
The Knowledge Engineering Review, page 1 of 31. & Cambridge University Press, 2013
doi:10.1017/S0269888913000349

Ontology evolution: a process-centric survey

FOUAD ZABL I TH 1 , GR IGOR I S ANTON IOU 2 ,
MATH I EU d ’ AQU IN 3 , G I ORGO S F LOUR I S 2 ,
HAR ID IMO S KONDYLAK I S 2 , E NR I CO MOTTA 3 ,
D IM I TR I S P L EXOU SAK I S 2 and MARTA SABOU4

1Olayan School of Business, American University of Beirut, PO Box 11-0236, Riad El Solh, 1107 2020, Beirut, Lebanon;

e-mail: fouad.zablith@aub.edu.lb;
2Institute of Computer Science, FORTH, PO Box 1385, GR 71110, Heraklion, Greece;

e-mail: antoniou@ics.forth.gr, fgeo@ics.forth.gr, kondylak@ics.forth.gr, dp@ics.forth.gr;
3Knowledge Media Institute, The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom;

e-mail: m.daquin@open.ac.uk, e.motta@open.ac.uk;
4Department of New Media Technology, MODUL University Vienna, Am Kahlenberg 1, 1190 Vienna, Austria;

e-mail: marta.sabou@modul.ac.at

Abstract

Ontology evolution aims at maintaining an ontology up to date with respect to changes in the

domain that it models or novel requirements of information systems that it enables. The recent

industrial adoption of Semantic Web techniques, which rely on ontologies, has led to the increased

importance of the ontology evolution research. Typical approaches to ontology evolution are

designed as multiple-stage processes combining techniques from a variety of fields (e.g., natural

language processing and reasoning). However, the few existing surveys on this topic lack an

in-depth analysis of the various stages of the ontology evolution process. This survey extends the

literature by adopting a process-centric view of ontology evolution. Accordingly, we first provide

an overall process model synthesized from an overview of the existing models in the literature.

Then we survey the major approaches to each of the steps in this process and conclude on future

challenges for techniques aiming to solve that particular stage.

1 Introduction

Ontologies are formal artifacts that are designed to represent the knowledge related to a specific or

generic domain in terms of the relevant concepts, relationships between these concepts and the

instances of these concepts. The ontology engineering research community has been focusing for

many years on supporting the development of ontologies, through tools, techniques and methods

for knowledge acquisition, knowledge elicitation, knowledge representation, ontology validation,

ontology-based reasoning and others (Studer et al., 1998; Gomez-Perez et al., 2003). Partly, as a

result of this extensive research, ontologies have recently gained more attention as a formal basis

for the Semantic Web (Antoniou & Harmelen, 2004), including the development of standard

ontology representation languages (notably, OWL1) and the availability of sufficiently mature

tools to manipulate these ontologies, such as parser libraries (Bechhofer et al., 2003), reasoners

(Sirin et al., 2007) and ontology editors (e.g., Protégé2, the NeOn Toolkit3). There are now

1 http://www.w3.org/TR/owl-ref/
2 http://protege.stanford.edu/
3 http://www.neon-toolkit.org/



thousands of ontologies available and directly exploitable on the Web (d’Aquin et al., 2007), as

witnessed also by the W3C Linked Open Data Initiative4.

This new Semantic Web environment, where ontologies are distributed and used in more and

more mainstream applications, implies a new focus for research in ontology engineering: sup-

porting the complete lifecycle of ontologies, beyond the initial steps of acquisition, development

and deployment. Ontologies should be maintained and evolved according to changes in the

domains they represent or the requirements from the applications they support. These changes

should be integrated into the ontology in a way that allows maintaining its structure, consistency

and relevance, and should be managed to ensure continuity and traceability across different

versions of the ontology. In other words, ontology evolution involves a number of steps, for which

a variety of approaches, techniques and tools might be required.

While key stakeholders in the ontology evolution field have proposed various process models

capturing the key steps of an evolution task, currently, there is no clear understanding of how

these models relate to each other. Even more, since methods and tools for these key steps are often

drawn from a variety of disjoint research fields (e.g., natural language processing, inconsistency

reasoning), no single survey provides an in-depth overview of the state of the art relevant for

individual steps.

An early survey on ontology evolution was published in 2004 and consisted of a project-centric

overview of the field (Haase & Sure, 2004). This project deliverable focused primarily on tools that

offer ontology evolution support. It also discusses the various stages of the evolution process as

proposed by Stojanovic (2004), however, it does not provide a comprehensive overview of works

for each stage. Four years later, Flouris et al. (2008) published a comprehensive survey focusing on

the broad topic of ontology change. The primary goal of this survey is to identify research areas

dealing with ontology change aspects, to define their boundaries and to provide terminological

clarifications. As such, ontology evolution is considered as one of the 11 ontology change tasks.

In addition, although Leenheer and Mens (2008) focus on describing approaches to collaborative

ontology evolution, they also provide a brief overview of the main steps involved in single-user

ontology evolution. They follow a process model inspired by software engineering and aim to

define each of these steps rather than to perform a thorough overview of existing approaches in

each area. In addition to software engineering, the authors explore approaches in other areas such

as the argumentation field, and analyze how ontology evolution can benefit from these approaches.

Their objective is to support inter-organizational ontologies, where the level of complexity of the

domain and dynamics are more substantial than single-user ontologies. Finally, a survey related to

database schema, XML-based and ontology evolution was released (Hartung et al., 2011). In this

work the authors identify a set of requirements for a successful evolution (e.g., backward com-

patibility, versioning and mapping support, etc.), and build a survey around these resolved themes.

While this is a well-covered survey, its limitation with respect to our objective is in the fact that it

revolves around three different fields (i.e., database, XML schemas and ontologies), to which not

all functionalities and tasks can be interchangeably applied.

The goal of this article is to fill in the current gap in the literature by providing a complete and

detailed overview of the current research activities in ontology evolution. Our contributions are

twofold. First, we present and discuss the various process models that were proposed for the

ontology evolution tasks and derive an overarching ontology evolution process that captures

the consensus of individual models. Second, based on the tasks of this newly derived process

model we perform an in-depth overview of approaches that support each task, thus providing a

unique overview over several research fields.

The article is structured as follows. We define ontology evolution, present existing process

models and derive the overarching ontology evolution cycle in Section 2. In subsequent sections,

we describe in detail the existing and ongoing work to tackle each individual task, namely,

4 http://linkeddata.org/

2 F . Z ABL I TH E T A L .



detecting the need for evolution (Section 3), suggesting ontology changes (Section 4), validating

ontology changes (Section 5), assessing the impact of evolution (Section 6) and managing ontology

changes (Section 7). In each section, we describe the general, common approaches reported in

the literature and detail the specific realizations of each approach in different works. In the

final section of the article, we comment on a general view on the current state of the ontology

evolution area, on the need for more mature and integrated implementations of techniques and

tools for ontology evolution, and on the impact such tools could have on the realization of the

Semantic Web.

2 Ontology evolution: definition and process model

2.1 Definition

Ontology evolution has been defined in various ways. Haase and Stojanovic (2005) see ontology

evolution as the process to ‘adapt and change the ontology in a timely and consistent manner’. Flouris

et al. (2008) define ontology evolution as a process aiming to ‘respond to a change in the domain or its

conceptualization’ by implementing a set of change operators over a source ontology. The recently

compiled NeOn Glossary of ontology engineering tasks states that ontology evolution is ‘the activity

of facilitating the modification of an ontology by preserving its consistency’5.

A common characteristic of the above definitions is that they have a strict view on ontology

evolution focusing only on updating the ontology based on the required changes and therefore

they see ontology versioning, the process of managing different ontology versions, as a separate

activity. We argue that ontology versioning is intrinsically linked to the ontology evolution task

and therefore should always be considered when discussing ontology evolution. As a result, in this

paper, we adopt a broader view of ontology evolution encompassing both the changes made to an

ontology as well as its versioning.

2.2 Ontology evolution stages

Ontology evolution is not an atomic, well-defined and self-contained notion. Supporting the

evolution of an ontology implies the completion of a number of different tasks, for which different

approaches can be envisaged. For this reason, several attempts at structuring and conceptualizing

the general process of ontology evolution can be found in the literature. While these attempts are

often motivated by the need to build a software framework for supporting ontology evolution,

they are also useful for practitioners who need to have a complete picture of the tasks involved in

ontology evolution. Despite these compelling reasons for a unified process model, the community

has often created classifications that separate and isolate ontology evolution tasks (Flouris et al.,

2008). For example, the need for changing the ontology can be identified both by analyzing

user activity (the main focus of Klein & Noy, 2003; Stojanovic, 2004; Vrandecic et al., 2005;

Noy et al., 2006), or external domain data (approach taken by Zablith, 2009), and ontology

learning tools (Cimiano & Volker, 2005; Maynard et al., 2009). Similar to the management side

of the evolution, the community has created separate threads under the umbrella of ontology

versioning and consistency checking, without connecting them back to the ontology evolution

process. We therefore identify the need for a framework, which we refer to as ontology evolution

cycle, connecting current views of the ontology evolution process models. We continue with a

discussion of current ontology evolution process models and conclude with deriving a unified

ontology evolution cycle.

In her thesis, Stojanovic (2004) proposed a framework for ontology evolution. The framework

is a six-phase cyclic process, starting with the change capturing phase where changes to be applied

to the ontology are identified. Three types of changes are identified based on usage-driven change

5 http://mayor2.dia.fi.upm.es/oeg-upm/files/pdf/NeOnGlossary.pdf

Ontology evolution: a process-centric survey 3



discovery (i.e., derived from user behavior), data-driven discovery (i.e., derived from changes to the

ontology instances) and structure-driven change discovery where changes are derived from the

analysis on the structure of the ontology. Hence, this evolution framework treats the ontology as a

closed entity by initiating the evolution from the analysis performed on the ontology itself, without

opening it to external domain data such as relevant text corpora. Change capturing is followed by

the representation phase where the changes are represented following a specific model that the

author calls the ‘evolution ontology’. The third phase is the semantics of change phase, during

which syntactic and semantic inconsistencies that could arise as a result of the changes are

addressed (Tamma & Bench-Capon, 2001). A syntactic inconsistency covers cases, such as

violating constraints or using entities and concepts that have not been defined in the ontology.

A semantic inconsistency occurs when an entity’s meaning changes during the evolution process

(Tamma & Bench-Capon, 2001). The fourth phase is the implementation of change phase coupled

with user interaction for approving or cancelling changes. Change propagation is the fifth phase,

allowing the update of outdated instances as well as recursively reflecting changes in referenced

ontologies in the case of interconnected ontologies. The final phase is the validation phase, which

checks that the performed changes led to a valid (or desirable) result, and allows the user to undo

such changes if this is not the case.

Klein and Noy (2003) present a framework to support users when an ontology evolves from one

version to another. Their framework is component based, and targets the following ontology

evolution tasks: data transformation, where data in the old ontology version are transformed into a

format compatible with the new ontology version; ontology update, where changes are propagated

to the ontology under evolution; consistent reasoning to keep the ontology under evolution con-

sistent; and, finally, verification and approval, where ontology developers perform final checks.

The focus in this approach is mainly on the versioning side of the ontology, as an effect of the

evolution. Hence, unlike the previous framework, this work does not deal with a change identi-

fication step, but mainly on making sure that the ontology consistently evolves from one version

to another.

Noy et al. (2006) describe a framework for ontology evolution in collaborative environments.

This framework is scenario based and consists of various Protégé plugins. It includes the following

tasks: examining changes between ontology versions, presented, for example, in the form of a table;

accepting and rejecting changes, helpful in curated ontology evolution, where changes are approved

or rejected with the change action recorded; and providing auditing information, where authors’

information (e.g., time of change, number of concepts changed) are compiled. Changes are

recorded following the Change and Annotation Ontology (discussed by Klein & Noy, 2003 as

well). The framework serves as a means to manage collaborative changes to be performed on an

ontology, where the changes are proposed by the ontology curators.

Evolva is an ontology evolution tool built on a component-based framework, which aims to

evolve ontologies from existing domain data that are external (Zablith, 2009), unlike focusing

purely on changes derived from within the ontology as targeted by Stojanovic (2004). Such data

can be found in text documents, folksonomies, RSS feeds or a list of terms. Each source requires a

different method of content extraction handled by the information discovery component. The data

validation component identifies new terms that are relevant to the ontology. It also checks the

quality of content and filters out noise generated from the information discovery component. The

validated information is passed to the ontology changes component in which lexical databases and

online ontologies provide background knowledge for automating and evaluating the integration of

new information into the ontology through its relation discovery and validation processes. As the

evolution could generate conflicts and problems, such issues are handled at the level of the

evolution validation component, by reusing existing solutions for consistency and duplication

checks. Finally, the validated ontology is passed to the evolution management component where

the user has control over the evolution, and changes are recorded and propagated to dependent

ontologies. Part of the framework is implemented as a plugin for the NeOn Toolkit, and reuses

some of the functionalities provided by the existing Toolkit plugins. The Evolva framework differs

4 F . Z A BL I TH E T A L .



from the previously described frameworks by opening the evolution of ontologies to external

domain data, which serve as a starting point to initiate the evolution.

Similar to the work of Noy et al. (2006), DILIGENT deals with the collaborative aspect

in evolving ontologies (Vrandecic et al., 2005). It is a decentralized user-centric methodology

proposing an ontology engineering process targeting ‘user-driven’ ontology evolution, rather than

its initial design. At a glance, the process starts by having a core ontology collaboratively built by

users. After the building step, the ontology will be locally adapted without changing the core

ontology. A board of users will then analyze the local changes, in order to come up with the

changes that need to be incorporated in the shared ontology. The requests of changes are sup-

ported by arguments using an argumentation framework in order to come up with a balanced

decision reflecting all the evolution requests. The changes are revised by the board of knowledge

experts in order to maintain compatibility between different versions. The evolution of the

ontology is a result of the experts’ decision. Finally, the shared evolved ontology is locally adapted

at the different involved locations.

Commonalities can be easily detected in the descriptions of the different frameworks above.

