N
N

N

HAL

open science

Adaptivity in High-Performance Embedded Systems: a

Reactive Control Model for Reliable and Flexible Design
Huafeng Yu, Abdoulaye Gamatié, Eric Rutten, Jean-Luc Dekeyser

» To cite this version:

Huafeng Yu, Abdoulaye Gamatié, Eric Rutten, Jean-Luc Dekeyser. Adaptivity in High-Performance
Embedded Systems: a Reactive Control Model for Reliable and Flexible Design. Knowledge Engi-

neering Review, 2010, 21 p. inria-00536883

HAL Id: inria-00536883
https://inria.hal.science/inria-00536883
Submitted on 18 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00536883
https://hal.archives-ouvertes.fr

Adaptivity in High-Performance Embedded Systems:
a Reactive Control Model for Reliable and Flexible
Design

Huafeng Yd and Abdoulaye Gamatiénd Eric Ruttehand Jean-Luc Dekeyser

LINRIA Rennes/IRISA, Campus de Beaulieu, 263, avenue duabérélerc, 35042 Rennes, FRANCE
E-mail: huafeng.yu@inria.fr

2CNRSI/LIFL, INRIA Lille Nord Europe, 40 avenue Halley, 5984neuve d’Ascg, FRANCE,

E-mail: abdoulaye.gamatie @lifl.fr

3INRIA Rhéne-Alples, 655 avenue de I'Europe, Montbonnd@&338aint-Ismier cedex, FRANCE
E-mail: eric.rutten@inria.fr

4USTL/LIFL, INRIA Lille Nord Europe, 40 avenue Halley, 5968eneuve d’Ascq, FRANCE,

E-mail: jean-luc.dekeyser@lifl.fr

Abstract

System adaptivity is increasingly demanded in high-pentoice embedded systems, particularly in
multimedia System-on-Chip (SoC), due to growing Qualitysefvice requirements. This paper presents
a reactive control model that has been introduced in Gaspard framework dedicated to SoC
hardware/software co-design. This model aims at exprgssilaptivity as well as reconfigurability in
systems performing data-intensive computations. It i;egerenough to be used for description in the
different parts of an embedded system, e.g. specificatidgrowf different data-intensive algorithms can
be chosen according to some computation modes at the faatievel; expression of how hardware
components can be selected via the usage of a library ofdotedl Properties (IPs) according to execution
performances. The transformation of this model towardgissonous languages is also presented, in
order to allow an automatic code generation usable for foumafication, based of techniques such as
model checking and controller synthesis as illustratechenpgaper. This work, based on Model-Driven
Engineering and the standard UML MARTE profile, has been @amanted in Gaspard.

1 Introduction

With the popularization of mobile multimedia devices sustP®A, multimedia cellular phone and MP3
player, high-performance embedded systems (HPES'skhitrereasingly interests in both industry and
academia. These systems feature intensive data procgssiugling multimedia video codecs, software-
based radio and radar signal processing systems. Theseadiopis generally require high-performance
computing resources, where parallel processing is a kayridn addition, they concentrate on regular
data partitioning, distribution and access.

1.1 Design complexity of High-performance SoCs

The previously mentioned applications are usually dewadopy using high-performance computing
(HPC) programming languages that provide useful concepteal with parallel processing, in order
to meet their real-time requirements. There exist seveR(C programming languages and one of the
most successful is High Performance Fortran (High Perfagedortran Forum, 1997). However, these
languages tend to be very specific to users and lack featwrdsh are increasingly required for the
design of modern HPES's: design of complex hardware topesogomprising multi-core architectures,

2 H. YU et al.

of hardware/software allocations, of intellectual prap€tP) deployment enabling reusability, etc. In
addition, they do not necessarily allow system verificatishich is important for guaranteeing the
reliability of the systems.

On the other hand, thgystem complexitigsue is another major obstacle faced by System-on-Chip
(SoC) designers. As computational power increases for So@se functionality are expected to be
integrated into these systems. Hence, more complex satm@plications and hardware architectures are
involved. The resulting consequence leads to the disbquith in system design, particularly software
design does not progress at the same pace as that of hard@had.as become a critical issue and has
finally led to theproductivity gap(Semiconductor Industry Assoc., 2004).

In order to address the above challenges, many efforts reue fecently carried out to better address
the SoC design (Sangiovanni-Vincentelli, 2007). Raising levels of abstraction is considered as an
effective solution to reduce the overall complexity in thesigin. High-level modeling approaches have
been developed such as Model-Driven Engineering (MDE) é€tjlanagement Group, 2007a). MDE
also enables high-level system design (of both softwarehandware) with the possibility of integrating
heterogeneous components into the system. Furthermmadel transformationgnable generation of
executable code from high level models. MDE is also supgdsielarge number of existing standards
and tools, for instance, UML-based modeling and transftionaools (UML tool list, 2009).

1.2 Adaptivity in multimedia SoCs

Systemadaptivity specification as well aseconfigurablecomputing description are considered to be
critical in current embedded systems design, particularipultimedia SoC design. Such systems must
be able to cope with end user requirements and environneitsg adaptive and/or reconfigurable to
the environment is highly demanded due to current flexjbditd Quality-of-Service (QoS) requirements.
However, integration of adaptivity and reconfigurabilitgd a system is expected not to affect system
performance, especially regarding real-time constraints

Mode-based control modeling, as one kind of behavioralifpations, plays an important role in
multimedia systems, as it satisfies the following requinet®¢hat are becoming inevitable in mobile
embedded systems: 1) mode changes specified in functignfaiit example, color or monochrome
mode for video effects; 2) mode changes due to resourceragntst of targeted hardware/platforms,
for instance switching from a high CPU load mode to a smalier; @r 3) mode changes due to other
environmental criteria such as energy consumption canstfdode-based control integrates flexibility
in the design. Consequently, it offers better QoS choicedegigners/end users. Thanks to the above
characteristics, mode-based control mechanisms are gaudidates for the integration of adaptivity
and/or reconfigurability into the high-performance systedesign seamlessly. First, modes of data
processing can be switched due to the requirements of ydatfrms and environments. Secondly, data
access, as a critical factor of performance, is kept unah@dusg that mode changes have little influence
on performance.

1.3 Contribution and outline

We present a high-level model allowing for the mixed desmipof data-intensive and control-oriented
behaviors, as a solution to for the design of HPES'’s. Thisehedables to:

o effectively handle issues such as adequate expressionhefeint system parallelism both in
functional specification and hardware architecture;

e express control behavior in order to characterize adaptand reconfigurability in a system in
consideration of performance influence.

The control model is proposed in Gaspard, which is an MDE#&0C co-design framework dedicated
to HPES's (Gamatié et al., 2010), and defined with the UML prdéir MARTE (Object Management
Group, 2008).

Adaptivity in High-Performance Embedded Systems 3

A transformation of our model towards synchronous readéinguages is also described, in order to
obtain access to their formal validation technologiess fiormalized on the basis of an abstract syntax.
Typical applications of our model for system behavior as@lyand hardware synthesis are also briefly
mentioned applications

The rest of this paper is organized as follows. Some relamtsvare discussed in Section 2. Then,
an overview of Gaspard is provided in Section 3. Section &£epfrates on the extension of Gaspard
with a control model, which includes its abstract syntaxjlevi®ection 5 presents the transformation
of this control model into synchronous reactive progranexti®n 6 presents the implementation of the
control in the framework of MDE. The application of this casitmodel in functional specification and
IP deployment are briefly described in Section 7. Finallgti®a 8 gives the conclusion.

