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Abstract

Most of the current top-performing planners are sequential planners that only handle total-order
plans. Although this is a computationally efficient approach, the management of total-order
plans restrict the choices of reasoning and thus the generation of flexible plans. In this paper
we present FLAP2, a forward-chaining planner that follows the principles of the classical POCL
(Partial-Order Causal-Link Planning) paradigm. Working with partial-order plans allows FLAP2
to easily manage the parallelism of the plans, which brings several advantages: more flexible
executions, shorter plan durations (makespan) and an easy adaptation to support new features
like temporal or multi-agent planning. However, one of the limitations of POCL planners is that
they require far more computational effort to deal with the interactions that arise among actions.
FLAP2 minimizes this overhead by applying several techniques that improve its performance: the
combination of different state-based heuristics and the use of parallel processes to diversify the
search in different directions when a plateau is found. To evaluate the performance of FLAP2,
we have made a comparison with four state-of-the-art planners: SGPlan, YAHSP2, TFD and
OPTIC. Experimental results show that FLAP2 presents a very acceptable trade-off between
time and quality and a high coverage on the current planning benchmarks.

1 Introduction

Until the late 1990s, Partial-Order Planning (POP) was the most popular approach to Al
planning. In this approach, based on the least-commitment philosophy, decisions about action
orderings and parameter bindings are postponed until a decision must be taken. This is an
attractive idea as avoiding premature commitments requires less backtracking during the search
process. Nevertheless, the most recent total-order forward-chaining planners, such as LAMA
(Richter and Westphal (2010)), Fast Downward Stone Soup-1 (Helmert et al. (2011)) or SGPlan
(Chen et al. (2006)), have demonstrated to be more efficient than partial-order planners, mainly
due to:

e Search states can be generated much faster as there is no need to check threats (conflicts)
among actions.

e They can generate complete state information and take advantage of powerful state-based
heuristics or domain-specific control.

However, the general move towards state space search ignores some important benefits of
partial-order planning:

e A partial-order plan offers more flexibility in execution.

e The search can be easily guided to improve the action parallelism in the plan.

e It is a very suitable approach in multi-agent planning systems, either with loosely (Kvarn-
strom (2011)) or tightly coupled (Torreno et al. (2012)) agents.
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e It can easily be adapted to deal with temporal planning (Benton et al. (2012)).

These desirable properties have led many current researchers to adopt POP techniques and to
dedicate their efforts to improve the performance of this planning approach.

In this paper we present FLAP2, a partial-order forward-chaining planner that follows the
design principles of POP, except for the delayed parameter binding, thus keeping the benefits of
this successful approach. In spite of the inevitable increase of the search cost, we will show that
FLAP2 improves the performance of existing partial-order planners and that it is competitive
against some total-order planners. Particularly, FLAP2 returns solutions that represent a good
trade-off between time and quality and it also offers a high coverage on the current planning
benchmarks.

In the remainder of the paper we present the related work, some background and the planning
approach of FLAP2. Finally, we present an empirical evaluation of the performance of FLAP2
and we conclude with some final remarks.

2 Related work

Looking at the winners of the last International Planning Competitions (IPC’2011' and
IPC’2008%), we can observe that the majority of planners participated in the sequential tracks.
Fast Downward Stone Soup-1 Helmert et al. (2011), Selective Max (Domshlak et al. (2010)) and
Merge and Shrink (Helmert et al. (2013)) are optimal sequential planners built upon the classical
Fast Downward planning system (Helmert (2006)) based on heuristic search. LAMA (Richter and
Westphal (2010)), FF(h$) (Keyder and Geffner (2008)) and C? (Lipovetzky and Geffner (2009))
are also forward state-space search planners that use powerful heuristics and compute (often
suboptimal) solution plans very rapidly.