Figure 1 depicts the general ontology evolution cycle we rely on in this article and which intends to

abstract from the specificity of each framework. This cycle is made of five main steps or tasks

(represented in rectangles, where ‘Recording Changes’ and ‘Versioning’ are sub-tasks of the

‘Managing Changes’ step, and the subsumption is depicted by the empty arrow heads), with each

step potentially relying on different inputs and background information (represented in the ovals).

The ontology in the center serves both as input to all the tasks, and receives input from the

‘Managing Changes’ tasks, hence the double-sided arrow. The cycle is repeated after applying the

changes and passing again through the ontology. We hereby define these steps as well as their

relation to other frameworks.

Detecting the Need for Evolution initiates the ontology evolution process by detecting a need for

change. Such a need can be derived from user behavior (i.e., the usage of a system that relies on

the ontology) or data sources both internal or external to the ontology. This stage corresponds to the

change capturing step in Stojanovic’s process model, to the information discovery task of Evolva and to

the local changes step of DILIGENT, but it is not present in the other approaches that focus on the

versioning aspect of evolution, namely Klein and Noy (2003) and Noy et al. (2006).

Figure 1 Ontology evolution cycle

Ontology evolution: a process-centric survey 5



Suggesting Changes represents and suggests changes to be applied to the ontology. Some

approaches handle this task by applying patterns to text corpora representing the domain of the

ontology (unstructured sources), while others rely on structured data sources, such as online

ontologies, to suggest the appropriate changes. This stage corresponds to the representation

phase of Stojanovic, to the data transformation step of Klein and Noy and the relation discovery

task of Evolva.

Validating Changes filters out those changes that should not be added to the ontology as they

could lead to an incoherent or inconsistent ontology, or an ontology that does not satisfy domain

or application-specific constraints. A similar stage is present in all the frameworks that we have

previously described. Current approaches handle both a formal validation of changes making sure

the ontology is logically consistent as per specified constraints, and a domain validation of changes

focusing on the domain relevance of the changes.

Assessing Impact measures the impact on external artifacts that are dependent on the ontology

(i.e., other ontologies, application) or criteria such as costs and benefits of the proposed changes.

Currently, impact is based on the cost involved in adding a suggested change to the ontology, or

the effect of such a change at the application level, for example, to the ability to answer specific

queries. Only two frameworks have similar steps, namely Stojanovic’s propagation stage and

Noy et al.’s auditing step.

Managing Changes applies and records changes and keeps track of the various versions of the

ontology. This is a continuous task, active through the entire ontology cycle, and is divided into

two sub-tasks: recording the changes realized on the ontology, and keeping track of the different

versions of the ontology. Indeed, all existing frameworks acknowledge the need for such a task.

Table 1 gives an overview of the way the steps in the evolution cycle described here relate to the

components of the frameworks detailed above. While commonalities exist with other frameworks,

one particular advantage of our proposed framework is that it offers a more granular process to

evolve ontologies, a bridge among functionalities that are often considered separately within the

community. For example, bringing new entities from external data sources has been confined to

the area of ontology learning, where the management side of changes is not of core interest. In the

next sections, we describe each of the five tasks of our cycle in more detail and survey current

approaches, techniques and tools that support them.

3 Detecting the need for evolution

An ontology is a ‘specification of a shared conceptualization of a domain’ (Gruber, 1993) and

therefore needs to change (i.e., to evolve) whenever changes occur in the underlying domain or in

its conceptualization. For example, the UN’s Food and Agriculture Organization maintains a

Table 1 Relations between tasks of the ontology evolution cycle and components of existing ontology

evolution frameworks

Referenced work

Detecting Need

for Evolution

Suggesting

Changes

Validating

Changes

Assessing

Impact

Managing

Changes

KAON (Stojanovic,

2004)

Change

capturing

Representation Semantics of

change/validation

Propagation Implementation

of changes

Klein and Noy

(Klein & Noy, 2003)

Data

transformation

Consistency

verification/approval

Update

Protégé (Noy et al.,

2006)

Examining changes Auditing Accept/reject

recording

Evolva (Zablith,

2009)

Information

discovery

Relation discovery Validation Management

DILIGENT

(Vrandecic et al.,

2005)

Local changes Revision Local

adaptation

6 F . Z ABL I TH E T A L .



large agricultural thesauri, AGROVOC, used for indexing internal data with terms from domains

as varied as biology, geography or chemistry. Changes to these domains (e.g., discovery of new

plant species, new political borders, meteorological phenomena) are continuously added to

AGROVOC by experts working in the respective fields. Another heavily explored domain

evolution is applied in life sciences, where existing work explore the evolution of the ontology and

their corresponding domain mappings (Hartung et al., 2012).

In recent years, ontologies have become key components of information systems where they

are often used to index large document corpora or collections of facts and directly support

user interaction with the system through functionalities such as browsing and querying. These

ontologies must evolve to reflect the content of the indexed document set and therefore they often

change when new documents are added or old ones are removed. They also need to evolve to

match the activity of the system’s users. For example, the AKTRO ontology is used to structure

the knowledge bases of several applications that can be searched by users. Alani et al. (2006) log

the queries to these applications and use them to determine which ontology concepts and relations

are never accessed and therefore are good candidates for elimination from the ontology.

The goal of the ‘Detecting the Need for Evolution’ stage is to detect whether new concepts and

relations should be added to the ontology, or whether some ontology elements can be deleted.

Besides domain experts pro-actively identifying the need for an ontology to change, programmatic

methods used to identify potential changes make use either of relevant data collections (Section 3.1) or

application usage patterns (Section 3.2). An evolution activity initiated by changes detected in the

related domain or application usage patterns is also referred to as bottom-up ontology evolution

(Stojanovic et al., 2002), as opposed to a top-down approach where changes would be dictated by

managers or experts. Another work investigates a pattern-based ontology changes detection by relying

on graph analysis (Javed et al., 2011).

Example: Consider an ontology about the academic domain used to index a research lab’s

documents, and the available job vacancies in particular. The addition of a new document

mentioning the availability of a job vacancy for a ‘research assistant’, a concept not available in

the corresponding domain ontology, should lead to the need for extending this ontology with the

appropriate concept to represent a research assistant.

3.1 Detecting the need for evolution from data

The need for evolution can be initiated from the analysis of various types of data. While some

approaches limit the data analysis to information available within the ontology, for example, the

work of Stojanovic (2004), other tools identify ontology changes by analyzing external data

sources, including unstructured sources, for example, text documents (Velardi et al., 2001;

Cimiano & Volker, 2005; Bloehdorn et al., 2006; Novacek et al., 2007; Ottens et al., 2007;

Maynard et al., 2009) and metadata (Maynard et al., 2007), or structured data, such as databases

(Haase & Sure, 2004).

Stojanovic (2004) defines data-driven ontology evolution as the process of discovering ontology

changes based on the analysis of the ontology instances, for example, by relying on data mining

techniques. Another type of change detection defined by Stojanovic is structure driven, where the

evolution is initiated based on the analysis performed on the ontology structure using a set of

heuristics. For example, ‘if all subconcepts have the same property, the property may be moved to

the parent concept’, or ‘a concept with a single subconcept should be merged with its subconcept’

(Stojanovic, 2004).

Another type of data source for detecting the need for evolution are domain data, external to

the ontology under evolution. Such more ‘traditional’ forms of storing information about

the domain often contain valuable knowledge that should be encapsulated in the ontology itself.

Bloehdorn et al. (2006) based their work on the six-phase ontology evolution process proposed by

Stojanovic (2004). They identified that valuable information reside in databases and documents, but

require better structuring and easy accessibility through the use of ontologies. Unike Stojanovic (2004),

Ontology evolution: a process-centric survey 7



who considers data-driven ontology evolution as the evolution triggered from the ontology instances,

they consider data-driven changes as changes happening in external data sources, such as the addition

and deletion of documents in a corpus, or changes occurring in databases (Haase & Sure, 2004;

Bloehdorn et al., 2006). Other tools that initiate ontology changes from text documents include the

ontology learning tools Text2Onto (Cimiano & Volker, 2005) and Semantic Pattern Recognition and

Annotation Tool (SPRAT) (Maynard et al., 2009). Moreover, Evolva detects the need for evolution

by identifying terms from various types of data sources including RSS feeds, text corpus or a list of

raw terms (Zablith, 2009). In addition, Dino is a framework for integrating ontologies which are

learned from text (Novacek et al., 2007; Laera et al., 2008), and Dynamo is a multi-agent system-based

approach that falls in this category of tools as well (Ottens et al., 2009). We discuss in more details the

processes involved within these approaches in the next sections.

3.2 Detecting the need for evolution from usage

In addition to using data analysis as a starting point for detecting the need for evolution, some

approaches rely on the study of usage patterns to which the ontology is subject to. For example,

Alani et al. (2006) propose that, based on what parts of the ontology are mostly used by appli-

cations, the ontology can shrink to better fit its purpose in the environment. In addition to

application usage, user behavior is studied to detect the need for evolution, which is called usage-

driven ontology evolution (Stojanovic, 2004). Bloehdorn et al. (2006) rely on a usage-log, which is

a record kept of the interaction between the user and the ontology (e.g., user behavior and

contextual search history), to analyze and detect the need for evolution. Such a log file can store

information about what has been queried, which elements in the ontology have been viewed by the

user, etc., and used to derive usage preferences and suggest changes to the ontology. This source of

change is useful to keep the ontology adapted to the user needs, while removing the parts that

become unused in the environment. This would indirectly help in the maintenance cost, and

increase the efficiency of processing the ontology to perform the required tasks based on the

assumption that smaller ontologies are easier to manage and explore. Another work identifies the

need for an agile approach to maintain ontologies and adapt them based on the application and

user requirements (Luczak-Rosch, 2009). Luczak-Rosch (2009) proposes a methodology and

framework for ontology maintenance, which takes into account two types of feedback: dynamic

application feedback and user feedback. This will help adapt the ontology to the information

relevant to the scenario in which it is used. Javed et al. (2011) employ pattern detection applied on

the ontology’s change log analysis. This will help derive ontology changes from analyzing the

historical ontology changes, and identifying frequent change sequences. Another approach pro-

poses the use of adaptive ontologies that evolve depending on a user context and evolution of the

domains on the Web (Pruski et al., 2011). The objective is to enhance information retrieval from

the Web relevant to the user needs.

Table 2 provides a summary of the various methods involved in detecting the need for evolution

from data and usage. We can conclude that the majority of evolution detection methods make use

of data sources (as opposed to usage information) and that, within data-centric methods, those

that exploit text corpora are the most widespread. One possible explanation of this phenomenon

lies in the availability of several off-the-shelf corpus analysis methods from the areas of Natural

Language Processing (NLP) in general, and ontology learning in particular.

4 Suggesting ontology changes

Once it has been detected that the ontology needs to change (e.g., adding the ResearchAssistant

concept to the ontology) it is important to understand what are the concrete ontology change

operations needed to evolve the ontology (e.g., add ResearchAssistant as a subconcept of the

AcademicStaff concept that already exists in the base ontology). We call this task ‘Suggesting

Ontology Change’. Various approaches that address this stage derive changes by limiting

8 F . Z ABL I TH E T A L .



their focus on the content available in unstructured documents (e.g., text documents). Other works

broaden their scope to rely on external structured knowledge sources (e.g., lexical databases

or online ontologies) to support ontology change suggestions. In this section, we review both sets

of approaches.

4.1 Suggesting changes by relying on unstructured knowledge

Text2Onto derives ontology changes through processing text documents and extracting ontolo-

gical entities (Cimiano & Volker, 2005). It is designed to overcome the limitations of other

ontology learning tools which (i) are domain dependent, (ii) lack user interaction during the

ontology learning process and (iii) execute the ontology learning process from scratch whenever a

change occurs in the text corpus. Text2Onto uses a Probabilistic Ontology Model, coupled with

data-driven change discovery that enables specific changes detection from new text documents,

without having to process all the corpus when new documents are added. In addition to the

extraction of concepts and instances (i.e., corresponding to the ‘Detecting the Need for Evolution’

task), Text2Onto includes lexico-syntactic pattern-based algorithms to extract various types of

relations, including ‘Instance-of’, ‘Subclass-of’, ‘Part-of’ and other general relations. When these

relations are discovered between a concept that already exists in the ontology and a newly derived

concept, they represent concrete ontology change suggestions.

Similar to Text2Onto, SPRAT suggests ontology changes from text documents (Maynard et al.,

2009). It combines existing ontology-based information extraction (OBIE) techniques, named

entity recognition and relation extraction from text. It provides additional patterns to refine the

process of entity identification and relations between them, and to transform them into ontolo-

gical entities. SPRAT relies on lexico-syntactic patterns applied to text documents to identify

terms and their corresponding relations.

Furthermore, Bloehdorn et al. (2006) propose an architecture applied in a digital library

domain or other electronic repositories. The authors specify that ontology learning algorithms,

such as the ones provided by Text2Onto, can be used to extract document contents, which can be

used to evolve the ontology based on the information in the corpus.

Another tool developed to detect changes from text documents and merging ontologies is Dino

(Novacek et al., 2007; Laera et al., 2008). Dino is a framework for integrating ontologies, and

Table 2 Approaches used for detecting the need for evolution

Referenced work(s) Data Usage

Stojanovic (2004) Ontology instances

and structure

User behavior

Evolva (Zablith, 2009) RSS feeds, terms list

Evolva (Zablith, 2009); Text2Onto

(Cimiano & Volker, 2005); SPRAT

(Maynard et al., 2009); Dino (Novacek

et al., 2007); Dynamo (Ottens et al.,

2007); Velardi (Velardi et al., 2001;

Bloehdorn et al., 2006)

Text corpus

Maynard et al. (2007) Metadata

Bloehdorn et al. (2006); Haase

(Haase & Sure, 2004)

Databases

Alani et al. (2006) Application usage

Javed et al. (2011) Ontology change log

Luczak-Rosch (2009) Application and user feedback

Bloehdorn et al. (2006) Usage-log analysis (e.g., log of queries

and search history)

Pruski et al. (2011) User context and domain information

Ontology evolution: a process-centric survey 9



includes a semi-automatic integration of learned ontologies with a master ontology built by

ontology designers. It relies on the use of ontology alignment, coupled with agent-negotiation

techniques, to generate and select mappings between learned ontologies from text and the base

ontology. In more detail, Text2Onto is used to extract information from documents in the Dino

framework. The learning algorithms of Text2Onto are customized through a user interface,

and the confidence values of extracted terms are fed to an ontology alignment/negotiator wrapper

(Novacek et al., 2007). The learned ontology representing new concepts, and the master ontology

collaboratively developed by the knowledge experts are aligned, through a set of mappings

between the classes, entities and relations of the two ontologies created using the alignment

wrapper. Agreement of the semantics used is reached through negotiation using the negotiation

wrapper. An axiom ontology is created containing the merged statements between the learned and

the master ontology.