2 Related works

Programming languages for the specification of high-pentorce systems has already been broadly
studied, for example, Message Passing Interface (MPI) (&Pim, 2007) and OpenMP (OpenMP API,
2008). More recent languages include Streamlt (Thies e2@02) and the DARPA high productivity
languages Chapel (Callahan et al., 2004), Fortress (Alleal.£2007) and X10 (Charles et al., 2005).
Improving productivity is one of their main objectives, Buas reducing specification complexity by
providing suitable macro constructs. Furthermore, theysiter specific architecture models. However,
they are not well adapted for SoC design in which one needsogram specialized architectures.

Alpha (Wilde, 1994) and Array-OL (Boulet, 2008) (core forisen adopted in Gaspard), which
manipulates polyhedra and arrays respectively, are stiaehigh level languages for the data-parallel
formalism. Alpha particularly suits for the specificatidisgstolic architectures while the aim of Gaspard
is to cover embedded systems adopting a wide variety oftaathies beyond systolic ones.

In several tools and development environments dedicatddttdlow applications, theulti-paradigm
has been proposed to integrate languages in differenssiyée, dataflow and some imperative features
based on finite state machines. This approach benefits frain different expressivity: dataflow
specification for numerical computation and state machfoegontrol behavior. Some examples are
given here:

e SIMULINK and SATEFLOW (The MathWorks, 2009): the former is used for the specificatf
block diagrams where some operators aiaEFLow are used to specify the computation on
dataflow. The results of the computation serve to controsttstem.

e SCADE (Esterel Technologies, 2009) : in the SCADE environtngate machines are embedded
and used to activate dataflow processing specified in Lustedbfvachs et al., 1991). Mode
automata (Maraninchi and Rémond, 2003) and polychronouleraatomata (Talpin et al., 2006)
derive from the concept afombination of formalism@ synchronous languages. It extends the
dataflow language Lustre and Signal respectively with @eitaperative style, but without many
modifications of language style and structure. Applicatigpecified in SCADE or with mode
automata and polychronous mode automata can be formaltjatatl using tools associated with
synchronous languages. Although this approach is veryaino our proposition, however, Lustre
and Signal are limited in the expression of large parall&h gaocessing.

e PTOLEMY: the composition of hierarchical finite state machines wgitlme concurrency models
has also been studied in (Girault et al., 1999). Among theengbmposition of state machines with
synchronous dataflow is similar to our proposition, and #teel can be considered as a special case
applied on parallel data-intensive processing specifigld Répetitive Structure ModelingRSM)
package of MARTE. The novelty is exhibited in the compositility of state machines with data
parallelism and data access performance conservatioséafanode changes.

In comparison with the above mentioned works, our work fesusn embedded systems with high-
performance computing, where the way data-parallelisneédtdvith is very important. We adopt mode
automata where the mode concept helps to reduce perforrtmsoga mode switch during data-intensive

4 H. YU et al.

computations: the interface of data processing is keptahmseven if modes are changed, so data access
are not changed allowing one to still benefit from the powlexfay of expressing the data-parallelism in
Gaspard.

3 High-performance system design within MARTE

Gaspard (Gamatié et al., 2010) is a MARTE compliant SoC desamework, that enables high-level
modeling and automatic code generation by using UML graphiols and technologies such as Papyrus
and Eclipse Modeling FramewotKEMF). Gaspard features hardware/software co-modelinpuse
MARTE profile, which enables to modsbftware applicationshardware architecturegheirallocations
and IPdeploymenseparately, but in a unique modeling environment. As heylell Gaspard models
contain only domain-specific concepts, model transforomati{implemented as Eclipse plugins) enable
code generation for different execution platforms, suckyashronous domain for validation and analysis
purposes (Gamatié et al., 2008b); or FPGA synthesis (Qeaaiti, 2010). Thus technological concepts
are introduced seamlessly in the intermediate and low leeelels.

The MARTE RSM is inspired from Gaspard. RSM is based on A@dy{Boulet, 2007) that
describes thg@otential parallelismin a system; and is dedicated to data-parallel multidinmradisignal
processing. Manipulated data in Gaspard and RSM are in tme ¢ multidimensional arrays. RSM
allows to describe the regularity of a system’s structuoargosed of repetitions of structural components
interconnected in a regular connection pattern) and tapyalo a compact manner. Gaspard adopts RSM
for the specification of regular hardware architecturest{sas multiprocessor architectures) and parallel
processing applications. In addition, both data parahefnd task parallelism can be, via RSM, expressed
with regard to a functional specification.

An example specified with RSM is shown in Figure 1. It expreskxa-parallelism iMonochromeM-
ode used for the processing of a [320, 240]-image. Becauseltbg GialledMonoFilter, only works on
small [8, 8]-pixel subsets, it should be repeatec 80 times to cover the whole image. In RSM [40, 30]
is referred to as the shape of repetition space associatedAsinoFilter.

MonochromeMode
MonoFilter 4930,

I_image i_pattern o_pattern O_image
1320,240) [———>{ | T8,8] 8,81 [13202401
Tiler Tiler
F: [[1,0],[0,1]] F: [[1,0]1,[0,1]]

o: [0,0] o: [0,0]
P: [[8,0],[0,8]] P: [[8,0],[0,8]1

Figure 1: A monochrome effect filter.

The repeated MonoFilter runs in a repetition context, definethe MonochromeMode. All repetition
instances run in parallel. A Connector used in a repetitmmtext is calledLinkTopology It adds a set
of topological information to a connector. MonoFilter isneected to MonochromeMode vider links.
The repetitions of MonoFilter consume and produce idetfichaped sub-arrays of pixels, which are
respectively extracted from the input pdrimageand stored in the output po@ image These sub-
arrays, referred to as patterns (shaped [8, 8] in the exanaketiled according to the Tilers, which are
associated with each array (i.e. each edge in the grapleipedsentation). A tiler extracts (resp. stores)
tiles from (resp. in) an array based on some informatior fitting matrix (how array elements fill the
tiles), o theorigin of thereference tilgfor thereference repetition and P apavingmatrix (how the tiles
cover arrays).

twww.papyrusuml.org/
2www.eclipse.orglemf/

Adaptivity in High-Performance Embedded Systems 5

The repetition spacendicating the number of task instances is itself defined asulidimensional
array with a shape. Each dimension of the repetition spacdeaseen as a parallel loop and its shape
space gives the bounds of the nested parallel loops. In&ifuhe shape of repetition space is [40, 30].

Given a tile, let itsreference elemernttenote its origin point from which all its other elements ¢an
extracted. Thditting matrix is used to determine these elements. Their coombnetpresented hy, are
built as the sum of the coordinates of the reference elenrmehdidinear combination of the fitting vectors,
the whole modulo the size of the array (since arrays aredafpas follows:

v i, 0 S i < Spattern e = ref + F ximod Sarray (1)

wherespatemis the shape of the pattershay is the shape of the array addis the fitting matrix.

