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Abstract

Pervasive systems are intended to make use of services and components that they encounter

in their environment. Such systems are naturally spatial in that they can only be understood

in terms of the ways in which components meet and interact in space. Rather than treating

spatiality separately from system components, researchers are starting to develop computational

models in which the entire structure of a pervasive system is modelled and constructed using an

explicit spatial model, supporting multi-level spatial reasoning, and adapting autonomously to

spatial interactions. In this paper we review current and emerging models of spatial computing

for pervasive ecosystems, and highlight some of the trends that will guide future research.

1 Introduction

A pervasive ecosystem consists of a number of individuals spread throughout an environment

that interoperate opportunistically to achieve their goals in a context-aware manner, but are

also globally governed by some infrastructure rules analogous to the “laws of nature” in natural

ecosystems [Zambonelli et al., 2015, Viroli et al., 2011]. Pervasive ecosystems present a vision

of the near future where services will be personalised to our needs at a particular time, in a

particular location, and for a particular situation; for example in a museum, we can guide the

user to an exhibition hall and then route them to the exhibits inside the hall not only based on

their artistic preference but also according to the real-time crowdedness or events occurring in

each exhibition hall [Stevenson et al., 2013a].

These individuals, their smartphones, software services, pervasive displays, sensors and devices,

augmented with sensing and computational capabilities open up an exciting opportunity for

harnessing very large volumes of sensed information to support the delivery of context-aware

services to human users. The promise of opportunistically networking such devices offers as yet

untapped potential in supporting the dynamic provision of services based on ad-hoc, spontaneous

arrangements of devices, services, and content across an infrastructure with few central points

of control. Therefore, supporting service delivery on top of this large-scale, unstructured, highly-

dynamic substrate presents a challenge, with the combination of spatial computing, awareness

and self-organisation techniques offering intriguing possibilities in the search for a solution.

1This work is supported by the FP7 FET proactive project SAPERE – Self-aware Pervasive Service
Ecosystems, under grant no. 256873.
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Spatial computing provides a flexible framework for distributing, organising, and migrating

resources and devices in a space-aware manner, and more importantly, for coordinating the whole

system following spatial patterns. Context- and situation-awareness allows for customised service

provision adapting to relevant contextual information from ambient sensing devices. On top of

spatiality and awareness, self-organisation techniques provide a means of adapting to changing

environmental conditions – the arrival and removal of resources, the mobility of interacting agents,

and the ever evolving network topology.

In this paper, we review the state-of-the-art approaches to integrating spatial computing with

awareness in pervasive ecosystems. We explore the implications that spatiality is having on the

design of pervasive ecosystems, including what spatial knowledge a pervasive ecosystems often

can acquire or needs to be aware of, how the system design is structured and constrained by

spatiality, and how spatiality is leveraged with awareness to achieve advanced self-organising

applications. We discuss current approaches and push towards a more systematic integration of

pervasive service ecosystem and spatial computing technologies.

Section 2 introduces the background and motivation of a pervasive service ecosystem, from

which we extract requirements on system design in terms of spatiality and awareness. In

Section 3, we describe an awareness spectrum that characterises functionalities from the basic

context representation to more advanced self-organising situation awareness. We review existing

approaches to achieving these functionalities and what role of space has playing in constraining

and structuring these functionalities. The paper concludes in Section 4 with potential directions

towards a better integrated pervasive ecosystem design with space and awareness.

2 Background and Motivation

The emerging proliferation of devices with sensing and networking technologies offers opportu-

nities for delivering pervasive services through interactions between spatially local resources.

Applications are challenged to become aware of their surroundings: to discover, filter, and

reason on information relevant to their goals. Although pervasive service ecosystem may utilise

centralised services where available at an infrastructure level (for example, wifi connectivity inside

a building), they often do not assume the existence of centralised data management services to

which all the data in the network is fed and from which classifications of situations of interest

subsequently flow. This is especially the case for genuinely distributed activities, such as large-

scale spectator events. Consequently, pervasive ecosystems require mechanisms to partition these

responsibilities across the environment’s participants, with awareness arising from the interactions

between many individuals, each exposing aspects of their own state and perceiving the states of

others to further increase their awareness of their surroundings. To explore the key elements of

a pervasive ecosystem, we start from a motivating case study that characterises a wide range of

pervasive service systems in the near future.

Consider an adaptive pervasive advertising display system [Ferscha et al., 2012] where public

displays are deployed in an open environment such as a museum, an airport, a train station,

or a shopping mall. When a user is walking by or present in front of a display, the display will

present advertisement in a context-aware manner; that is, matching to the current environment

context and to the user’s preference. Such implicit and spontaneous interaction is fostered by

pervasive sensing, communication, and computing technologies. A public display can be installed

with various computing devices to gather information about an environment such as weather and

about a user such as attention towards the content being shown on the display. These displays

can communicate with users’ devices like their phones to gather their agenda, mobility pattern,

or preference, with nearby service providers like train timetable or a social event, and as well

as with each other to spread, coordinate and schedule contents in a self-organising manner. Not

only supporting personalised services, displays can potentially be connected to form a large-

scale network so that they can enact global spatial services, such as advertising some content in

certain spatial regions, up to steering people along paths from one place to another. This example
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illustrates the rage of potential spatial interactions in a pervasive service ecosystem, from the very

local, opportunistic interactions with passers-by, to the longer range, potentially (although not

necessarily) supported by existing network infrastructure.

From the above case study, we discuss the three defining characteristics of a pervasive service

ecosystem: awareness, adaptation, and spatiality. A display must be aware of the need and

preference of a user in order to personalise content to attract user’s attention. The awareness

is often achieved from two levels: individual context and situation. At an individual context level,

the awareness is on one physical phenomena such as the time of the day, the season of the

year, or the current weather like raining or snowing, or on one aspect of user information such

as their birthday, marriage anniversary, or a shopping reminder. A situation is defined as an

external semantic interpretation of context [Ye et al., 2012]; that is, a higher-level concept that

abstracts and integrates from disparate individual contexts. For example, a situation can be a

user being interested in the content by reasoning on their attention towards the display and their

personal preference; and another situation can be two friends being co-located by correlating

spatial and social information on each user across multiple display spaces. Here a display space

can be regarded as a region centring around the front of a display.

Displays must adapt their content to the current context and situation in a present and

proactive manner. The system should not only personalise content based on what is happening

right now but also what predictable future situations might be. For example, if the display

perceives the delay of the train that a user normally takes to home, then it can push a nearby

restaurant or bar advertisement to a screen where the user is present.

As a pervasive ecosystem often assumes an open, large-scale environment, global and local

spatiality becomes very important in terms of computation, based on which awareness and

adaptation is linked and bounded. That is, local context- and situation-awareness spreads across

a whole space and other local spaces need to adapt to both their own awareness and the

global awareness. For example, each display can locally build display sequences based on relative

attraction levels by intersecting preferences of its audience and such established sequences can

further be broadcast to other display spaces. The other displays can decide whether they want

to merge with this new sequence and adapt their display strategy.

From the above example, we can see awareness and adaptation is tightly coupled: System

adaptations – changes in system operation or behaviour – are driven by, and predicated on,

observable changes in the environmental state (however simple or complex those state changes

may be). More importantly, both are rooted on spatiality. A pervasive service ecosystem is

characterised by:

• spatial embodiment, in that location is not only the key context that is available in most

pervasive ecosystems but it is also the centre that the other contexts are aggregated and

organised around. That is, we gather together context relevant to a certain local region,

and partition contexts by regions. In addition, awareness often starts from reasoning on

locally acquired context to gain an understanding of what is happening in a local region, and

then forms a global understanding by connecting the local situations following their spatial

patterns. Locality is the key towards achieving distributed context- and situation-awareness.

• spatial interaction, in that location and possible local interactions are the main indicator of

current situation in many applications; for example, a user’s current location can suggest

the user’s goal, task, or activities [Ye et al., 2014]. Furthermore the customisation of service

delivery depends on where resources and users are.

• multiple spatial scales, in that communication between devices is constrained by their

distance. That is, system design decisions are bounded by space, including how to spread

local information to other spaces, how to collect data from sensors widely deployed, and how

to distribute reasoners to cover the whole environment.