Planners that generate partial-order plans are basically found in temporal planning like
SGPlan (Chen et al. (2006)), Temporal Fast Downward (Eyerich et al. (2009)), DaEy angsp
(Khouadjia et al. (2013)), YAHSP2 (Vidal (2011)) and POPF2 (Coles et al. (2010)). Temporal
planning requires the ability of dealing with action parallelism due to the existence of temporally
overlapping durative actions. With the exception of POPF2, all of these planners are built upon
the parading of sequential planning. SGPlan, for example, uses Metric-FF (Hoffmann (2002)) as a
search engine, while DaEy 4y gp and YAHSP2 are developed on top of the YAHSP planner (Vidal
(2003)). These three planners need an additional module to parallelize the obtained sequential
plans and to enforce the temporal constraints of the problem. This separation between action
selection and scheduling is doomed to fail in temporally expressive domains and suffer from severe
drawbacks in temporally simple problems, as choosing the wrong actions might render the final
solutions to be purely sequential and therefore of very low quality.

The approach taken by Temporal Fast Downward (TFD) is to perform forward search in the
space of time-stamped states, where at each search state either a new action can be started or
time can be advanced to the end point of an already running action, thereby combining action
selection and scheduling (Eyerich (2012)). This approach is usually very good in terms of quality
but their coverage on current benchmarks is typically relatively low.

From the aforementioned planners, POPF?2 is the only one that follows a partial-order planning
approach. It is a forward planner that works with time, numbers and continuous effects. POPF2
records state information at each step of the plan (frontier state), like the negative interactions
among the variable assignments, and updates the state accordingly. The frontier state is used to
determine the set of applicable actions at each step of the plan. The late-commitment approach of
POPF2 is based on delaying commitment to ordering decisions on the frontier state, thus ignoring
other alternative choices that would come earlier, i.e. before the frontier state. Completeness,
however, is ensured as search performs backtracking to find an alternative plan when necessary.

"http://www.plg.inf.uc3m.es/ipc2011-deterministic
2http://ipc.informatik.uni-freiburg.de/
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OPTIC (Benton et al. (2012)) is the latest version of POPF2 and also handles soft constraints
and preferences. The key of its good performance is the fast generation of the successor states
during the search and the use of effective domain-independent heuristics. OPTIC yields high
quality plans, although, computationally speaking, it is not that efficient as most of the sequential
planners.

In this paper we present FLAP2, a partial-order forward-chaining planner that follows the
design principles of POP. This approach is similar to the one of OPTIC, but introduces two
important differences:

e OPTIC adds additional temporal constraints over the action to ensure that preconditions of
the new actions are met in the frontier state. The approach of FLAP2 is more flexible as
it does not commit to an action ordering if this is not required, just like traditional POCL
planners do.

e FLAP2 can add new actions at any point in the current plan. OPTIC only adds actions after
the frontier state, so that the new actions do not threaten the preconditions of earlier actions.

These two differences lead to a more flexible partial-order planner, although this improvement
entails a higher computational effort to deal with the interactions among actions. However,
FLAP?2 outperforms OPTIC in many domains because it uses more sophisticated search methods
and more powerful heuristics. Moreover, delaying commitment on the orderings of the actions
allows FLAP2 to reach a solution from a higher number of search nodes, which also improves the
search performance.

3 Background

For the purposes of this paper, we restrict ourselves to propositional planning tasks. A planning
task is a tuple T=(0,V, A,I,G). O is a finite set of objects that model the elements of the
planning domain over which the planning actions are applied. V is a finite set of state variables
that model the states of the world. A state variable v € V' is mapped to a finite domain of mutually
exclusive values D,,. A value of a state variable in D, corresponds to an object of the planning
domain, that is, Vv € V, D,, C O. When a value is assigned to a state variable, the pair (variable,
value) acts as a ground atom in propositional planning. A is the set of deterministic actions. I is
the set of initial values assigned to the state variables and represents the initial state of the task.
G is the set of goals of the task, i.e., the values the state variables are expected to take in the
final state.

Definition 1 (Fluent) A ground atom or fluent is a tuple of the form (v, d) where v €V and
d € D,,, which indicates that variable v takes the value d.