For each repetition instance, the reference elements ohfhwé and output tiles are needed to be
specified. The reference elements of the reference repetite given by therigin vector,o, of each tiler.
The reference elements of the other repetitions are blaltively to this one. As above, their coordinates
are built as a linear combination of the vectors of pla@ingmatrix as follows:

Vr, 0 <1 < Srepetition ref, =0+ P x r mod Sarray (2

wheresepetitioniS the shape of the repetition spaé¢ethe paving matrix andaray the shape of the array.
Gaspard adopts a component-based appro@epetitive componen{@®lonochromeMode in Fig-
ure 1l)are used to express data parallelism in an applicafiets of input and outpuiatterns(scope
of involved data in array structure) consumed and produgedhb repetitions of the interiopart
(a data processing task). Thus a repetitive component geevihe repetition context for its interior
task. The repetitions are assumed to be independent andudahke following any order, generally in
parallel. In comparison, Aierarchical componentontains severadarts and it allows to define complex
functionality in a modular way and provides a structuralexsof the application. Specifically, task
parallelism can be described using such a component. Thee shfaa pattern is described according
to atiler connector, which specifies the tiling of produced and coresligrrays. Aninter-repetition
dependencflRD) is used to specify an acyclic dependency among theitEpes of the same component.
Particularly, an IRD connector leads to the sequential @ of repetitions. Adefaultlink provides a
default value for repetitions linked with an IRD, on conditithat the source of dependency is absent.

4 Definition of the reactive control model

This paper presents is a control model for adaptive higfiepmance computing in the framework of
Gaspard: basic concepts are described, and both paralléiarmarchical composition is formally defined
as well as synchronous reactive semantics is integratediar to benefit from existing formal validation
and synthesis tools (Gamatié et al., 2008b; Gamatié et@9)2 In addition to functional specification,
this control model is also adopted in IP deployment for réigamable FPGAS, which is detailed in (Quadri
etal., 2010).

4.1 Mode-based control modeling

Control behavior in Gaspard is expressed through a modeetswased control model, which derives
from mode automata (Maraninchi and Rémond, 2003). The maifoexclusion between modes helps
to separate different computations in a modular way. As altigsrograms are well structured and fault
propagation from one mode to another is reduced. The comtoolel is mainly composed of concepts
such asMlode SwitctandState Graphs

4.1.1 Mode switch and modes

A mode switch contains at least one mode; and offers a switohtibnality that chooses one mode to
execute, among several alternative present modes (Lakbahj 2005). The mode switch in Figure 2a
illustrates such a component havinwedowwith multiple tabs and interfaces. For instance, it hasman

6 H. YU et al.

Mode switch

m [] M M> M3 { My

ig 2 Modez L'l_"- ogq

(a) A mode switch. (b) A state graph.

Macro

0
i > |os
&U__‘ >E§I| o
m
'm

m
—> My [M2 M3 Z My
idl:|:| Modes [F)[ljod

(c) Composition of the concepts.

State graph component

is

le

Figure 2: Basic concepts and their composition of Gaspanttralbomodel.

(mode value input) port as well as several input/outputgsuch as, (data input) and, (data output).
The modes)My, ..., M,, in the mode switch are identified by the mode values; ..., m,,. The switch
between the mode¥; is carried out according to the mode value received throglportm. Each mode
can be hierarchical or elementary in nature. All modes hiagesame interface (i.e4 andoy ports).

4.1.2 State graphs

A Gaspard state graph (Figure 2b), is similar to Statech{at@sel, 1987) and its synchronous variant
SyncCharts (Andre, 2004) and mode automata (Maraninchirénaond, 2003), which are used to model
the system behavior using a state-based approach. A Gagptedyraph is a sextupled(V;, V,, T', M,

F) where:

e () is the set of states defined in the state graph;

e V;,V, are the sets of input and output variables, respectiVebndV, are disjoint, i.e.}; NV, = 0.
V is the set of all variables, i.e\; U V,;

e T C Q xC(V)xQ is the set of transitions, labeled lzpnditionson the variables o¥/. The
conditionsC' are Boolean expressions oh

e M is the set of modes defined in the state graph;
e F'C () x M represent a set of surjective mappings betw@eand M .

Gaspard state graph is considered as a graphical représemBtransition functions as discussed in
(Gamatié et al., 2008a), hence there are no initial statirsede Eachstateis associated with some mode
value specifications, antfansitionsare conditioned by some events or Boolean expressions.

Adaptivity in High-Performance Embedded Systems 7

4.1.3 Composing mode switch and state graph

A component, whose behavior is exhibited by Gaspard statehgs, is calledtate graph componeni
mode switch component indicates a component implementmgde switch. Then enacrocomponent
can be used to compose state graph component and mode sesiigfoents together. The macro in
Figure 2c illustrates one possible composition, i.e., ottempositions are also possible. For instance,
one state graph component can be associated with several smotth components. In the macro, the
state graph component produces a mode value (or a set of mbgesyand sends it (them) to the mode
switch component. The latter switches the modes accondingl

4.2 Composition definitions

Composition of the control model is detailed in this papee ¢l the requirements of expressivity and
verifiability. The parallel and hierarchical compositicastbeen formally defined so that complex systems
can be specified and system behavior is clear and verifiabsoime formal verification tools. With the
clear composition definition, it is also possible to abdgttlae control part of a system in order to make the
verification more efficient.

4.2.1 Parallel composition
The parallel composition can be specified in two ways: conmgostate graphs directly or composing
state graph components. The first one is similar to the ghredimposition defined in SyncCharts and
mode automata. The second one is considered as normal @aspaponent composition.

A set of state graphs (Figure 3) can be composed togethercdingosition of state graphs in this
manner is considered gsrallel compositionFigure 3 illustrates a parallel composition example. The
two state graphs are placed in the same ellipse, but seddmatedash line.

Figure 3: An example of the parallel composition of statgpfgsa

Two state graph&': = (Qt, Vi1, VI, 7Y, MY, F') and G?: = (Q?, V2, V2, T?, M?, F?) are
considered here to illustrate the composition. The Contiposbperator is noted adf. The parallel
composition is defined as:

(Ql, ‘/;1, ‘/;1’ Tl, Ml, Fl) ” (Q2’ ‘/;2’ Vo2’ T2, M2, F2)
=((Q' x @), (V UVA\(V) UV, (V UV, T, (M! x M?), F),
where

F={(q",d*), (m*, m*)¢*, m") € F* A (¢*, m?) € F?},

8 H. YU et al.

and
T={(q", 4%, C, @, ®Ng", C*, ¢") e T* A (g%, C2,¢*) € T?},

where(is a new expression oi* andC?: C' = C! and C?, and ¢/} U V2)\(V,} U V.2) implies any
output variable is not considered as an input variable irctireposed graphs, hence it should be removed
from the input variable set.

These state graphs in a parallel composition can be triggerearry out transitions at the same time,
upon the presence of the source states and events of bothateogsaphs. Moreover, the number of
transitions fired is supposed to be always the same for thase graphs, i.e., the inputs of these state
graphs have the same size.

As state graph components are considered as normal Gagpapboents, the resulting component
composed of several state graph components can be alsdemtsas a normal Gaspard component. The
composition of state graph components is illustrated withxample in Figure 4. State graph components
can also be composed with other Gaspard components. Buthaitthe interfaces of these state graph
components should be coherent, i.e., it ensures the sansitiva rate of state graphs. In addition, state
graph components can also be composed with standard Gaspawgbnents, which can specify the
control out of capacity of state graphs, e.g., some binaeyatpns on events or conditions on numbers.

SGT

SGT1

e C)———>{) model

mode
e2

es

e3
sStatel

—() tStatel
sState tState
SGT2
el
€2 ¬ el mode2
al o‘o all mode
e2
tState2
sState2 el ¬ €2 tState

sState

Figure 4: Parallel composition of state graph componen@saapard.