Dynamo also falls in the category of exploiting external data sources for building ontologies

(Ottens et al., 2009). It consists of a multi-agent system for dynamic ontology construction

from domain-specific sets of text documents. Dynamo relies on an adaptive multi-agent system

architecture, within a framework where the ontology designer interacts with the system during the

process of building the ontology. The system considers the extracted entities from text sources as

separate agents, which are related to other entities (agents) through a certain relationship. In other

words, an ontology is treated as a multi-agent system.

4.2 Suggesting changes by relying on structured knowledge

Structured knowledge represents and defines conceptual information entities, connected through

explicit relations. Such representation allows reusing knowledge entities with less effort compared

to the unstructured knowledge sources discussed previously. In this section we focus on approaches

that suggest ontology changes during ontology evolution by making use of two types of structured

sources: lexical databases and online ontologies.

4.2.1 Lexical databases

WordNet (Fellbaum, 1998) is one of the major lexical databases providing a wealth of entities

interconnected with taxonomical links represented in the form of hyponyms and hypernyms, in

addition to other types of relations including meronymy and holonymy links. WordNet is used to

support various tasks including word sense disambiguation (Li et al., 1995; Ide & Veronis, 1998;

Banerjee & Pedersen, 2002), information retrieval (Li et al., 1995) and question answering (Pasca &

Harabagiu, 2001; Clark et al., 2008).

Maedche et al. (2002) propose the use of WordNet to improve semantic bridging and similarity

computation during ontology evolution. Ontology learning tools such as SPRAT (Maynard et al.,

2009) and Text2Onto (Cimiano & Volker, 2005) use pattern-based relation extraction techniques

over unstructured data sources to suggest changes. These tools make use of WordNet to improve

their pattern detection algorithms, for example, by extracting pattern examples from WordNet’s

relations.

As part of ontology evolution, WordNet is used to discover taxonomical relations between

newly discovered concepts and existing concepts in the ontology (Zablith et al., 2008). The authors

devise a technique based on the WordNet Java library6, which identifies the appropriate relation

between two terms, along with the relation path. Since WordNet can be stored locally, extracting

information from it is faster than using remote structured sources, such as online ontologies.

However, Zablith et al. (2008) found that WordNet lacks the richness of named relations and the

steadily increasing diversity provided by the online ontologies. As a result, they later used online

ontologies as an alternative to WordNet.

6 http://sourceforge.net/projects/jwordnet/

10 F . Z ABL I TH E T A L .



4.2.2 Online ontologies

Online ontologies form a ready-to-reuse body of knowledge and have been used to perform a

variety of tasks, including ontology matching (Sabou et al., 2008) and development (Alani, 2006),

question answering (Lopez et al., 2009), folksonomy enrichment (Angeletou et al., 2008) and word

sense disambiguation (Gracia et al., 2009). Besides their advantages discussed before, their uptake

is also due to their increased availability and the presence of tools, such as Watson (d’Aquin et al.,

2007), Swoogle (Ding et al., 2005) and Sindice (Oren et al., 2008), for discovering and consuming

them. The use of online ontologies has been pioneered in the area of ontology building (Alani,

2006) and lead to the identification of a few challenges when using this paradigm: (1) Semantic

Web tools are not mature enough yet—although the situation has changed dramatically since

2006; (2) not all ontologies created by individuals are made available online; (3) large ontologies

can provide big segments, resulting with a big messy ontology that is hard to clean; (4) the quality

of the online ontologies affects the overall quality of the resulting ontology; also, a segment of a

good ontology does not necessarily preserve the quality of the source ontology.

Zablith et al. (2008) use online ontologies as background knowledge for integrating newly

discovered concepts in the ontology under evolution. In their Evolva evolution framework, new

concepts are discovered from external data sources, including concepts from text corpora or RSS

feeds. These concepts trigger the need for evolution, and are integrated by relying on background

knowledge provided mainly by online ontologies (Zablith et al., 2008). Online ontologies enable a

mechanism for checking how new concepts connect with existing knowledge in the ontology.

Unlike reusing ontology segments as described above by Alani (2006), this work limits the reuse of

ontologies to the level of statements, that is, ontologies are not processed as one block of state-

ments. Statements are easier to evaluate by users, and offer a more granular control over what to

add or ignore during ontology evolution. The process of identifying the possible relations between

concepts relies on the Scarlet relation discovery engine7. Scarlet (Sabou et al., 2008) uses the

Watson Semantic Web gateway (d’Aquin et al., 2007) to automatically select and explore online

ontologies to discover relations between two given concepts. For example, when relating two concepts

labeled ResearchAssistant and AcademicStaff, Scarlet (1) identifies (at run-time) online ontologies that

can provide information about how these two concepts inter-relate and then (2) combines this

information to infer their relation. Besides subsumption relations, Scarlet is also able to identify

disjoint relations (e.g., ResearchAssistant is disjoint from Professor) and named relations. By reusing

online ontologies, new changes proposed to the ontology are ready to be applied without further

transformation, as they are already represented in an ontology compatible format.

Table 3 summarizes the approaches discussed in this section and the types of sources they use

to suggest ontology changes. Unstructured, textual sources are the most frequent sources for

suggesting ontology changes. Structured sources, such as the WordNet lexical database are used to

improve the pattern-based relation extraction mechanisms that typically work over textual data

(SPRAT, Text2Onto) as well as to derive potential changes from its structure. Finally, the use of

online ontologies is a recent, promising trend to ontology change suggestion.

Table 3 Approaches to suggesting ontology changes from external data sources

Referenced work(s) Unstructured sources Structured sources

Dino (Novacek et al., 2007) Text corpus

Dynamo (Ottens et al., 2009) Text corpus

Evolva (Zablith et al., 2008) Online ontologies/lexical databases

Text2Onto (Cimiano & Volker, 2005) Text corpus Lexical databases

SPRAT (Maynard et al., 2009) Text corpus Lexical databases

7 http://scarlet.open.ac.uk/

Ontology evolution: a process-centric survey 11



5 Validating ontology changes

Not all the changes resulting from the ‘Suggesting Ontology Changes’ phase should be incorpo-

rated into the evolving ontology. Indeed, some of these changes could lead to an incoherent or

inconsistent ontology, or an ontology that does not satisfy domain-specific or application-specific

constraints. The role of the ‘Validating Ontology Changes’ stage is to filter out those changes that

should not be added to the ontology. Typically, changes are validated at two different levels.

Domain-based validation (Section 5.1) relies on domain data to evaluate whether the proposed

change aligns with the content of the ontology, that is, to check whether it is within the domain of the

ontology. Formal properties-based validation (Section 5.2) uses formal techniques to ensure that the

proposed change does not invalidate the specified constraints, such as consistency or coherence.

5.1 Domain-based validation of suggested changes

Domain-based ontology changes validation uses existing domain data to evaluate suggested

changes before being applied to the ontology. Approaches in this area differ in terms of (i) their

purpose, which can be either domain relevance or correctness; (ii) the granularity of the change

(change level) as some assess only the relevance of the newly added concepts/instances, while

others validate a logical statement that corresponds to the proposed change; (iii) the techniques

they use; and (iv) the type of domain data resources employed. We use these criteria to structure the

discussion of the approaches and to summarize them in Table 4.

Approaches that detect and suggest changes by analyzing text corpora such as Text2Onto

(Cimiano & Volker, 2005) and SPRAT (Maynard et al., 2009), often include statistical techniques

to assess the domain relevance of a term that they suggest to add to the ontology. Their purpose,

therefore, is to assess relevance in terms of how representative a given term is for a text corpus.

These approaches focus on validating individual terms rather than entire statements. The tech-

nique employed both by Text2Onto and SPRAT is TF-IDF, an information retrieval measure that

quantifies how representative a term is for a given text corpus. Due to relying on statistical

measures, these methods usually require a large corpora size to perform well. Additionally, these

assessments mainly focus on term relevance with respect to the external corpus and are agnostic to

the ontology that is being evolved. However, these approaches are highly useful when large text

repositories are available to evolve the ontology.

In Dino (Novacek et al., 2007), the proposed ontology changes are sorted according to a relevance

measure and only those above a certain threshold are shown to the users of the tool. In this case,

unlike the previous approaches who mainly focus on term-based relevance, the authors propose

applying relevance at the level of triples (i.e., in the form of subject, predicate, object). In this case the

relevance measure relies on a string similarity between the entities of the triple, and a set of wanted or

unwanted words specified by users. At this level, it is expected that users manually create a list of

words that reflect domain relevance. Similar to the previous approaches, this work does not take the

Table 4 Domain-based validation approaches

Referenced work(s) Purpose Level of change Technique used Domain resources

Text2Onto (Cimiano &

Volker, 2005); SPRAT

(Maynard et al., 2009)

Relevance Concepts/terms Statistical measures

(TF-IDF)

Text corpus

Dino (Novacek et al., 2007) Relevance Statement String similarity User-maintained list

of words

Evolva (Zablith et al., 2010) Relevance Statement Pattern based Ontology to evolve/

online ontologies

d’Aquin (d’Aquin, 2009) Correctness Statement Formal measures Online ontologies

Sabou (Sabou et al., 2009) Correctness Statement Length/relatedness/

popularity measures

Online ontologies

12 F . Z ABL I TH E T A L .



ontology into consideration to check the relevance. In other words, this approach is mainly based on

matching the labels in the proposed change triple with the user-defined set, without performing

structural content analysis that the triple would bring to the ontology.

Zablith et al. (2010) also highlight the need for relevance checking in their line of work. In this

case the authors propose an approach to change validation that takes into account the ontology to

be evolved when computing the relevance of a change triple, that is, it aims to make sure that the

proposed change is relevant to the ontology in question. To determine this relevance, their

technique compares the evolving ontology to the ontological context of the logical statement that

represents the proposed change. This ontological context is extracted from online ontologies where

the statement appears through a recursive technique that selects the entities linked to the subject

and object of the statement. The comparison between the base ontology and the statement’s

context uses a pattern-based approach that considers the structure of both data structures. For

example, one of the five patterns that the technique relies on is applied when the statement is

introducing to the ontology a new concept and this new concept has siblings named identically

both in the base ontology and in the statement’s context. For example, adding the statement

/Tutorial, subClass, EventS derived from the International Semantic Web Conference ontology

context8, to the Semantic Web for Research Communities ontology9, is ranked as highly relevant

because Tutorial has the siblings Workshop and Conference in both data structures. The study and

evaluation of this work shows the superiority of the use of relevance patterns, compared to

baseline techniques, such as randomly generated statements or context overlap-based techniques

(Zablith et al., 2010). While this work focuses mainly on statement relevance checking, it does not

answer the question whether the statement in focus is correct or not.

Additional work has been done on checking the correctness of ontology statements that could

be used to filter out invalid relations that should not be added to the ontology in the first place.

One approach measures the level of agreement and disagreement within online ontologies on how

to represent specific statements, by relying on a formal framework using the semantics within the

ontology (d’Aquin, 2009). Even though formal measures are applied at this level, we classify this

work as a domain-based validation rather than a formal properties one, because it employs online

ontologies as domain knowledge to perform the evaluation. Another work checks the correctness

of statements on the Semantic Web, allowing the prediction of how two concepts should be

correctly linked based both on the length of the relation path connecting the two concepts in

online ontologies and the statement’s popularity in online ontologies (Sabou et al., 2009).

Table 4 summarizes the approaches for domain-based validation of changes. We observe a wide

variety in terms of the techniques and the domain resources used: (i) approaches stemming from NLP-

based research use statistical methods over text corpora to compute term relevance; (ii) Dino moves

the focus to statement (rather than term) level relevance although the technique, in essence, measures

string similarity between the triple’s concepts and a user-specified list of words; (iii) Evolva introduces

a technique that takes into account the labels and structure of the evolving ontology, and relies on

online ontologies to provide an ontological context for the validated statement. We also discussed

methods that measure statement correctness, and could act as a first filter for validating changes.

5.2 Formal properties-based validation

Several recent works have acknowledged the need for imposing custom, application-specific or

user-defined properties (in the form of integrity constraints) upon ontologies (Serfiotis et al., 2005;

Motik et al., 2007; Lausen et al., 2008; Tao et al., 2010). In this case, formal validation is necessary

to prevent cases where the application of a change upon the ontology causes it to violate the imposed

integrity constraints. In addition, even if no integrity constraints are considered, Description Logic (DL)

8 http://annotation.semanticweb.org/ontologies/iswc.owl
9 http://kmi-web05.open.ac.uk:81/cache/6/98b/5ca1/94b45/7e29980b0f/

dfc4e24088dffe851

Ontology evolution: a process-centric survey 13



(Baader et al., 2002) or OWL10 ontologies are usually required to be consistent and coherent

(see Flouris et al., 2006), which is another form of validity. Note that in RDF/S11 ontologies,

inconsistency or incoherence cannot occur.

In this subsection, we study works that prevent invalidities from occurring during changes,

through a careful application of the changes guaranteeing that any invalidities that occur will be

detected and resolved, either automatically, or with the help of the ontology engineer. For reasons

of conciseness and uniformity, we do not consider works which fall into the closely related field of

ontology debugging (Flouris et al., 2008), that is, works dealing with (and resolving) invalidities

without considering how these invalidities occurred.

