y(k)/ N(k) = y;;?:: (kN - 2))/(kN- I) max B, for all k> O. But they then pointed out that this 
would cause the utility of each agent to flatten out in the sense that the utility they get from the 
equilibrium best response is not much different than the utility they get from using the strategy6 

m ; = 11-i· So if there are any cognitive costs, the agents will have little incentive to move to the 
optimal equilibrium. 

Page and Tassier (2004) report on a number of simulations with Q-learning7 in the Chen-Tang 
(1998) environments. F or the Chen-Tang parameters, the strategic-complements condition for 
convergence is that y.., 80 and the Gabay- Moulin condition is that y;;;. 30. In Q-learning, agents 
respond with a weighted average of q on their last period message and (1-q) on their best 
response. Interestingly Page and T assier report (2004: 318): 'For y greater than 12 the agents 
converge for any level of q'. That is, they also find convergence for a wider range of y than covered 
by the sufficient conditions. T hey also report that 'For y = I, q needs to be greater than -0.55 to 
ensure convergence'. Rut neither their paper nor any of the others provides any guidance as to the 
rate of convergence. 

In Arifovic and Ledyard (2011), our goal was to identify a behavioral learning model that was 
consistent with the behavior observed in the economic experiments with human subjects. We used 
two sets of experimental results from the GL environments: a set reported by Chen and Tang 
(1998), and a set that we generated in July 2007. In our experiments, we followed Chen and Tang's 
design. Thus. in the simulations and the analysis of our behavioral model, we only considered 

3 Adaptive learning is defined in Milgrom and Roberts (1990) and includes best response, fictitious play. 
Bayesian Learning, and others. The sufficient condition for convergence under adaptive learning is 
& v• f iJnrom• ~ 0. 
4 We thank Paul Healy for the Gabay- Moulin reference. Sec Healy (2006) for a use of the theorem 
in the context of public good mechanism design. The diagonal condition is satisfied if 
!& w•fom'ml> E,;o!, I& W•fom'ml. 
s This follows from the Gabay-Moulin condition since the left-hand side of the inequality goes to zero as 
N ~ 0, while the right-hand side is bounded away from zero. 
6 lt can be shown that /imk- x zl(n1(kNy))- zl(nl(kN?)/JL,) = 0. 
7 See Watkins (1989). 
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groups of size N = 5. Jn our simulations, lEL exhibited behavior consistent with humans but at 
odds with the theoretical predictions. There were three main findings. (l) There is convergence to 
Nash equilibrium messages of the stage game for all of the values of y that we simulated, including 
y = I and convergence is fast for a much larger set of the values of y than that predicted by either 
the strategic-complementarity condition or the dominant-diagonal condition. (2) The time to first 
convergence is smooth and U-shaped in y with the minimum average convergence time occurring 
at around y =50. (3) Convergence is stable in the sense that once the model first nears the 
equilibrium, it remains in its neighborhood. 

This of course leaves open the question as to whether these findings with IEL would survive 
scaling up to larger groups. We turn to that now. 

2 Description of t he learning a lgorithm 

Our algorithm, Individual Evolutionary Learning (IEL) is based on the evolutionary paradigm 
that successful strategies thrive and increase in frequency over time and that there is occasional 
experimentation. This paradigm has been usually associated with models of social learning, where 
agents learn by imitating and adopting strategies of more successful agentsR. However, in TEL the 
evolution of strategies takes place ar the level of the individual agent, who has a collection of 
remembered strategies that is updated over time9

. 

2.1 Individual evolutionary learning 

An environment and a mechanism combine to form a game which can be turned into a repeated 
game. The repeated game has a stage game G and a number of rounds, T. The idea is that G will be 
played forT rounds. In G = {N, H, u, r}, N is the number of subjects, H; is the strategy space of i, 
u;(ll, ... , hN) is i's payoff if the joint strategy choice is h, and r;(ht) describes the information 
reported to subject i at the end of round t. In round t, each subject chooses 11; E H ;. At the end of 
round l, subject i will be told the information l(h1) about what happened. Then the next round will 
be played. A behavioral model must explain how the sequence of choices for i, (11'1, h~, ... , h'RJ is 
made, given what i knows at each round t10. 

The primary variables of our behavioral model are a finite set of remembered strategies for each 
agent i at each round t, e; c H ' and a probability measure, n; on e;. e ; consists of J alter­
natives11. In round t, each agent selects an alternative, 0)., randomJy from e; using the probability 
density n: on e; and then chooses the action h; = OJ,, One can think of (e;.n;) as inducing a mixed 
strategy on H ' at t. At the end o f each round 1, agents are told r(h1). At the beginning of the next 
round t + I, each agent computes a new H:+J and n: + 1• The updating is performed in the fol­
lowing way: 

First. experimentation takes place. It introduces new alternatives and, this way, the new 
alternatives enter into the collection and that diversity is maintained. For each j = I, ... , J, with 
probability12 p, a new contribution is selected at random from II and replaces 8J,,. We use a 
normal density for this experimentation. For each J, the mean value of the distribution is set equal 