• dynamical spaces, in that mobility and dynamism are at the centre of a pervasive ecosystem,

compared to traditional service oriented systems. Devices can join or leave the system at any
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time and they often move around, which presents a major challenge in space-aware ecosystem

design. This leads to one of the important questions that we study in this review: It is not

sufficient to design a system to be aware of space, we must ask how we can use spatiality as

the spine upon which to hang the system’s behaviour.

3 Spatial Awareness Spectrum

Pervasive ecosystems envision a point in the near future where devices will opportunistically

and spontaneously connect with each other to form dense infrastructures. As mentioned above,

awareness, adaptation and spatiality are primary abstractions in this vision. The path towards

realising this vision is paved with substantial technical challenges to support services in becoming

aware of their surroundings: to seek, discover and filter information relevant to their goals, and

to aggregate, interpret and reason over such information to identify situations – semantically

meaningful classifications of states of importance upon which they will adapt their behaviour. To

capture forms of awareness with varying complexity, we present a catalogue of spatial awareness

attainable as a spectrum, illustrated in Figure 1, with basic data representation at one end

and high-level awareness achieved through the collaborations of ecosystem participants at the

other [Stevenson et al., 2013b]. From left to right we mark six points along this continuum

and briefly overview the awareness capabilities available at each. The discussion in the following

parts of this section centres around this spectrum, illustrating how information can be acquired,

organised, aggregated and fused, and delivered, and how complex spatial data structures can

be constructed to support the self-aggregation and self-composition of data [Fernandez-Marquez

et al., 2012b] for the purpose of higher-level reasoning.

Basic Awareness                                                                       Advanced Awareness

Static
Context

Representation

Dynamic
Context

Representation

Local
Context

Perception

Context 
Fusion

Distributed
Context

Perception

Self-Organising
Situation

Awareness

+ =
+ =

Figure 1: The awareness spectrum.

3.1 Context Representation

The representation of static and dynamic states is a basic need of a context aware system. Static

states encompass any information unlikely or less frequent to change, such as a building map or

historic information. Such static states are often engineered as a priori knowledge in the system.

Dynamic states indicate states that often change and are acquired in real time from sensors,

which are used to formulate the current context or situation around a user in an environment.

Among all different types of context, location is considered as a core element in that it cannot

only pinpoint a user’s or a resource’s location but also often acts as an active catalyst for binding

and matching services.

In this section, we focus the discussion on representing location context, which has two levels of

meaning: modelling data in space – describing the relation between an entity and a space (e.g., Bob

is located in front of DisplayX01), and modelling space – describing the relation between spatial

entities (e.g., DisplayX01 is next to the hardware shop). The former representation is pervasive in
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any system or application that can acquire and use location as context. For example, Henricksen

and Indulska [2004] propose a three-value logic to represent location contexts, “Fitzwilliam Darcy

is located at Kitchen” and “Fitzwilliam Darcy is located at DiningTable” from two different sensor

reports. Here Kitchen and DiningTable are discrete and unequal values, and without the help of

spatial knowledge, these two assertions may evaluate to the third logical value – unknown. Space

modelling is the key to enable querying and reasoning on the spatial data to derive a higher-level

knowledge. In the above example, if a dining table is contained in the kitchen, then we can regard

both assertions to be true. Moreover, spatial knowledge can be used to derive that an entity is

in a place more meaningful to applications or is co-located with another entity. In the following,

we review the work in modelling space and move to modelling data in space. We will see space

has very rich semantics which is yet to be fully exploited in the realisation of pervasive systems.

3.1.1 Modelling Space

There are two elementary types of spatial representations: geometric and symbolic. A geometric

representation characterises a space with its geometric shapes and a set of coordinate points

under a certain Cartesian Coordinate Reference System. A symbolic representation characterises

a space with a human-friendly descriptive label. In the following, we focus on LOC8: a

Location Model and Extensible Framework for Programming with Location, which was described

conceptually in [Ye et al., 2007] and developed as a programming framework in [Stevenson

et al., 2010]. LOC8 supports a comprehensive range of spatial representations and enables rich

spatial queries including positioning, range, spatial-relation, navigation, and semantic queries.

LOC8 shares similar design principle with the other early established space models such as the

Location Stack [Hightower et al., 2002], the Aura project [Jiang and Steenkiste, 2002], and the

MiddleWhere [Ranganathan et al., 2004b]. Here we take it as an example to illustrate the state

of the art on the space modelling in pervasive computing.

LOC8 supports representing coordinate points in different coordinate reference systems,

which can be a global standard like WGS84 or locally defined to simplify a region’s spatial

representation. It borrows the simple linear conversion mechanism from Jiang’s model [Jiang

and Steenkiste, 2002] to support translating coordinates points from one reference system to

another by rotating and moving the subject reference system towards the target system. On

top of coordinates, LOC8 defines 2D and 3D geometric shapes, which are further assigned

with a symbolic label. Within LOC8, four spatial relationships are explored: containment,

adjacency, connectedness, and overlap. The names suggest their meanings, and just to note that

connectedness is a particular case of adjacency in which an entity can pass from a space to its

adjacent space. It implies both the passage’s direction and the notion of an accessible distance

between the related locations.

Beyond the above classic spatial representations, LOC8 also supports relative spatial repre-

sentation to enable richer spatial queries: centre and compass. In the centre representation, a

target location is a geometric area such as a circle or a cuboid, whose centre is a coordinate and

whose edge or radius length is the specified distance. This is particularly useful in formulating an

application of finding all the entities within a valid interaction range. The compass representation

involves building a coordinate reference system whose origin is a coordinate and whose rotation

matrix follows the standard compass direction. The description of a target location contains a

distance to its origin; the horizontal angle to the target location, measured clockwise from north,

and the angle of elevation from the horizontal plane. The compass representation is beneficial in

precisely guiding an entity to navigate towards a target in a 3D space. This can help to address

many positioning problems in pervasive computing applications; for example in the Coorperative

Object Detection and Ranging (CODAR) system [M Kranz, 2008] where cars are assumed to be

installed with positioning and communication technologies, the compass representation can help

to automatically detect the presence of the cars, predict the collision possibility, and send an

early warning even when these two cars cannot see each other [Stevenson et al., 2010].
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LOC8 adopts a loosely coupled modelling technique that treats location information indepen-

dently from other forms of context. This allows to treat all locatable objects in the same way,

irrespective of their property structure and use by applications. In contrast, Nexus, an early open

platform for a common augmented-world model [Hohl et al., 1999], distinguishes representations

of the location of static real-world entities from virtual entities with which the real world is

augmented.

3.1.2 Modelling Data in Space

In terms of representing context in space, there are generally two approaches: treating space as

an attribute to describe data, nothing more than any other attribute; and considering space as a

first-class concept managed by the infrastructure.

Most existing space models and context models adopt the first approach. For example, Cohen

et al. [2002] propose a language called iQL to specify the composition of pervasive services.

Location is included and injected by a service; for example, a badge advertisement service injects

a coordinate point of a badge-wearer, with which to find all the neighbour wearers, or a local

business publishes its advertisement along with its zip code so as to locate all the users present

in the designated area. In this way, it is the responsibility of sensors and services to inject and

update the location data, while the infrastructure performs the matching in a passive or active

manner.

The Intentional Naming System (INS) [Adjie-Winoto et al., 1999] supports applications in

identifying resources by their properties rather than physical address. In the INS, resources are

described using intentional names, a hierarchy of attribute/value pairs (called name-specifiers)

that describe the properties of the resource, spatial relations being one key descriptor. A name-

specifier has another name-specifier as its parent, if its context is dependent on it (e.g., an identifier

for the floor of a building is dependent on the building identifier). Resources advertise themselves

to Naming Resolver components, which maintain a mapping between service description and

physical address, while applications use name-specifiers to describe the resources that they

require. At runtime, a name resolver uses resource descriptions provided by the application to

find matching services.

Based on the INS for resource discovery Solar is an infrastructure for collecting, processing, and

disseminating, context from “thousands of diverse sensors . . . to hundreds of diverse applications

running on thousands of devices” [Chen et al., 2004]. Solar decomposes the context-aggregation

process into modular and reusable operations, each of which is an object that subscribes to,

processes one or more event streams, and publishes another event stream. Using an INS-like

scheme, applications can specify the query using a tree of recursively connected operators (starting

from sources and sinking in applications) to collect and aggregate context information. The result

is a distributed directed acyclic graph (called an operator graph).

