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Acquiring planning domain models using LOCM
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Abstract

The problem of formulating knowledge bases containingracichema is a central concern in knowledge
engineering for Al Planning. This paper descritg3CM, a system which carries out the automated
generation of a planning domain model from example trairglams. The novelty o£ OCM is that it
can induce action schema without being provided with angrinfition about predicates or initial, goal
or intermediate state descriptions for the example acguences. Each plan is assumed to be a sound
sequence of actions; each action in a plan is stated as a mahaeliat of objects that the action refers to.
LOCM exploits assumptions about the kinds of domain model it bagherate, rather than handcrafted
clues or planner-oriented knowledge. It assumes thatrectihange the state of objects, and require
objects to be in a certain state before they can be executahisl paper we describe the implemented
LOCM algorithm, the assumptions that it is based on, and an ei@tuasing plans generated through
goal directed solutions, through random walk, and throwgfging human generated plans for the game
of Freecell. We analyse the performancd &CM by its application to the induction of domain models
from five domains.

1 Introduction

The area of Automated Planning Systems has progressedyraptide past 20 years. Planning algorithms
have the ability to reason with knowledge of action and cleaingorder to synthesise plans to achieve
desired goals. The prevalent idea in Automated Planningarel and development is that there is a
logical separation of planning engine and domain modebsgmting the application and problem at hand.
However, these domain models are invariably hand craftedafas we are aware, all the domain models
used in the International Planning Competitions (IPC) ha@en hand crafted, as are those reportedly
used in leading applications such as those in the Space area.

The work reported here is motivated by the importance of t@tedge formulation process to the
success of applications, and to making planning engine® mocessible and open to community use.
This encompasses automatically acquiring domain modeiswfdomains, or automatically maintaining
existing domain models. This paper focuses on one way ofingerp planning engines to general use:
to mine domain models from logged sequences of action agidits, without the need for hand crafted
planner-oriented information such as predicate spedificatr state information. We describe a generic
tool calledLOCM (Learning Object-Centred Models) which illustrates thasibility of automatically
generating a domain model from application knowledge inften of plans in a range of application
areas. The input tbhOCM s a sentence within an abstract language of observed tesamd the output
is a solver-ready PDDL domain model. The originalitylddCM lies in the simplicity of its input: its
observed instances are descriptions of plans or plan fratgmaéthin the application areaOCM exploits
assumptions about the kind of domain it is constructingaaping domain consists of sets (calkedts)
of object instances, where each object behaves in the saynasveany other object in its sort. In particular,
sorts have a defined set of states that their objects can ycagh an object’s state may change (called
a state transition) as a result of action instance execy8ampson, Kitchin, and McCluskey (2007)).
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Additionally we assume that there are many observationst fr use, and that the observations are
sequences of possible action applications within the domvaiere each action application is made up of
an identifier, and the names of objects that it affects.

LOCM works by assembling the transition behaviour of individs@its, the co-ordinations between
transitions of different sorts, and the relationships e objects of different sorts. It does so by
exploiting the idea that actions change the state of ohjertd that each time an action is executed,
the preconditions and effects on an object are the same.rdhedse assumptionsOCM can induce
action schema without the need for background informatimrhsas specifications of initial/goal states,
intermediate states, fluents or other partial domain in&diom. All other current systems e @pmaker
(Richardson (2008)), ARMS (Wu, Yang, and Jiang (2005)), #redsystem of Shahaf and Amir (2006)
require some of this background knowledge as essentiaktodperation.

We evaluate th& OCM system with five domains: the tyre-world, the blocks worldyerlog, IPC
Freecell and AoP-Freecell, with training sequences etddditom IPC solution plans, from using random
walks generated using existing domain models, or from Iddsiman plans. The most impressive result
is whereLOCM creates a usable PDDL domain model from a number of logs ofnaahuplaying the
Freecell game. This indicates the potential applicatiamsstich technology, where by observing logs
of actions, agents with planning capabilities will be aldenduce domain models in order to carry out
planning themselves.

The paper is structured as follows. In the next section werdesthe definitions and assumptions that
underlyLOCM and in doing so detail the steps in th®@CM algorithm. The following section details the
evaluation with the five domains listed above. Finally, weadeimilar and related work, outline future
work and draw conclusions.

2 TheLOCM System
2.1 LOCM Overview

The input toLOCM is an action training sequence, where each action is speifi@ name followed by
a sequence of affected objects. It is in a sufficiently gdrfereat that it could originate from a varied
number of sources. The algorithm synthesises models inatme 6f Finite State Machines, and then
augments FSM states with parameters which record assw@aiietween objects. The output is, for the
purposes of this paper, a domain model in PDDL form. Howeterjnternal representation would allow
output in other forms such as SAgBackstrom (1992)).

In this work we assume no prior knowledge of the planning dartfzeory: no information is given
to the system about predicates, sorts, actions, goal&glisthtes, intermediate states etc - the only
knowledge available is via the input training sequences.drily exception to this is the option to specify
a “static” precondition, necessary in some domains whicjuire static knowledge. Rather, we base our
work on a set of assumptions or ontological constraintthefkind of planning domain theory being
learned These assumptions are detailed below. Hence, althb@gPM does not require other inputs,
it makes a fundamental assumption about the domain: thanisists of collections of objects (called
sorts) which change state in such a way that this can be eaphyrparameterised finite state machines.
The following subsections are motivated by examples in tvinie establish a conceptual framework of
definitions, assumptiorand hypothesesWe use the heading of “ASSUMPTION” for facts about the
training sequence format and the domain’s structure. Hemthese are independent of tententof the
training sequences; we use the heading of “hypothesis"fonkedge that we induce from the content of
the training sequence and hence the hypotheses are dependkat content.

Example 1: Using the well knowrtyre-worldas an example, the following is a action training sequence
containing ten action instances:

open(cl); fetchack(j1,cl); fetchwrench(wrl,cl); close(cl); open(c2);
fetchwrench(wr2,c2); fetchack(j2,c2); close(c2); open(c3); close(c3)
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The intention is that1, c2, c3arecontainerge.g. car trunks or bootsjrl, wr2 arewrenchesandjl, j2
arejacks though the system is not given this knowledge.