8 A number of applications in economics use the genetic algorithm (developed by Holland, 1970. 1974) to 
implement this idea. For example. see Arifovic (1996), Miller (1996), Marks (1998), Vricnd (2000), Lux and 
Schonstein (2005), etc. 
9 Our approach follows most closely Arifovic ( 1994), but there have been a number of other individual 
learning applications, for example, Marimon era/. (1990), Vriend (2000), Lux and Hommes (2008). 
10 Since we use the identical algorithm that we used for our simulations with N = 5, our description closely 
follows the behavioral model presented in Arifovic and Ledyard (2011). 
11 J is a free parameter of lEL. In this paper we set J = 200. 
12 pis a free parameter of the beha vioral model. In this paper we set p = 0.033, exactly the same number we 
have used in our other lEL papers. 
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to the value of the alternative, o;,, that is to be replaced by a new alternative. The standard 
deviation is set to I. 

Secondly, imitation takes place. ll increases the frequencies of the alternatives that would have 
been good choices in previous rounds. It allows potentially better paying strategies to replace those 
that might pay less. How do we define the measure of 'potentially better paying strategies'? We let 
u1(0;,1r;(h1)) be the hypothetical utility of alternative J at t given the information r;(h1). This 
measures the utility that i thinks she would have gotten had she played (}J last time. In other words, 
rl(8k!) is entirely hypothetical and must be specified for each application. Given a hypothetical 
utility function. u', here is how imitation takes place. Por j = I, ... .J. 8J.t+ 1 is chosen as follows. 
P ick two members of e: randomly (with uniform probability) with replacement Let these be lJk 1 

and ~.r Then ' 

e; = { eL,} i { u'(OLIIl!) ~ ti(O~)r:)} 
J,t+' (i if u'(e; ill;) < ui(e; ir') 

/,1 k.l I / ,1 I 

Imitation fort+ I favors alternatives with a lot of copies at t and alternatives that would have 
paid well at t. had they been used. So it is a process with a form of averaging over past periods. If 
the actual contributions of others have provided a favorable situation for an alternative 8j,

1 
on 

average, then that alternative will tend to accumulate replicates in e: (it is fondly remembered), 
and thus will be more likely to be actually used. Over lime, the sets e; become more homogeneous 
as most alternatives become copies of the best-performing alternative. 

Third, selection occurs. Each contribution has the following probability of being selected13
: 

; u'(81,, + d~) + e;+, 
nk,l + 1 - J 

l:(ul(f:IJ,I+tirD + e; + ,) 
; = I 

for all ie {l .... , N} and ke{l, ... ,!}and where14 

cj,1 _ 1 = minoee!., {O,zi(OII,)} 

This completes the description of how IEL transitions from (e~, n!) to (e;+ "n; + 1 ) , given the 
signal from the play in round t, ~-

The only feature remaining to be specified is the initialization process- how (0~,n&) is deter­
mined. We implement two different approaches, random and modified initialization. With random 
initialization, for each i, we generate a set, 8 0, of J messages using a uniform distribution on H;. 
After that, we start the first period of the game. At t = I, one of the alternatives that becomes an 
actual message is chosen randomly from the uniform distribution in {I, .. . , J}. 

We created modified initialization to try to capture the phenomenon that an agent, who thinks hard 
about the problem before beginning of the play, might be able to eliminate a lot of guessing and focus 
on productive strategies out of the box. We took an approach to this that is often referred to as level I 
of a cognitive hierarchy15

, where the individual assumes all others are behaving randomly while that 
individual optimizes against that randomness. In the modified initialization, the first stage is the same 
as with random initialization, that is, for each i, J messages are chosen from the uniform distribution 
over H 1

• Second, for each j we draw, again randomly, 100 pairs of values of ' - .P<· The payoff of 
message j is then calculated as Vj = (I/ 100) Ek ti(Ojlr -jk ) - It is the expected payoff of 0) given r - jk· 

13 An alternative selection model is the probabilistic choice function n(lf ) = ,jul<l"f l j"£1e4•1!rf )_ We have 
found {see e.g. Arifovic & Ledyard, 20 II) that the behavior predicted changes very little with this model from 
our proportional selection rule. for all A. This is because the set A tends to become homogeneous fairly fast, at 
which point the selection rule is irrelevant. 
14 This implies thai if there are negative forgone utilities in a set, payofTs are normalized by adding a 
constant to each payoff that is, in absolute value. equal to the lowest payoff in the set. 
15 See Camerer and Chong (2004). 
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Third, imitation takes place based on these average payoffs. This gives us e~. Finally, we select the 
actual message as above in selection. 