The above examples adopt an extrinsic approach to representing space, where spaces are

named and used primarily as a means of explicitly identifying where an object is located. By

contrast, some systems take an intrinsic view of space, where digital information is associated

with physical objects, and their surrounding physical space and mobility is leveraged to support

computing process. The spatial configuration of objects and their movements implicitly control

an information system, and there is no explicit space representation beyond the local one

implemented by the physical space itself [Banâtre et al., 2010]. One way in which Banâtre et

al. illustrate this concept is the example of a Ubi-bus system in which a token generated by a

pedestrian while in the area of the bus stop signals the bus stop to requests the bus to stop as

it approaches. It is the spatial configuration of the pedestrian, the bus stop and the bus which

controls the token generation and stop requests.

Zambonelli et al. [2015] adopt a biochemical approach where spatial computations are

structured in terms of chemical-resembling reactions, each occurring in the precise physical point

where the space is located, namely, where the device is deployed. They describe a coordination
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model that is equipped with space-time computing mechanisms, including reification of space-

time information and a relocation service for annotations [Viroli and Stevenson, 2012]. Within

the coordination model, all the entities (including software agents, sensors, or resources) are

described in a uniform representation – a Live Semantic Annotation (LSA). LSAs continuously

represent the state of their associated components and are connected to the domain in which the

information can be produced, interpreted and manipulated.

Here, space is again treated intrinsically. Each LSA carries one property holding one URI

value representing the ID of the location. This property is not specified by the agent that injects

a LSA, but rather created and maintained by the infrastructure. The value in this property

indicates how a local space is shaped around the node that hosts the injecting agent, by locating

nearby neighbours in this node’s vicinity such as their distance, connectivity, communication

bandwidth, and the relative orientation in space. Reifying location into these LSAs enables

dynamic behaviours; for example, a lower-level middleware service can be in charge of intercepting

such LSAs before they are injected in the space, and relocating them to the proper neighbour,

by an asynchronous request [Viroli and Stevenson, 2012]. The update and maintenance of reified

locations is governed via eco-law in the infrastructure, while eco-law are a set of self-organising

rules that manipulate LSA-spaces.

3.1.3 Discussion
We have introduced the mainstream representations of space; however we consider location to

have rich semantics that are yet to be fully explored as primary concepts within pervasive systems

architectures [Dobson, 2005]:

• Format – it exists in multiple formats such as coordinate points, a geometric shape, a symbolic

place, or a relative location;

• Granularity – it can be abstracted into spatial concepts at varying granularities from raw

GPS coordinates, to a street or an area, or up to a city or a country;

• Relationships – There are rich relationships between locations, including containment (e.g.,

one location is contained in another), adjacency (e.g., one location is neighbours another),

connectedness (e.g., one can pass from one location to another), and overlap (e.g., one location

overlaps another).

• Acquisition channels – it can be indirectly acquired or inferred from other contexts; e.g.,

a user’s scheduled meeting event could suggest that the user would be in a meeting room

during a certain time;

• Interpretation – it can be interpreted from different contexts; e.g., given a coordinate point,

we can translate it to a named place like “Edinburgh Train Station” from a pure spatial

context, as “on the way to work” from a working context by linking the address to the user’s

work address; or as “on holiday” from a social context by linking the address to the user’s

booked trip and calendar;

• Inference – it often has a significant impact on inferring a user’s current desire or situation

and further on adaption; e.g., if a user is on holiday, she or he might be more relaxed, and

an advertisement on a nearby book store would be appropriate.

How to surface the subtleties of location enabled by pervasive sensing and reasoning technolo-

gies to more advanced spatial computing is an interesting research topic. In terms of modelling

and managing data in space, using location as a context is widely adopted, but it limits the

capability of enabling dynamic behaviours at the infrastructure level such as relocating services.

Viroli and Stevenson [2012] regard location as a first-class concept and define a set of meta-rules

– eco-laws [Zambonelli et al., 2015] – to allow for infrastructure-level update and management of

the spatial aspect of services and thus achieve system dynamics. This is a promising approach

and at the current stage it mainly adopts the basic use of space; that is, neighbouring node

and distance. It would be a good direction to extend it with more advanced spatial knowledge,
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implication, and models as presented above to enable richer and more expressive way of spatiality

management. Also to note that all the above discussions imply a static (physical) space, not a

dynamic one, even if dynamic processes take place into this static setting. Some other example

(e.g. MANET or morphogenesis in biology) develop their own space. These examples are out of

the scope of the paper.

3.2 Local Context Perception

Local context perception is about providing entities with the means to inspect the static and

dynamic contextual information embedded in the annotations of co-located individuals. To

understand this, let’s look at the definition of context first. One of the most widely adopted

definitions of context is “any information that can be used to characterise an entity. An entity

is a person, place or object that is considered relevant to the interaction between a user and an

application, including the user and applications themselves.” [Dey, 2001]. Here, places are spatial

entities and interactions requires proximity; that is, an interaction can happen only when two

agents are close within a connection range and such interaction is often mediated by some form

of local knowledge [Viroli et al., 2011]. Thus context has locality implication in that context is

information relevant to an entity and accessible within a certain distance. Such locality has a

significant impact on organising and distributing context, and as well as mediating interactions,

which will be discussed in the following.

3.2.1 Acquiring and Organising Local Context
Not only is space a key context but also it serves well as an intuitive metaphor for non-spatial

context. That is, context has a strong indication of locality, which can be interpreted as

• where the context is about ; e.g., the crowdedness of DisplayX01 is high;

• where the context is of ; e.g., Bob is in front of DisplayX01;

• where the context is bound ; e.g., Bob’s preference is only bound to DisplayX01, which cannot

be accessed by or spread to any other displays.

Even though existing in different interpretations, locality is the mechanism to relate different

contextual information; that is, if two pieces of context are located in the same local space (in

an absolute spatial term), or within a short range (in a relative spatial term), then they can be

related. Hence, locality of context is well suited to organise context in physical locations [Bettini

et al., 2010]. As we look to design systems with the capacity to handle the ever increasing

amount of data generated by myriad physical and web resources, it becomes less likely that we

choose to provide access globally through a centralised service. Although logically centralised

services – although implemented on top of distributed systems – are the current architecture of

choice (e.g., Google, Amazon, Facebook), there are a number of reason that suggest they are

not well matched for managing data in large-scale pervasive service ecosystems: (1) the amount

of information being continuously generated is potentially overwhelming, presenting scalability

challenges, (2) requiring more than just a store and query architecture, there is significant

computational complexity in reasoning about what is happening in each local space from all

the information available; and, (3) in the vast majority of cases, information will only be relevant

locally and only for a short period of time—it is likely that the majority of information generated

will never be used. From the standpoint of efficient resource utilisation, it makes little sense to

collect, process, and distribute data from a centralised service under these circumstances. All this

said, there will likely remain a class of pervasive applications with data requirements such that a

logically centralised service remains a viable implementation choice.

Early context aware systems like Context Toolkit follow the above centralised solution, where

all related context are centralised for decision making and service provision [Heer et al., 2003]. Dey

et al. [2002] later enhance the Context Toolkit as a distributed system that supports distributed

feedback based on context acquired in different physical locations. Similarly, Remembrance Agent
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provides a service that examines users’ current location, identifies their nearby individuals,

and uses such locality information to retrieve the most relevant context to the users’ current

situation [Rhodes, 1997]. A neural network house learns occupants patterns of heating and lighting

control for various locations in the house and uses this knowledge to predict user needs [Mozer,

1998].

All the above systems demonstrate how to acquire and gather context centring around a certain

location, while Liquid is one of the very first attempts to deal with context-aware distributed

queries towards a more general space-oriented manner [Heer et al., 2003]. The system is built on

top of Context Fabric (Confab) [Hong, 2002] that provides the abstraction of information spaces

(called infospaces), which are logical storage units using the tuple space paradigm as context

repositories for individual entities in an environment. Within Liquid, each query is organised into

partitions that can be served at individual infospaces. For example, a query retrieval path of

“location.occupant” is designed to retrieve the location of people in the same room as the query

issuer.