Definition 2 (Action) An action a € A is a tuple (PRE(a), EFF(a)) where PRE(a)=
{p1,...,pn} is a set of fluents that represents the preconditions of a and EFF(a) ={e1,...,em}
s a set of fluents that represents the consequences of executing a.

We define a partial-order plan for a planning task T = (O, V| A, I, G) as follows:

Definition 3  (Partial-order plan) A partial-order plan is a tuple Il = (A, OR,CL). AC A is

the set of actions in II. OR is a set of ordering constraints (<) on A. C'L is a set of causal links

.d . . .
over A. A causal link is of the form a; M a;, meaning that precondition (v, d) of a; € A is

supported by an effect of a; € A.

This definition of a partial-order plan represents the mapping of a plan into a directed acyclic
graph, where A represents the nodes of the graph (actions) and OR and CL are the sets of
directed edges that describe the precedences and causal links among these actions, respectively.

The introduction of new actions in a partial plan may trigger the appearance of flaws. There
are two types of flaws in a partial plan: preconditions that are not yet solved (or supported)
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through a causal link and threats. A threat over a causal link a; % a; is caused by an action
ay, that is not ordered w.r.t. a; or a; and modifies the value of v, i.e. (v,d") € EFF(ay) ANd' #d,
making the causal link unsafe. Threats are addressed by introducing either an ordering constraint
ar < a;, which is called demotion because the causal link is posted after the threatening action, or
an ordering a; < ay, which is called promotion as the causal link is placed before the threatening
action.

We define a flaw-free plan as a threat-free partial plan in which the preconditions of all the
actions are supported through causal links. Given a flaw-free partial-order plan II, we compute
the frontier state, Sy, resulting from the execution of IT in the initial state I. More formally:

Definition 4 (Frontier state) The frontier state St of a flaw-free partial-order plan 11 =
(A, OR, CL) is the set of fluents (v, d) achieved in I by an action a € A/{v,d) € EFF(a), such
that any action a’ € A that modifies the value of v ({(v,d') € EFF(a’)/d+# d’) is not reachable
from a by following the orderings and causal links in II.

The basic POP algorithm starts by building an initial minimal plan containing two fictitious
actions: the initial action a;,;+, with no preconditions and EF F(a;n;+) = I, and the goal action
Agoal, With no effects and PRE(ag0q1) = G. The algorithm works by following the next three steps
until a solution is found: 1) select the next subgoal to achieve, 2) choose an action to support
the selected subgoal and 3) solve the threats that arise as a consequence of the variables value
modification.

In the following section we describe the planning algorithm of FLAP2 as well as the necessary
modifications to adapt a POP algorithm to support a forward search. In our effort to maintain
all the benefits of this approach, we tried to keep the changes as minimal as possible.

4 Planning algorithm

FLAP2 is a modified version of FLAP planner (Sapena et al. (2013)). In the following subsections
we briefly describe the planning approach of FLAP and the changes made in FLAP2 to improve
its performance, respectively.

4.1 FLAP’s working scheme

FLAP implements an A* search, as the standard textbook algorithm in (Russell and Norvig
(2009)), guided by an evaluation function. A search node is a partial-order plan and the starting
node is the initial initial plan g = ({@init}, 0, 0). Although IIy does not contain the fictitious
goal action agoqi, this action is available to be added to the plan as the rest of actions in A, i.e.
agoal € A. In fact, a solution plan is found when ago4; is inserted in the plan.

FLAP follows two steps at each iteration of the search process until a solution plan is found:
a) it selects the best node, II;, from the set of open nodes according to the evaluation function,
and b) all possible successors of II; are generated, evaluated and added to the list of open nodes.
FLAP considers that 1I; is a successor of a plan Il; if the following conditions are met:

e II; adds a new action a; to II;, i.e., A; = A, U {a,;}

e All preconditions of a; are supported with actions in II; by inserting the corresponding causal
links: Ja; 2 a; € CLj,a; € A;,Vp € PRE(a;).

e All threats in II; are solved through promotion or demotion by adding new ordering
constraints; the result is that II; is a flaw-free plan.