At first glance one might suspect that our modified initialization is equivalent to just moving 
ahead one round from random initialization. But that is not quite right. It would be true if we just 
drew one pair of values of r -Jk· H owever, modified initialization essentially computes the best 
reply to the initial expected value of r -Jk instead of to a particular realization. This means that if 
the equilibrium value of r -Jk is near its initial expected value, then modified initialization will speed 
up convergence. However, if the equilibrium value of r -,k is a ways away from its initial expected 
value, modified initiali7.ation may delay convergence. We expand on this idea more in Section 3.3 
under 'T he impact of the modified initialization'. 

As reported in Arifovic and Ledyard (2011), with N = 5, IEL with modified initialization is 
somewhat faster in terms of convergence times. IEL with random initialization matched the data 
from Chan and T ang's experiments better, while the modified initialization matched the data from 
our own experiments better16

• 

3 P rocedures and results 

3.1 The basics 

The environment. In Arifovic and Ledyard (2011) we used the utility functions and cost of pro­
duction in Chen and Tang ( 1998) in order to compare our results to those generated with humans. 
The per-person cost, c, of producing a unit of the public good, which determines Z, is set to 20 and 
the utility parameters are given in Table I . We consider a basic environment E with N = 5. We also 
consider £(10) with N = 50 and £(20) with N = 100. 

The behavioral model. We used the IEL model described in the previous section. For the runs 
reported in this section, we set the memory capacity J = 200 and e; = [ -4,6]17

• We set the rate of 
experimentation p = 0.033. Forgone utility u1 = W 1(m1lr1(m), y) from Equation (I). We consider 
both random and modified initialization. 

The mechanisms. Our goal is to investigate the pattern of convergence times over a range of 
values of -y that includes the cut points associated with the dominant-diagonal and strategic­
complementarity conditions. Fo r our model with N = 5. the dominant-diagonal condition is 
satisfied for -y~ 30, and the strategic-complementarity condition is satisfied for -y ~ 80. Thus, for 
N = 5, we picked -y = 10, 30, 50. 80, 100, 180, and 260. 

The sufficient condition generated by a strategic-complements sufficiency condition for con­
vergence of best-reply a lgorithms requires that 'Y be scaled linearly in N. This is also true for the 
dominant-diagonal condition fo r convergence of best-reply a lgorithms. Thus, for N = 50 (k = I 0) 
and N= 100 (k = 20) we chose values of 'Y so that the ratio -yfk remained constant1

ll. 

Table 1 Utility parameters 

Agent 2 3 4 5 

A; 26 104 38 82 60 
Bt I 8 2 6 4 
a; 200 10 160 40 100 

16 Our subjects were given a 'what-if' calculator that they could use prior and during the beginning of an 
experiment. Chen and Tang's subjects did not have access to such a tool. 
17 This was the range of values used in the both the Arifovic- Ledyard and Chen-Tang e"tperiments. 
18 lt is worth poinung out that we use our learning algorithm to 'locate' equilibria. This is different from for 
solving for an evolutionary stable equilibrium, where one takes an existing equilibrium and asks whether it is 
stable with respect to best-response dynamics. We thank our anonymous referee for this remark. 
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The simulations. For each mechanism, y , we conducted R = lOOO runs. Each run, r, was ter­
minated 100 periods after a convergence crilerion was fulfilled 19

. For the analysis of the behavior 
observed in the simulations reported in this paper, we adopt the same convergence criteria that we 
used in Arifovic and Ledyard (2011). This allows us to compare the results of simulations with 
'small' and 'large' N. 

Our convergence criterion is defined in terms of bow close all agents' messages are to the equili· 
brium messages. This convergence criterion is fulfilled when the difference between the equilibrium 
value and the value of the selected message of each agent is less than or equal, in absolute terms, to a 
positive number d; that is, when lm! - miel ~ 0.1 for all i. In our simulations, we set d = 0.1 . 

3.2 Performance measures 

Because we are interested in whether and how fast these mechanisms converge to the equilibrium, 
we use two measures of performance: (I) the time of first passage through equilibrium and (2) an 
index of equilibrium stability. 

Time of convergence. In Arifovic and Ledyard (20 I I ) the time of convergence is defined in the 
following way. The period when the convergence criterion is first fulfilled is called the time of the 
first passage through equilibrium. 'J'Y·' for run r and given y . The average time of the first passage 
through equilibrium for R runs, T1

, is given by: 
R 

2:: P ·' 
fi' =~ 

c R 

We denote the standard deviation from this value, across the R runs, by <JT' · 

S tability of convergence. In addition to recording the time when our convergence criterion is 
first fulfilled, we also want to find out how stable it is (as in Arifovic & Ledyard, 2011). l n other 
words, is the convergence criterion satisfied by accident and agents have heterogenous collections 
of messages, or do the collections converge towards the values of the equilibrium messages? The 
measure that we use (see Arifovic & Ledyard, 2011) is based on the individual's action sets- the 
set of strategies from which the agents choose their messages. We call this the index of equilibrium 
stability in strategies S'. It measures the percentage of all possible choices that are close to that 
agent's equilibrium message. 