Liquid supports two operators to service spatial queries: local and external operators. The

local operator is responsible for retrieving context data from the local infospace where a Liquid

node resides and for monitoring the local infospaces for tuple insertions, deletions, and updates.

In contrast, the external operators retrieve data from remote infospaces by querying other Liquid

nodes. Result items will be streamed back and enqueued into the local operator through a callback

from the network layer. These queries can benefit applications by providing augmented awareness

within a space. For example, an application can provide resources (such as webpages or emails)

for all the people currently in the same room as the query issuer. As people enter and exit the

room, this result is automatically updated in this room. Also when the query issuer moves from

place to place, the query will be automatically rerouted to the correct infospaces for the new

location.

3.2.2 Mediating Interactions via Locality

Locality is an important concept in coordination models where entities can interact via direct

connections [Cabri et al., 2000a]. In the early attempts agents need to explicitly name their

communication partners [Cabri et al., 2000b]. However, in pervasive computing applications where

agents can be dynamically created or removed from an environment, it is difficult to adopt such

a spatially coupled model that requires the identification of the communication partners. Also

entities are supposed to be able to move and if they need to communicate directly on a wide

scale, then they have to be localised.

The meeting-oriented coordination model attempts to address this spatial coupling problem by

virtualising an abstract meeting point where agents can join, communicate, and synchronise with

each other [White, 1997]. Meeting points are locally constrained in that a meeting takes place in

a certain execution environment and only local agents can participate. The major drawback of

this model, however, is that it enforces a strict temporal coupling; that is, in order to interact

the agents must be at the same meeting point at the same time.

An alternative approach uses blackboard-based coordination, where interactions can occur via

shared data spaces (called blackboards) [Nii, 1986]. Blackboards can be considered as a medium

to store and provide access to locally published data and services; agents communicate by leaving

messages without the need to know when and by whom the messages will be read. The Linda

model [Gelernter, 1985], which provides for a blackboard with associative matching for mediating

component interactions through insertion and retrieval of tuples limits, provides the archetypal

example. However, the scalability of blackboard approaches to large numbers of agents remains

a concern [Viroli et al., 2011, Stevenson et al., 2013a]. Inspired by nature, TuCSoN [Omicini and

Zambonelli, 1999], MARS [Cabri et al., 2000a], and chemical-inspired tuple space [Viroli et al.,

2011] propose to specify policies inherent in the tuple space to control and manage interactions

in a self-organising and self-composing way.
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3.2.3 Discussion
When it comes to local context perception, most pervasive systems can acquire location context

of various kinds, with location one of the contexts key to triggering context-aware service

provision. As more and more devices are available, distributed across an open environment,

and opportunistically connected, space is no longer just one type of context, but the essence that

other context should be organised and structured around. Liquid is one of the first examples of

such, which can facilitate distributed computation that will be further elaborated in Section 3.4.

However such a rigid design on space is not suitable for today’s highly mobile environment.

In terms of mediating local interactions, bio-inspired approaches present a promising research

direction; that is, enriching the local space or environment with inherent rules leading to more

self-* features of a system.

3.3 Context Fusion

An immediate step after perceiving context is context fusion – fusing contextual information from

multiple sensors so that a notable value can be added. That is, individual sensors are able to

capture specific contextual aspects of a situation, typically occurring in the portion of space in

which the sensors are situated [Bettini et al., 2010]. Context fusion indicates the combination of

sensory data from disparate sources such that the resulting information is in some sense better

than what would be possible when these sources were used individually. The term better might

stand for more accurate, more complete, or more reliable, or refer to the result of an emerging

view, such as a stereoscopic vision, where calculation of depth information is done by combining

two-dimensional images from two cameras at slightly different viewpoints.

In the area of context- and situation-awareness, context fusion can harness the shift from

recognising punctual contextual facts to recognising complex, multifaceted, situations [Ye et al.,

2012]. In this regard, we can identify two main ways by which information from multiple sensors

can be fused to achieve a higher-level of situation awareness:

• Local fusion of heterogeneous sensors. This implies exploiting multiple sensors of

different types in the same spatial location to acquire a multifaceted perspective of the local

situation;

• Regional fusion of uniform sensors. This implies aggregating the information by multiple

sensors scattered around a spatial region to obtain some global and summarised view of the

overall situation in that region.

In the following we will review the state of the art with respect to these two basic approaches,

but without forgetting that the approaches can be combined (and they often are); for instance,

by firstly applying local fusion of heterogeneous sensors at different locations in a region, and

then by aggregating such information on a spatial basis.

3.3.1 Location Fusion of Heterogeneous Sensors
Concerning local fusion of heterogeneous sensors, most of the work in the area focuses on

identifying the symbolic and meaningful place in which a user is located by using data coming from

different positioning systems. This arises from the need to switch from a perspective in which the

geographical position, say, from the GPS sensor, is the only raw contextual information available,

to a perspective in which the place (e.g., office, home, or market) where the user is pinpointed is

inferred, which corresponds to the physical and symbolic locations discussed in Section 3.1.1. This

switch can be realised in many ways, one example being through fusing GPS information with

that coming from co-located microphones [Azizyan and Choudhury, 2009] or other environmental

sensors [Jung et al., 2010]. The need to considering place instead of position comes from a wish

to enrich positions with semantic data (possibly also related to users’ activities), first discussed

by Hightower [2003], and further refined and enriched by Castelli et al. [2009] and Liao et al.
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[2007] who realise various reasoning engines to semantically identify places visited on the base of

temporal patterns, using probabilistic models and Bayesian networks respectively.

More general approaches focus on sensorial data fusion at different levels, either for acquiring

and making accessible all aspects of the local spatial context or for reasoning about the context

at a fine grained perspective in order to get a better understanding of currently happening

situations and detecting inconsistencies. Early works consider simple data fusion as aggregation

of logically related context data based on simple name transformation [Dey et al., 2001], possibly

by adopting a common context specification language [Hong and Landay, 2001]. Also more recent

works exploit a similar approach, in which contextual data are represented at a high level with

a common structure in order to promote the same management for data coming from diverse

sources and to ease the data usage and reasoning [Bortenschlager et al., 2009].

Uncertainty lies at the heart of all descriptions of the sensing and fusion process. Probabilistic

and knowledge models (or the combination of both) provide a powerful means of describing

uncertainty and lead naturally into ideas of information fusion. Such models are often used

to achieve context fusion at a finer-grained level. Ganti et al. [2010] use lightweight Bayesian

learning algorithms based on Hidden Markov Model when integrating data from the microphone

and inertial sensors on the mobile phones in order to infer high-level human activities. Tran and

Phung [2006] exploit the combination of multiple probabilistic techniques to reduce the number

of model parameters to be taken into account when a large number of sensors are used in a smart

home environment. Liu and Singh [2004] propose a promising approach of applying common-sense

knowledge to better correlate information coming from different sensors [Mamei, 2010, Bicocchi

et al., 2012a]. The idea is to use a database of common-sense semantic information in order

to associate a comprehensive meaning (i.e., in the form of a word or a sentence) to multiple

information (in the form of semantic tags) coming from a set of multiple heterogeneous sensors.

Dempster-Shafer theory [Dempster, 1968, Shafer, 1976], a mathematical theory of evidence that

provides the ability to combine evidence from different sources to arrive at a degree of belief in

a proposition while preserving ignorance, has been applied to a wide rage of sensor fusion tasks,

spatial data included [Wu et al., 2002, Zhang et al., 2009, Mckeever et al., 2010]. Its application

relies on expert knowledge to define an evidential reasoning hierarchy and quantify the accuracy

of sensors. Consequently, its application is limited to domains in which experts can reasonably

be expected to provide this knowledge.

3.3.2 Regional Fusion of Uniform Sensors

Many works in the area of wireless sensor networks for mobile users are concerned with regional

fusion of uniform sensors [Yick et al., 2008]. Most of the approaches on sensor networks assume

the presence of base stations to which sensed data should flow. In such situations, the basic

solution is to have sensors build a tree rooted at the sink and supporting the routing of sensed

data towards it [Polastre et al., 2004], possibly performing limited forms of data fusion (e.g.,

averaging or max/min determination) as data from sensors climb the tree [Gehrke and Madden,

2004], with the goal of reducing communications between sensors and thus, the energy costs.