The requirement of applying changes in a way that the result satisfies the imposed properties

(integrity constraints, consistency, coherency) is called the Principle of Validity. Moreover, vali-

dation during changes often requires that the changes performed to guarantee validity are

‘minimal’ (per the Principle of Minimal Change; Alchourron et al., 1985), in the sense of having

minimal effects on the ontology. Note that, even though various works have tried to quantify the

‘impact’ of a change, or to define what ‘minimality’ is, in various contexts (e.g., Alchourron et al.,

1985; Gärdenfors, 1992; Flouris et al., 2006; Konstantinidis et al., 2008a, 2008b; Ribeiro et al.,

2009; Flouris et al., 2013), this notion is, in principle, application dependent. Finally, in most

cases, we also want the original change to be actually applied to the ontology, that is, we do not

want the process of resolving the invalidity to ‘undo’ one of the changes that the original evolution

operation caused; this is called the Principle of Success.

Originally, validation was performed manually by the editor/curator using ontology editors

(e.g., Protégé: Noy et al., 2000, 2006; OilEd: Bechhofer et al., 2001) and reasoners used to pinpoint

invalidities (for a related evaluation and a list of related editor features, see Stojanovic & Motik,

2002). Since then, more specialized tools appeared, which can identify the changes to be performed

to guarantee validity, possibly with some user interaction. User interaction may be direct, through

an intuitive interface (e.g., Lam et al., 2005), or indirect through parameters, like evolution

strategies (used by Stojanovic et al., 2002). Examples of such tools are KAON (Gabel et al., 2004),

OntoStudio (formerly OntoEdit; Sure et al., 2003) and ReTax11 (Lam et al., 2005).

A formal method for applying changes in the presence of integrity constraints appears in

Konstantinidis et al. (2008a, 2008b) and Flouris et al. (2013). This work considers explicitly the

three principles described above (validity, minimal change and success) and automatically deter-

mines the actions to be taken to resolve invalidities created by the update. A declarative approach

for data updating in RDF/S ontologies, using the RUL language, appears in Magiridou et al.

(2005); this work considers a number of constraints on the resulting RDF/S ontology, and

guarantees that the result will satisfy them.

In EvoPat (Riess et al., 2010), the validation is performed using SPARQL12 queries to deter-

mine invalidities (called ‘bad smells’ by Riess et al., 2010); a ‘bad smell’ is associated with one or

more SPARQL Update13 statements that resolve it. A similar approach (defining inconsistency

patterns and resolving them using change patterns) appears in Djedidi and Aufaure (2009, 2010).

Moguillansky et al. (2008) present an approach for describing the process of detecting and

resolving inconsistencies and incoherencies during evolution using ideas from argumentation

frameworks. Updating for DL ontologies is addressed by Liu et al. (2006) and Roger et al. (2002);

these works focus on validating and guaranteeing the consistency and coherency of the result. Haase

et al. (2005) use ontology debugging techniques to guarantee the validity of the evolution result.

Another family of approaches uses belief revision (Gärdenfors, 1992) techniques and ideas

to validate the consistency of the ontology and guarantee minimal changes. For example,

10 http://www.w3.org/TR/owl-features/
11 http://www.w3.org/RDF/, http://www.w3.org/TR/rdf-schema/
12 http://www.w3.org/TR/rdf-sparql-query/
13 http://www.w3.org/Submission/SPARQL-Update/

14 F . Z ABL I TH E T A L .



Lee andMeyer (2004), deal with ontologies represented in the ALU fragment of DLs; OWL ontologies

are handled by Halaschek-Wiener and Katz (2006) and Ribeiro and Wassermann (2007) deal in

general with knowledge representation formalisms that do not support negation (making it applicable

to RDF/S ontologies, as well as ontologies represented using certain DL fragments).

Gutierrez et al. (2006) study the problem of ‘erasing’ in RDF/S ontologies. Erasing consists of

removing triples from an RDF/S ontology to reflect the fact that a given relationship is no longer

true in the domain represented by the ontology. Even though integrity constraints are not con-

sidered, and incoherence or inconsistency cannot occur in RDF/S ontologies, the problem is far

from trivial, because the removed triple may reappear in the result through RDFS entailment

(thereby violating the Principle of Success). The approach of Gutierrez et al. (2006) addresses this

problem using a technique inspired by belief revision.

The most successful paradigm for formalizing the principles of success, validity and minimal

change in the context of belief revision is the so-called AGM postulates (Alchourron et al., 1985).

A series of works studied the feasibility and consequences of applying these postulates in the

ontological context (Flouris et al., 2004, 2005, 2006; Flouris, 2006a, 2006b; Flouris & Plexousakis,

2006). These works showed that the AGM postulates cannot be applied in several ontology

representation formalisms, because, in general, DLs are not closed with respect to updates, in the

sense that the set of models corresponding to the ‘correct’ update (as specified by the AGM

postulates, or any other belief revision paradigm) may not be expressible in the given DL. This

motivated the development of approximation techniques, that is, approaches resulting to a DL

ontology whose set of models is as close as possible to the desired one (Giacomo et al., 2007; Wang

et al., 2010). Giacomo et al. (2009) propose two approaches: the first extends DL-LiteF to a specially

designed DL that happens to be closed with respect to data updates (so data updates can be normally

supported using belief revision techniques) and the second uses an approximation technique as

above. Ribeiro and Wassermann (2006) and Ribeiro et al. (2009) present the belief revision notion

of relevance (which was proposed in the belief revision literature as another formalization of the

Principle of Minimal Change; Hansson, 1991), as an alternative to some of the AGM postulates

for the ontological context. Note that this class of works considers only consistency.

The maxi-adjustment algorithm (Benferhat et al., 2004) is an approach for repairing incon-

sistencies in stratified propositional KBs in a minimal manner; the works by Qi et al. (2006a,

2006b) were based on this approach to develop evolution algorithms that guarantee the validity of

the result in the context of stratified ontologies. Note, however, that this line of work assumes that

ontologies are expressed using disjunctive DLs (Meyer et al., 2005). The approach by Qi and

Du (2009) proposes three different revision operators that guarantee the consistency of a DL ontology

after an update, putting special emphasis on the result being syntax independent. Validation of

changes may also be done at the level of the ontology metadata; this is done by Maynard et al. (2007),

where the effects of the ontological changes on the ontology metadata (and vice versa) are studied, in

order to validate that the data is consistent with respect to the associated metadata, and vice versa.

Table 5 summarizes the works presented in this subsection. The second column describes the

ontology representation language that is supported by each work, the third column the type of

properties that are considered (e.g., custom validity rules, consistency, coherency) and the fourth

column describes how the problems are resolved when the validation check fails (e.g., using user

input, an automated process, or some process inspired by belief revision or other approaches).

Note that the various works (in the first column) have been grouped in categories, depending on

the content of the other three columns (e.g., Protégé and OilEd appear together, because they

share the same properties as related to the other columns).

6 Assessing the impact of evolution

Following a change, an important task is to assess the impact of the evolution that resulted from

this change. While the previous phase, ‘Validating Ontology Changes’ focuses on how changes will

impact on the ontology itself, this phase measures the impact on external artifacts that are

Ontology evolution: a process-centric survey 15



dependent on the ontology (i.e., other ontologies, application) or criteria such as costs and benefits

of performing a given (set of) change(s). Accordingly, the impact on application and usage

determines whether the evolution would have an effect on the operations of the entities that

depend on the ontology (Section 6.1); the formal criteria give a quantifiable measure of the impact

of a change by using formal properties as the basis of the approach (Section 6.2).

6.1 Application and usage

Former research on assessing the impact of ontology evolution mostly focused on the possible

inconsistencies inside the ontology. However, since ontologies are widely used in several appli-

cation scenarios, the consequences of ontology evolution with respect to the dependent artifacts

should be carefully examined as well. The need for such mechanisms was identified in several

works that will be presented below. For example, Klein and Fensel (2001) differentiate among

invalidation of data instances, dependent ontologies and applications. We adopt this classification

as a backbone for structuring this section.

Qin and Atluri (2009) deal with instance invalidation, where the authors distinguish between

structural and semantic validity of data instances and propose approaches to ensure them. To

achieve that, they propose semantic views as a subset of the ontology and demonstrate that the

Table 5 Formal properties-based validation approaches

Referenced work(s)

Supported

language

Properties

considered

Resolution

method

Protégé (Noy et al., 2000, 2006),

OilEd (Bechhofer et al., 2001)

OWL Custom Manual/editors

KAON (Gabel et al., 2004); OntoStudio

(Sure et al., 2003); ReTax11 (Lam

et al., 2005)

OWL Coherence

consistency

Semi-automatic

EvoPat (Riess et al., 2010;

Konstantinidis et al., 2008a, 2008b;

Flouris et al., 2013; Djedidi & Aufaure,

2009, 2010)

RDF/S Custom Automatic

RUL (Magiridou et al., 2005) RDF/S (data only) Custom Automatic

Moguillansky et al. (2008),

Liu et al. (2006), Roger et al. (2002),

Haase et al. (2005)

DL Coherence

consistency

Automatic

Lee and Meyer (2004) ALU DL Consistency Belief revision

Halaschek-Wiener and Katz (2006) OWL Consistency Belief revision

Ribeiro and Wassermann (2007) Languages with no

negation

Principle of success

(deletions)

Belief revision

Gutierrez et al. (2006) RDF/S Principle of success

(deletions)

Belief revision

Flouris et al. (2004, 2005, 2006),

Flouris (2006a, 2006b), Flouris

and Plexousakis (2006), Ribeiro

and Wassermann (2006),

Ribeiro et al. (2009)

General Consistency Belief revision

Giacomo et al. (2007), Wang et al.

(2010), Giacomo et al. (2009)

DL Consistency Approximate

Qi et al. (2006a, 2006b) Disjunctive DL

(Stratified)

Consistency Maxi-adjustment

Qi and Du (2009) DL Consistency Belief revision

Maynard et al. (2007) Metadata Custom Manual

DL5Description Logic

16 F . Z ABL I TH E T A L .



semantic view, rather than the entire ontology, is responsible for the validity of a data instance.

Those views are then used to detect instance invalidation.

A generic framework allowing the systematic study of ontology evolution and instance data

sources, as well as the evolution of ontology-related mappings is proposed by Hartung et al.

(2008). The framework supports the computation of several measures to describe individual

ontology versions and mappings, as well as their evolution. Then, it is used to evaluate the

evolution of the most popular life science ontologies and to determine the impact of the evolution

on the dependent mappings and instances.

Ontologies are often interconnected in intricate ontology networks established through reusing

ontology elements (e.g., one ontology extends a concept defined in another ontology), alignments

established between ontologies or versioning relations. If one of the ontologies in the network evolves,

the impact on the other members of the network (i.e., dependent ontologies) should be assessed. For

example, an approach that determines whether the changes in one ontology affect the reasoning inside

other mapped ontologies is presented by Klein and Stuckenschmidt (2003): the authors developed a

change detection and analysis method that predicts the effect of changes on the concept hierarchy and

allows ontologies to evolve without unpredictable effects on other ontologies. Thor et al. (2009)

propose a generic approach to annotate generated ontology mappings independently from the

matching approach used. Then, as the ontology evolves, stability measures are calculated over the

annotations to identify the quality of the mappings and the impact of ontology evolution on them.

Regarding the impact of ontology evolution on the dependent applications, MORE (Huang &

Stuckenschmidt, 2005) is an early attempt that evaluates the consequences of ontology changes for

compatibility with applications that rely on it. The authors show that temporal logic can provide a solid

semantic foundation and serve as an extended query language to detect the ontology change and its

consequences. Their approach can answer queries about the facts that were true in previous versions that

no longer hold, as well as to determine the ontology version that can answer specific queries.

The floating version model (Xuan et al., 2006) is another approach to restrict the evolution

scenarios for maintaining compatibility. The authors propose the principle of ontological con-

tinuity, according to which the evolution of an ontology should not falsify axioms that were

previously true, so only the addition of new information is permitted; this limits the impact of

ontology evolution on existing applications.

Wang et al. (2008) propose approaches to maintain the consistency and to keep the con-

tinuousness of the dependent applications during ontology evolution. A virtual-space framework

is put forward and most of the changes are to be made there. The impact of two specific change

operations (namely, the change property range and the split property) on the dependent application

is evaluated and resolution strategies are proposed.

Recent works try to assess the impact of ontology evolution on the dependent applications

based on the end-user’s incoming queries. In early works, Liang et al. (2006a, 2006b) keep track of

the changes while updating the ontology and use that information to validate and repair queries of

the dependent applications. A more formal approach in the same spirit is presented by Kondylakis

and Plexousakis (2011a). A high-level language of changes is employed to capture ontology

changes, and efficient algorithms are described to recognize the input queries affected (Kondylakis &

Plexousakis, 2012). Besides the identification of the changes that invalidate the query, query rewriting

techniques are used to repair the queries and/or produce best overapproximations (Kondylakis &

Plexousakis, 2011b). In this context, other approaches apply Stream Reasoning techniques to reason

over rapidly changing ontologies (Della Valle et al., 2008; Ren & Pan, 2011). In this case, the reasoning

occurs taking into account the changes that are continuously applied to an ontology, rather than

considering the ontology at a static point in time. This would enable, for example, the ability to answer

queries in real-time changing environments (Barbieri et al., 2009). At this level, the evolution impact is

directly reflected by the query applied.

Finally, a more liberal schema evolution approach that could be used in ontology evolution is

presented by Papastefanatos et al. (2009, 2010). The authors discuss the problem of performing

impact prediction for changes that occur at the schema level. In this approach, schema, queries

Ontology evolution: a process-centric survey 17



and views are represented as directed graphs. Those graphs enable the user to create hypothetical

evolution events and examine their impact over a graph. They also allow the definition of rules for

regulating the evolution impact on the system and to automate its adaptation to evolution events.

6.2 Formal criteria

In addition to application and usage-based impact assessment, formal methods have also been

employed to assess the impact of a change on an ontology under evolution. We discuss in this

section the impact in terms of (i) assertional effects, (ii) cost of performing a change and (iii) notion

of minimal impact.

Assertional effects measure what is gained or lost after performing an ontology change

(Pammer et al., 2009). This work is meant to aid the user to have a quick overview of a change impact,

in order to make a decision about whether the change should be applied or not, while preserving

conceptual consistency. The work formally describes the assertional effects, and an implementation is

supplied as a support for the users during ontology development (Pammer et al., 2010).