T'J + 100 N J 

L l:l:S},t 
s t=T'·' + I i= lj= l 

S = NJ 

where S},
1 

is an index that equals I if ia),1 - mi'l ~d and otherwise equals(}, 

3.3 Results 

Convergence times. Tables 2- 7 and Figure 1 show that increases in the number of agents do not 
affect the dynamics of TEL in GL games. The U-shaped feature of convergence time is preserved 
across 10- and 20-times increases in the number of agents. The factor yf N =50 remains the value 
that results in the minimum time to convergence. 

Overall, the times of convergence slightly increase with 10- and 20-fo ld increases in the number 
of agents. With random initialization, for each yfk value, i;, increases by three to four periods as 
we move from N = 5 (Table 2) to N= 50 (Table 4), and then another few periods when we go from 
N = 50 to N = 100 (Table 6). The factor yf N = 50 remains the value that results in the minimum 
time to convergence for both N = 50 and N = 100. Modified initialization results in faster con· 
vergence for N = 50 (see Table 3). However, for N = 50 and N = l 00 the times of convergence are 

19 The maximum number of periods for each run was set at lmax = tOOO. If the convergence criterion is not 
fulfilled by that time, a run is terminated. All of our runs, for all y's and N's converged within 1000 periods. 
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Table 2 Time to convergence, N = 5, k = I: random initialization, p = 0.033 

10 
30 
50 
80 
100 
180 
260 

-yf k 

10 
30 
50 
80 

100 
180 
260 

Tf(ur) 

26.10 {1 1.09) 
11.47 (2.58) 
I 0,63 (2.17) 
11.73 (3.14) 
14.75 (5.8 1) 
39.97 (2Q.63) 
72.76 (36.43) 

S'(u.s-) 

98.23 (2.51) 
99.14 (1.05) 
99.18 (1.00) 
99.11 (1.11) 
99.03 ( 1.19) 
98.77 (1.93) 
98.78 (2.0 I) 

Table 3 Time to convergence, N = 5, k = I: modified initialization, p = 0.033 

'I 

10 
30 
50 
80 
100 
180 
260 

yf k 

10 
30 
50 
80 

100 
180 
260 

Tf(ur• ) S'(as•) 
-------------------

23.61 (9.73) 
10.64 (2.68) 
9.89 (2.49) 

10.77 (3.12) 
12.63 (4.88) 
29.34 (18.98) 
54.80 (35.83) 

98.30 (2.55) 
99.10 (1.04) 
99.15 (1.05) 
99.15 (1.05) 
99.06 ( 1.24) 
98.91 ( 1.47) 
98.78 ( 1.66) 

Table 4 Time to convergence, N = 50, k= 10: random initialization, p = 0.033 

'Y 

100 
300 
500 
800 
1000 
1800 
2600 

-yfk 

10 
30 
50 
80 

100 
180 
260 

29.01 (4.60) 
14.69 (2.98) 
13.96 (2.80) 
14.99 (3.01) 
18.30 (4.81) 
45.74 (15.18) 
76.00 (24.60) 

S'(u.s- ) 

96.14 (2.09) 
97.20 (1.82) 
97.70 (1.49) 
98.04 ( 1.43) 
98.06 (1.47) 
97.82 (1.74) 
97.66 (1.89) 

Table 5 Modified initialization, p = 0.033: time to convergence, N = 50, k = I 0 

'I 

100 
300 
500 
800 
1000 
1800 
2600 

yfk 

JO 
30 
50 
80 

100 
180 
260 

28.71 (4.58) 
16.17 (2.97) 
15.44 (2.88) 
15.99 (3.20) 
18.81 (4.68) 
43.92 ( 13.37) 
76.49 (19.78) 

96.02 (2.13) 
97.23 (1.70) 
97.66 (1.66) 
97.97 (1.47) 
98.18 (1.43) 
97.65 (1.94) 
97.61 (2.03) 
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almost the same as for random initialization (see Tables 5 and 7). Figure I plots times to con­
vergence for all of our values of Nand for both random and modified initializations. The figure 
illustrates nicely how all of the U-shaped curves associated with different N's and initialization 
procedures are close to each other, reaching the minimum value at yf N =50. 
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Table 6 Time to convergence, N = I 00, k = 20: random initialization, p = 0.033 

200 
600 
1000 
1600 
2000 
3600 
5200 

yfk 

10 
30 
50 
80 

100 
180 
260 

32.51 (3.98) 
16.15 (3.03) 
15.37 (2.87) 
16.36 (3.07) 
19.90 (4.52) 
46.48 (10.94) 
78.58 (15.27) 

99 87 (0.01) 
99.87 (0.01) 
99.87 (0.02) 
99.86 (O.Oi) 
99.85 (0.04) 
99.80 (0.06) 
99.79 (0.05) 