However, when mobile users wishing access surrounding sensorial information from their current

location are involved, tree-based approaches can hardly apply as a general solution. In fact, the

costs of building a tree on demand for many possible mobile users at various locations would

be unbearable, and none of the many optimisations proposed [Kabaday and Julien, 2007, Yang

et al., 2008] fully eradicates the identified flaws of tree-based approaches.

To accommodate the need of mobile users to achieve an understanding of the situation around,

as sensed by different sensors dispersed around, one has to aggregate data in the sensor network

(or in confined spatial regions of the network) such that queries by multiple and mobile users can

be answered [Lotfinezhad et al., 2008, Bicocchi et al., 2012b]. This basically corresponds to fusing

information about a specific aspect within a region so as to gather a more global understanding

of a specific phenomena. For instance in [Sarkar et al., 2007], each sensor in the environment can
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compute, at pre-defined communication and energy costs, aggregated information about sensorial

information in its neighbourhood, and the aggregation functions can be concurrently computed

for neighbourhoods of different sizes. However, the definition of the regions in which to produce

aggregated data is mostly network driven, and does not take into account specific characteristics of

the environment being monitored or of the phenomena being sensed. To overcome this limitation,

Bicocchi et al. [2012b] propose the Virtual Macro Sensors approach to make a sensor network

self-organise into regions characterised by similar sensing patterns, which helps to promote

aggregation of data on a per-region basis, as if each region were monitored by a single macro

sensor. Such an approach can be very effective in facilitating data collection in dense large-scale

sensor networks, and as well as in identifying the regions in which specific situations take place.

Several research works in the area of middleware and programming languages for distributed

sensor networks start recognising the need to support various forms of spatial aggregation of

data [Mottola and Picco, 2011]. They define suitable general-purpose primitives and language

constructs (together with the supporting middleware infrastructures) to enable users to flexibly

query the network and obtain information about individual sensor data and aggregated data

related to specific spatial regions. Approaches such as Logical Neighbourhood [Mottola and Picco,

2006] and TeenyLIME [Costa et al., 2007] can be considered as general tools to program and

enforce regional fusion of contextual information.

As far as distributed data aggregation is concerned, although not always connected with spatial

awareness, diffusive algorithms [Corradi et al., 1999] and gossip-based aggregation algorithms

[Jelasity et al., 2005] are worth mentioning. Such approaches have been proposed as simple yet

very effective approaches to compute and make available at each node of a network that aggregates

values related to some global property of a network. When applied to nodes in spatial proximity

relations [Dimakis et al., 2006], such approaches can be indeed exploited as a means to achieve

spatial fusion of contextual information. Interestingly, it has been recently shown that gossip-

based aggregation algorithms can also be exploited to perform distributed learning of contextual

information [Ormándi et al., 2013], by preventing the distribution of raw contextual information

in respect of those privacy concerns.

3.3.3 Discussion
Context fusion is about aggregating and abstracting information to attain higher-level insights.

We have discussed two aspects of fusion: fusing of heterogeneous sensors and of uniform sensors.

The former mainly involves reasoning; that is, how to abstract raw context from different

phenomena in different formats and data types to attain higher-level situations. Different

probabilistic models and knowledge-driven techniques have been applied and a hybrid approach

of the two presents a promising future direction [Ye et al., 2014]. In terms of fusing uniform sensor

data, the research mainly concerns about how to collect sensor data in a distributed fashion, where

spatiality plays an important role. Gossip-based aggregation algorithms have started gaining wide

recognition when performing distributed context awareness while preserving privacy [Ormándi

et al., 2013].

3.4 Distributed Context Perception

Moving further towards the right end of the spectrum, we reach distributed context perception

where more complex interactions and communication strategies emerge. It aims to seek or project

the presence of resources across a region of space, informing interested parties of state, advertising

services, and serving as the basis for further interactions. Information spreading is one way to

enable ecosystem participants to perceive context in their non immediate proximity. It works by

replicating context across neighbouring devices, which is often bounded by a metric such as hops

or physical distances. Propagating context information from context sources to remote nodes is

one way of letting context be known at a remote location. Inversely, nodes can also proactively

look for and gather context. In the following, we will review the works on how distributed
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contextual information can be either shared or gathered in a completely decentralised way in

order to achieve high-level contextual reasoning. Additionally, since situation recognition is the

immediate next step after raw context perception, we will review as well distributed situation

recognition. Therefore, the discussion will centre around proactively and reactively sharing

contextual information beyond local perception, and achieving distributed situation recognition.

3.4.1 Sharing contextual information proactively

Generally the most intuitive way of sharing contextual information in a pervasive system is

to proactively propagate among nodes. A naive process potentially involves a high bandwidth

usage and a high volume of information stored at each node. Propagation can then take different

forms, from pure flooding to more subtle forms of broadcasting aiming at reducing bandwidth.

Additionally information injected and propagated in the pervasive system can be outdated or

no longer valid because of the environment dynamism. To overcome each of these disadvantages,

three self-organising mechanisms have been proposed: spreading, aggregation, and evaporation.

Spreading mechanism. Contextual information often needs to be propagated so that remote

nodes can perceive it beyond their local perception and thus increase their knowledge about

the global state of the system. Spreading has been proposed as a primitive mechanism for a

large number of self-organising complex mechanisms [Fernandez-Marquez et al., 2012a], which

is also alternatively called as information diffusion [Khelil et al., 2002], information or data

dissemination [Sabbineni and Chakrabarty, 2005], flooding [Yi and Gerla, 2003], broadcast [Tseng

et al., 2002], or epidemic spreading [Khelil et al., 2002]. In Beal and Viroli [2014] a general

purpose, reusable and self-stabilising building block “G” for spreading is studied, used to propagate

information outward a source and along a gradient-like data structure, with possibility of on-the-

fly computation of information.

The propagation of information using broadcasting may result in serious redundancy, con-

tention and collisions [Tseng et al., 2002]. Many optimised spreading algorithms have been

proposed in the literature, mainly focused on reducing bandwidth usage. These algorithms

range from pure flooding [Obraczka et al., 2001], to probabilistic propagation [Sasson et al.,

2003, Eugster et al., 2003], to dynamic probabilistic propagation [Zhang and Agrawal, 2005], to

location based propagation [Tseng et al., 2002], and to hybrid propagation where algorithms are

switched depending on contextual information [Fernandez-Marquez et al., 2014]. Location based

propagation is a family of algorithms that take into account the position of neighbouring nodes in

order to decide which nodes should re-send the information. The main goal is to reduce the number

of nodes that re-send the information. Location based approaches present very good results

compared to pure and probabilistic propagation schemes, however, the computation carried on

at each node is more complex, and relies on nodes providing their positions voluntarily and

accurately. Location based implementations can be extended by taking into account neighbouring

nodes of two-hop distance, further optimising the reduction in the number of messages sent, but

increasing dramatically the computation at each node.

Aggregation mechanism. Even though these optimised techniques mentioned above can

help to reduce the bandwidth usage during spreading, we still need a mechanism to reduce

the volume of information (e.g. information coming from a sensor sampling every minute, or

information coming from several sources). The Aggregation mechanism [Gardelli et al., 2007,

Fernandez-Marquez et al., 2012a] as a way to reduce the amount of information in the system

by synthesising meaningful information. Aggregation, also known as fusion [Niu and Varshney,

2005], locally applies a fusion operator to process the information and synthesises macro

information. This fusion operator can take many forms, such as filtering, merging, aggregating,

or transforming [Chen and Kotz, 2002]. Different aggregation strategies have been discussed in

Section 3.3.2. Similarly to the case of G, in Beal and Viroli [2014] a building block “C” for collecting

values into sources is proposed, in which information moves back to a source with progressive

aggregation.
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Evaporation mechanism. Even using aggregation, outdated or no longer valid information

can remain in the system, which could lead to a wrong contextual perception and thus misguiding

the system decisions. The Evaporation mechanism [Fernandez-Marquez et al., 2012a], also known

as decay [Huebel et al., 2008], temporal degradation function [Ye et al., 2008] or freshness

[Ranganathan et al., 2004a], has been proposed to deal with dynamic environments. Basically,

the Evaporation progressively reduces the relevance of information. That is, recent information

becomes more relevant than information processed some time ago. Additionally, evaporation can

be directly used to remove no longer valid or updated information from the system.