Another approach proposes the evaluation of changes in ontology evolution using an impact

function, which computes the cost involved in performing the change (Palmisano et al., 2008). This

cost is aimed for agents using and changing the ontology, to make a better decision whether to

apply the change or not. The authors propose an approach to compute such costs without the use

of reasoning, but by identifying the parts of the ontology that will be affected as a result of the

change. The impact takes into consideration the number of axioms involved in the change, and the

expressivity of the ontology parts.

Haase and Stojanovic (2005) present the notion of minimal impact, a concept dependent on user

requirements. The idea is based on selecting and implementing the minimum number of ontology

changes, which result in a ‘maximal consistent subontology’. The authors define the concept of

maximal consistent subontology, as the part of the ontology to which you cannot add any axiom,

without loosing its consistency. Table 6 presents a summary of works involved in measuring and

evaluating impact resulting from evolving ontologies, highlighting the popularity of approaches

that focus on measuring impact on dependent artifacts.

7 Managing changes

Managing changes involves keeping track of the performed changes (through recording or

a posteriori detecting them), as well as keeping track of the various versions that the ontology went

Table 6 Evolution impact approaches

Referenced work(s)

Application or usage

resources Formal criteria employed

Hartung et al. (2008), Qin and Atluri (2009) Data instances

Hartung et al. (2008), Klein and

Stuckenschmidt (2003)

Dependent ontologies

Hartung et al. (2008), Thor et al. (2009) Dependent mappings

MORE (Huang & Stuckenschmidt, 2005;

Wang et al., 2008), floating version model

(Xuan et al., 2006)

Dependent

applications

Liang et al. (2006a, 2006b), Papastefanatos

et al. (2009, 2010); Exelixis (Kondylakis &

Plexousakis, 2011a, 2011b, 2012)

Dependent queries

Pammer et al. (2010, 2009) Assertional effects

Palmisano et al. (2008) Cost of change measure

Haase and Stojanovic (2005) Notion of minimal impact

18 F . Z ABL I TH E T A L .



through in its lifecycle (i.e., after each evolution). This would allow, for example, to restore a

previous version of the ontology when needed, or trace back the history of ontological entities or

facts, or help in scenarios where the ontology is built collaboratively. Note that the detection of

different ontology versions (and the changes between them) is especially important in cases where

the user has no control over the evolved ontology (e.g., when he/she reuses an ontology developed

by an independent organization); in such a scenario, it is important for the user to be able to

identify new versions and/or evolution mappings between different versions. We discuss in this

section the works involved in recording ontology changes (Section 7.1), as well as ontology

versioning (Section 7.2).

7.1 Recording changes

One of the crucial tasks related to ontology evolution is the management of the differences (deltas)

of subsequent versions of ontologies. This proved to play a crucial role in various tasks, such as

the synchronization of autonomously developed versions (Cloran & Irwin, 2005) or the visuali-

zation and understanding of the evolution history of an ontology (Noy et al., 2006). Deltas are

also useful to reduce communication or storage overhead, because they are usually more compact

in size than entire versions (so they can be communicated and stored more efficiently) (Papavassiliou

et al., 2009, 2013).

Changes can be recorded as they happen in a manual or automatic manner, or they can be

a posteriori detected using some change detection tool. Both applications require a change language

used to represent such changes; a change language is essentially a set of different changes, along

with their semantics, which the delta management system understands and records (or detects).

The recording process itself, which keeps track of changes as they happen, is trivial given a

change language, so in this subsection we focus on two different aspects of change management:

the various change languages that have been defined in the literature, and the change detection tools

that have been proposed.

7.1.1 Change languages

Unfortunately, there is no standard, agreed-upon list of changes (change language) that are

necessary for any given context or application. In effect, each change recording tool reports its

own, different set of changes, which is of different nature and granularity (see, e.g., Oliver et al.,

1999; Noy & Musen, 2002; Stojanovic et al., 2002; Stuckenschmidt & Klein, 2003; Klein, 2004;

Noy & Klein, 2004; Stojanovic, 2004; Rogozan & Paquette, 2005; Palma et al., 2007; Plessers et al.,

2007; Javed et al., 2009; Papavassiliou et al., 2009, 2013; Hartung et al., 2012 for some different

proposals of change languages). An interesting feature found in certain works (e.g., Auer & Herre,

2006; Plessers et al., 2007; Djedidi & Aufaure, 2010) is the ability to define custom, user-defined

changes using some syntax for determining the changes’ semantics and intuition. Such dynamic

change languages are useful because they can be adapted to different needs and applications.

An important aspect related to the usefulness of a change language is its granularity. A lan-

guage of changes can be low level, consisting of simple add/remove operations, or high level, which

describes more complex updates, and essentially groups several low-level changes into high-level

ones in order to report more intuitive changes. Low-level languages are simpler to record or detect,

but high-level languages produce more concise deltas, which are more easily understandable by

humans and capture more closely the intuitions and intentions of the ontology editor (Hartung

et al., 2012; Papavassiliou et al., 2013). On the other hand, low-level changes are necessary to

capture fine-grained modifications to the ontology. The concept of low-level and high-level

changes has been discussed under different names in various works in the literature (e.g., elementary/

composite: Stojanovic & Motik, 2002; Stojanovic et al., 2002 and atomic/complex: Stuckenschmidt &

Klein, 2003).

Another important aspect is whether the language supports terminological changes, such as renaming

or merging (Oliver et al., 1999). Such changes occur often in practice (Papavassiliou et al., 2013),

Ontology evolution: a process-centric survey 19



but are difficult to detect or record, because they can be easily confused with structural changes

(e.g., a class renaming is implemented as an addition and deletion, and it is not always easy to

discriminate whether an addition–deletion pair is a real renaming or not).

In many works, change languages are represented using an ontology of changes (Klein et al.,

2002; Klein & Noy, 2003; Plessers & De Troyer, 2005; Noy et al., 2006). Instantiations of such an

ontology describe the changes (delta) that have occurred between versions. This representation of

a delta is useful because it allows the manipulation and communication of deltas using popular

Semantic Web technologies. Alternative ways that can be used to represent changes, plus possible

interactions between such representations, can be found in the work of Klein and Noy (2003).

As already mentioned, given a change language, change recording can be easily performed.

Sometimes manual recording is used, but such a method is often incomplete or erroneous, even for

ontologies that are centrally managed and edited (Stojanovic et al., 2002; Papavassiliou et al.,

2013); for example, Papavassiliou et al. (2013) identified changes in a centrally curated ontology

that were not properly recorded, despite the curators’ best (manual) efforts. Automatic recording

tools can help in this respect, but their use is hindered in applications where the changes are not

centrally managed (e.g., in distributed environments).

7.1.2 Change detection tools

To address the problem of identifying the changes between two (subsequent) versions of an

ontology when direct recording is not possible, change detection tools can be used. Such tools can

identify the changes that happened between versions after the change has occurred, that is, using

as input only the two ontology versions. Change detection tools are based on some language of

changes, and can be categorized depending on whether the corresponding language is low level or

high level.

Low-level change detection tools (e.g., Volkel et al., 2005; Zeginis et al., 2007, 2011; Konev

et al., 2008; Kontchakov et al., 2008; Franconi et al., 2010) usually report simple add/delete

operations; despite the simplicity of the underlying change language, such tools differ in their

semantics and properties, as well as in the supported ontology representation language. Given that

low-level changes are not concise or intuitive enough to guarantee human readability, many such

works focus on formally studying the change detection process and guaranteeing useful formal

properties for the produced deltas (Zeginis et al., 2007, 2011; Franconi et al., 2010).

On the other hand, high-level change detection tools usually focus on the definition of a change

language that is intuitive and concise enough to capture the editor’s intuition. As a result, less

focus is placed on the formal properties of the language, or the detection algorithm (Rogozan &

Paquette, 2005; Palma et al., 2007). This causes the semantics of the various supported change

operations to be presented informally, often resulting in unclear definitions; furthermore, there is

usually no formal machinery to guarantee any properties regarding the detection algorithm.

Klein (2004), Noy and Musen (2004, 2002) and Noy et al. (2004) all present a high-level change

detection approach, which is implemented in PromptDiff, an extension of Protégé, and employs

heuristic-based matchers to detect the changes between versions. As a result, the detection process

involves an uncertainty aspect, and has been measured to have a recall of 96% and a precision of

93%. A similar approach appears in the context of OntoView (Klein et al., 2002).

Plessers et al. (2007) propose detecting changes using temporal queries over a version log that is

maintained during updates. The most important feature of this approach is that it can use a

dynamic, user-defined change language. Thus, the user can define custom changes, through the

Change Definition Language, and these changes can be subsequently detected using the approach.

The downside is that the detection process requires a version log to be maintained, so it essentially

requires recording information on the changes as they happen; in addition, terminological changes

are not supported.

Papavassiliou et al. (2009, 2013) propose a formal framework for defining high-level change

operations and define a set of requirements for such operators, such as conciseness, intuitiveness,

consistent application and detection semantics, reversibility and others. Then, a particular language of

20 F . Z ABL I TH E T A L .



changes and the corresponding detection algorithm are proposed, and the authors show that their

language (and the corresponding detection algorithm) satisfies the proposed requirements. Apart from

the detection semantics, emphasis is also put in the ability to traverse the history of versions in both

ways by applying the detected changes or their inverses.

A similar approach is COnto-Diff (Hartung et al., 2012), which detects high-level changes

according to a language of changes defined by Hartung et al. (2012). The detection process uses

a rule-based approach, coupled with a mapping between the elements (concepts, properties) of

the two ontology versions. The application of the detected changes (and their inverses) is also

considered in this work.

Table 7 summarizes the works presented in this subsection. For each work, we describe the

considered formalism (second column), as well as the characteristics of the change language and

the detection algorithm (if any), in the third and fourth column, respectively. Note that the various

works (in the first column) have been grouped in categories, depending on the content of the other

three columns (e.g., PromptDiff and OntoView appear together, because they share the same

properties as related to the other columns).

As can be seen also in Table 7, most existing approaches employ high-level change languages,

acknowledging the fact that these languages are most useful from a user perspective, because they

result in more concise and intuitive deltas. In this respect, the most challenging issue is the

identification of a ‘standard’ high-level language that would be suitable for each of the major

representation formalisms (e.g., RDF/S, OWL, etc.), as well as the formal definition of its

semantics and corresponding detection algorithm. As already mentioned above, the proposed

high-level languages are different in structure, and most of them are not coupled with formal

semantics and/or are not associated with a deterministic detection algorithm, which causes various

problems when it comes to automatically manipulating deltas.

Table 7 Change languages and change detection approaches

Referenced work(s)

Formalism

considered

Change language

characteristics

Change detection

algorithm characteristics

Javed et al., (2009), Klein and

Noy (2003), Noy and Klein (2004),

Noy et al. (2006), Oliver et al. (1999),

Stojanovic (2004), Stojanovic et al.

(2002), Stojanovic and Motik (2002),

Stuckenschmidt and Klein (2003)

Generic High level No Algorithm

PromptDiff (Klein, 2004; Noy et al.,

2004; Noy & Musen, 2004, 2002);

OntoView (Klein et al., 2002)

OWL High level Based on heuristics

Plessers and De Troyer (2005), Plessers

et al. (2007)

Generic High level, dynamic,

no terminological

Requires version log

Hartung et al. (2012), Palma et al.

(2007), Rogozan and Paquette (2005)

Generic High level High level

Auer and Herre (2006) RDF High level, dynamic No algorithm

Djedidi and Aufaure (2010) Generic High level, dynamic No algorithm

Papavassiliou et al. (2009, 2013) RDF/S High level, formal Deterministic, formal

Zeginis et al. (2007, 2011) RDF/S Low level, formal Deterministic, formal,

low level

Franconi et al. (2010) Generic Low level, formal Deterministic, formal,

low level

Konev et al. (2008), Kontchakov

et al. (2008)

DL Low level, formal Deterministic, formal,

low level

Volkel et al. (2005) RDF Low level Low level

DL5Description Logic

Ontology evolution: a process-centric survey 21



7.2 Ontology versioning approaches

Ontology versioning refers to the ability to handle an evolving ontology by creating and managing

its different versions (Klein & Fensel, 2001). Given that ontologies are often interlinked or reused,

versioning of evolving ontologies is necessary to guarantee smooth interoperation. Furthermore,

ontologies are being used by various agents, applications or other elements, and a change could

potentially cause problems in such accessing elements; in such a case, versioning can allow the

agent or application to switch to the older version until such problems are fixed.

To achieve a smooth evolution we need not only to store the different versions of an evolving

ontology, but also to manage these versions, with the aim of minimizing any adverse effects that a

change in a given ontology could have upon related (dependent) ontologies, agents, applications

or other elements. This can be done by relating versions with accessing elements (i.e., ontologies,

applications or agents) and transparently providing access to either the current or some older

version of the ontology, depending on the needs of the accessing element (Klein & Fensel, 2001).

This ability allows the dependent elements to upgrade to the new version at their own pace, if at

all, which is considered a very useful feature (Heflin et al., 1999; Heflin & Pan, 2004). In fact, it has

been argued that ontology versioning should be an indispensable part of ontology management

tools such as Protégé (Noy & Musen, 2004).

Several issues are associated with versioning. One such issue is related to identification, namely,

how to identify and label new versions. This issue is not as trivial as it may seem: for example, it is

not clear whether a subtle syntactic change should result in the creation of a new version or the

overwriting of the existing one (Heflin et al., 1999; Klein et al., 2002).

Another issue is related to the identification and recording of the relationship between different

versions. The term ‘relationship’ in this context could refer to the identification of which version

emerged from which, and how. As such, it could involve information regarding compatibility

between the versions (Klein & Fensel, 2001), fine-grained information regarding the relationships

between ontological elements in the two versions (Klein & Fensel, 2001), the delta that led from

one ontology to the other (Klein et al., 2002; Klein, 2004) and other metadata regarding the

evolution and the versions themselves (Klein et al., 2002). The above information would form a

tree of versions, which shows which version evolved out of which and contains some relevant

metadata such as those described above.