Table 7 Time to convergence, N = 100, k = 20: modified initialization, p = 0.033 

200 
600 
1000 
1600 
2000 
3600 
5200 

yfk 

10 
30 
50 
80 

100 
180 
260 

SO -+- MoS, random 

--Na50, random 
- ~100. random 

70 -..to.- N=5. modified 
.....,..._ N--50, mod~iad 

--N=lOO,modified 

60 

50 

~ 40 

20 

10 

7"{( lTJ'I) S'(uS') 

32.7 I ( 4.35) 99.87 (0.01) 
17.96 (2.98) 99.87 (0.01) 
17.31 (2.93) 99.87 (0.02) 
17.89 (3.02) 99.87 (0.02) 
21.09 (4.31) 99.86 (0.03) 
45.45 (9.74) 99.80 (0,06) 
77.05 ( 13.32) 99.79 (0.06) 

o L---~----~----~--~----~--~ 
0 50 100 150 

y 

200 250 300 

Figure 1 Convergence times for different N 

It is perhaps understandable that for low values of yjK, especially below 30, the time to 
converge will be higher than for values between 30 and 80 since best-reply dynamics are unstable 
(due primarily to overreactions) and so a period of averaging is necessary to get convergence. But 
this does not explain the fact that Tl increases for high values of y/k. As yfk grows, there is 
stronger pressure for all agents to coordinate on a common value, typically not the equilibrium 
one, in order to minimize the difference between their own and average contribution of others. 
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Once the coordination lakes place, strategies that participated in this receive relatively high 
payoffs and are then copied, increasing in frequency. So, collections of strategies become 
homogenized. At that point, experimentation is required in order to introduce strategies close to 
the equilibrium ones that will get the mechanism out of the non-equilibrium outcome. However, 
given the circumstances. it takes time for the required experimentation to succeed. Most new 
values that deviate from the strategy everyone has coordinated on will most likely receive lower 
forgone payoffs and, thus, disappear from the collections. The larger that yfk is, the more 
important this effect becomes, increasing the time to converge to equilibrium. 

The values of the standard deviation of the time to converge, Ur>, follow the same U-shaped 
pattern as the times to convergence do. Standard deviations decrease with -yfk until -y/k =50 
(which is also the value of minimum Tf) and then start increasing, reaching high values for the two 
largest -yfk values, 180 and 260. This pattern is shared by both random and modified initialization. 
The standard deviations are smaller for the modified initialization than for the random initi­
alization. The explanation for this is that all the simulations with modified initialization start out 
with collections of strategies that are more similar across different runs, and, thus, are likely to 
have more similar dynamics, and a tighter distribution of convergence times. The standard 
deviations decrease as N increases. a variation on the law of large numbers. 

Stability. Once the IEL reaches an equilibrium, there is a high degree of stability. For all of the 
simulations, our measure of stability is above 96%. Again, one can notice. for N = 5 and N = 50 
a slightly U-sbaped pattern, with stability increasing as -y/k reaches 50. and slightly decreasing 
after thal. Simulations with N = I 00 have stability values close to I 00% for all values of y/k and 
for both types of initialization. 

Theiovariance in scale. As long as we adjust 'Y(k) so that -y(k)/k is constant, the dynamics of IEL 
in GL mechanisms seem to be invariant ink. Why might this be so? We have two thoughts on this. 

First, consider the standard theoretical convergence criteria based on the second-derivatives of 
the utility functions. Let N = kN, y = ky and J = N I K =?IN. Strategic complements requires 
that r IN ~ 28 for all i. ln the replica economy this is yIN ~ 28 for all i. Thus, once we adjust -y, 
the strategic-complements condition is scale independent. The dominant-diagonal condition is 
?IN~ ZZ=~ B. Ask grows this is approximately ?IN~ B, which is also scale independent. 

Second, consider the utility payoff to any agent. It is symmetric around the best reply. Since 
IEL is picking messages that are on average in proportion to utility, then IEL is picking randomly 
around best reply. So on average IEL will be picking the best reply. Let us see what that means as 

k-+ oo For quadratic utility functions the best reply is m - -(A - c)+ ~y/Nl+ 2~(" - l }e This can be 
. ' - {y/N) (N 1) NB) • 

re-written as m = [-;;SCA;-c)+(c5+2B)J.l]1[3(1-2(kZ~ 1)B)], which is approximately 

m = -4> + t/1~-t, where 4> =-(A - c)l[kNJ(l - 2B)J and t/1 = [$ + 2BJI[J(i - 28)]. As k grows, 
kp, _1 = kNk-

1 
(x,_1 - m,_1) --.. x, _1. Therefore, the aggregate best response of the k individuals of 

type i is km, and, .as k .grows, ~; ~ (t.JI)<1"_ 28J + [dA ~22~)] x1-1 = 4>; + t/f;x1 1• Thus ask grows, 

the new x, = [2::;'..1 4>'] + [2::7=1 l/l']x,_l is scale independent as a function of x,- 1• This suggests 

that on average the rates of convergence are independent of scale as long as we keep $ constant. 
The impact of the modified initialization. Based on our work with N = 5, we expected the 

modified initialization to lead to faster times of convergence. But, instead, for N = 50 and N = I 00 
the convergence times are pretty much the same for random and modified initializations. There is 
an explanation for this. 