3.4.2 Gathering distributed contextual information on request

The above three mechanisms, Spreading, Aggregation and Evaporation form the primitives for

actively propagating distributed contextual information among a pervasive ecosystem. However,

usually we do not need to actively propagate in the system. For example, when information is not

relevant for a large number of users, when information is only useful at the time a user provides

it, or when information is shared just with a subset of people interested. Following the example

in Section 2, information such as the the availability of advertisement and incoming events of a

certain area would be specially interesting to users who are in the same area or nearby. Such a

contextual information should be only spread to this subset of users.

Compared to the above proactively sharing approaches, gathering information on request

presents advantages in dramatically reducing resource consumption such as memory and

bandwidth. Gathering distributed contextual information requires two phases: (1) spreading

the request in order to find the information at remote locations, (2) routing back the so-found

information to the query node. Similarly to the above sub-section, we highlight the self-organising

mechanisms useful for gathering distributed contextual information, either for spreading the

request or for bringing back the results, which are Gradient, Dynamic Gradient, Chemotaxis,

progressive in-network aggregation, and remote query and retrieval.

Gradient mechanism. The Gradient mechanism [Fernandez-Marquez et al., 2012a] is to

diffuse certain information together with additional metadata related to the distance of the

gradient source (i.e. a type of hop-count). Diffusing a gradient actually involves spreading

information, incrementing a hop-counter, and aggregating information when different routes reach

an identical node. Once diffused in a geographic area, a gradient then provides additional useful

information, such as the distance from the current node to the source of the gradient, direction

towards or away from the gradient source, equipotential lines of distances from the source, and

the shortest path towards the gradient source. Gradients take inspiration from nature, where

they correspond to concentrations of substance. Gradients are a crucial mechanism in spatial

awareness, and serve to form spatial structures, geographically dispersed but with a precise

meaning. Indeed, by combining spreading and aggregation, gradients provide spatial information

such as the shortest paths, distance and directions to gradient’s source, which can also serve to

route back information towards the source. Gradients are particularly useful for a query node

when retrieving distributed contextual information. The query node becomes a gradient source

and spreads a gradient whose main information is the requested query. Nodes answering the query

then simply send the answer back along the paths built by the gradient towards the query node.

Dynamic Gradient mechanism. The Dynamic Gradient mechanism [Fernandez-Marquez

et al., 2012a], also called Active Gradient [Clement and Nagpal, 2003], is a variant of the Gradient

mechanism, where in addition to spreading and aggregation, evaporation also comes into play. In

a mobile and dynamically changing environment, where nodes are constantly moving, appearing,

and disappearing, a static gradient becomes quickly updated and cannot be used for routing

information back to the gradient source. When the gradient information evaporates at the source

node, the latter diffuses a new gradient structure. Dynamic Gradients are then particularly useful

for spreading queries over mobile or dynamically changing infrastructure.
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Chemotaxis mechanism. The Chemotaxis mechanism [Fernandez-Marquez et al., 2012a] is

about following up-hill, down-hill or along equipotential lines a gradient previously established

either by a given environment or engineered on purpose. Chemotaxis is a way to route back the

information to the source of the gradient following the shortest path up-hill, thus answering the

query.

Progressive In-Network Aggregation. In addition to Gradient and Chemotaxis described

above, many different routing algorithms have been proposed in the literature, such as Ad-hoc On-

demand Distance Vector (AODV) [Perkins et al., 2003], Dynamic Source Routing (DSR) [Johnson

and Maltz, 1996] or Fisheye State Routing (FSR) [Pei et al., 2000]. Routing protocols are able to

route information to a destination node. However, gathering distributed contextual information

may involve thousands or even millions of pieces of data distributed among the nodes (e.g.,

calculating the average speed of cars driving in a city or specific road, or calculating the number

of people attending a demonstration). Thus, it is not sufficient to route all data to the node

interested in the information and let that node compute it. In order to gather a large amount of

distributed data in a more efficient way in terms of energy, computation, and storage, in-network

aggregation techniques have recently been proposed for the domain of wireless sensor networks:

instead of sending all data to a destination node and letting this node compute (i.e. aggregate)

the data, in-network aggregation provides the desired aggregation as a result of the distributed

computation at intermediary nodes involved in the routing task [Fasolo et al., 2007].

Even though in-network aggregation has been mainly analysed in the wireless sensor network

domain, it will play a key role for distributed context perception in future pervasive ecosystems.

They share constraints including low energy (most of devices will be sensors, laptops, mobile

phone, tablets, or smart watches), low computation power, and low storage capacity. Node

mobility involves different concentration on nodes, segmentation, and frequent disconnections.

In a pervasive ecosystem each node executes a different operating system, and has different

hardware and different capabilities. This calls for an additional requirement related to a common

middleware that allows transparent interactions between different nodes. A pervasive ecosystem

is not designed for a specific goal, instead the system contains many applications with different

purposes interacting among themselves. A major difference between the concept of aggregation

in WSN and pervasive ecosystems is that the aggregations in WSN are usually arithmetical or

statistical aggregations such as minimum, maximum, average, or count. Aggregation in a pervasive

ecosystem often involves reasoning, aggregation of functionalities and predictions, as discussed in

Section 3.3.

Fernandez-Marquez et al. [2012b] extend the general in-network aggregation and apply it

to pervasive ecosystems, where a gradient is used both to propagate a query and to create a

routing structure to bring the information back to the source node. Analogously to in-network

aggregation, information is progressively aggregated at intermediary nodes, while it is being

routed to the query node. Space plays a key role in this approach since data is gathered from

nodes geographically dispersed across which gradients spread spatial information.

Remote Query and Retrieval. The combination of Gradients and Chemotaxis to query

and retrieve information constitutes a mechanism on its own, termed Remote Query and

Retrieval [Di Marzo Serugendo and Fernandez-Marquez, 2013]. It employs progressive in-network

aggregation when routing back information. It has been used for progressive self-aggregation of

context information [Fernandez-Marquez et al., 2012b], progressive self-aggregation of situation

information [Stevenson et al., 2012], and semantic resource discovery [Stevenson et al., 2013a].

Additionally, the mechanisms described above are also provided individually under the form

of services, in an effort to separate concerns and to ease the engineering and development effort

of self-aware spatial applications.
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3.4.3 Distributed/Decentralised Situation Recognition

The above two sub-sections discuss the case of sharing or gathering raw context information,

possibly aggregating or evaporating it along the way to retain pertinent or up-to-date information.

On the basis of context information, it becomes possible to reason and identify actual situations,

i.e. from Bluetooth proximity signals identifying that a group of people are crowded in front of a

display. Section 3.5 will discuss this issue in more details, however in relation to distribution and

context perception and the above described mechanisms, we highlight here the case of distributed

and decentralised situation recognition [Stevenson et al., 2012].

As for context perception, a request, originating from an application, spreads throughout the

network establishing a gradient. Typically, a sensor or a reasoner agent receiving the request

evaluates whether its capability matches the request. If it matches, the sensor or reasoner agent

either retrieves the matched data or starts reasoning and then encapsulates the result in a reply

message that is sent back to the source according to the Chemotaxis mechanism. But if it does not

match, the agent passes the request to the neighbouring node. To reduce communication cost, if

there are more than one results matching the request, they are aggregated along the path back to

the requester using the Aggregation mechanism. Aged information will be progressively discarded

following the Evaporation mechanism. Inferred results are progressively aggregated while being

sent back from sensors and reasoners to the application. Applications or reasoners need not

know which reasoners or sensors are available in advance. The routes between an application

and a reasoner or sensor are constructed based on the matching mechanism and the Gradient

mechanism. Where the state of intermediate nodes along the transmission path changes due to

failure or mobility, a dynamic gradient allows routing to automatically adapt when assuming a

path remains open.

As an example of the above distributed situation recognition that combines both local and

regional fusion of sensor data in a way that is decentralised and self-organising, consider a

smart building containing a number of sensors and localised classifiers that determine whether

or not a situation is occurring in the immediate proximity based only on spatially local sensor

data. The left-hand-side of Figure 2 illustrates this arrangement using one floor of a building.