The outline algorithm oLOCM is as follows: each line of the algorithm is detailed in thetsms
below.

procedurd OCM

Input: action training sequence

Output: PDDL domain model

Step 1. Create sort structure and finite state machines
Step 2. Perform Zero Analysis and add new finite state ma¢hirezessary
Step 3. Create and test hypotheses for state parameters
Step 4. Create and merge state parameters

Step 5. Remove parameter flaws

Step 6. Extract static preconditions (optional step)

Step 7. Form action schemas

end

The output of LOCM (given sufficient examples) is a domain model consisting arfss object
behaviour defined by state machines, predicates definimgiations between sorts, and action schema
in PDDL form. The action schema are induced having a fixebfigtarameters, where each parameter
ranges through objects belonging to some fixed sort.

2.2 Step 1: Induction of Finite State Machines

The input toLOCM is a training sequence &f actions which all have the form:
Ai(OiJ, ey Oz,m[z]) fori= 1,..., N

whereA; is the action name, and this is followed by a list of object parof lengthm[i]. If objectO is
a member 00; 1, ..., O; n,[;), for some action, we say that the actiooontainsO. Example 1 is such
atraining sequence, with = 10, A; =open A, = fetchjack, etc, andn[1] = 1, m[2] = 2, m[3] = 2, etc.

Definition: Universe of Objects
The set of objects in the domain is the set of all objects irtriieing sequence:
OU = {O :0€ Oi,h ERE) Oi,m[i]a (AS 17 ) N}

In Example 1,
Oy ={cl,j1,wrl, c2,wr2,j2, c3

ASSUMPTION 1: Structure of the Universe

The Universe of objects is composed of a set of disjoint $sbsalled sorts, such that:

— each object of each sort occupiestatewhich defines what is known about it at a certain stage of the
changing world,

— objects of the same sort behave in the same way when actegdamibns, thus an action is associated
with a single state. An example can be seen in Figure 1. Hawmte that many actions can be associated
with a single state.

— objects of the same sort can all be described by the saméstates.

ASSUMPTION 2: Consistency of Action Format
Giveni'" and j" distinct elements of the training sequence where naes A;, thenm/[i] = m[j],
and for eactk = 1, ..., m[i], objectsO; ,, andO; ;, share the same sort.

In Example 1,4; = A5 = open and hencel andc2 are in the same sort. Assumption 2 allows us to
hypothesise the membership of the disjoint sorts definedssufption 1 as follows:
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Hypothesis 1: Sort Formation

The set of sorts which structure the domain are those olatdip@pplying Assumption 2 to every pair of
actions with the same name in the training sequence.

Returning to Example 1, we can compute from it the hypothiésitD; is composed of 3 sort&el, ¢2,
c3}, {wrl, wr2}, {j1,j2}.

Example 2: Consider the following extension to Example 1:

open(cl); fetchack(j1,cl); fetchwrench(wrl,cl); close(cl); open(c2);
fetchwrench(wr2,c2); fetchack(j2,c2); close(c2); open(c3); close(c3); close(wrl)

In this case, the final actioclose(wrl)would unite the container and wrench sorts into one, @ad
would be composed of 2 sorfs1, c2, c3, wrl, wr2, {j1,j2} .

ASSUMPTION 3: States of a Sort

Thei'" action A;(Oi 1, ..., O; () is assumed to cause (possibly null) transitions targll] objects it
contains. The*" action restricted to the single transition of thé object,O; i, wherek € 1, .., m[i],
is called A;.k. Each transitiod; .k, fori € 1, .., N andk € 1, .., m]i], moves an object of some sdt
between a start stateart(A;.k) to a not necessarily distinct end statei(A;.k). Thus, transitions such
asA;.k form transitions of a finite state machine for each gart

Definition: Consecutive Actions

Assume that thé" and;j*" actions from the training sequence contain a common objedtsort G; that
is O = 0; =0, for somek;, I. Then thei*" and;‘" actions are calledonsecutive with respect to object
Oif i < 7, and nop exists,i < p < 7, such that actiop containg0.

In Example 1,4, and A, are consecutive with respect to object c1.

ASSUMPTION 4: Continuity of Object Transitions

If the i*" andj*" actions of the training sequence are consecutive with otspan object O of sort G,
whereO = 0, =0, for somek € 1, .., m[i], l € 1, .., m[j]; then the end state @¥’s transitionA;.k is
the same as the start state@$ transitionA;.J, that isend(A;.k) = start(A;.l).

Definition: Consecutive Transitions
The transitionsA4;.k and A;.l in Assumption 4 are calledonsecutive transition# the finite state
machine associated witH.

Returning to Example 1, consider transitiofistch_jack.2 from action 2, andfetch_wrench.2 from
action 3, which both affect the same objett The actions are consecutive with respectiphence
end(fetch_jack.2) = start(fetch-wrench.2), andfetch_jack.2 and fetch_wrench.2 are consecutive
transitions.

ASSUMPTION 5: Transitions are 1-1

If there are distinct’” andj'* actions in the training sequence such tHat= A;, then for each pair
of transitionsA;.k and A, .k, k = 1..m[i], start(A;.k) = start(A;.k) andend(A;.k) = end(A;.k). In
other words, the name of each action restricted to any ofdtssitions forms a 1-1 map between object
states.