As described in the previous section, we start the modified initialization by randomly drawing J 
rules for each agent i. Then for each rule}, we randomly draw I 00 values of P. - Jk in [ - 4.6] and I 00 
values of c?_Jk in [0,5] and compute the average (expected) utility, vj = (11100) LA d(8Jir -jk). for 
that rule. Then using these average utilities, we do imitation. For the games generated by GL 
mechanisms in quadratic environments, the parts of our hypothetical uWity functions that are 
involved in comparing any two rules for imitation are linear in p._1 and do not include u:,. Thus, 
the distribution of u2 , does not matter at all, and only the expected value of ~-t - 1 = 1 plays a role. 
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So (with some randomness) our initialization essentially computes the best response to fJ.- ; = 1. So 
the closer the expected value of J.L-, is to its equilibrium value, the faster convergence will be. 

The precise calculation of the equilibrium value of fJ. - ; is 

X-nl '{ · I [ ' . • J} J1 _,= N - l =5k X -Y(5k - l ) A' - 2B'X - c 

For N = 5 and 'Y = I 0, the equilibrium values of fJ.- ; are 1.1, 0.9, 1.05, 0.9 5, and 1. Fixing N, as 
yfk grows, the equilibrium value of fJ.- ; goes to i f N , which equals I. So for all y~ 10, if N = 5, 
the equilibrium values of fJ.- ; hang around l. Thus for N = 5, modified initialization starts 
everything out just right. But, with y = ky, as k grows the equilibrium values of fJ.- ; go to zero. 
This means that the expected value of fJ.- 1 drawn in the initialization is moving further away from 
its equilibrium value. Fork= lO, N = 50, and yfk = 50, the equilibrium values of fJ.- ; are near 0.1, 
and fork = 20 they are near 0.05. That is, they are approximately 1/k of the value for N = 5. So the 
advantage that modified initialization has for N = 5 is seriously eroded as k grows. 

This intuition also helps explain why the variance of convergence times is lower for modified 
than for random. Modified starts out at about the same place each time, whereas random starts 
from many different places. On average they take the same time (since, on average, random also 
starts at fJ. -; = 1) but sometimes random is closer and sometimes it is not. 

The impact of an increase in the rate of experimentation. We conducted a set of simulations with 
random initialization and a rate of experimentation for p = 0.066. The higher rate of experi­
mentation, twice as high as in our baseline simulations, resulted in somewhat faster convergence 
times. On average, for each yfk, convergence is by thre.e to four periods faster compared with 
the simulations with p = 0.033. We illustrate the results, for N = 5 and random initialization in 
Table 7. It is interesting to note that relatively high rate of experimentation does not introduce 
disruption that might slow down or prevent convergence. Instead, it speeds things up. The reason 
for this is the fact that new values generated via experimentation are not played out right away. 
They first have to prove, in terms of forgone payoffs, that they might be worthwhile candidates. If 
they do so, then, through imitation, they increase in frequency and thus increase their chances to 
be selected as actual messages. Otherwise, new values with relatively low forgone payoffs quickly 
disappear from the collections (See Table 8 for times to convergence for p = 0.066). 

Variation in the rate of experimentation. The behavior observed in case of a twice-as-high rate of 
experimentation as our baseline case, for N = 5, made us curious about the robustness of our large 
N system with respect to a wide range of rates of experimentation. Thus, in addition, we simulated 
the system for the following values of p: 0.0033, 0.0066, 0.0 I, 0.066, 0.1, and 0.2. Again, we used 
the same values of y/k eqt1al to 10, 30, 50, 80, 100, 180, and 260. We report the results (which are 
the averages over R = 1000 runs in Tables 9 (for N = 5), Table 10 (for N = 50), and Table II (for 
N = 100)). For brevity, we report the results for y/k = 10, 50 and 260 only. Our results show that 
the U-shaped pattern of behavior is preserved regardless of the rate of experimentation. They also 
show that very low rates, such as 0.0033 and 0.0066, result in slower convergence. However, there 

Table 8 Time to convergence, N = 5, k = I: random initialization, p = 0.066 

')' 

10 
30 
50 
80 
100 
180 
260 

yfk 

10 
30 
50 
80 

100 
180 
260 

23.61 (9.73) 
10.64 (2.68) 
9.89 (2.49) 

10.77 (3.12) 
12.63 (4.88) 
29.34 (18.98) 
54.80 (35.83) 

ss(l1s•) 

98.30 (2.55) 
99.10 ( 1.04) 
99. 15 (1.05) 
99.15 ( 1.05) 
99.06 (1.24) 
98.91 (1.47) 
98.78 (1.66) 
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Table 9 Different rates of experimentation, time to convergence, N = 5, k = I 

p y -y{k iJ(a .,..) S'(as-) 

p= 0.0033 10 10 66.67 (52.40) 99.40 (2.08) 
50 50 15.90 (19.29) 99.88 (0.42) 