The spatial extent of each computational node is denoted by areas of different colours, with

connections between nodes represented by grey bars. Distributed across this infrastructure are

nodes containing location, calendar, and activity sensors, and four local situation classifiers that

interpret this information.

We consider the case where an application located on a mobile phone in the meeting room may

request that this spatially local classification information be routed towards the node hosting

the application. Adopting the biological communication metaphor, computational gradient

structures extending from the nodes hosting the classifiers and the mobile phone application

broadcast requests for sensor and classification information across the network respectively, while

chemotaxis, draws matched information towards the query origins. Using Dempster-Shafer Theory

as a fusion function, aggregation is applied to integrate the classifications and their uncertainties

en route to their destination [Fernandez-Marquez et al., 2012b]. From this process, a global picture

of the situation occurring emerges from the in-network generation of a consensus, calculated in

a fully distributed fashion as data flows from its origins to its consumer. This is shown on the

right-hand-side of Figure 2.

Although this simple example considers a single floor of a building, the same concepts, inter-

actions, and mechanisms can be employed at larger scales where the biological communication

metaphor is applied.

3.4.4 Discussion

We have discussed distributed context perception and situation recognition, in particular how to

either share or retrieve context or situation in a completely decentralised manner using only local

interactions and exploiting the spatial organisation of nodes.
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Figure 2: (left) The architectural layout of networked spaces in a building. (right) an illustration

of the in-network aggregation of situation classifications en-route to a common destination.

Beside the smart building example presented in the previous section, the application domains

of the presented mechanisms range from pervasive systems, to swarm robotics, to sensor networks,

or to distributed traffic management. That is, all systems composed of a set of spatially distributed

nodes where: (1) nodes have computation and communication capabilities, (2) a node has a local

perception of the system, and (3) there is not a central entity controlling the system (i.e. the

desired behaviour emerges from the local interactions between spatially distributed nodes).

Future directions of research suggest: (1) providing those mechanisms as ser-

vices [Di Marzo Serugendo and Fernandez-Marquez, 2013]; (2) building spatial services on-

demand relying on those mechanisms [Di Marzo Serugendo et al., 2014], thus easing the

engineering of spatial-aware applications; (3) investigating the links between functional and

non-functional aspects, and how they can be ensured for a given mechanism. Examples of such

non-functional aspects include quality of service requests such as minimum bandwidth, highest

accuracy, highest coverage of propagation, quickest gathering of context, etc [Fernandez-Marquez

et al., 2014].

3.5 Self-organising Situation Awareness

At the complete right side of the spectrum we have a full intertwining of situation awareness and

self-organisation. Namely, situation awareness becomes a truly global, distributed, and spatially-

situated process, inherently robust and adaptive. Self-organisation is defined as the process of

obtaining global and coherent spatio-temporal structures out of local interaction of components.

Accordingly, self-organising situation awareness is achieved solely by single-device computations

(environment perceptions and local reasoning) and local interactions between the involved devices

(a device asynchronously interacting with its spatial neighbourhood), which ultimately result in

the formation of global spatio-temporal patterns of behaviour, precisely reifying the system-level

situation awareness. Such patterns are typically multi-level: the basic mechanisms of Spreading,

Aggregation, and Evaporation occurring locally lie in the bottom, basic Gradient and Chemotaxis

patterns stay above, and finally on top we have a whole multi-layering of further self-organisation

patterns, combining and manipulating the various levels of situation awareness. In this section

we review the basic approach and existing proposals for one such view of self-organising situation

awareness.
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3.5.1 Spatial computations

Spatial computing [Zambonelli and Mamei, 2005, Beal et al., 2013] amounts to conceive

computations as occurring on a spatial substrate (a physical environment as the main example),

and following the constraints that this space enacts typically in terms of topology of interactions

between computing devices, as well as the timing aspects including speed/bandwidth of

communications, rate of computations in each device, and so on. Situation awareness enters the

picture of spatial computing precisely when the situation of interest becomes tightly dependent

on (mutual) position of computations/data/events present in the network, and when actions

to accordingly take are again expressed in terms of spatial computations. Various approaches

surveyed by Beal et al. [2013] mostly depend on the language used to describe the spatial

computation: functional approaches like Proto [Beal and Bachrach, 2006], rule-based like MGS

[Giavitto and Spicher, 2008] and SAPERE [Zambonelli et al., 2015], Java-based like Tota [Mamei

and Zambonelli, 2008], and others featuring logic programming and process algebraic ones. A

uniform way to view at how they work is to consider the paradigmatic case of the gradient

data structure described in the previous section, generalise over it, and consider the notion of

computational field as a first-class one. A computational field is simply a map from the network of

devices to values of some data structure (booleans, numbers, tuples, and directional vectors): other

than a gradient, examples can include the field of values perceived by a homogeneously distributed

set of sensors, the boolean field of obstacles in a traffic area, and the field of directional vectors

towards a POI – Point Of Interest. Accordingly, it is key to conceive spatial computations as

computational processes with the goal of creating certain computational fields (static or changing

over time), possibly as a combination of existing ones by means of the constructs that the specific

model/language supports. This is extremely useful in the context considered in this paper, since

such computational fields can be considered as the global situation that emerges out of local

interactions, out of which decisions concerning the robust and self-* provision of some service

have to be taken.

3.5.2 Layering spatial computations

It is by the process of combination of basic computational fields that more structured ones can

arise, providing useful services in the context of pervasive computing, or display ecosystems in

particular. A series of work [Zambonelli and Mamei, 2005, Beal and Bachrach, 2006, Viroli and

Damiani, 2014, Beal, 2010] investigate the problem of identifying a minimal set of constructs for

combining fields, typically including: functional point-wise computation, repetition over time of a

computation, extraction of values from neighbours, restriction of computation in certain regions.

As an example, a gradient structure can be achieved out of a source field, by iteratively applying

repetition and extraction of neighbour values, and by suitably applying an additive point-wise

function to make the field values increase with distance. Higher-level patterns can be devised

accordingly as follows.

• By suitably preventing a gradient value from increasing over a certain level, at which point

propagation is prevented, one can create a spatially-bounded version of the gradient. This is

useful when one wants to advertise a service in a limited portion of the network, or when a

circular region around a centre has to be identified (e.g. to aggregate all its values).

• By creating a gradient out of multiple sources, and taking care that in a node only the

value coming from the nearer source is retained, one can partition the network into as many

regions as sources (by a so-called Voronoi partition): each region is identified by one source

node (the one closest to its points), and its shape fully adapts to the position of others. One

such pattern can be used to spatially divide a process or data throughout the network [Viroli

and Stevenson, 2012].

• By summing the two gradient structures created out of two nodes a to b, we obtain a field

that has the minimum values precisely in the points in the shortest routes between them; by
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properly filtering and spatial expansion (again by a bounded gradient), one can devise the so-

called channel pattern [Viroli and Damiani, 2014], which is a region of the network connecting

the two nodes, above which long-range communications can be spread. Alternatively, as of

the display ecosystem scenario, such an area can be the one used to activate a steering service

to guide people from a to b.

• An orthogonal problem is how we can control the actual area where the above fields spread:

in fact, we might be in need of specifying that certain areas are forbidden, and the various

gradients should try to circumvent it. This is achieved by simply blocking propagation in

those areas (in a way actually similar to the bounded gradient) defined above. In crowd

steering by display ecosystems, this can be useful to avoid certain areas when steering, e.g.

due to some road construction.

3.5.3 Knowledge, space and time with situation awareness

An advanced way of providing powerful situated awareness functions is based on the idea of

constructing computational fields that reify or exploit not only spatial information, but also

knowledge available in the networked environment (and how two knowledge items can match

against each other), and timing of relevant events (either happened in past, happening right now,

or expected to happen in the future). All such information can diffuse and re-aggregate so as to

make the overall knowledge base and time information being available globally for intercepting

the situation of interest.