4.2.2 Hierarchical composition

Hierarchical composition of state graphs is defined sintdahat of SyncCharts and mode automata. A
state in the state graph A can be refined by another state gaphere B is considered as sub graph of
A. Consider a state grapfi: = (Q, V;, Vo, T, M, F) where@ = {qo, ¢1, --., gn } and a corresponding
set of refining automatéG*} (.. WhereGy, = (QF, Vi¥, V¥, T*, M*, F*). The composition can be
defined (inspired from (Maraninchi and Rémond, 2003)) as:

Gr {Gk}kE[O,n] = (Q/7 ‘/7;17 Vo/7 Tla Mla F/)

where

Q/ = Q > {Qk}kE[Om] = UZ:O{qk > Qf | j € [07 nk]} ’

Adaptivity in High-Performance Embedded Systems 9
Vo=VoUlimoVs
Vi=(ViUUimdVIONVS

T ={(¢"> a5, Cq" | (¢",C,q%) € T A j1 € [0,n*]}
U{(qk > q.;‘fla (C A _‘V(qk,cm,q‘l)eT Cm)7 qk > qécz) | (q;§17 Ca q;€2) € Tk A j? € [07 nk]} !

M’:MUUZZOM’f ,
and
F'={q,q", .., q"), (m,m*, ..., m") [(¢, m) € F A(¢",m') € F* A ...A(¢", m™) € F™}

¢"> ¢} denotes the statg® is refined by the statg®. 7" has two kinds of transitions{(¢* >

q}, Coq* | (¢¥,C,q%) € T A jr €[0,n*]} implies the transitions off, andg* and¢? denotes the source
and target state respectively. A5 is refined by states af*, ¢" > ¢¥ is used instead of". The target
state is also a refined stategdf however, which state is entered is decided at run time. étqﬁi:is used
instead{(¢" > ¢, (C A=V (e ¢, giyer COm), @ > a) | (45,5 Cs ¢f,) € TF A ja € [0, 2]} denotes the
transitions inG*, i.e., these transitions are fired when no transition&'bfare fired. This condition is
expressed by=\/ .« o 4aycr Om- g}, @andg}, denote the source and target states of a transiti@#in
Figure 5 shows an example of the hierarchical compositicstate graphs. In this example, the stste
is refined by the state graph composed of st&teand.S5, denoted by53 > 54 andS3 > S5.

el ¬ e2

Figure 5: An example of hierarchical composition of stat&pins.

Hierarchical composition using both state graph compa@w@mi mode switch components can be also
achieved. In this case, an state graph component acts as @imadmode switch component, thus it
is only activated in this mode. The mode switch componentfioee defines the collaboration between
its corresponding state graph component and other stgih gtanponents acting as modes, where state
graphs of the latter act as state refinements of state grdphe dormer. An example is illustrated in
Figure 6. The state graph associated wWiti7T; has three statess;, S. andSs, which correspond to
three moded/;, M, and M3 respectively. In thé/ ST, SGT> is defined as the mod¥s, i.e.,SGT5; is
activated only wher$s is active. Hence the state graph$7T; is considered as a refinement (sub state
graph) ofSGTi's Ss.

4.3 Reactive semantics

Basic Gaspard control constructs have been presentechtefire, but its explicit semantics is still
not given. We propose to integrate reactive semanticsjregsfirom mode automata (Maraninchi and
Rémond, 2003), in order to confer certain expected progerélated to safe design as well as enhance
design correctness verifiability. The integration resdltttee control model is called Gaspard mode

10 H. YU et al.

RT

MACRO [*]

Tilerg

Tiler
T , 0
LI L |-m

%] Tilerg

= ! Og1
Om 'Ij:" Tilerg 042
Og ::I:: Tilerm 042

Figure 6: Hierarchical composition of state graph comptsmenGaspard.

automata. The basic structure of Gaspard mode automatassnied by a composition of state graph
component and mode switch component, i.e., Aiecro in Figure 2c. The state graph component in

this macro structure acts as a state-based controller anchdldle switch component achieves the mode
switch function. Compared to mode automata, where compuatasre set in the states, the computations
in Gaspard mode automata is placed in the mode switch compdree, outside of the Gaspard mode

automata states. In Gaspard mode automata, a state gragorent and its associated mode switch
components are expected to be specified in the same repetitidext in order to force the same executing
cadence upon all the components.

There is also the incompatibility between specificationsfarallelism in Gaspard and sequential
trace semantics of automata. Hence, the parallel model ipeathonto a timed model through the time
dimension defined in Gaspard. In addition, additional aorass {nter-repetition dependen@anddefault
link) are used to build a connecting link between the precedinigtlaa following states of state graph
components. More precisely, IRD specifications should tecifipd for the macro structure when it
is placed in a repetition context. The reasons are as folltwesmacro structure represents only one
transition from source state on target state, whereas agBhspode automata should have continuous
transitions. Hence the macro should be repeated to enabitpl@transitions. Thus the Gaspard mode
automata can be built and executable.

4.4 A Gaspard mode automaton example

Figure 7 shows a Gaspard mode automata example, which caarstarmed into synchronous mode
automata eventualili/ AC RO is placed in a repetitive context, where each of its repetitimodels one
transition of mode automata. AhRD links the repetitions of\f AC RO and conveys the current state
(sends the target state of one repetition as the sourcacthinext repetition) between these repetitions.
The states and transitions of the automata are encapsuidteslSGT'. The data computations inside the
mode are set in the mode$GT and its modes share the same repetition space, so they e sdne
rate or clock. The detailed formal semantics of Gaspard naodiemata can be found in (Gamatié et al.,
2008a).

Adaptivity in High-Performance Embedded Systems 11

MACRO [x]

Is DefaultLink .ao . L9 Tiler - o
le . - E"]J to’ [[E r om
Tilery ie om Tilerg

MST

L My My M3

od

i
Ig [1] d MT3 Og
Tilerz LIJ [|] [|] Tilers; [‘]

Figure 7: An example of Gaspard mode automata.

4.5 Abstract syntax of the control model

Models and their transformations sometimes are big in simkteave divers technologies or domains
involved, which leads to difficult understanding, mainteceand verification (Combemale et al., 2006;
Mohagheghi and Dehlen, 2008; Chen et al., 2005). The exteooigrol model and its transformation is
first described using abstract syntax (Figure 8), as alislyatax helps to concentrate on domain-specific
concepts, models, and their transformations are thereforglified and easy to be verified, particularly
the coherence between the models involved in the transtama

HTask = {Task}; {Connection}; { Deployment} (r1)
Task = task_id; Interface; Body (r2)
Inter face = 4,0 : {Port} (r3)
Port = datatype ; shape (rd)
Body = Structure® | Structure” | Structure™ | Structure™ | Structure®? (r5)
Structure® = null (r6)
Structure” = t;:{Tiler}; (r,Task); to:{Tiler}

| t; : {Tiler} ; (r,Task); to:{Tiler}; {IRD} (r7)
Tiler = Connection ; (F;o; P) (r8)
Structure” = HTask (r9)
Connection = pi, Po : Port (r10)
Structure™ = {(mg, Tk) : (mode_id, Task)}, Vi # j

= T;.Inter face = Tj.Inter face

& Task.Inter face = Ty.Inter face U pm, (r1l1)
Structure®? = sg_id; S; Tr; sc; mo; reset (r12)
S = {(state_id, Mode) | (state_id; Structure®?; Mode)} (r13)
Tr = {(state_id; label; state_id)} (r14)
IRD = Connection ; dep_vector; default (r15)
Deployment == {ip_id; task_id; depl_info} (r16)

Figure 8: An abstract syntax extract of Gaspard conceptsifationality specification.