Hypothesis 2: State Machine Formation
The Assumptions above, together with the content of anattéining sequence, induce the structure of
a finite state machine for each sort, determining the behawitthe objects of that sort.
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Consider objects of softcl, c2, c3 in Example 1. Focusing on the effect of the first four actions o
objectcl:

open(cl); fetchack(j,c1); fetchwrench(wrl,cl); close(cl);
let us assign state nam#s, .S, .., Sg to the input and output states of transitions affectihg
S1 —> open.1 —> So
S3 —> close.l —> Sa
Ss = fetch_jack.2 = Se

S7 — fetch-wrench.2 —> Ss

Using Assumption 4 (continuity of object transitions) wa ceeduce that, = S5, S = S7, andSs = Ss.
Taking into account the next four actions:

open(c2); fetchwrench(wrl,c2); fetchack(j,c2); close(c2);

and Assumptions 4 and 5, we further deduce ti#t=2S;, Ss=S5, Se¢=S53, and hence
So, S3, S5, Sg, S7, Sg all refer to the same state. Finally, utilising the last tvetians

close(c3); open(c3);

We deduce that, = S;. Using the example training sequence with the Assumptibose, we have thus
created an hypothesis for the behaviour of oft, c2, c3. This is meant to represent the soontainer
(such as thérunk or bootof a car - refer to Fig. 1).

fetch jack.2

o st

Figure 1 FSM generated for the container sort

Algorithm for the induction of state machines:

Hypothesis 2, the assumptions above and the constrairith#haentail leads naturally to an algorithm,
used in Step 1 df OCM to induce the Universe of each sort, and the state machinesigjog behaviour

of the objects in each sort. The algorithm is described bélgquseudo-code. In lines 1. through to 4., the
set of states and transitions are built up. In lines 5. anthé.continuity assumption is used to reduce the
set of states by removing equivalent ones. At the end of Ste@CM has induced a set of state machines,
each of which can be identified with a sort, using Hypothesis 1

Step 1

Input: action training sequence of length N

Output: transition sef'S, set of object state®.S

. Initialise state seD.S and transition seT'S to empty

2. lterate through;, i € 1, .., N, andj € 1, .., m|[i], as follows:
3. Add state identifierstart(A;.j) andend(A;.j) to OS

4. AddA;jtoTS
5
6

[EnY

. For each pair of consecutive transitidhfis 7> in T'S
Unify statesend(71) andstart(12) in setOS
end
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2.3 Step 2: Zero analysis

For some domains the induced domain model may be too pemaisscause the behaviour of an implicit
backgroundobject has not been captured. An example of this occurs iAtiefreecell domain, a card
game in which there are separgtiek-upand put actions. Without further analysis, the constraint that
pick-upandputactions must alternate is missing. The reason that thiga#sh would not be detected in
Step 1 above is that there is no single object named in the idomfeose state indicates whethepiak or
putaction comes next. The domain effectively contains an iaitgiandobject, which alternates between
anemptystate and &oldingstate.

Strictly, this addresses a problem that is outside the sobmeir assumptions, but the situation is
common enough in extant domains that it is worth addresdihg.state space of this kind of implicit
object can be captured by assuming that every action has plitiizerd” argument, which always
refers to a dummy objeater o- obj ect ,i.e. Forallie1... N, O; , =zer o- obj ect .

The algorithm ofLOCM Step 1 is then repeated for tzer o- obj ect , and this results in a state
machine. If the state machine for the zero object contaihsanre state, it is dropped and plays no further
role. If the machine contains multiple states, then somerin&tion about the behaviour of an implicit
object has been revealed, and this is Incorporated intoutmibPDDL domain. The zero state machine
from the AoP-freecell domain is included in Fig. 9. The staséthe zero machine give rise to predicates
with no arguments in the output PDDL model.

We take the ternzero analysidrom a similar refinement in the TIM domain analysis tool (Fand
Long (1998)).

2.4 Step 3: Induction of Parameterised FSMs

Step 1 ofLOCM creates a FSM for each sort found. States in a sort's FSM agtate information
about an object of that sort occupying the state. To capglagional information between objects, we let
states be parameterised by the sorts of related objects dttde parameters will record pairwise dynamic
associations between objects.

Consider the statevrenchstateO for the wrench sort (Fig. 2). Considering the actions fput-
awaywrench(wrench,containerandfetchwrench(wrench,container}-or a given wrench, consecutive
transitionsputawaywrench fetchwrench in any example action sequence, always have the same value
as theircontainerparameter. From this observation, we can induce that the wt@nchstateOhas a
state variable representicgntainetr The same observation does not hold truedanchstatel We can
observe instances in the training data where the wrenclidsdd from one container, and put away in a
different container.

loosen.3

wrench_stateQ
[container]

fetch wrench.1
putaway_wrench.1

wrench_statel

Figure 2 FSM generated for the Wrench sort.

In general, there is a statg between two consecutive transitiolisk and C.I within the FSM
associated with sort G, that is whdBemoves an objead of sortG into .S, andC movesO out of S. When
both actionsB andC contain another argument of the same $drtn positionk’ and!’ respectively, we
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hypothesise that there may be a relation between gbdad G’. The hypothesis is retained if, for all
consecutive actions andgq in the training sequence with the namesimandC, we find that thesame
objectO’ of sort G’ appears in both, in the specified positions, thadis= O, 1 = O4,» (see diagram
below).

B( ) 07 ) 0/7 )
k k' \“
KI

C( ) 07 ) Ol7 )

We formalise this as follows:

Hypothesis 3 Parameter Association

AssumeB.k andC.l are consecutive transitions in the FSM of s@itand the actions with name3
andC contain a parameter of a sd@¥t in positionsk’ and!’ respectively. Then we hypothesise that state
end(B.k) (= start(C.l)) has a parametric association of soft

Example 3: Consider the training sequence:

open(cl); putawayack(jl,cl); close(cl); open(c2); putawagck(j2,c2); open(cl);
fetchjack(j1,cl1); fetchwrench(wrl,cl); fetchack(j2,c2); close(cl);

From Step 1, we have transitiofsk = putawayjack.1 andC.[ = fetch jack.1 are consecutive, transitions
to/from a particular state of the FSM for sgtt j2. Both actiongputawayjack andfetchjack share an
argument of sorfc1,c2,c3 in positionk’ = 2 and!’ = 2, so we hypothesise the state of a jack after
putaway_jack.1 has an association with the container sort.