260 260 223.48 (170.20) 99.65 ( 1.56) 
p = 0.0066 10 10 44.26 (30.00) 99.55 (1.54) 

50 50 12.00 (10.25) 99.88 (0.27) 
260 260 132.97 (97 .32) 99.75 (0.81) 

p = O.Ol 10 10 35.56 (21.44) 99.66 (0.84) 
50 so 10.51 (5.78) 99.88 (0.1.8) 

260 260 103.39 (70.82) 99.78 (0.55) 
p = 0.066 10 10 19.55 (7.31) 99.26 (0.40) 

50 50 8.79 (1.80) 99.45 (0.13) 
260 260 45.98 (27.49) 99.35 (0.27) 

p=0.1 10 10 18.70 (6.20) 98.51 (0.4.3) 
50 so 8.78 (1.59) 98.79 (0.16) 

260 260 41.5S (24.26) 98.66 (0.37) 
p=0.2 10 10 19.57 (6.25) 92.73 (0.77) 

50 50 9.87 (1.89) 94.44 (0.25) 
260 260 39.75 (23.18) 94.0 I (0.4 7) 

Table 10 Different rates of experimentation, time to convergence, N = 5, k = I 0 

p = 0.0033 'Y -yjk Tj(ur-) S'(uS') 

p= 0.0033 100 10 99.35 (32.35) 99.97 (0.11) 
500 50 63.09 (31.83) 99.98 (0.03) 

2600 260 508.38 (146.58) 99.98 (0.03) 
p=0.0066 100 10 59.55 (17.49) 99.97 (0.05) 

soo 50 36.14 (15.56) 99.98 (0.02) 
2600 260 290.27 (81.92) 99.97 (O.OS) 

p=O.Ol 100 10 45.27 (12.18) 99.97 (0.02) 
500 50 26.76 (9.95) 99.97 (0.02) 

2600 260 214.57 (62.09) 99.97 (0.03) 
p = 0.066 100 10 23.56 (3.43) 99.52 (0.02) 

500 50 12.38 ( 1.65) 99.S4 (0.01) 
2600 260 80. 11 (21.87) 99.53 (0.02) 

p=O.I 100 10 23.89 (3.62) 98.84 (0.03) 
1000 50 12.21 (1.43) 98.91 (0.02) 
2600 260 73.99 (19.61) 98.90 (0.02) 

p = 0.2 100 10 46.81 (18.38) 93.71 (0.23) 
500 so 19.33 (7. 12) 94.80 (0.04) 

2600 260 78.42 (21.54) 94.78 (0.05) 

is a difference between the two. The rate of p = 0.0033 results in the highest average times of 
convergence. These averages decrease almost in half for p = 0.0066. 

For N = 5, higher rates of experimentation of 0.1 and 0.2 do not have much of an impact on the 
times to convergence compared with our baseline case. ln addition, for N = 50 and N = 100, the higher 
rates of experimentation of p = 0.066 and 0.1 do not have much impact on the average times to 
convergence compared wiU1 the baseline case with p = 0.033. However, a high rate of experimentation, 
p = 0.2, results in somewhat higher values of the average times to convergence. The effects of this high 
rate of experimentation are stronger in case of N = 100. Note that the qualitative features of the 
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Table II Different rates of experimentation. time to convergence, N = 100. k = 20 

p 'Y yfk i;,(qr,) S'(qS') 

p = 0.0033 200 10 120.51 (33.00) 99.99 (0.01) 
1000 50 83.47 (31.82) 99.99 (0.01) 
5200 260 575.36 (103.26) 99.99 (0.03) 

p "' 0.0066 200 10 69.13 (15.92) 99.98 (0.01) 
1000 50 45.95 (15.04) 99.98 (0.01) 
5200 260 323.53 (58.70) 99.98 (0.01) 

p = 0.01 200 10 51.75 (I 1.19) 99.98 (0.01) 
1000 50 33.10 (9.78) 99.98 (0.01) 
5200 260 236.39 ( 41.80) 99.98 (0.02) 

p = 0.066 200 10 26.19 (2.80) 99.54 (0.01) 
1000 50 13.81 (1.71 ) 99.54 (0.01) 
5200 260 87.47 (14.70 99.54 (0.01) 

p = O.l 200 10 27.24 (3.37) 98.90 (0.01) 
1000 50 13.56 (1.71) 98.91 (0.01) 
5200 260 79.66 (13.51) 98.91 (0.01) 

p = 0.2 200 10 159.65 (128.34) 94.41 (0.10) 
1000 50 63.03 (1.39) 94.80 (0.03) 
5200 260 122.80 (1.39) 94.79 (0.03) 

beha\'ior are still preserved even when the collection of strategies undergo this fairly large experi­
mentation, with 20% turnover in each time period. Finally, it is worthwhile to note that a relatively 
high rate of experimentation of 0.2 still does not affect the stability once the convergence occurs. For 
all N the stability goes down by few percentage points, but remains well above 90%. 