Maintaining the compatibility information between versions is very important to correctly

relate versions with accessing elements without causing problems in the functioning of such

elements. Klein and Fensel (2001) define and study different types of compatibility. It has been

argued that compatibility determination cannot be performed fully automatically (Heflin & Pan,

2004); to address this problem, Heflin and Hendler (2000) and Heflin et al. (1999) proposed to

make backwards compatibility between versions explicit in a machine readable format using the

SHOE language (Luke et al., 1997). This allows a computer agent to determine compatibility

between versions, and to choose automatically which version to use; this approach is in contrast

with work by Klein and Fensel (2001) and Klein et al. (2002), where a centralized approach

is adopted.

Usually, versioning metadata refer to the two versions as a whole; it has been argued that such

metadata could also be defined at the level of ontological elements (Klein & Fensel, 2001). This

results in a more fine-grained specification of the relationship between the versions, which allows

the explication of the relation between ontological elements and the identification of the evolution

history of each element independently.

Another work related to ontology versioning is performed by Redmond et al. (2008), who

present a system for managing changes in a multi-editor environment, providing metadata about

different revisions. Kirsten et al. (2009) design a database to store the changes on biomedical

ontologies supporting different kinds of change analysis. Allocca et al. (2009) present an approach

for automatically detecting version relations between different ontologies, using heuristics based

on the ontologies’ URIs and identifiers.

22 F . Z ABL I TH E T A L .



Another line of work in versioning is inspired by temporal reasoning (Huang & Stuckenschmidt,

2005; Plessers et al., 2005; Keberle et al., 2007; Grandi, 2009). Obst and Chan (2005) discuss the

architecture and requirements of a system to handle ontology management, by presenting initial ideas

regarding the need for a generic versioning system that supports users while evolving ontologies.

Theoretical aspects of the problem are studied by Heflin and Pan (2004).

Table 8 summarizes the works presented in this subsection. The second column of the table

shows the main versioning-related problems that each work addresses, and the third column shows

the version-related metadata considered. The various works (in the first column) have been

grouped in categories, depending on the content of the other columns.

Most of the current works related to ontology versioning require human input, or user-

provided metadata. The development of an automated versioning system that would automatically

detect versions, and, most importantly, compatibility information and/or other metadata between

versions, would be a great step forward in the field. Such an automated system would successfully

address the problem of ontology interoperability in dynamic settings, which is an important problem

being faced in many practical applications involving ontologies.

8 Conclusion

Ontology evolution is one of the core requirements for keeping ontologies usable within the

environments they are being applied. There exists a substantial amount of work in the area, but

there is significant fragmentation as specific works are classified in quite distinct subfields. In this

paper we present an ontology evolution cycle, in which we identify the tasks needed for evolving

ontologies at the appropriate level of granularity, with the aim to bridge the existing works across

different groups of the community. We use the evolution cycle to guide our survey of the relevant

literature involved in each of the tasks in the cycle.

We map in Table 9 the referenced works identified in this paper to the tasks of the ontology

evolution cycle. The aim of this table is to give a degree of guidance for fellow researchers in

ontology evolution, to identify the degree of research undergone in specific areas compared to

Table 8 Ontology versioning

Referenced work(s)

Problems addressed (related to

versioning) Metadata considered

Allocca et al. (2009) Automatic detection of version

relations

Ontologies’ URIs and identifiers

Klein and Fensel (2001) Transparent version management

Types of compatibility

Centralized compatibility

determination

Compatibility between versions

Fine-grained (ontology elements)

Klein et al. (2002) Identification

Centralized compatibility

determination

Evolution information (e.g., delta)

Relationship between versions

Heflin and Hendler (2000),

Heflin et al. (1999)

Identification

Explicit compatibility

determination

Relationship between versions

Klein (2004), Redmond et al.

(2008), Kirsten et al. (2009)

Version management Evolution information (e.g., delta)

Grandi (2009), Huang and

Stuckenschmidt (2005),

Keberle et al. (2007), Plessers

et al. (2005)

Temporal reasoning to perform

versioning

Temporal information on versions

Obst and Chan (2005) Generic versioning system Relationship between versions

Heflin and Pan (2004) Theoretical aspects Relationship between versions

Ontology evolution: a process-centric survey 23



others. We observe that some tasks have been more researched than others. This is particularly true for

works which are not limited to the area of ontology evolution. For example, the work on change

validation based on formal properties is well explored in the area of consistency checking and man-

agement, which could be directly exploited in the area of ontology evolution. However, there are other

areas that can directly benefit from further research; for example, in exploiting domain information for

change validation, or expanding the work on usage-driven ontology evolution.

In order to achieve a better platform for evolving ontologies, we identify the need to work toward

integrating solutions and tools for ontology evolution. Ultimately, such integration should be the

ground for providing users with a seamless experience in addressing all issues of the evolution process,

ranging from triggering the evolution to handling inconsistencies and change management. In addition

to solving the partial requirements for evolving ontologies, the community needs to think about how

the conducted work can connect to and reuse other approaches that are working on similar tasks.

We believe that the integration of approaches and standards in ontology evolution will have a

positive impact on maintaining the backbones of Semantic Web systems. Having in place such

Table 9 Relations between tasks of the ontology evolution cycle and components of existing ontology

evolution framework

Cycle step References

Detecting the Need for

Evolution – Data

Velardi et al. (2001), Stojanovic (2004), Cimiano and Volker (2005),

Bloehdorn et al. (2006), Novacek et al. (2007), Ottens et al. (2007),

Maynard et al. (2009), Zablith (2009)

Detecting the Need for

Evolution – Usage

Stojanovic (2004), Alani et al. (2006), Bloehdorn et al. (2006),

Luczak-Rosch (2009), Javed et al. (2011), Pruski et al. (2011)

Suggesting Changes –

Unstructured Knowledge

Cimiano and Volker (2005), Novacek et al. (2007), Maynard et al.

(2009), Ottens et al. (2009)

Suggesting Changes –

Structured Knowledge

Stojanovic (2004), Cimiano and Volker (2005), Zablith et al. (2008),

Maynard et al. (2009)

Validating Changes – Domain Cimiano and Volker (2005), Novacek et al. (2007), d’Aquin (2009),

Maynard et al. (2009), Sabou et al. (2009), Zablith et al. (2010)

Validating Changes – Formal

Properties

Bechhofer et al. (2001), Sure et al. (2003), Gabel et al. (2004), Lee and

Meyer (2004), Haase et al. (2005), Lam et al. (2005), Magiridou et al.

(2005), Flouris (2006a), Flouris and Plexousakis (2006), Gutierrez et al.

(2006), Halaschek-Wiener and Katz (2006), Liu et al. (2006), Noy

et al. (2006), Qi et al. (2006a), Ribeiro and Wassermann (2006, 2007),

Giacomo et al. (2007, 2009), Maynard et al. (2007), Konstantinidis

et al. (2008a), Moguillansky et al. (2008), Djedidi and Aufaure (2009),

Qi and Du (2009), Riess et al. (2010), Wang et al. (2010)

Assessing Evolution Impact –

Formal Criteria

Haase and Stojanovic (2005), Palmisano et al. (2008), Pammer et al.

(2010, 2009)

Assessing Evolution Impact –

Usage

Klein and Stuckenschmidt (2003), Huang and Stuckenschmidt (2005),

Xuan et al. (2006), Liang et al. (2006a), Hartung et al. (2008),

Wang et al. (2008), Papastefanatos et al. (2009), Qin and Atluri (2009),

Thor et al. (2009), Kondylakis and Plexousakis (2011b)

Managing Changes –

Recording Changes

Klein et al. (2002), Klein and Noy (2003), Stuckenschmidt and Klein

(2003), Klein (2004), Noy and Klein (2004), Noy et al. (2004),

Stojanovic (2004), Plessers and De Troyer (2005), Rogozan and

Paquette (2005), Volkel et al. (2005), Auer and Herre (2006), Noy et al.

(2006), Palma et al. (2007), Zeginis et al. (2007), Konev et al. (2008),

Kontchakov et al. (2008), Javed et al. (2009), Papavassiliou et al.

(2009), Djedidi and Aufaure (2010), Franconi et al. (2010)

Managing Changes –

Versioning

Heflin and Hendler (2000), Klein and Fensel (2001), Klein et al. (2002),

Heflin and Pan (2004), Klein (2004), Huang and Stuckenschmidt

(2005), Obst and Chan (2005), Plessers et al. (2005), Keberle et al.

(2007), Redmond et al. (2008), Allocca et al. (2009), Grandi (2009)

24 F . Z ABL I TH E T A L .



integrated approaches would encourage people to represent their information in ontologies, by

decreasing the maintenance and evolution costs needed to keep the ontologies up-to-date. This will

have an impact on the overall realization of the vision of the Semantic Web, which is pushing

towards ‘moving from documents, to data and information’ (Shadbolt et al., 2006).

We foresee that one way to move toward converging and integrating the different approaches in

the ontology evolution community is by encouraging researchers to engage and share their work

not only in workshops and conferences, but also through Web portals (e.g., the Ontology

Dynamics portal14). Such portals can serve as a reference or social network where anyone in the

community can easily exchange ideas. One thing that the community lacks is access to gold

standards and scenario-centric data. We believe that communicating use cases where ontology

evolution is needed, will offer the means for researchers in the community to work on common

problems, and hence have access to shared domain data, ontologies and gold standards that will

push the research toward better and more effective results.

Acknowledgments

We would like to thank Nathalie Aussenac-Gilles, Philippe Laublet and Jeff Z. Pan for their

invaluable time and feedback for producing earlier versions of this paper. This work was partially

supported by the PlanetData NoE (FP7:ICT-2009.3.4, 257641).

References

Alani, H. 2006. Position paper: ontology construction from online ontologies. In Proceedings of the

15th International Conference on World Wide Web (WWW-06), Les Carr, David De Roure, Arun Iyengar,

Carole A. Goble & Michael Dahlin (eds). ACM, Edinburgh, Scotland, 491–495.

Alani, H., Harris, S. & O’Neil, B. 2006. Winnowing ontologies based on application use. In Proceedings of

3rd European Semantic Web Conference (ESWC-06), Budva, Montenegro.

Alchourron, C., Gärdenfors, P. & Makinson, D. 1985. On the logic of theory change: partial meet contraction

and revision functions. Journal of Symbolic Logic 50, 510–530.

Allocca, C., d’Aquin, M. & Motta, E. 2009. Detecting different versions of ontologies in large ontology

repositories. In Proceedings of the 3rd International Workshop on Ontology Dynamics (IWOD-09),

Chantilly, VA, USA.

Angeletou, S., Sabou, M. & Motta, E. 2008. Semantically enriching folksonomies with FLOR. In Proceedings

of the 1st International Workshop on Collective Semantics: Collective Intelligence and the Semantic Web

(CISWeb-08), Tenerife, Canary Islands, Spain.

Antoniou, G. & Harmelen, F. V. 2004. A Semantic Web Primer. The MIT Press.

Auer, S. & Herre, H. 2006. A versioning and evolution framework for RDF knowledge bases. In Perspectives

of Systems Informatics, 6th International Andrei Ershov Memorial Conference (PSI-06), Revised Papers,

Akademgorodok, Novosibirsk, Russia.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. & Patel-Schneider, P. (eds) 2002. The Description

Logic Handbook: Theory, Implementation and Applications. Cambridge University Press.

Banerjee, S. & Pedersen, T. 2002. An adapted Lesk algorithm for word sense disambiguation using WordNet.

In Proceedings of the 3rd International Conference on Computational Linguistics and Intelligent Text

Processing, Alexander F. Gelbukh (ed.). Mexico, 136–145.

Barbieri, D., Braga, D., Ceri, S., Della Valle, E. & Grossniklaus, M. 2009. C-SPARQL: SPARQL for

continuous querying. In Proceedings of the 18th International Conference on World Wide Web, Madrid,

Spain, 1061–1062.

Bechhofer, S., Horrocks, I., Goble, C. & Stevens, R. 2001. OilEd: a reasonable ontology editor for the

semantic web. In Proceedings of the 24th German/9th Austrian Conference on Artificial Intelligence (KI-01),

Vienna, Austria.

Bechhofer, S., Volz, R. & Lord, P. 2003. Cooking the semantic web with the OWL API. In Proceedings of the

2nd International Semantic Web Conference (ISWC-03), Sanibel Island, Florida, USA, 659–675.

Benferhat, S., Kaci, S., Le Berre, D. & Williams, M. 2004. Weakening conflicting information for iterated

revision and knowledge integration. Artificial Intelligence 153, 339–371.

14 http://www.ontologydynamics.org/

Ontology evolution: a process-centric survey 25



Bloehdorn, S., Haase, P., Sure, Y. & Volker, J. 2006. Ontology evolution. In Semantic Web Technologies—

Trends and Research in Ontology-Based Systems, John Davies, Rudi Studer & Paul Warren (eds).

John Wiley & Sons, 51–70.

Cimiano, P. & Volker, J. 2005. Text2Onto: a framework for ontology learning and data-driven change

discovery. In Natural Language Processing and Information Systems, Alicante, Spain, 227–238.

Clark, P., Fellbaum, C. & Hobbs, J. 2008. Using and extending WordNet to support question-answering.

In Proceedings of the 4th Global WordNet Conference (GWC-08), Szeged, Hungary, 111–119.

Cloran, R. & Irwin, B. 2005. Transmitting RDF graph deltas for a cheaper semantic web. In Proceedings of

the 8th Annual Southern African Telecommunication Networks and Applications Conference (SATNAC-05),

Drakensberg, South Africa.

d’Aquin, M. 2009. Formally measuring agreement and disagreement in ontologies. In Proceedings of the

5th International Conference on Knowledge Capture (K-CAP-09), Redondo Beach, California, USA,

145–152.

d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M. & Motta, E. 2007. Characterizing

knowledge on the semantic web with Watson. In Proceedings of the 5th International EON Workshop,

Colocated with the International Semantic Web Conference (ISWC-07), Busan, Korea.

d’Aquin, M., Baldassarre, C., Gridinoc, L., Sabou, M., Angeletou, S. & Motta, E. 2007. Watson: supporting

next generation semantic web applications. In Proceedings of the WWW/Internet Conference, Vila Real,

Portugal.

Della Valle, E., Ceri, S., Barbieri, D., Braga, D. & Campi, A. 2008. A first step towards stream reasoning.

In Proceedings of the Future Internet Symposium (FIS-08), Vienna, Austria, 72–81.

Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y. & Kolari, P. 2005. Finding and ranking knowledge on the

semantic web. In Proceedings of the 4th International Semantic Web Conference (ISWC-05), Galway,

Ireland.

Djedidi, R. & Aufaure, M. 2009. Change management patterns (CMP) for ontology evolution process.

In Proceedings of the 3rd International Workshop on Ontology Dynamics (IWOD-09), Chantilly, VA, USA.

Djedidi, R. & Aufaure, M. 2010. ONTO-EVOAL an ontology evolution approach guided by pattern

modeling and quality evaluation. In Proceedings of the 6th International Symposium on Foundations of

Information and Knowledge Systems (FoIKS-10), Sofia, Bulgaria, 286–305.

Fellbaum, C. 1998. WordNet: An Electronic Lexical Database. MIT Press.

Flouris, G. 2006a. Doctoral Dissertation. PhD thesis, Department of Computer Science, University of Crete.

Flouris, G. 2006b. On belief change in ontology evolution. AI Communications Journal, 19(4), 395–397.

Flouris, G., Huang, Z., Pan, J., Plexousakis, D. & Wache, H. 2006. Inconsistencies, negations and changes in

ontologies. In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), Boston,

Massachusetts, 1295–1300.

Flouris, G., Konstantinidis, G., Antoniou, G. & Christophides, V. 2013. Formal foundations for RDF/S KB

evolution. International Journal on Knowledge and Information Systems (KAIS-13) 35(1), 153–191.

Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D. & Antoniou, G. 2008. Ontology change:

classification and survey. Knowledge Engineering Review 26(2), 117–152.

Flouris, G. & Plexousakis, D. 2006. Bridging ontology evolution and belief change. In Advances in Artificial

Intelligence, Hobart, Australia, 486–489.

Flouris, G., Plexousakis, D. & Antoniou, G. 2004. Generalizing the AGM postulates: preliminary results and

applications. In Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR-04),

Whistler, Canada, 171–179.

Flouris, G., Plexousakis, D. & Antoniou, G. 2005. On applying the AGM theory to DLs and OWL.

In Proceedings of the 4th International Semantic Web Conference (ISWC-05), 216–231.

Flouris, G., Plexousakis, D. & Antoniou, G. 2006. On generalizing the AGM postulates. In Proceedings of the

3rd European Starting AI Researcher Symposium (STAIRS-06), Riva del Garda, Italy, 132–143.

Franconi, E., Meyer, T. & Varzinczak, I. 2010. Semantic diff as the basis for knowledge base versioning.

In Proceedings of the 13th International Workshop on Non-Monotonic Reasoning (NMR-10), Toronto,

Canada.

Gabel, T., Sure, Y. & Voelker, J. 2004. D3.1.1.a: KAON – ontology management infrastructure. SEKT

informal deliverable, Institute AIFB, University of Karlsruhe.

Gärdenfors, P. 1992. Belief Revision: An Introduction. Cambridge University Press, 1–20.

Giacomo, G. D., Lenzerini, M., Poggi, A. & Rosati, R. 2007. On the approximation of instance level update

and erasure in Description Logics. In Proceedings of the 22nd Conference of the American Association for

Artificial Intelligence (AAAI-07), Vancouver, British Columbia, 403–408.

Giacomo, G. D., Lenzerini, M., Poggi, A. & Rosati, R. 2009. On instance-level update and erasure in

Description Logic ontologies. Journal of Logic and Computation 19(5), 745–770.

Gomez-Perez, A., Corcho, O. & Fernandez-Lopez, M. 2003. Ontological Engineering: With Examples from

the Areas of Knowledge Management, e-Commerce and the Semantic Web. First Edition. Springer.

26 F . Z ABL I TH E T A L .



Gracia, J., d’Aquin, M. & Mena, E. 2009. Large scale integration of senses for the semantic web.

In Proceedings of the 18th International Conference on World Wide Web (WWW-09), ACM, 611–620.

Grandi, F. 2009. Multi-temporal RDF ontology versioning. In Proceedings of the 3rd International Workshop

on Ontology Dynamics (IWOD-09), Chantilly, VA, USA.

Gruber, T. 1993. A translation approach to portable ontology specifications. Knowledge Acquisition 5(2),

199–220.

Gutierrez, C., Hurtado, C. & Vaisman, A. 2006. The meaning of erasing in RDF under the Katsuno-

Mendelzon approach. In Proceedings of the 9th International Workshop on the Web and Databases

(WebDB-06), Chicago, Illinois.

Haase, P. & Stojanovic, L. 2005. Consistent evolution of OWL ontologies. In The Semantic Web: Research

and Applications, Heraklion, Crete, Greece, 182–197.

Haase, P. & Sure, Y. 2004. D3.1.1.b state of the art on ontology evolution. SEKT Deliverable, Institute

AIFB, University of Karlsruhe.

Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H. & Sure, Y. 2005. A framework for handling

inconsistency in changing ontologies. In Proceedings of the 4th International Semantic Web Conference

(ISWC-05), Galway, Ireland, 353–367.

Halaschek-Wiener, C. & Katz, Y. 2006. Belief base revision for expressive Description Logics. In Proceedings

of OWL: Experiences and Directions 2006 (OWLED-06), Athens, GA, USA.

Hansson, S. O. 1991. Belief contraction without recovery. Studia Logica 50(2), 251–260.

Hartung, M., Groß, A. & Rahm, E. 2012. COnto–Diff: generation of complex evolution mappings for life

science ontologies. Journal of Biomedical Informatics 46(1), 15–32.

Hartung, M., Kirsten, T. & Rahm, E. 2008. Analyzing the evolution of life science ontologies and mappings.

In Proceedings of the 5th International Workshop on Data Integration in the Life Sciences (DILS-08),

Amos Bairoch, Sarah Cohen Boulakia & Christine Froidevaux (eds). Springer-Verlag, Evry, France,

11–27.

Hartung, M., Terwilliger, J. & Rahm, E. 2011. Recent advances in schema and ontology evolution. In Schema

Matching and Mapping, Bellahsene, Z., Bonifati, A. & Rahm, E. (eds). Data-Centric Systems and

Applications. Springer, 149–190.

Heflin, J., Hendler, J. & Luke, S. 1999. Coping with changing ontologies in a distributed environment.

In Proceedings of the Workshop on Ontology Management of the 16th National Conference on Artificial

Intelligence (AAAI-99), Orlando, Florida.

Heflin, J. & Hendler, J. 2000. Dynamic ontologies on the web. In Proceedings of the 17th National Conference

on Artificial Intelligence (AAAI-00), Austin, Texas, 443–449.

Heflin, J. & Pan, Z. 2004. A model theoretic semantics for ontology versioning. In Proceedings of the

3rd International Semantic Web Conference (ISWC-04), Hiroshima, Japan, 62–76.

Huang, Z. & Stuckenschmidt, H. 2005. Reasoning with multi-version ontologies: a temporal logic approach.

In Proceedings of the 4th International Semantic Web Conference (ISWC-05), Galway, Ireland, 398–412.

Ide, N. & Veronis, J. 1998. Introduction to the special issue on word sense disambiguation: the state of the

art. Computational Linguistics 24(1), 2–40.

Javed, M., Abgaz, Y. & Pahl, C. 2009. A pattern-based framework of change operators for ontology

evolution. In On the Move to Meaningful Internet Systems Workshop (OTM-09), Vilamoura, Portugal,

544–553.

Javed, M., Abgaz, Y. & Pahl, C. 2011. Graph-based discovery of ontology change patterns. In Proceedings of

the Joint Workshop on Knowledge Evolution and Ontology Dynamics (EvoDyn) at ISWC, Bonn, Germany.

Keberle, N., Litvinenko, Y., Gordeyev, Y. & Ermolayev, V. 2007. Ontology evolution analysis with

OWL-MeT. In Proceedings of the International Workshop on Ontology Dynamics (IWOD-07), Innsbruck,

Austria, 1–12.

Kirsten, T., Hartung, M., Gross, A. & Rahm, E. 2009. Efficient management of biomedical ontology

versions. In Proceedings of the 2009 On The Move Workshops (OTM-09), Vilamoura, Portugal, 574–583.

Klein, M. 2004. Change Management for Distributed Ontologies. PhD thesis, Vrije University.

Klein, M. & Fensel, D. 2001. Ontology versioning on the semantic web. In Proceedings of the International

Semantic Web Working Symposium (SWWS-01), California, USA, 75–91.

Klein, M., Fensel, D., Kiryakov, A. & Ognyanov, D. 2002. Ontology versioning and change detection on the

web. In Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge

Management (EKAW-02), Siguenza, Spain.

Klein, M. & Noy, N. 2003. A component-based framework for ontology evolution. In Proceedings of the

IJCAI-03 Workshop on Ontologies and Distributed Systems, Acapulco, Mexico.

Klein, M. & Stuckenschmidt, H. 2003. Evolution management for interconnected ontologies. In Proceedings

of the Semantic Integration Workshop at the 2nd International Semantic Web Conference (ISWC-03),

Florida, USA.

Ontology evolution: a process-centric survey 27



Kondylakis, H. & Plexousakis, D. 2011a. Exelixis: evolving ontology-based data integration system. In ACM

International Conference on Management of Data (SIGMOD-12), Scottsdale, AZ, USA, 1283–1286.

Kondylakis, H. & Plexousakis, D. 2011b. Ontology evolution in data integration: query rewriting to the

rescue. In International Conference on Conceptual Modelling (ER-11), Brussels, Belgium, 393–401.

Kondylakis, H. & Plexousakis, D. 2012. Ontology evolution: assisting query migration. In International

Conference on Conceptual Modelling (ER-12), Florence, Italy, 331–344.

Konev, B., Walther, D. & Wolter, F. 2008. The logical difference problem for Description Logic terminologies.

In Proceedings of the 4th International Joint Conference on Automated Reasoning (IJCAR-08), Armando, A.,

Baumgartner, P. & Dowek, G. (eds), LNAI 5195, 259–274. Springer-Verlag.

Konstantinidis, G., Flouris, G., Antoniou, G. & Christophides, V. 2008a. A formal approach for RDF/S ontology

evolution. In Proceedings of the 18th European Conference on Artificial Intelligence (ECAI-08), Patras, Greece,

405–409.

Konstantinidis, G., Flouris, G., Antoniou, G. & Christophides, V. 2008b. On RDF/S ontology evolution.

In Post-Proceedings of the Joint ODBIS & SWDB Workshop on Semantic Web, Ontologies, Databases

(SWDB-ODBIS-07), Vienna, Austria, 21–42.

Kontchakov, R., Wolter, F. & Zakharyaschev, M. 2008. Can you tell the difference between DL-Lite

ontologies? In Proceedings of the 11th International Conference on Principles of Knowledge Representation

and Reasoning (KR-08), Lang, J. & Brewka, G. (eds). AAAI Press/MIT Press, 285–295.

Laera, L., Handschuh, S., Zemanek, J., Volkel, M., Bendaoud, R., Hacene, M., Toussaint, Y., Delecroix, B. &

Napoli, A. 2008. D2.3.8 v2 Report and Prototype of Dynamics in the Ontology Lifecycle. Technical report.

Lam, S., Sleeman, D. & Vasconselos, W. 2005. ReTAX11: a tool for browsing and revising ontologies.

In Poster Proceedings of the 4th International Semantic Web Conference (ISWC-05), Galway, Ireland.

Lausen, G., Meier, M. & Schmidt, M. 2008. SPARQLing constraints for RDF. In Proceedings of 11th

International Conference on Extending Database Technology (EDBT-08), Nantes, France, 499–509.

Leenheer, P. D. & Mens, T. 2008. Ontology evolution: state of the art and future directions. In Ontology

Management for the Semantic Web, Semantic Web Services, and Business Applications, Hepp, M.,

Leenheer, P. D., de Moor, A. & Sure, Y. (eds). Springer, 131–176.

Lee, K. & Meyer, T. 2004. A classification of ontology modification. In Proceedings of the 17th Australian

Joint Conference on Artificial Intelligence (AI-04), 248–258.

Liang, Y., Alani, H. & Shadbolt, N. 2006a. Changing ontology breaks queries. In Proceedings of the 5th

International Semantic Web Conference (ISWC-06), Athens, GA, USA, 982–985.

Liang, Y., Alani, H. & Shadbolt, N. 2006b. Enabling Active Ontology Change Management Within Semantic

Web-Based Applications. Mini-thesis, PhD upgrade report.

Liu, H., Lutz, C., Milicic, M. & Wolter, F. 2006. Updating Description Logic ABoxes. In Proceedings of the

10th International Conference on Principles of Knowledge Representation and Reasoning (KR-06), Lake

District, UK.

Li, X., Szpakowicz, S. & Matwin, S. 1995. A WordNet-based algorithm for word sense disambiguation.

In International Joint Conference on Artificial Intelligence (IJCAI-95) 14, Montreal, Canada, 1368–1374.

Lopez, V., Uren, V., Sabou, M. & Motta, E. 2009. Cross ontology query answering on the semantic web.

In Proceedings of the 5th International Conference on Knowledge Capture (K-CAP-09). Redondo Beach,

California, USA.

Luczak-Rosch, M. 2009. Towards agile ontology maintenance. In Proceedings of the 8th International

Semantic Web Conference (ISWC-09), vol. 5823, Springer, 965–972.

Luke, S., Spector, L., Rager, D. & Hendler, J. 1997. Ontology-based web agents. In Proceedings of the

1st International Conference on Autonomous Agents, Marina del Rey, CA, USA, 59–66.

Maedche, A., Motik, B., Stojanovic, L., Studer, R. & Volz, R. 2002. Managing multiple ontologies and

ontology evolution in Ontologging. In Proceedings of the Conference on Intelligent Information Processing,

World Computer Congress, Montreal, Canada.

Magiridou, M., Sahtouris, S., Christophides, V. & Koubarakis, M. 2005. RUL: a declarative update language

for RDF. In Proceedings of the 4th International Semantic Web Conference (ISWC-05), Galway, Ireland,

506–521.

Maynard, D., Funk, A. & Peters, W. 2009. SPRAT: a tool for automatic semantic pattern based ontology

population. In International Conference for Digital Libraries and the Semantic Web (ICSD-09), Trento,

Italy.