The first example of this approach is developed by Montagna et al. [2013], aiming to guide

people inside a museum towards their preferences, following the shortest and possibly quickest

path using the pervasive ambient displays deployed in the museum. In this example, the gradient

data structure is deviated so as to penalise areas where a certain situation arises. Accordingly,

the overall gradient data structure become “aware” of those situations, such that Chemotaxis

can automatically take this into account when used to move data/agents towards the source. In

particular, this is achieved by extending the notion of distance reified by the gradient in those

areas; e.g., by an additive amount of space. A paradigmatic example in the case of pervasive

displays used to steer people is when some sensors on a display detect the present of a crowded

area, one which we want to circumvent while suggesting a route towards the POI. Interestingly,

in an open computational environment, judging what areas have to be a source of deviation,

and whether a given user might be affected by it (and how), should be based on a semantic

match between user preferences/profile and data available in the environment, e.g., as produced

by sensors. As an example, depending of a person profile, a steering service can or cannot take

into consideration how crowded is a given area.

Another advanced example is to mix self-organisation and situation awareness in the context

of computational fields [Stevenson et al., 2013a], where discovering of resources in spatial

settings exploit semantic information about such resources to properly aggregate them en-

route [Fernandez-Marquez et al., 2012b], so as to promote cooperation/competition. The basic

idea is that many resources located in proximity of each other should cooperate making the whole

area more appealing for the user seeking for a suitable target, while resources located far away

from each other must compete, and the best one should be chosen. Accordingly, the user spreads

a gradient data structure, such that information about the seek resources – in the form of a

reply – can be gathered by Chemotaxis. However, as soon as two such replies reside in the same

node, some degree of semantic match can activate a combination service that either drops one

(competition) or aggregate them (collaboration). This can be shown to automatically select a

route towards the most suitable area for the discovering at hand, computed in a fully distributed

and context-aware way.

Self-organisation is also exploited by Montagna et al. [2012] to make timing aspects enter the

realm of situation awareness—relying on so-called “future awareness”. There, the gradient pattern

is equipped with anticipative adaptation; namely, it can take advantage of the local availability
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of information about future events, once this has been provided by some component in charge of

situation recognition [Ye et al., 2012]. Such a knowledge is used in advance to stretch and deviate

certain parts of a gradient structure so as to promote alternative paths that could be longer, but

guarantee to eventually circumvent any forbidden area in the precise moment in time when they

won’t be available for transit. This pattern finds applications in the context of steering services

(e.g. traffic control or crowd steering), which can rely on local predictions about future events to

anticipate alternative routes that circumvent potential sources of jams. The anticipative gradient

can be seen as a time-dependent computational field, obtained by functional combination of

lower-level fields along with the field of “time passing” that is trivially assumed to be available

throughout the network. One such lower-level field is called wave, and is used to advertise the

future events in just those points from which an agent moving at a given velocity could cross the

future event area when it will be active—such field is time-dependent, as it shrinks down to the

future event area as time passes. Another one is called shadow : it spreads from the POI and tags

all the positions from which an agent would cross an obstacle area while moving towards the POI.

A special combination of these two fields create the anticipative gradient; it is a gradient that is

identical to a standard one outside the intersection of shadow and wave, otherwise distance and

orientation values in each node reflect the optimal path among the two following alternative: the

one crossing the future event (and waiting behind it that it is over) and the one circumventing

it.

3.5.4 Discussion

Recent works pushed forward the idea of combining traditional situation awareness techniques

with self-organisation, so as to design distributed and situated processes with the goal of

intercepting relevant data/events (which are itself intrinsically distributed) and reify them

as spatio-temporal structures. When proper design techniques are exploited, such structures

are often usefully seen as computational fields, and are able to self-adapt to changes in the

environment and to the unpredictability of situations to occur, mostly in an emergent way.

Although a relevant set of mechanisms and specific solutions have already been studied, as

reviewed in this section, several issues remain open that concern the identification of a rigorous

engineering methodology. As we discussed, advanced forms of self-organising situation awareness

can be achieved via a combination of low-level mechanisms. On the one hand, it is key to find a

suitable set of such mechanisms, including useful forms of aggregation, diffusion, and evaporations,

but also of analysis techniques useful at the local level as discussed in previous sections. On

the other hand, it is also important to identify the useful ways of combining those low-level

mechanisms; e.g., the work in [Viroli and Damiani, 2014] is the first attempt in the direction of

finding a minimal set of constructors for computational fields.

Once a method for defining self-organising situation awareness techniques and combinators

is identified, formal techniques will become useful to evaluate which behaviour properties the

resulting processes have. For example, in [Viroli, 2013] the problem of identifying self-stabilising

computational fields is defined, and guidelines on how one such property can be enforced are

sketched. Studying such property is key to suitably control that the possibly complex spreading

processes produce a meaningful global result. Other interesting aspects include the identification

of a universal set of constructs, and studying the relationship of the expected global result and the

actual shape of the environment and the devices therein; e.g., following the approach developed

in [Beal and Viroli, 2014]; and finally, addressing openness by deploying and managing new code

in a self-organised way as advocated in Damiani et al. [2015].

The specific case of integrating the three key dimensions we consider, namely space, time and

knowledge, is yet to be unveiled: we argue there is a high potential in studying patterns and

applications using all of them for the identification of complex situation recognition. Finally, an

appropriate tooling is key, primarily in the form of simulation techniques and suitable libraries

and APIs for smooth exploitation in practice.
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4 Concluding Remarks

Pervasive systems are inscribed in a physical and geographical environment. In such a framework,

spatial computing is a needed feature to engineer spatial concerns. Adequate mechanisms provided

as services, for exploring space and retrieving information from that space, help separate concerns

and help engineer pervasive systems in a dependable way. This paper reviews existing attempts

to apply and integrate spatial computing technologies within pervasive service ecosystems: from

modelling context especially location context and knowledge, to organising and distributing other

types of context on top of space, to perceiving and fusing context information locally in a certain

space, and to achieve context and situation awareness in a distributed manner.

This review has shown that spatial computing has gained wider recognition in pervasive

computing and their integration is becoming more evident in recent pervasive ecosystems.

One representative example is the bio-inspired computational model, which takes bio-chemical

metaphors to design a set of laws of nature and design patterns to govern spontaneous and

self-organising interactions between entities and across the whole computation space. That

is, it manipulates and reifies spatial and temporal annotations like reagents in a chemical

reaction to regulate the interactions between annotations, relate them dynamically based on

content, synthesise new information from old, and manage the diffusion of annotations across

the environment. Entities only interact with the ecology through manipulating and observing

the structure and content of their annotations. Such closer integration results in autonomous,

dynamic, and self-organising system behaviours, which are desired features exhibited in pervasive

ecosystems.

Zambonelli et al. [2015] have demonstrated a promising starting point towards systematically

integrating spatial computing in designing pervasive service ecosystems, which can be further

improved with rich semantics and advanced awareness that are empowered by pervasive sensing

and reasoning technologies. The notation of space is no longer just bound to neighbours and

distances, which can be expressed in many different semantic forms such as meaningful places

or relative locations, and acquired from various channels beyond traditional positioning sensors.

Such semantics will play a significant role in discovering and matching services and resources,

and furthermore in allowing spreading and organising information and as well as distributing

reasoning capabilities in a more subtle and flexible manner. However, these advantages come at

a price; that is, enabling rich spatial expressions and reasoning might require a re-thinking or a

re-design of existing spatial computing technologies and their corresponding tools. We note that

there are many associated challenges to spatial models of computation that we have not reviewed

in this article including, but not limited to: robustness, stability, security, and optimality of

pervasive ecosystems.

Another profound implication of integrating spatial awareness with pervasive ecosystem design

is privacy. On the one hand, spatial awareness suggests to make (absolute or relative) positions

of entities explicit so as to be useful. On the other hand, space can serve as a shield to protect

the privacy or control the accessibility of information. For example, Jiang and Landay bound

information within a certain spatial region [Jiang and Landay, 2002]; that is, only when the user

enters this region, can the information be accessed; and when the user moves out of the region,

the access right will be revoked. Also local context perception and situation awareness protects

privacy of information further in that rather than broadcasting all the information globally, a

spatial-aware pervasive system [Ormándi et al., 2013] allows to locally aggregate and abstract

information to higher-level concepts, which prevents finer-grained specific information from being

shared across the whole network. In summary, the system designers could leverage such locality

of spatial awareness in preserving privacy.
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