A GaspardHTask (rule (r1) in Figure 8, wherg[} denotes a set; we call a Gaspard component
as a task from the viewpoint of programming language herayists of a set offasks Deployment
andConnectiongr10), which connect the tasks. These tasks share common fedt@jeatask id an
interface(r3) and aBody(r5). Interfacespecifies input/outpuRorts (typed byi oro in rule (r3), and
Port is defined in rulgr4)) from which each task receives and sends multidimensionays Taskhas
many types, including elementary, repetitive, hierarahimode switch, and state graph task. The type of
aTask is identified by the structure in thigodyof the task. These task types are described as follows:

12 H. YU et al.

e An elementary tasKr6) corresponds to an atomic computation block. Typicallygjpresents a
function or an IP. Elementary task can be associated wittiPahrbughDeployment

e A repetitive taskr7) expresses data-parallelism in a task. The attribte the rule(r7)) denotes
therepetition spacéor repetitions. In addition, patterns involved in eactkteepetition are defined
viatilers (r8). IRD can be also specified in a repetitive tsk5), which describes the dependency
between repetitions of the repetitive taslkep_vectorspecifies which repetition relies on which
repetitions andlefaultgives a default value.

¢ A hierarchical task(r9) is actually a HTask. It is represented by a hierarchical l&ctask graph, in
which each node consists of a task, and edges are labeleddyg axchanged between task nodes.

e A mode switch task-11) achieves mode switch function as presented in Sectiontdslcémposed
of tasks as mode, which have the same interface. The inteofadbe mode switch task is the union
of the interface of its internal tasks and the mode port,p,g.

e A state graph taskr12) is associated with Gaspard state graphs that provide mddesvéor
corresponding mode switch tasks. It is composed of a sstatés(r13) andtransitions(r14). A
resetflag indicates reset of current statefor a state graphn,, denotes the output mode.

Deployment(r16) indicates how to find and integrate an implementation, cmred as an IP, of
a specific elementary task. Each elementary task is asedcwith an IP, andlepl_info describes
necessary information for the integration of the IP intoskistem.

5 Transformation into the synchronous model

In Gaspard, the proposed control has been applied on furattgpecification, IP deployment, etc. The
corresponding model transformations are also under derredat. Here the transformation from Gaspard
control integrated into functional specifications to symetous languages (Benveniste et al., 2003) is
illustrated. The latter is used for the formal validatiorGdspard models. The transformation is described
with the help of the abstract syntax of both the Gaspard manigthe synchronous equational model.

A code segment of the synchronous dataflow language Lustar@=9) is used for the introduction
of some basic concepts here. A node is a basic functionatityim Lustre. Each node gives the same
results with the same inputs because of its determinismeBlddve modular declarations that enable
their reuse. Each node has an interface (input at line (Ifl)anput at (12)), local definition (I3), and
equations (line (I15) and (16)). Variables are called signalLustre. Equations are signal assignments. In
these equations, there are possibly node invocationsh@ pre declared outside this node. Obviously, in
Lustre, modularity and hierarchy are inbuilt. The composibf these equations, denoted by “;”, means
their parallel execution w.r.t. data-dependencies. Thi#erttas the same meaning independently of the
equation order.

node node_nane (Al:int”"4) (12)

returns(A3:int"4); (12)
var A2:int"4; (13)
| et (14)
A2 = a_function(Al); (15)
A3 = Al + A2; (16)
tel (17)

Figure 9: A simple example of Lustre code.

Adaptivity in High-Performance Embedded Systems 13

5.1 Synchronous equations abstract syntax

This abstract syntax is constructed based on common aggagtschronous languages, which is intended
to model three synchronous dataflow languages such as |8#greal, and Lucid synchrone. The syntax
is illustrated in Figure 10:

Module = {Node} (s1)
Node := nodename ; Interface; EqSystem (s2)
Inter face = Interface’; Interface® (s3)
Inter face' = {SignalDeclaration} (s4)
Inter face® := {SignalDeclaration} (s5)
Signal Declaration = signal ; DataType (s6)
DataType := type; shape (s7)
EqSystem := {Equation} | CaseEquations | Autmata | extnodelink (s8)
Equation := FEqLeft; EqRight (s9)
EqLeft = null | signal (s10)
EqRight := signal | SignalDelay | Invocation (s11)
Invocation := nodename ; {signal} (s12)
CaseEquations = case; {(modevalue, Equation)} (s13)
Signal Delay = signal ; delayinstant ; {defaultvalue} (s14)
Automata = aut_id; S; Tr; si; reset (s15)
S = {(state_id | (state_id ; Automata)} (s16)
Tr = {(state_id; label ; state_id)} (s17)

Figure 10: An abstract syntax extract of basic synchrononsepts.

Only a brief description of synchronous languages’ synsagiven here. A more detailed description
can be found in (Yu, 2008). AVode is defined as a basic functionality. All the nodes in an ajpyibn
are declared in a module1)). A node (2) is composed of nter face and EqSystem. The Inter face
has two familiesInter face’ andInter face® (s3). An EqSystem is the body of a node and defines the
function of the node. A2 qSystem (s8) can have at least onéquation, Case Equations, Automata,
or anextnodelink, which indicate four implementation types of thg System. An Equation is either
an assignment of aignal, Signal Delay or anInvocation of another nodesQ, s10 ands11). Signal
andSignal Delay are variables used in the program. Amvocation indicates a function call to another
node defined in the module. Base Equations contains a case statement where equations are activated
according to some condition such as mode valué8)(A SignalDelay is similar to thepre operator
(Benveniste et al., 2003), which takes the value of the s$iginthe previouslelayinstant instant §14).
delayinstant is defined as a positive integer.da f aultvalue is a default value of a signal when no value
is provided for the previous instartutomata (s15) have anS (set of statess16), T'r (set of transitions,
s17), an initial states;, and areset flag. Thereset implies a restart of the automata, i.e., the initial state
s; is taken as entering state. Finally artnodelink indicates an external implementation of the node, i.e.
a node is implemented by other languages.

5.2 Transformation between the two models

The first step of transformation is structural, and the sdcstep involves semantic aspects. The
correspondence in the transformation between Gaspardyaetirenous concepts is indicated bgb

In order to distinguish the concepts of Gaspard and the sgnolis model, the number of the rule, in
which the concept appears in the syntax, is also given innplaeses following the concepts. The rule
numbers of Gaspard concepts begin with r, and those of sgnotis model start with s.

5.2.1 Structural transformation
The synchronoubslodule(sl) is the container of all nodes. A Gaspétiask(rl) is first translated into a
Node(s2): HTask== Node A Task(r2) is also translated intoMode Task==> Node An Interface(r3)

14 H. YU et al.

can be translated intoterfaceqs3): Interface== Interface A Port (r4) in aninterfaceis a connection
point of a Gaspard task, it is translated intsignat Port =z signal

A Body(r5) represents the internal structure of a task. It can bsidered as akqgsysten{s8): Body
=z EqgsystemFive kinds of structures are involved in a bodySA-ucture® (r6) represents the structure
of an elementary task, and the deployment will be used tgiate an IP for this task. Atructure”
(r7) is translated into a set efjuationgs9) (Yu et al., 2008b). AStructure” (r8) is a structure that has a
compound task, i.eHTask A Structure™ (r11) corresponds tGaseEquationés13):Structure™ =
CaseEquation®A Structure®? (r12) can be translated into eith@aseEquationés13) orAutomatas15):
Structure®d == CaseEquationsr Structure®d L. Automata Finally, Deploymentr10) is translated
into anextnodelink(s8), which indicates the integration of an external imp}elation:Deponmené
extnodelink

5.2.2 Transformation of behavioral aspects

In addition to structural aspects, transformation als@lvies behavioral aspects of Gaspard specifica-
tions. These aspects include the transformation of pdisatieand control. The former, which includes
elementary, repetitive, and hierarchical task transfdionahas been presented in (Yu et al., 2008b). The
latter, including mode switch and state graph tasks will fes@nted here.