Hypothesis Filtering

Assume we have a parameter match hypothesis specified bglies\of(S, B, k, k', C, 1,1, G, G’)

as given above. Then considal pairs of action at stepsandg, consecutive with respect to some object
O of sortGG where

o A,=DBand4,=C,
° O:Opyk :qul

If, for actionsp andgq, O, 1» # Oq,, the hypothesis is falsified and removed from the set. Otisenthe
hypothesis is retained.

Returning to Example 3, we examine all pairs of actions wlaith consecutive with respect to some
objectin{j1,j2 }. There are two pairs: the first pair is where- 2 andq = 7. Here the actions in positions
p andg are consecutive with respect to objgctand there is an objeat) which is of sort{c1,c2,c3} in
both putawayjack(jl,c1)andfetchjack(j1,c1) The second pair is whege= 5, ¢ = 9. Here the actions
in positionsp and ¢ are consecutive with respect to objgét and there is an object?) which is of
sort{cl,c2,c3} in both putawayjack(j2,c2)andfetchjack(j2,c2) Hence, in this training sequence, the
hypothesis is retained.

An algorithm for the hypothesis generation and retentioemaval process as described below. It
performs an inductive process such that the hypothesesecaitherefutedor retainedaccording to the
example sequence, but it can never be definitely confirmeg. $generally requires a larger amount of
training data to converge than Step 1 above.
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Step 3
Input: action sequencgeq, Transition sef"'S, Object seDbs
Output: H S retained hypotheses for state parameters
3.1 Form hypotheses from state machines
For each paiB.k andC.l in TS
such thatend(B.k) = S = start(C.l)
For each paiB3.k’ andC.l’ sharing sortG’
andk £ k', 1 #1
Store in hypothesis séf S the hypothesid? = (S, B, k, k', C,,I', G, G")
end
3.2 Test hypotheses against example sequences
For each objec® occurring inO,,
For each pair of transitiond,,.m and A4.n
consecutive foO in Seq
For each hypothesi®H = (S, B, k, k', C,1,l', G,G")
matchingA, =B, m =k, Aq=C,n=1
|f Op,k’ = Oq,l’
then flagH as having a positive instance
else removed from hypothesis sell S
endif
end
end
end
Remove any hypothes® from H S without a positive instance.

2.5 Step 4: Creation and merging of state parameters

Each hypothesis refers to an incoming and an outgoing tranghrough a particular state of an FSM,
and matching associated transitions can be considesstdadreada parameter of the state. Since there
may be multiple transitions through a give state, it is galssfor the same parameter to have multiple
pairwise occurrences.

Figure 3 shows an example of a state from the tyre-world fer gbrt nuts with two incoming
transitions and two outgoing transitions, with all of théi@es involved having a softubfor the second
argument.

do_up(N,H,..)) undo(N,H,...)

tighten(N,H,...) loosen(N,H,...)

Figure 3 Part of FSM for sorhuts

This results after the first part of the Step 3 algorithm, mékample sequences support four parameter
match hypotheses, as follows:
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(n2, do-up, 1,2, tighten, 1, 2, nuts, hub)
(n2, do-up, 1,2, undo,l, 2, nuts, hub)
(n2, loosen, 1,2, tighten, 1,2, nuts, hub)
(n2, loosen, 1,2, undo, 1,2, nuts, hub)

However, it is not appropriate to give state four separate parameters of sptth — it should have
only one. The first action of the pair in the hypothesgitsa state parameter. Wherever the same transitions
occur as the first in the pair, they must set the same statenpseg regardless of the second in the pair.

Similarly, the second actions of the pair can be considereshida parameter from the state. Wherever
the same transitions occur as the second in the pair, they always read the same state parameter,
regardless of the first action in the pair.

These inferred equality constraints are used to reduceetief parameters associated with each state.
With each remaining hypothesis we associate a parameterforming setrindings of pairs of (h, v).

For any two pairgh, v1) and({hz, v2), such that:

h1 = <Sl, By, k1, kll, Ci, 1, lll, Gi, GI1> and
hg = <SQ, BQ, kg, k/2, CQ, 12, ll2, GQ, Gl2>

then if S| = Sy, By = By, k1=ko andk] = k5. we must enforce; = v, - i.e. the parameters must be
unified. Similarly, if Sy = S5, C; = Cs, I1=l5 andl} =1}, we enforcey; = vs.

2.6 Step 5: Removing parameter flaws

A parameterP associated with an FSM stateis said to beflawedif there exists a transition int®
which does not supply’ with a value. This means that an object can reach sfaréth P having an
indeterminate value. This may occur when there exists a&itian B.k whereend(B.k) = S, but there
exists noh such that:

h={(S, B, k, k', C,l,I', G,G") and(h, P) € bindings

For example, consider part of the FSM for soabin the tyre domain (Fig. 4). The actiods_up and
undoboth have an argument of soriits and testing against example data retains the followingthgsis:

HO = (hub2, do-up, 2,1, undo, 2,1, hub, nuts)

This hypothesis says that wherever a hub undergdess.2 and then its next transition is amdo.2
transition, then thautsobject referred to in the first argument of tth@ up action is the same as the object
referred to in the first argument ohdoaction. In Step 4, we would create a paramétérof sortnuts
associated with stateub2by a adding a bindingH0, V' 0).

jack_down.2
jack_up.2

Figure 4 Part of FSM for sorhuh, with flawed parametenuts

However there is another transitiack up.2which also leads to stateub2 and this transition does
not occur in any corresponding binding which would link itf®. Hence, there is a way to reach state
hub2without providing a value for the paramefiéf, so the parameter is flawed.

Step 5 detects and removes flawed parameters from the bisigThe filtered set of bindings can
then be used to generate state predicates for the outputeineaaed domain model.

2.7 Step 6: Extraction of static preconditions

The LOCM process specified above can induce a representation ontlyf@mic aspect of objects. In
many domains, there is static background information, sascthe layout of roads in driverlog, or the
fixed relationships between specific cards in freecell. &lthh it is beyond the scope of the current work
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to extract such static relationships in a fully automatigythe information is often present in the training
data and easy to extract.