The forward-search approach of FLAP allows to use state-based heuristics, which are much
more informed than classical POP-based heuristics. In order to evaluate a partial-order plan II,
FLAP computes the frontier state St. It uses three different heuristics:
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e hprg. A Domain Transition Graph (DTG) of a state variable is a representation of the ways
in which the variable can change its value (Helmert (2004)). Each transition is labeled with
the necessary conditions for this to happen, i.e. the common preconditions to all the actions
that induce the transition. These graphs are used to estimate the cost of the value transition
required to support an action precondition, and the Dijkstra algorithm is applied to calculate
the length of the shortest path in the DTG that causes the transition. The hprg heuristic
returns the minimum number of actions in a relaxed plan, where delete effects are ignored,
that achieves the problem goals from Sp;. Actions in the relaxed plans are selected according
to the sum of the estimated cost of their preconditions.

e hpp. FLAP also makes use of the traditional FF heuristic function hpp (Hoffman and Nebel
(2001)), which builds a relaxed plan by ignoring the delete effects of the actions and returns
its number of actions. The actions of this plan are selected according to their levels in the
relaxed planning graph.

e hpanp.prc and hpanp_rpr. Landmarks are fluents that must be achieved in every solution
plan (Hoffmann et al. (2004); Sebastia et al. (2006)). FLAP computes a landmark graph and
uses this information to calculate heuristic estimates: since all landmarks must be achieved
in order to reach a goal, the goal distance can be estimated through the set of landmarks
that still need to be achieved from the state being evaluated onwards. Once we have the
set of non-supported landmarks, the heuristic value is the result of estimating the cost of
reaching these landmarks with either hprg or hpp. This way, FLAP has two versions of the
landmarks heuristic, called hy anp_pre and hpanp_rF, respectively.

For evaluating a plan IT = (A, OR, CL), FLAP defines two different evaluation functions:

o frr(ll) = w1 *xg(ll) + wo *x hpanp_rr(Il) + ws x hpr(So)
o  forg(Il) = wy x g(I1) + w2 * hpanp_pra(Il) + ws * hpra(Sn)

g(IT) measures the cost of II in number of actions, i.e. g(II) = |A]. The weights in the
two functions are set to wy; =1, wy =4 and w3 =2. FLAP uses both evaluation functions to
simultaneously explore different parts of the search space, thus defining two main search processes.

Additionally, a new A* search is started in parallel when one of the two main search processes
is stuck in a plateau, i.e. the evaluation function does not improve after several iterations. The
goal of this new search is not to escape from the plateau, but to find a solution plan starting
from the frontier state of the best node found so far, as this node is more likely to be closer to
a solution than the initial state. The parallel search is cancelled if the main search manages to
leave the plateau.

FLAP planner is sound and complete since all possible successors are considered at each
point and, when agoq is added to the plan, the support of all problem goals as well as the plan
consistency is guaranteed.

4.2 Performance improvements in FLAP2

In order to improve the performance of FLAP we performed an analysis of the search process,
specifically of the behaviour of the heuristics in domains with different characteristics. This
analysis is shown in the following subsection. Finally, in a second subsection, we describe the
modifications introduced in FLAP2 according to the conclusions of the analysis.

4.2.1  Analysis of heuristics and the plateau escaping method.
Regarding hpra, we found that this heuristic is more informative than App in planning domains
where the state variables have rather large domains, containing multiple different values, and the
DTGs of these variables are sparse graphs.

In Figure 1 we can observe an example of the DTGs of two variables: (empty t1) and (at d1).
There are only two values, true and false, in the domain of (empty ¢1), meaning that the cabin
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(attl)=c3, (atdl) =t1
(attl) =c2, (atd1) =t1 @

(attt) =ct, (atdl) =t1

(attl) = c1, (empty t1) = false

(att1) = c1, (empty t1) = true

(att1) = c2, (empty t1) = false

(att1) =c1, (atd1) =ct

(att1) = c2, (empty t1) = true

(path c2) =11
(att1) =c2, (atdi) =c2

(path 1) =c2

(att1) =c3, (atd1) =c3 empty t‘[

(att1) = c3, (empty t1) =true

(path c3) = 11
(att1) = c2, (empty t1) = false

(path 1) = c3

at di

Figure 1 DTGs of variables (empty t1), the state of the cabin of truck ¢1, and (at d1), the location of
driver d1, in a DriverLog problem example.