Maynard, D., Peters, W., d’Aquin, M. & Sabou, M. 2007. Change management for metadata evolution.

In Proceedings of the International Workshop on Ontology Dynamics (IWOD-07), Innsbruck, Austria, 27–40.

Meyer, T., Lee, K. & Booth, R. 2005. Knowledge integration for Description Logics. In Proceedings of the

20th National Conference on Artificial Intelligence (AAAI-05), Pittsburgh, PA, USA, 645–650.

Moguillansky, M., Rotstein, N. & Falappa, M. 2008. A theoretical model to handle ontology debugging and

change through argumentation. In Proceedings of the 2nd International Workshop on Ontology Dynamics

(IWOD-08), Karlsruhe, Germany.

28 F . Z ABL I TH E T A L .



Motik, B., Horrocks, I. & Sattler, U. 2007. Bridging the gap between OWL and relational databases.

In Proceedings of 17th International World Wide Web Conference (WWW-07), Banff, Canada, 807–816.

Novacek, V., Laera, L. & Handschuh, S. 2007. Semi-automatic integration of learned ontologies into a

collaborative framework. In Proceedings of the International Workshop on Ontology Dynamics (IWOD-07),

Innsbruck, Austria.

Noy, N., Chugh, A., Liu, W. & Musen, M. 2006. A framework for ontology evolution in collaborative

environments. In Proceedings of the 5th International Semantic Web Conference (ISWC-06), Athens, GA,

USA, 544–558.

Noy, N., Fergerson, R. & Musen, M. 2000. The knowledge model of Protégé-2000: combining interoperability

and flexibility. In Proceedings of the 12th International Conference on Knowledge Engineering and Knowledge

Management: Methods, Models, and Tools (EKAW-00), Sophia Antipolis, France, 17–32.

Noy, N. & Klein, M. 2004. Ontology evolution: not the same as schema evolution. Knowledge and

Information Systems 6(4), 428–440.

Noy, N., Kunnatur, S., Klein, M. & Musen, M. 2004. Tracking changes during ontology evolution.

In Proceedings of the 3rd International Semantic Web Conference (ISWC-04), 259–273.

Noy, N. & Musen, M. 2002. PromptDiff: a fixed-point algorithm for comparing ontology versions.

In Proceedings of 18th National Conference on Artificial Intelligence (AAAI-02), Edmonton, Canada.

Noy, N. & Musen, M. 2004. Ontology versioning in an ontology management framework. IEEE Intelligent

Systems 19(4), 6–13.

Obst, D. & Chan, C. 2005. Towards a framework for ontology evolution. In Electrical and Computer

Engineering, 2005. Canadian Conference, Saskatoon, Canada, 2191–2194.

Oliver, D., Shahar, Y., Shortliffe, E. & Musen, M. 1999. Representation of change in controlled medical

terminologies. Artificial Intelligence in Medicine 15(1), 53–76.

Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H. & Tummarello, G. 2008. Sindice.com: a

document-oriented lookup index for open linked data. International Journal of Metadata, Semantics and

Ontologies (IJMSO-08) 3(1), 37–52.

Ottens, K., Gleizes, M. & Glize, P. 2007. A multi-agent system for building dynamic ontologies.

In Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems.

ACM, Honolulu, Hawaii.

Ottens, K., Hernandez, N., Gleizes, M. & Aussenac-Gilles, N. 2009. A multi-agent system for dynamic

ontologies. Journal of Logic and Computation 19(5), 831–858.

Palma, A., Haase, P., Wang, Y. & d’Aquin, M. 2007. D1.3.1: Propagation Models and Strategies. Technical

report, NeOn Deliverable D1.3.1.

Palmisano, I., Tamma, V., Iannone, L., Payne, T. & Doran, P. 2008. Dynamic change evaluation for

ontology evolution in the semantic web. In Proceedings of the International Conference on Web Intelligence

and Intelligent Agent Technology (WI-IAT), vol. 1, Sydney, Australia, 34–40.

Pammer, V., Ghidini, C., Rospocher, M., Serafini, L. & Lindstaedt, S. 2010. Automatic support for formative

ontology evaluation. In Poster Proceedings of the Conference on Knowledge Engineering and Knowledge

Management by the Masses (EKAW-10). Lisbon, Portugal.

Pammer, V., Serafini, L. & Lindstaedt, M. 2009. Highlighting assertional effects of ontology editing activities in

OWL. In Proceedings of the 3rd InternationalWorkshop on Ontology Dynamics (IWOD-09), Chantilly, VA, USA.

Papastefanatos, G., Vassiliadis, P., Simitsis, A. & Vassiliou, Y. 2009. Policy-regulated management of ETL

evolution. Journal of Data Semantics 13, 147–177.

Papastefanatos, G., Vassiliadis, P., Simitsis, A. & Vassiliou, Y. 2010. HECATAEUS: regulating schema

evolution. In Proceedings of the 26th IEEE International Conference on Data Engineering (ICDE-10),

Long Beach, CA, USA, 1181–1184.

Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D. & Christophides, V. 2009. On detecting high-level

changes in RDF/S KBs. In Proceedings of the 8th International Semantic Web Conference (ISWC-09),

Chantilly, VA, USA.

Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D. & Christophides, V. 2013. High-level change

detection in RDF(S) KBs. Transactions on Database Systems 38(1), 1–42.

Pasca, M. & Harabagiu, S. 2001. The informative role of WordNet in open-domain question answering.

In Proceedings of NAACL-01 Workshop on WordNet and Other Lexical Resources, Pittsburgh, PA, USA,

138–143.

Plessers, P. & de Troyer, O. 2005. Ontology change detection using a version log. In Proceedings of the

4th International Semantic Web Conference (ISWC-05).

Plessers, P., de Troyer, O. & Casteleyn, S. 2005. Event-based modeling of evolution for semantic-driven

systems. In Proceedings of the 17th Conference on Advanced Information Systems Engineering (CAiSE-05),

Porto, Portugal, 63–76.

Plessers, P., de Troyer, O. & Casteleyn, S. 2007. Understanding ontology evolution: A change detection

approach. Web Semantics 5(1), 39–49.

Ontology evolution: a process-centric survey 29



Pruski, C., Guelfi, N. & Reynaud, C. 2011. Adaptive ontology-based web information retrieval: the target

framework. International Journal of Web Portals 3(3), 41–58.

Qin, L. & Atluri, V. 2009. Evaluating the validity of data instances against ontology evolution over the

semantic web. Information and Software Technology 51(1), 83–97.

Qi, G. & Du, J. 2009. Model-based revision operators for terminologies in Description Logics. In Proceedings

of the 21st International Joint Conference on Artificial Intelligence (IJCAI-09), Pasadena, CA, USA,

891–897.

Qi, G., Liu, W. & Bell, D. 2006a. Knowledge base revision in Description Logics. In Proceedings of the

10th European Conference on Logics in Artificial Intelligence (JELIA-06), Liverpool, UK.

Qi, G., Liu, W. & Bell, D. 2006b. A revision-based approach for handling inconsistency in Description

Logics. In Proceedings of the 11th International Workshop on Non-Monotonic Reasoning (NMR-06), Lake

District, UK.

Redmond, T., Smith, M., Drummond, N. & Tudorache, T. 2008. Managing change: an ontology version

control system. In Proceedings of the 5th International Workshop on OWL: Experiences and Directions

(OWLED-08), Karlsruhe, Germany.

Ren, Y. & Pan, J. 2011. Optimising ontology stream reasoning with truth maintenance system. In Proceedings

of the ACM Conference on Information and Knowledge Management (CIKM-10), Toronto, Canada.

Ribeiro, M. & Wassermann, R. 2006. First steps towards revising ontologies. In Proceedings of the

2nd Workshop on Ontologies and Their Applications (WONTO-06), Ribeirao Preto, Sao Paulo, Brazil.

Ribeiro, M. & Wassermann, R. 2007. Base revision in Description Logics—preliminary results. In Proceedings

of the International Workshop on Ontology Dynamics (IWOD-07), Innsbruck, Austria, 69–82.

Ribeiro, M., Wassermann, R., Antoniou, G., Flouris, G. & Pan, J. 2009. Belief contraction in web-ontology

languages. In Proceedings of the 3rd International Workshop on Ontology Dynamics (IWOD-09), Short Paper,

Chantilly, VA, USA.

Riess, C., Heino, N., Tramp, S. & Auer, S. 2010. EvoPat—pattern-based evolution and refactoring of RDF

knowledge bases. In Proceedings of the 9th International Semantic Web Conference (ISWC-10), Shanghai,

China.

Roger, M., Simonet, A. & Simonet, M. 2002. Toward updates in Description Logics. In Proceedings of

the 9th International Workshop on Knowledge Representation Meets Databases (KRDB-02), Toulouse,

France.

Rogozan, D. & Paquette, G. 2005. Managing ontology changes on the semantic web. In Proceedings of the

2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI-05), Compiegne, France,

430–433.

Sabou, M., d’Aquin, M. & Motta, E. 2008. Exploring the semantic web as background knowledge for

ontology matching. Journal on Data Semantics XI, 156–190.

Sabou, M., Fernandez, M. & Motta, E. 2009. Evaluating semantic relations by exploring ontologies on the

semantic web. In Proceedings of the 14th International Conference on Applications of Natural Language to

Information Systems (NLDB-09), Saarbrucken, Germany.

Serfiotis, G., Koffina, I., Christophides, V. & Tannen, V. 2005. Containment and minimization of RDF/S

query patterns. In Proceedings of the 4th International Semantic Web Conference (ISWC-05), Galway,

Ireland, 607–623.

Shadbolt, N., Hall, W. & Berners-Lee, T. 2006. The semantic web revisited. IEEE Intelligent Systems 21(3),

96–101.

Sirin, E., Parsia, B., Grau, B., Kalyanpur, A. & Katz, Y. 2007. Pellet: a practical OWL-DL reasoner. Web

Semantics 5(2), 51–53.

Stojanovic, L. 2004. Methods and Tools for Ontology Evolution. PhD thesis, FZI—Research Center for

Information Technologies at the University of Karslruhe.

Stojanovic, L., Maedche, A., Motik, B. & Stojanovic, N. 2002. User-driven ontology evolution management.

In Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management

(EKAW-02), Lecture Notes in Computer Science (LNCS) 2473, 285–300. Springer-Verlag.

Stojanovic, L. & Motik, B. 2002. Ontology evolution within ontology editors. In Proceedings of the OntoWeb-

SIG3 Workshop, Siguenza, Spain, 53–62.

Stuckenschmidt, H. & Klein, M. 2003. Integrity and change in modular ontologies. In Proceedings of the 18th

International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico.

Studer, R., Benjamins, V. R. & Fensel, D. 1998. Knowledge engineering: principles and methods. Data &

Knowledge Engineering 25(1–2), 161–197.

Sure, Y., Angele, J. & Staab, S. 2003. OntoEdit: multifaceted inferencing for ontology engineering. Journal on

Data Semantics 1(1), 128–152.

Tamma, V. & Bench-Capon, T. 2001. A conceptual model to facilitate knowledge sharing in multi-agent

systems. In Proceedings of the Workshop on Ontologies in Agent Systems (OAS-01), Montreal, Canada,

69–76.

30 F . Z ABL I TH E T A L .



Tao, J., Sirin, E., Bao, J. & McGuinness, D. 2010. Extending OWL with integrity constraints. In Proceedings

of the 23rd International Workshop on Description Logics (DL-10). CEUR-WS 573, Waterloo, Canada.

Thor, A., Hartung, M., Gross, A., Kirsten, T. & Rahm, E. 2009. An evolution based approach for assessing

ontology mappings—a case study in the life sciences. In Datenbanksysteme in Business, Technologie und

Web (BTW), Munster, Germany, 277–286.

Velardi, P., Fabriani, P. & Missikoff, M. 2001. Using text processing techniques to automatically enrich a

domain ontology. In Proceedings of the 2nd International Conference on Formal Ontology in Information

Systems, Ogunquit, ME, USA, 270–284.

Volkel, M., Winkler, W., Sure, Y., Kruk, S. & Synak, M. 2005. SemVersion: a versioning system for RDF

and ontologies. In Proceedings of the 2nd European Semantic Web Conference (ESWC-05), Heraklion,

Greece.

Vrandecic, D., Pinto, H. S., Sure, Y. & Tempich, C. 2005. The DILIGENT knowledge processes. Journal of

Knowledge Management 9(5), 85–96.

Wang, Y., Liu, X. & Ye, R. 2008. Ontology evolution issues in adaptable information management systems.

In Proceedings of the 2008 IEEE International Conference on e-Business Engineering (ICEBE-08). IEEE

Computer Society, Xian, China, 753–758.

Wang, Z., Wang, K. & Topor, R. 2010. A new approach to knowledge base revision in DL-Lite. In

Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI-10), Atlanta, Georgia, USA.

Xuan, D., Bellatreche, L. & Pierra, G. 2006. A versioning management model for ontology-based data

warehouses. In Data Warehousing and Knowledge Discovery, vol. 4081. Springer, 195–206.

Zablith, F. 2009. Evolva: a comprehensive approach to ontology evolution. In Proceedings of the PhD

Symposium of the 6th European Semantic Web Conference (ESWC-09), Heraklion, Greece, 944–948.

Zablith, F., d’Aquin, M., Sabou, M. & Motta, E. 2010. Using ontological contexts to assess the relevance of

statements in ontology evolution. In Proceedings of Knowledge Engineering and Knowledge Management by

the Masses (EKAW-10), Springer-Verlag.

Zablith, F., Sabou, M., d’Aquin, M. &Motta, E. 2008. Using background knowledge for ontology evolution.

In Proceedings of the 2nd International Workshop on Ontology Dynamics (IWOD-08), Karlsruhe,

Germany.

Zeginis, D., Tzitzikas, Y. & Christophides, V. 2007. On the foundations of computing deltas between RDF

models. In Proceedings of the 6th International Semantic Web Conference (ISWC-07), Busan, Korea.

Zeginis, D., Tzitzikas, Y. & Christophides, V. 2011. On computing deltas of RDF/S knowledge bases. ACM

Transactions on the Web 5(3).

Ontology evolution: a process-centric survey 31