An example from the freecell card game is that cards may oalglaced in a homecell in the correct
sequence - hence the relationship is a precondition ofraptibon card.in_homecellIn instances of this
action, a successor relationship always holds betweenrgtévfio arguments.

The difficulty lies in distinguishing relevant restrictiofrom irrelevant ones. So that the domain model
can be completed with the relevant static conditidf@CM has an option allowing the user to declare
which arguments of which actions are subject to staticigtigtns. InLOCM+statics, this information is
declared in the following form:

static( next(Cl,C2), put_on_card_in_horecell (C2,C1, ) ).
These declarations are used in two ways:

e Therelevant condition named in the first argumergttoit i ¢ is added as a precondition to the action
in the second argument, with the variable bindings impligthe shared variable names.

e From the example sequences, matching instances of therdetarler are used to extract the set of
static conditions which need to be declared in the initiatest This depends on the example data
including at least one action depending on each static ondiFor instance, if a training data
sequences contains an actfort on_card.in_homecell(cards_hearts,card4_hearts,home?), then we
add a static faahext(card4_hearts,card5_hearts)to the initial state.

Unlike the core ofLOCM, this process requires declared knowledge. In order to nocdar the
distinction, in the rest of the paper we refer to this knowlkedssisted part &OCM+statics.

2.8 Step 7: Formation of PDDL action schema

Extraction of an action schema is performed by extractiegtansitions corresponding to its parameters,
similar to automated action construction in the Object IHistory Editor (OLHE) process in Simpson,
Kitchin, and McCluskey (2007). OLHE is a tool in GIPO Il erily action models to be defined by
graphically constructing state machine®©CM Step 7 creates one predicate to represent each object state.
The outputbindingsfrom steps 3-5 above provides correlations between therapairameters and state
parameters occurring in the start/end states of transitibar example, the generatpdtawaywrench
action schemain PDDL is:
(:action putaway_wr ench
:paraneters (?figurel - wench ?container2 - container)
:precondition (and (wench_statel ?w enchl)
(contai ner_statel ?container2))

ceffect (and (wench_stateO ?w enchl ?contai ner2)
(not (wrench_statel ?wenchl))))

The generated predicatasrenchstateQ wrenchstatel containerstatel can be understood as
in_container havewrenchandopenrespectively. The generated schema can be used directlylamgaer.
It would also be simple to extract initial and final statesrfrexample sequences, but this is of limited
utility given that solution plans already exist for thosskis.

2.9 Use of the Domain Model in Planning Tasks

At the end of Step 7 described abot€CM outputs a PDDL domain model. The PDDL representation
includes predicates with automatically-generated unigbels (representing FSM states). In order to use
the model for planning, a task description must be providbitlvdescribes initial and goal conditions
using these. OCM-generated labels. It would be much more useful to be ablesaribe the initial and
goal conditions in a representation that is independenh®f. O©OCM-generated labels. Otherwise it is
necessary for a human designer to examine and understasththenachines produced before making
use of the induced model in a planner.
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The solution we have adopted is to use actions to specifgsstét direct analogy in the freecell
domain is that the initial configuration of the cards is geated by dealing the cards using the actions
putin_emptycolumnandputon card.in_column In doing so, we ignore the preconditions of the action,
and use only the end state of each object.

Similarly, the goal state can be specified by an action sempesingputin_emptyhomecelland
put.on_card.in_homecellctions which simply deal cards into their desired final fioss.

Thus it is possible to specify a planning task independenittiie state representation.

3 Evaluation of LOCM

LOCMhas been implemented in Prolog incorporating the algosttetailed above. We have udedCM

to create state machines, object associations and actiemsccomprising a domain model in PDDL for
a range of domains. Here we attempt to analyse and evalubyeits application to the acquisition of
existing and new domain models. We used example plans froee gources:

e existing domains built using GIPO Il (Simpson, Kitchin,daNcCluskey (2007)): Tyre-world and
Blocks World. In this case, we have created sets of exampienasequences bsgandom walk A
random initial state is generated, then the set of all astibbat can be applied to that state is generated.
Actions leading to a previously-visited state are filteratl @ne of the action set is chosen at random,
and then applied to the initial state to create a new state pfécess continues, treating the new state
as the initial state, until a predefined limit is reached,@antions are applicable.

e domains which were used in the IPC3 planning compefiti@riverlog and Freecell. In this case,
example training sequences extracted from the solutiomspila the publicly released competition
solutions have been used.

e logged events from a process: human players in FreeceicEllés a single player card game similar
to the domain of the same name used in the IPC3 competitistarks with the cards in a deck being
randomly positioned in 8 columns face up. A player has to plaequence of card moves between
freecells and card columns in order to leave all cards in dkstin ascending order. We chose a
particular implementation - AoP (Ace of Penguins) Freeaald amended the code to log the card
moves in the games played on it. Hence the action trainingesezes used were those that a human
player generated in order to try to win the game from a randutiai state.

3.1 Evaluation Criteria

Before stating evaluation criteria, we need to introducaeaotation.

e Convergencewe introduce a type of convergence for th©CM algorithm. We say that OCM
converges after N steps if we can findsuch that given a training sequence of lerph, it produces
output from Steps 1-2 or Step 3 using the training sequenemgth NV, and produces no changes in
its output from subsequencé + 1 to 2V.

e Equivalencewe introduce a type of equivalence between two planning domadels: an operator
set and an initial state Opsy, Init; > are equivalenttec Opss, Init, > iff the two directed graphs
representing the space of reachable states are isomogdsieniing edges are labeled with actions
and the vertices (states) are not labeled).

e Adequacya domain model to be adequate if:

— where there is an existing domain model, we can determirni¢tthanduced model is equivalent
to it, or contains redundant detail.

— where there is no existing domain model, given some initatks the domain model permits all
and only valid action sequences with respect to the contetki real world.