of the truck t1 can be empty or not. On the contrary, the position of driver d1 can take several
different values: location 1 (I1), cities 1, 2 and 3 (c¢1, ¢2 and ¢3) and truck 1 (¢1). The values of
hpre obtained from the DTG of variable (empty t1) are not very accurate because there is only
one transition that makes the variable change from true to false, and this transition is derived by
many different actions, particularly all actions in which d1 boards ¢1 at any possible city. Hence,
selecting the action to be included in the relaxed plan to support this transition is not an easy
task and a wrong decision would worsen the quality of the heuristic.

On the contrary, the DTG of variable (at d1) is more informative. For example, the path to
change its value from [1 to c¢I contains three transitions: [1 — ¢2 —t1 — cl or i1 = ¢3 — t1 — 1,
depending on the position of the truck. Moreover, each transition in the path is produced by a
single action and thus the correct action is always selected by hpre when computing the relaxed
graph. Our conclusion is that hprg performs slightly better than hppr in transportation-like
domains, such as DriverLog or ZenoTravel, where the DTGs of several variables are rather large
sparse graphs. For the rest of domains, hpp clearly outperforms hprg.

hprc also presents some limitations in non-reversible domains, where the effects of some
actions cannot be undone. The search space of these domains may contain dead-ends, i.e., nodes
with frontier states from which the problem goals are unreachable. hpp is able to detect many of
these dead-ends as it builds a relaxed planning graph at each node of the search tree: if any of the
problem goals is not reachable in the relaxed graph, the node is a dead-end. On the contrary, hprg
only detects a dead-end state if no transition path can be found in the DTGs that transforms the
value of a variable into its final value. Then, hprg does not take into account the interactions
between variables to detect dead-ends. This limitation can be alleviated by computing mutex
fluents in a preprocessing stage, i.e. fluents that cannot be true in a state at the same time.
Improvements in the hprg heuristic is an issue we want to address in future works.

On the other hand, the landmark-based heuristic, hy a4y p, is very informative in domains which
contain a large number of atomic landmarks. An atomic landmark, which is a single fluent that
every solution plan must achieve at some point, is usually much more accurate than a disjunctive
landmark since a disjunctive landmarks is less restrictive. In FLAP, hpanp (both hpanp_pr and
hranD_DTG), is always used in combination with hpp or hpra. However, we observed that, when
the number of atomic landmarks is similar or greater than the number of disjunctive landmarks,
hranp is informative enough to be used as a stand-alone heuristic.

These three heuristics (hprg, hrr and hpanp) assess the quality of a plan by estimating the
number of actions required to reach the problem goals. However, this does not seem to be the
most appropriate approach for a planner that works with concurrent actions. When dealing with
partial-order plans, optimizing the plan duration (makespan) is always preferable if we aim to
improve the plan parallelism. Even so, as we will see in the Experimental Results section, the
quality of the plans generated by FLAP2 w.r.t. the makespan is quite good because it exploits
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PLATEAU

PLATEAU

Figure 2 Parallel A™ search processes for plateau escaping.

the advantages of working directly with concurrent actions. However, adapting the heuristics to
evaluate the plans according to their makespan could significantly improve the quality of the
solutions, a research line we intend to explore in the future.

Finally, we analyzed the plateau escaping mechanism of FLAP. The parallel search process
started when one of the main search processes gets stuck in a plateau is not enough to solve some
difficult problems as this new search may also get stuck in another plateau.

4.2.2  Modifications in the search process of FLAP.

Taking all the above considerations into account, we designed FLAP2 as follows. First of all,
we check if sufficient information can be extracted from the landmarks graph. We define A\ =
|disjunctive_landmarks|/|atomiclandmaks|, i.e. the ratio between the number of disjunctive
landmarks and the number of atomic landmarks; when no atomic landmarks are found, A\ = cc.
We consider that there is enough information when A <1.2.