IRD (r15), which enforces serialized execution and passessabetween repetitions, is translated
by SignalDelay(s14):IRD =z SignalDelay A SignalDelayis used to convey the previous value of a
signal.Depvectoris translated byjelayinstantdepvector:T> delayinstantThese two concepts are used
to indicate which previous value to take in Gaspard and symaius program.

A Structure™® (rll) corresponds t€aseEquationgs13). Each pair ofiGy, T3), i.e., a mode, is
translated intorfiodevalue, Equatigin a case statement. Theodevalués the condition ané&quationis
invoked when the corresponding condition is evaluateduss ffheEquationrepresents the computation
to carry outin a mode.

A Structure®? (r12) is translated into eitheCaseEquation$s13) orAutomata(s15) according to
target languages. The former translate state graphs imgmuations with case statements, while the
latter is a direct transformation which keeps explicit stame of states and transitions.

6 Implementation within MDE

This section concentrates on the implementation of praslomentioned control modeling and transfor-
mation in the MDE framework, based on conceptual descrigtaf models and their transformation.

6.1 Gaspard control metamodel

UML (Object Management Group, 2007b) is adopted in Gaspardpecify state graphs, which is

actually a subset of UML State machines. It also helps to renthe compatibility between Gaspard
control with the MARTE profile. An extract of the Gaspard amhtnetamodel is illustrated in Figure 11.

This metamodel is proposed as a subset of the UML State nexhietamodel in structure so that the
compatibility between them simplifies the following tramighation.

6.2 Model transformation

Based on the previously presented transformation on thedition of abstract syntax, model transfor-
mation rules are built on OMG Query / Views / Transformati¢@bject Management Group, 2005) tools
such as MOMOTE tool (MOdel to MOdel Transformation Engin®)RIA DaRT team, 2009). Most part
of the transformation from Gaspard to synchronous langsibgs been developed as Eclipse plugins
(Yu et al., 2008b). An extension is expected to cover trams&tions to other platforms. Here, only
an example is given in Figure 12 to illustrate the resultintpmata (Lustre mode automata) obtained
from Figure 2(b). Equations of data-parallel processiregrant included in this example as Lustre mode
automata is only used for model checking purpose.

Adaptivity in High-Performance Embedded Systems 15

<<m lass>> L <<m lass>> -
etaclass .1 +ownedBehavior. etaclass <<enumeration>>

Component B Behavior PseudostateKind

initial
deepHistory
shallowHistory

+submachine <<metaclass>>
0.1 StateGraph
<<metaclass>>
NamedElement
+stateMachine
0.1
<<metaclass>>
NameSpace <
1.* <<metaclass>>
+region NameSpace
<<metaclass>>
<<metaclass>> Region Lcontainer
NamedElement 1
*
Tredion +trangition
. <<metaclass>>
<<metaclass>> |-tsource +outgoing Transition
Vertex 1 * .1
+target +incoming |
1) 0.1
T <<metaclass>> *
NameSpace +tridger
<<metaclass>>
0..1] +state Trigger
<<metaclass>> <<metaclass>> 0.1
Pseudostate | +connectionPoint +stat, State +effect
% 0.1 0..1 +doActivity,| < <metaclass>>
i 0.1 Behavior
+submachineState
*

Figure 11: An extract of GaspastateGraphwhich is proposed according to the metamodel of UML
state machines.

AUTOVATON aut o

STATES
sl init [state = sl1; nmode = M.,;]
s2 [state = s2; nmode = M2;]
s3 [state = s2; nmode = M3;]
TRANS

FROM s1 TO s2 WTH
FROM s2 TO s1 WTH
FROM s1 TO s3 WTH
FROM s3 TO s1 WTH
FROM s2 TO s3 WTH el = true and e3 = true]
FROM s3 TO s2 WTH e2 = true]

PROCESS auto [in(el, e2, e3), out(state, nopde)]

el = true and e2 = true]
el = true]
e3 = true]
el = true]

—_ o ————

Figure 12: An extract of a Lustre mode automaton obtaineddnsformation.

7 Some applications

Gaspard is well-fitted for applications with repetitive algarallel computations, which include image
processing, multimedia video codecs, software-based r@util radar signal processing, etc. A modern

16 H. YU et al.

cellular phone is then taken as a typical example in this paphich have complex multimedia
functionalities: camera, games, MP3 music, video. Let gsi$mon the video part. A global model view
of this multimedia module is illustrated in Figure 13. Thays#d video clips are obtained from different
VideoSourceseither on-line library or local storage. There are différdisplaylmageStylesuch asBBlack

& White; Negative Sepig or Normal meaning no effect. In addition, tiResolutiorof the video can be
set toHigh, MediumandLow. Finally, the color can be in eith&olor or Monochromefor ColorEffect
options.ImageStyleResolutiorandColorEffectinclude both control and data processing parts.

Besides user commands, the video display modes are ceuwtriojl the system by th€ontroller,
which validates mode change requests from other compoaentsding to current mode configuration
and the available computational resources. This specifipoment is either coded manually, or generated
automatically bydiscrete controller synthesiaccording to QoS requirements, including the status of
energy level EnergyStatusand the communication qualifCoémmQuality. The former indicates the
energy level according to events received from an energyitorocomponent, and the latter provides
the communication quality level according to the energglend the on-line transmission bandwidth of
received data.

<<component>>
CellePhoneExample

event_energy i sv : Controller

[] event_energy

es : EnergyStatus 5]
[]
event_energy mode_out [{1}]

. event_comm_quality ctr_color
aut_color

cq : CommQualityS]
[| mode_energy

[] event_computing_resource

event_comm_quality [{1}]

ctr_resolution

levent_comm_quality aut_ q
r
ctr_image_style|

event_image_style aut_image_styl

[| event_color

event_computing_resource [{1}]

event_resolution ctr_video_sourc

aut_video_sourc:
event_video_source mode_colol
mode_vi mode_resolution mode_i

event_color [{1

L

L
I
L

event_image_style [{1}]

event_resolution

ctr_ideo_source [f1)] aut.video_s

event_video_source [{1}]

vs : VideoSource 5|

ctr_resdlution [{1}]

aut_res|

camera_video [{B20,:

r : Resolution

local_video [{321

o
o local_video

online-video [}
i
online-video

Figure 13: A global model view of the multimedia functiorglinodule.

The above module has different configuration modes follgwirmich its components achieve algo-
rithms for a suitable image display. Depending on the resostatus, e.g., energy level, communication
bandwidth, the display quality of an on-line video variegnde, each mode is associated with non-
functional properties, which must be satisfied in order §pldiy images at a good quality level. The modes
defined in the components are characterized by quantitativibutes representing the following non-
functional properties: energy consumption (E), commutivcaquality required (CQ), computing resource
consumption (CR) and memory consumption (M). These nowtional requirements are considered as
instantaneous consumption of quantitative resourcesitagtvary from one system reaction to another.
The values associated locally with the modes are combinditi@thlly when components are composed
in parallel, so as to obtain global costs for the whole sydtem the local costs of its components.