3.4 Comparison with other models of learning 

A number of models of individual learning have been developed over the past decade. (For an 
excellent overview, see Camerer, 2003). Much of the research has been done in the context of 
one-shot games with small strategy spaces such as 2-by-2 or 3-by-3 games. The performance of 
the models has generally been evaluated by using standard econometric methods (maximum 
likelihood or grid search) to fit the models to experimental data. Two of the most frequently used 
models from this strand of literature are the Reinforcement Learning (RL) (Erev & Roth, 1998) 
and the Experience-Weighted Attraction (EWA) Learning (Camerer & Ho, 1999). 

The implementation of both algorithms requires either that all possible players' strategies are 
enumerated, that is, explicitly represented in the collection, or that the strategy space is discretized. 
ln RL, strategies that achieve higher returns when used are reinforced and played with a higher 
probability. ln EWA, each strategy has an attraction based on the possible payoff it might have 
earned had it been played in the past. Strategies with higher attractions have higher probabilities 
of being selected. One of the primary differences between RL and EW A is the latter's use of 
hypothetical computations to quickly evaluate all strategies. RL only uses actual payoffs and thus 
can only evaluate strategies that have actually been played. 

What is common to RL and EWA on one hand, and IEL on the other, is that all of them 
update the collections of their strategies in such a way that the frequencies of those that have 
performed well increase over time. The choice of a particular strategy as the actual strategy that a 
player uses in a given period is probabilistic, and the strategies' selection probabilities depend 
positively on their past performance. 

The differences between lEL, on one hand, and RL and EWA on the other, stem from the way that 
the strategy sets (collections) are determined and updated. IEL starts out with a set of randomly 
generated strategies (messages). It brings in new strategies to be tried via experimentation. The way 



/ndil•idual evolutionary learning with many agents 253 

experimentation is implemented aUows lEL, unlike RL and EWA, to handle large strategy spaces 
well. For example, in the GL mechanism, each agent has a continuum of possible messages. In order 
to apply models such as RL and EWA, the continuum must be discretized. However, discretization 
causes problems when there are very tine differences in equilibrium values between different 
mechanisms. IEL handles that problem weU. It does start out with randomly chosen sets of alter­
natives for each agent, but due to directed experimentation there is a sufficiently high probability that 
any important omitted messages. such as the Nash Equilibrium messages, will be added to the set. 

IEL adds a new dimension to RL and EWA by allowing agents to vary their active strategy set in 
response to experience. What has been 'learned' by an agent at any time is summarized not in 
attraction weights but in the set of active strategies. Strategies that have been or would have been 
successful will have more copies in the active strategy set. If a strategy has a lot of copies in the active 
set, it will be chosen with a higher probability. The primary difference between lELand RL and EWA 
seems to be that I EL discards strategies that aren't potentially profitable and thus does not waste time 
or lose payoffs re-testing unprofitable options. (See Arifovic and Ledyard (2004) for the comparison of 
the performance of RL, EWA, and IEL in the GL mechanisms. Also, see Arifovic and Ledyard (2009) 
for comparison of the performance of IEL and EWA in a voluntary contribution mechanism.) 

4 Fi na l remarks 

In Arifovic and Ledyard (2011), we investigated lEL's behavior in a class of games with a small 
number of agents. The number of agents in that setup was equal to five in order to match the design 
and the number of human subjects who participated in the laboratory experiments. Both TEL 
simulations and experiments were conducted for a number of different values of the free parameter of 
the model. Our results showed that rEL successfully captures and predicts the behavior observed in the 
experiments \vith human subjects. We have also successfully applied our behavioral model in the 
context of the call markets where the IEL model generates the same types of price volatility and 
efficiencies as those generated in our experiments with human subjects (Arifovic & Ledyard, 2011), 
and to the voluntary provision of public goods environment where our model matches the patterns of 
behavior of the average contribution over time from a number of different human subjects experi­
ments (Arifovic & Ledyard, 2011). This collection of results suggests that we can use our behavioral 
model as a computer testbed to study a number of mechanism design issues such as out.of-equilibrium 
behavior, speed of convergence, efficiency, price volatility, and the stability of equilibria. 

Thus, in this paper, we used this methodology to investigate what happens with GL mechan­
isms in linear public-good environments when the number of agents, N, becomes large. Testbeds of 
this scale are not easily implemented in the controlled laboratory setting with human subjects. Our 
findings are interesting. The main features of the behavior observed with the small number of 
agents are preserved when 'Y is scaled by the multiplicative factor k. For a given yfk, the average 
times to convergence are similar. Further, the U-shaped pattern arising from variations in the 
value of yfk is preserved. This result is robust to implementation of a wide range. low and high, of 
rates of experimentation. T he advantage of IEL over other models of individual learning, such as 
RL and EWA Learning is that it can handle large strategy spaces well. 
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