Our empirical evaluations were designed to explore the¥atig criteria:

http://planning.cis.strath.ac.uk/competition/ [asees30/11/2009].
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1. How many instances in a training sequence are required®@M to converge to a set of FSMs
for each sort in the domain? How many instances in a traingggience are required faOCM to
converge to a set of parameterised FSMs for each sort in tmaid@

2. CanLOCM produce an adequate domain model for test domains?

3.  What difference do the different types of training seqeefyenerated by random walk with domain
model; generated by planner with domain model; human-geéegy make to the performance of
LOCM?

4. What characterises the set of domain modelslidiM can learn?

We will comment on the first two criteria for each of the firsufaest domains below, and then
comment on the second two criteria taking the test set as éewhoP-Freecell is used to tesOCM
+statics.

The Tyre-world (GIPO lIl versiof). The input is a random walk training sequence. steps 1-2erga
with a training sequence length of the order of N = 100, anpl 3tevith a length of the order of N
= 2000. Figure 5, Figure 1 and Figure 2 illustrate the paranssd machines derived. An adequate
domain theory is derived, which is equivalent to the domheoty used to generate the random
walk sequence. The structural difference between gertkeaité hand crafted domains is that the
former contains extra states for tjaek sort: when other parts of the assembly were changed (the
wheel was placed on the hub, the nuts were screwed into thell@®M designated a change of
state for the jack. The extra states are redundant and henuat dompromise domain adequacy.

remove_wheel.1 /' wheell
put_on_wheel.1

putaway_wheel.1

wheel2
[boot]

fetch_wheel.1

tighten.1
loosen.1

remove wheel.3

put_on_wheel.3

fetch_jack.1

remove_wheel.2

loosen.2
put_on_wheel.2

jack_down.1
jack_up.1

Figure 5 State machines generated for the tyre-world in additiongare 1.

The Blocks World (GIPO Il version). The input is a random kahining sequence. steps 1-2 converge
with a training sequence length of the order of N = 50, and 3tejith a length of the order of N

2available from http://planform.hud.ac.uk/gipo/ [aces80/11/2009].
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= 300. Figure 6 illustrates the parameterised machinesaterHere the block states correspond to
the original as follows:

blockO - on a block and clear

block1 - gripped by [gripper]

block2 - on a block and covered by [block]

block3 - on table and clear

block4 - on table and covered by [block]

An adequate domain theory is derived, which is equivaletite®s operator domain theory used to
generate the random walk sequence.

put_on_table.2

put_on_blocks.2

gripper0 put_on_one_block.2 _ /' gripperl
[block] grip_from_blocks.2 I

grip_from_table.2

grip_from_one_block.

grip_from_blocks.1

grip_from_one block.1

put on_table.1 _/ block3 put_on_one_block.3

grip_from_table.1 0 grip_from_one_block.3

block4
[block]

blockl
[gripper]

put_on_blocks.1

put_on_one_block.1

block0
1

put_on_blocks.3

block2
[block]

grip_from_blocks.3

Figure 6 State machines generated for the blocks world.

Driverlog (IPC PDDL-STRIPS version). The inputs are tramsequences from the IPC archives. Steps
1-2 converge with a training sequence length of the ordersf200, and Step 3 converges with a
length of the order of N = 3000. Figure 7 illustrates the pagarised machines derived. The domain
theory derived was not adequate in one respect: within thekérmachine, the distinction of states
with/without driver is lost, and an extra state parameteivéd) is retained. The state machine for
driver is shown in fig. 7.

walk.1 drive_truck.4

driverl
[place,truck]

driverO
[place]

board_truck.1
disembark_truck.1

Figure 7 Induced state machine for driver in driverlog domain.

Freecell (IPC PDDL-STRIPS version). The inputs are trgirsaquences from the IPC archives. There
are three sorts discovered in the freecell domain - suitsiscand numbers. In the IPC version of
freecell, number objects are used to represent denomirsatibcards and to count free cells and
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free columns. The state machine derived for the cards hasté&ssiThe states (see Fig. 8) can be
understood as follows:

card3 - in a column and covered by another card
card4 - in a column and not covered

card5 - in a free cell

cardO - in a home cell

cardl, card2, card6 - in a home cell and covered

Itis not helpful to distinguish the 3 final states, n@CM cannot determine that they are equivalent.
The domain theory derived is not adequate: whilstLt&M results from Freecell are amongst the
more interesting we found, there are a number of problentd.th&M version 1 is not equipped to
handle:

e The distinction is lost between cards which are the bottona ablumn and other cards
which are in a column. Solving this problem requires weakgrif the strong assumptions
underpinning steps 1-2.

e LOCM does not automatically detect background relationshiprevd®n objects— the adja-
cency of pairs of numbers, and the alternation of black cardsed cards. This problem is
tackled is the next example.

colfromfreecell.2

sendtonewcol.2

sendtofree.2

endtohome.2

S

sendtohome.5

sendtohome_b.4
»( card2
homefromfreecell.4

sendtohome.1

sendtohome_b.1

sendtofree_b.1

homefromfreecell.

sendtofree.1

colfromfreecell.1

newcolfromfreecell.

Figure 8 Induced state machine for cards in IPC-Freecell domain.

AoP-Freecell

The AoP-freecell results are based on action traces cetleby humans playing the game on a
computer. An open source version of the freecell gdmeas modified in order to provide action traces,
which were then used to induce the planning model.

The differences with the IPC freecell domain are:

e There are no sorts to represent the suit, colour or numbecafda- the cards are only identified by
unique object names.

3Ace-of-Penguins by D. J. Delorie, http://www.delorie.dstore/ace [accessed 30/11/2009].
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e Instead of using direct move actions, there are separdteypi@nd put-down actions. This reduces
the total number of operators from 10 to 8.

e Freecells, homecells, and columns are each named objéitsisTa much simpler and more natural
approach than the IPC freecell, which uses a more sophisti@oproach in which symmetries are
eliminated by counting empty freecells, homecells androois.