Possible behaviors involving the above characteristies eug., that the consumption of a resource
must respect the bounds defined by its capacity. Therefoaenéw functionality is executed, then the
other tasks that are already running should switch to lowesamption modes, possibly reducing their
quality as well. Or, if the level of the battery goes down,rthiee control should switch task modes so

Adaptivity in High-Performance Embedded Systems 17

that the lower energy capacity is respected. Such contaiksgfies are defined by properties expressed in
terms of the states and inputs of the system. The Sigali Mai¢hand et al., 2000) allows one to express
Boolean properties on states and inputs " — B), and to build cost functions, associating numerical
values (here, assumed to be integer, without loss of getyeraith Boolean functions of states and inputs
(f : B® — N). We essentially considénvariance by specifying a subset of system states, defined by a
Boolean property”: P is invariant for the system if for all states in this subsetnsitions from these
states lead to states in the same subset. This invarianpgenty®f the system is notedd P: the Boolean
propertyP is true at every instant of every trace of the system.

7.1 Model checking

Design validation through model checking of functionalpedies was first studied (Yu et al., 2008a).
One of the examples is an exclusion relation between two méden two different components. For
instance, in order to avoid waste of resources, it can beilge$pecify that the modes B&WrageStyle
component) and ColorQolorEffectcomponent) are never active at the same instant. This aveei
property is denoted/O (B&W A Color). Nonfunctional properties, for instance, resources miediby
the environment, platform or hardware, can also be chedkgdssociating each state of the automata
with cost functions, a global cost function has been contbwteen composing these automata in parallel.
This global function defines, for each resource, the sumsafast functions computed from all possible
combination of active states in the global automaton. Aues®bound is then specified in the system.
Finally, the reachability of certain states is checked wrties configuration of resource costs. This
example shows a fast verification in consideration of fuorai and/or nonfunctional properties in order
to to evaluate complex systems at a low cost in a fast manoempared with other approaches that need
to specify the system in a precise way (Yu et al., 2008a).

7.2 Discrete controller synthesis

Another example involves discrete controller synthesian(@tié et al., 2009): for a cost function where
the global cost is defined by the sum of the local costs of thepmments, e.g. for memory footprint,
there is a bound defined by the size of the memory. Thus, if we bp /1 = frs + fvs + fr + fcE
the cost function associating with each global state of t{fstesn, the memory usage in this state, we
can enforce the fact that this usage will always be boundeth&ymemory available (her€(units),
by the invariance synthesis objectivéa (fa; < 90). The bound itself can vary in time: it is actually
the case for the available energy. In this case, we add to odehan automaton which represents the
environment, namely here the energy resource availablead§eciate a cost functiofiz4 with this
automaton, associating with its states the energy quansitgntaneously available. Then, we can bound
the energy consumptiofy: by the available energy'0(fz < fra).
With these synthesis operations, different policies oateffies can be obtainexltomaticallyby
changing the objectives, hence providing for separatiaooterns and making the models easy to reuse.
The controller computed by Sigali is extracted, and co-ated with the system with theiGAL Simu
tool. Figure 14 shows a particular simulation step, wheee ¢hntroller enforces the values of two
controllable inputs so as to keep the properties satisfiedhi& step, the system is in high energy,
high resolution, and color state. We then simulate the digygh of the battery by the occurrence of
the uncontrollable inpuevent _ener gy_down. On the controllable inputs panel, the clearer inputs
shown with ellipsis are those whose values have been forgéebcontroller. It is here the case of the
inputct r _r esol uti on, meaning that the controller has triggered the transitiomfhigh to medium
resolution state.

7.3 Hardware synthesis

The control model has also been applied to move from high M¥RTE specifications to reconfigurable
architectures such as FPGAs, and specifically those supgquartial dynamic reconfiguration. The
continuation of this work is in progress in the project FAMSUn which the OMG MARTE profile will

18 H. YU et al.

Incontrollables

event_energy_ down TRUE

event_energy_up -
event CommAQuality up -

event |

Controllables

aut_image_style

a

€v

evel .
aut_resolution

even]
aut_video_source

vzl ctr_color

event | otr image style

even,

event |

Figure 14: Simulation of the controlled system

be extended into RecoMARTE, for the design of reconfiguralihitectures, implemented on FPGAs. In
addition, slight extensions have been made to the existngal/data flow concepts and the deployment
level in our framework to integrate the partial dynamic neftguration aspects. An initial version of

generating a complete IP core from model transformatioeslsd been developed, along with a solution
to avoid de-synchronization related to task parallelistthenmodeled applications (Quadri et al., 2010).

Currently the Xilinx based partial dynamic reconfigurataesign flow is adopted due to its availability
and extensible nature.

8 Conclusions

This paper presents a reactive control model and its tramsfiion in a model-driven engineering-
based SoC co-design framework for high-performance systerhich is compliant with the MARTE
standard. The control model is based on mode automata in tré@able the specification of adaptivity
for high-performance systems. Our contribution is thegra&ion of composition and formal semantics
into this model to enrich its expressivity and verifiabiliModel transformation towards synchronous
languages has also been studied in order to benefit fromatimiidtools associated with these languages.
Furthermore, the extended control is also integrated indsp@rd IP deployment for reconfigurable
FPGAs, besides functional specifications. The model istitated with its abstract syntax, based on which
a conceptual transformation is given. An implementatiothefmetamodel and model transformation in
Eclipse has been carried out, and it is partially accometsh

One perspective of this work is the application of the cdntrodel towards other target technologies
such as SystemC. Reconfigurability is also a very intergatasearch topic in these platforms. Our
control proposition is one of possible solutions, whichetddigh-performance computing into account.
Another perspective is related to the implementation ofcthretrol model, its transformation, and formal
verification in the unique framework of model-driven engiring. The backstage technologies should

Adaptivity in High-Performance Embedded Systems 19

be made transparent to users and the only interface to usersl Wwe an integrated development and
simulation environment, such as Eclipse.

References

E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. MaessiRy&I, G. L. S. Jr., and S. Tobin-Hochstadt.
The Fortress Language Specification Version 1.0 Beta. Tealmeport, Sun Microsystems, Inc., March
2007.

C. Andre. Computing SyncCharts Reactioktectr. Notes Theor. Comput. S@8:3-19, 2004.

A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. ler@ig, and R. D. Simone. The Synchronous
Languages Twelve Years Latd?roceedings of the IEE®1(1):64—-83, 2003.

P. Boulet. Array-OL revisited, multidimensional intensigignal processing specification. Research
Report RR-6113, INRIAhtt p: // hal .inria.fr/inria-00128840/ en/,February 2007.

P. Boulet. Formal semantics of Array-OL, a domain specifigleage for intensive multidimensional
signal processing. Research Report RR-6467, INRIA, Maf82

D. Callahan, B. L. Chamberlain, and H. P. Zima. The Cascad Hiroductivity Language. I8th
International Workshop on High-Level Parallel ProgrammiModels and Supportive Environments
pages 52—60. IEEE Computer Society, April 2004.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. KieldttaEbcioglu, C. von Praun, and V. Sarkar.
X10: an object-oriented approach to nonuniform cluster poting. In20th annual ACM SIGPLAN
conference on Object oriented programming, systems, gegs) and applicationsiumber 519-538,
New York, USA, 2005. ACM Press.

K. Chen, J. Sztipanovits, S. Abdelwahed, and E. K. Jacksoremastic Anchoring with Model
Transformations. IfEuropean Conference on Model Driven Architecture Fondetiand Applications
(ECMDA-FA'05) pages 115-129, 2005.

B. Combemale, S. Rougemaille, X. Crégut, F. Migeon, M. RafteMaurel, and B. Coulette. Towards
Rigorous Metamodeling. IMDEIS, pages 5-14, 2006.

Esterel Technologies. SCADE:t t p: / / ww. est er el -t echnol ogi es. com 2009.

A. Gamatié, E. Rutten, and H. Yu. A Model for the Mixed-DesighData-Intensive and Control-
Oriented Embedded Systems. Research Report RR-6589, INRIAp: //hal .inria.fr/
i nria-00293909/fr, July 2008a.

A. Gamatié, E. Rutten, H. Yu, P. Boulet, and J.-L. DekeysgncBronous Modeling and Analysis of Data
Intensive Applications EURASIP Journal on Embedded Syste@®08b. URLht t p: // dx. doi .
or g/ 10. 1155/ 2008/ 561863. Hindawi Publishing Corporation.

A. Gamatié, H. Yu, G. Delaval, and E. Rutten. A Case Study omt@der Synthesis for Data-
Intensive Embedded Systems.Sacond International Conference on Embedded SoftwarestdiBs
(ICESS09)pages 75-82, Los Alamitos, CA, USA, 2009. IEEE ComputeiedpcISBN 978-0-7695-
3678-1. doi: http://doi.ieeecomputersociety.org/10YICESS.2009.12.

A. Gamatié, S. L. Beux, E. Piel, R. B. Atitallah, A. Etien, PahMuet, and J.-L. Dekeyser. A Model
Driven Design Framework for Massively Parallel Embeddest&ys ACM Transactions on Embedded
Computing Systems (TEG2P10. (To appear).

A. Girault, B. Lee, and E. Lee. Hierarchical Finite State Miaes with Multiple Concurrency Models.
IEEE Trans. Computer-Aided Design of Integrated Circuitsl &ystemsl8(6):742—760, June 1999.

20 H. YU et al.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The sgnclus dataflow programming language
Lustre. Proceedings of the IEEE9(9), September 1991.

D. Harel. Statecharts: A Visual Formalism for Complex SgseScience of Computer Programmiry
(3):231-274, June 1987.

High Performance Fortran Forum. High Performance Fortramguage Specificatiot t p: / / hpf f.
ri ce.edu/ versions/ hpf2/index. ht mJanuary 1997.

INRIA DaRT team. GASPARD SoC Framework, 2008.t p: / / www. gaspar d2. or g/ .

O. Labbani, J.-L. Dekeyser, P. Boulet, and E. Rutten. Intoiny control in the Gaspard2 Data-Parallel
MetaModel: Synchronous Approach. Rroceedings of the International Workshop MARTE®5.

F. Maraninchi and Y. Rémond. Mode-automata: a new domageifip construct for the development
of safe critical systemsSci. Comput. Program46(3):219-254, 2003. ISSN 0167-6423. doi: http:
/ldx.doi.org/10.1016/S0167-6423(02)00093-X.

H. Marchand, P. Bournai, M. L. Borgne, and P. L. Guernic. 8gsis of Discrete-Event Controllers based
on the Signal Environmenbiscrete Event Dynamic System: Theory and Applicatit@ét):325—-346,
Oct. 2000.

P. Mohagheghi and V. Dehlen. Where is the Proof? A Review gidiiences from Applying MDE
in Industry. In I. Schieferdecker and A. Hartman, editdfsyrth European Conference on Model
Driven Architecture Fondations and Applications (ECMDA}Fvolume 5095 ofLNCS pages 432—
443. Springer, Heidelberg, 2008.

MPI Forum. Message Passing Interface Forum. http://wwiivfionaim.org/docs/docs.html, 2007.

Object Management Group. Portal of the Model Driven EngimgeCommunity, 2007a.ht t p: //
www. pl anet nde. or g.

Object Management Group. OMG Unified Modeling Language (OM@L), Superstructure, V2.1.2.
http://ww. ong. or g/ spec/ UM/ 2. 1. 2/ Super st r uct ur e/ PDF/ , Nov. 2007b.

Object Management Group. Modeling and Analysis of Reaétmmd Embedded systems (MARTE).
http://www.omgmarte.org/, 2008.

Object Management Group. MOF Query / Views / Transformation http://www.omg.org/cgi-
bin/doc?ptc/2005-11-01, Nov. 2005.

OpenMP API. OpenMP 3.0 specifications.htt p: //waww. opennp. or g/ np- docunent s/
spec30. pdf , 2008.

I. Quadri, H. Yu, A. Gamatié, E. Rutten, S. Meftali, and JElekeyser. Targeting Reconfigurable FPGA
Based SoCs Using the MARTE UML Profile: from High Abstractibavels to Code Generation.
International Journal of Embedded Systems (IJES), Spéssale on Reconfigurable and Multicore
Embedded Systen010. To appear.

A. Sangiovanni-Vincentelli. Quo Vadis SLD: Reasoning abbuends and Challenges of System-Level
Design. Proceedings of the IEEE5(3):467-506, March 2007. URhtt p: // chess. eecs.
ber kel ey. edu/ pubs/ 263. ht i .

Semiconductor Industry Assoc. International technolaggdmap for semiconductors update (design).
http://ww.itrs. net,2004.

Adaptivity in High-Performance Embedded Systems 21

J.-P. Talpin, C. Brunette, T. Gautier, and A. Gamatié. Palgnous Mode Automata. IEMSOFT '06:
Proceedings of the 6th ACM & IEEE International conferencetombedded softwar@ages 83—-92,
New York, NY, USA, 2006. ACM. ISBN 1-59593-542-8. doi: hitfoloi.acm.org/10.1145/1176887.
1176900.

The MathWorks. Simulinkht t p: / / www. mat hwor ks. cont pr oduct s/ si nul i nk, 2009.

W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: Aylege for streaming applications. In
Compiler Construction. la1th International Conference, CC 2002, Held as Part of thietEEuropean
Conferences on Theory and Practice of Software, ETAPS,2002me 2304/2002 dfecture Notes in
Computer Scieng@ages 49-84, Grenoble, France, April 2002. Springer BéHieidelberg.

UML tool list. Unified Modeling Language (UML) toolsht t p: // en. wi ki pedi a. or g/ wi ki /
Li st_of UM__t ool s, 2009.

D. K. Wilde. The ALPHA Language. Technical Report 827, IR|$Aance, 1994.

H. Yu. A MARTE-Based Reactive Model for Data-Parallel IntensixacBssing: Transformation Toward
the Synchronous ModePhD thesis, Université des Sciences et Technologie de-lillle I, 2008.

H. Yu, A. Gamatié, E. Rutten, and J.-L. Dekeyser. Safe Desfidttigh-Performance Embedded Systems
in a MDE framework. Innovations in Systems and Software Engineering (IS&B), 2008a. doi:
10.1007/s11334-008-0059-y. NASA/Springer journal ISSE.

H. Yu, A. Gamatié, E. Rutten, and J.-L. DekeyseEmbedded Systems Specification and Design
Languages, Selected Contributions from FDL’'8@lume 10 ofLecture Notes Electrical Engineering
chapter 13, Model Transformations from a Data Parallel Rdism towards Synchronous Languages.
Springer Verlag, 2008b. ISBN: 978-1-4020-8296-2.