Using AoP-freecell action tracesQCM induced a domain which was correct in its dynamic aspects.
Because there is no named object which performsible-upand put-downactions, yet these actions
always alternate, the zero analysis induces a 2-state meachi

However, the static relationships between cards are nettizet, and to obtain these, we need to deploy
LOCM+statics (i.e. Step 6), which depends on a minimal declar&iint of three lines.

static( first(Cl), put _in_empty_homecel | (C1, ) ).
static( stackabl e(Cl, C2), put_on_card_in_colum(Cl,C2) ).
static( next(C1, C2), put _on_card_i n_honecel | (C2,C1, ) ).

These correspond to three static predicates requiredendie
first only aces may be placed into empty home cells,

next a card place on top of another card in a home cell must be ofdtime suit and of one value higher
than the card beneath it,

stackable a card stacked in a column must be of a different colour andvahes lower than the card
beneath it.

From the example sequences, matching instances of thex detaaler are used to extract the set of static
conditions which need to be declared in the initial statés Téads to the following static conditions being
extracted from the examples:

e 4instances ofirst (complete - one for ace of each suit),

(first card_1_cl ubs)
(first card_1_di anpnds)
(first card_1_hearts)
(first card_1_spades)

e 48 instances ofiext(complete - 12 for each suit)

(next card_1_clubs card_2_cl ubs)
(next card_2_clubs card_3_cl ubs)

e 88 instances of stackable (the complete set would comp8iges@ances, but whilst it is legal to place
red/black ace on a black/red two, this is never useful, anteser occurs in the training data)

(stackabl e card_2_cl ubs card_3_di anonds)
(stackabl e card_2_clubs card_3_hearts)
(stackabl e card_3_cl ubs card_4_di anonds)

Hence, by deployind OCM+statics with three lines of declared knowledge, the Adafedell was
completed into a correct and usable planning domain. Thdtieg parameterised state machines are
shown in Fig. 9.

Results SummaryThe size of the training sequence required E@CM to converge for step 3 is
an order of magnitude greater than for steps 1-2. The sizbeofraining sequence across domains
depends on the number and complexity of sorts and the ini@nadetween state machines (the number
of associations). The blocks world requires a lower numbeéhare are only 2 sorts in the domain, both
of which are involved in every action.
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put_on_card_in_homecell.3

home0 put_in_empty_homecell.2 homel
0 0
put_in_freecell.2
pickup_from_freecell.2
pickup_last_from_column.2
[gg:g] put_in_empty_column.2
pickup_last_from_column.1

pickup_from_card_in_column.2

put_in_freecell.1

card5
[freecell]

pickup_from_freecell.1

cardl pickup_from_card_in_column. card2
put_on_card_in_column.1
put_in_empty_column.1
card4
0

put_on_card_in_column.2

put_on_card_in_homecell.1

pickup_from_card_in_column.0
put_in_empty_homecell.1

pickup_from_freecell.0

pickup_last_from_column.0

zero0 put_in_freecell.0 zerol
1] put_in_empty_homecell.0 0

put_on_card_in_column.0

put_in_empty_column.0

put_on_card_in_homecell,

put_on_card_in_homecell.0

Figure 9 Parameterised state machines for AoP-freecell

Addressing the third criteria, we note that randomly-gatest example data can be different in
character from purposeful, goal-directed plans. In a sers®lom data is more informative, because
the random plan is likely to visit more permutations of actsequences which a goal-directed sequence
may not. However, if the useful, goal-directed sequencas e induction of a state machine with more
states, this could be seen as useful heuristic informafithere there is only one object of a particular sort
(e.g. gripper, wrench, container) all hypotheses aboutinirag that sort always hold, and the sort tends
to become an internal state parameter of everything. Ferdaison, it is important to use training data in
which more than one object of each sort is used, and this tenfdsour the use of randomly-generated
training sequences.

We now consider the fourth criterion - the class of domairotles that can be induced. From the
Assumptions about the kind of structure we are expectingditicular Assumption 3, which stipulates
that transitions are 1-1), and from the empirical evaluatiove, it follows thal. OCM can induce
adequate domain models for a restricted form of STRIPS. Ype of training sequence is one that
utilises more than one object of each sort. Assumption 3iespghat an action moves the objects in
its arguments between clearly-defined substates. Objddthvare passively involved in an action may
make a transition to the same state, but cannot belion& carestate.

The main restriction is that static background informatisuch as the specific fixed relationships
between objects (e.g. which places are connected), is tmnatically analysed by the system. In general,
this can lead to missing preconditions. TH@CM algorithm assumes that all information about an object
is represented in its state and state parameters. In gettésalorm of information may vary between
training examples.

4 Related Work

Learning and refining action knowledge from examples an@asions has attracted a long history of
research from early work in MACROPS by Fikes, Hart, and Nifs$1972), to the more recent work
described in the 1JCAI-09 workshopearning Structural Knowledge From Observatidesy. Zhuo, Hu,
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and Yang (2009)). This research is motivated in several wayse argue that for intelligent agents to be
able to adapt and plan in unseen domains, they must be aklartod new domain model; others argue that
correct domain models are impossible to know a priori, arehtggymust be able to incrementally adjust
their existing model. Others use the less ambitious matimghat human-driven knowledge acquisition
and maintenance requires automated support.

The area oprocess minings a technique used in Business Process Management (BP i) ks to
use events or logs recorded while a (business) processig &stcuted. The outcome is a business process
model that would explain the logs. An example is provided lojfidann, Weber, and Kraft (2009) where
work is described which induces a model which is then turmed & workflow. The focus of process
mining research is on learning from sequences of eventexample, assuming an event alphabet of A,
B, C, D, E, the input to the algorithm is a set of observatianshsas AABCA, ABCCAD, AEDDDCC
etc. The process mining algorithms induce process modelwifiorm of machines such as Petri Nets.
This is similar to the machine learning area of grammar itidacand techniques seem to draw on this
area. Process mining is more general in that it assumes Heafleence of concurrent processes causes the
events, and therefore has to deal with concepts of processigynisation.

The rationale for process mining is in part to help in the diffi problem of engineering a model and in
this respect it is similar to that of learning action knowdedHowever the results of learning are different
from those used in Al Planning. In BPM the technique is usedidiothe construction and analysis of
a process model, whereas in Planning the results are inuptanning engine. Also, the induction of
planning actions from traces is at a higher degree of graityiknd requires stronger assumptions. An
induced domain model will contain a model of objects, relasiand attributes, in which the physics of
actions are captured. Hence traces are also sequencegofsé\but events are action applications, and
each is described in terms of a name and all the objects taatffacted or are needed during the event.
Then there is the assumption about objects having theinimlvadescribed by a machine. The PDDL or
OCL which is output by OCMis more expressive than the kind of Petri Nets induced byge®mining.

Learning STRIPS-type action schema has also attractedya &nount of research in recent years.
Some systems learn from many plan examples with little bemked knowledge (e.g. the ARMS system
of Wu, Yang, and Jiang (2005)). In contr&pmakeidearns from a single example together with a partial
domain model. Th®pmakeralgorithm detailed in McCluskey et al. (2009); Richards?dq8) is one of
a family of algorithms which commenced with McCluskey, Riofison, and Simpson (2002)pmaker
is described more fully in a Ph.D. thesis (Richardson (2)08ho also details how it is able to learn
heuristics in the form of hierarchical action representaticontaining plan fragments. EaGlpmaker
system acquired knowledge from sequences of actions whicén an initial state, solve a given task.
The system assumes knowledge of objects, object classemig@onstraints, and possible states of
objects - collectively called static knowledge, or partiamain knowledge. For example, for each action
in the sequence, it is known which object(s) change and wihichot. In addition, domain invariants are
provided which aid the production of unique action schemas.

Other systems require richer input: ARMS Wu, Yang, and Ji@@§5); Zhuo, Hu, and Yang (2009)
makes use of some background knowledge as input, compitigp®s, relations and initial and goal
states and also uses sets of examples. However ARMS takesiatently predicate-centric view, unlike
Opmakerand LOCM which are object-centric. Learning in ARMS is statisticalrature, and outputs
a solution which is optimal with respect to reducaor andredundancyrates. The former is defined
as the proportion of preconditions that cannot be estaddidiy any action in th@reviouspart of the
plan. The latter establishes the degree of redundancyectr@athe action model in the example set. The
Opmakeralgorithm relies on an object-centred approach simildt@€CM, but it too requires a partial
domain model as input as well as a training instand®@CM is distinct from other systems that learn
action schema from examples in that it does not require dokr@wledge as input; its success is based
on the assumption that the output domain model can be ragezsi| an object-centred representation.
The system of Shahaf and Amir (2006) appears to efficientig lexpressive action schema, but requires
specifications of fluents as input, as well as partial obsenva of intermediate states between action
executions. Unlikee OCM, their algorithms are provided with partial state des@ipd at each step. They



18 S. N. CRESSWELL ET AL

do, however, use a richer representation for action sch&€h@aTIM domain analysis tool (Fox and Long
(1998)) uses a similar intermediate representatict@GM (i.e. state space for each sort), butin TIM, the
object state machines are extracted from a complete doneéimittbn and problem definition, and then
used to derive hierarchical sorts and state invariants.

Both LOCM and Opmakeruse positive examples in the solution sequence. The Plgrperator
Induction (POI) system of (Grant (1996)) learns from pesigxamples and uses a default rule to provide
negative information which boosts the positive trainingtémces. In more recent work (Grant (2007)),
POl is extended to a multi-agent system. The work is basedmesentations of operators and constraints
which between them model the domains, so the modelling psoissfundamentally different from ours.
The author presents a good assessment and diagrammatitahpld@ning in the case where an initially
complete domain model is shown to be capable of receivingaasiilating sensory feedback. Because
this initial domain model is distributed across severalmagi@vho, as a set, have complete knowledge,
individual agents will have only partial knowledge and msisare this knowledge for planning to be
successful. The emphasis in Grant (2007) is on how the esdigigent assimilates the knowledge of
another agent.

Learning expressive models from examples is a central goéhé Inductive Logic Programming
community. In his thesis Benson (1996), reasons about TRAhich represents actions vialeo-
reactive(TR) programs. TR programs are durative rather than discBenson describes an ILP method
for learning action schema in TRAIL, using background kresge and multiple positive and negative
training examples. Additional knowledge is provided in floem of mode definitiondor predicates
(i.e. input and output). Action schema are learned by tanshg first-order instance descriptions to
propositional form and using a method based on the FOIL afgorof Quinlan (1990).

5 Conclusion

In this paper we have described th®@CM system and its use in learning domain information (commpgisi
object sorts, state descriptions, state machines anchasttltema), and outputting usable PDDL domain
models, when input with training action sequences. Charistic of previous work in this area is that
input to the learning process includes some planning arébkhowledge, such as state information,
predicate descriptions, plan goals and initial state, agcwell as the training data. For domains such as
the tyre-world LOCM learns an adequate model without any a priori domain spégcifievledge LOCM
also learned an adequate domain model for the AoP Freeacre# §flmm training sequences obtained via
logs of actual games, although in this case the system esljtiie specification of three simple static
preconditions.

We view LOCM as the first step in creating tools which can truly learn pilagmiomain models by
observing, without the need for human intervention or haaiting. Results of our evaluation using five
domain models showOCMs success, but also point to future work:

— although it is unrealistic to expect example training ssmes to be available for all new domains,
we expect the technique to be beneficial in domains wherearatio logging of some existing process
yields plentiful training data, e.g. games, workflow, orinaltransactions. We are currently building up
an idea of the scope of such a tool within the context of thevgrg availability of online data;

— in the near future, we plan to develb@CM in two directions (i) to give it the capability to develop
sorts with objects that are described by more than one stathinme. This would provide a elegant solution
to domains such as driverlog, where objects have aspettshthage subject to different state machines;
(ii) to investigate the feasibility of learning static pogditions from the examples, rather than stipulating
that they need to be given along with the training sequences;

— a significant extension would be to create a version@EM for metric domains where parameters
include timings or other resources. In this case, the indogrocess would need to induce intervals from
timings within the example data.
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