When hpanp is not informative enough, A\ > 1.2, FLAP2 starts a single main A* search with
the frp evaluation function with w; =1, wy =4 and w3 = 2. The weight for hpanp_rr, wa, is
higher to make up for the poor heuristic values returned by hpanp. Unlike FLAP, in FLAP2
we do not start a second main search with hppra because, as we said in the previous section,
hpra is only worth using in transportation-like domains and thereby a general use of hprg does
not compensate for the overhead in computation time and memory consumption. Consequently,
hpra is only used in FLAP2 when search needs to be diversified due to the existence of a plateau.

The search process of FLAP2 uses a variable, IIj.4, that stores the node with the best heuristic
value found so far. Initially IIj.s; is set to the initial plan, i.e. Ilp.s; = IIg. When a search node with
a better heuristic value than the one of Iz is found, I is updated to this node. We consider
that the search is stuck in a plateau when IIj.s; has not been updated in several iterations. In this
case, two new search processes are started from the frontier state of Iljes; to increase the chances
of escaping from the plateau. The first one uses frpr and the second one the fprg evaluation
function, both with the same weight values than the ones used for the main search. By using two
new searches with different heuristic functions, we allow to diversify the search directions and
find a plateau exit more effectively.

A child search works equally as the main search. In fact, when a child search finds a plateau, it
also starts two new search processes. This behaviour can be observed in Figure 2. When a search
manages to escape from a plateau, i.e. when a node with a heuristic value better than the value
of Tlpes is found, then its two child processes are terminated.

In the case that hy oy p is informative enough, A < 1.2, FLAP2 starts a search process with frg
and a second main A* search with the following evaluation function: franp_rr(Il) = wy x g(II)
+ we * hpanp_pr(IT), with wy =1 and wy = 1. In this case, hpanp_pr is used as a stand-alone
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heuristic function. When a plateau is found, two child searches are started in the same way as
for the case of A > 1.2, but now we use frp with wy =1, wo =1 and w3 =1, and franp_prc(Il)
= wy * g(IT) + wa * hpanp_pre(ll) with w; =1 and we = 1. This configuration has been fixed
as the result of an extensive experimental analysis and it offers a good trade-off between search
time and plan quality in most of the problems.

The mechanism of parallel searches implemented in FLAP2 yields very good results but
it can lead to an exponential growth in the number of simultaneous processes. However, this
problem does not usually occur in practice since the number of simultaneous search processes
that exceeded the number of processing cores (8 in our test computer) only occurred in a few
problems. Specifically, we tested FLAP2 in 244 problems from 10 different domains and only 7
of them required more than 8 search processes at the same time. And yet, this did not prevent
FLAP2 from finding a solution plan for these problems.

5 Experimental results

In order to evaluate the performance of FLAP2, we selected four current top-performing planners
that return parallel plans: SGPlan, YAHSP2, OPTIC and TFD. All of them are temporal planners
as only this type of planners are currently able to synthesize plans with concurrent actions. Due
to the different characteristics of these planners, we have divided this section in two subsections:

e Comparison of FLAP2 with SGPlan and YAHSP2, two sequential planners that apply a
scheduler to parallelize the plans at a later stage. This approach is extremely fast but finds
more difficulties in producing plans of good quality regarding the makespan.

e Comparison of FLAP2 with OPTIC and TFD, two planners that merge the action selection
and the scheduling process. Working with partial-order planners allows to compute more
flexible plans, with a better makespan, but slows down the search process.

In both cases, we selected six temporal domains from the International Planning Competitions
(IPC), setting the duration of all actions to 1 as FLAP2 is still unable to work with durative
actions. We observed that the behaviour of these planners varies greatly depending on the level
of interaction between the problem goals. For this reason we selected three domains with strong
dependencies between the goals, BlocksWorld, Depots and DriverLog, and three domains with
rather independent goals, Satellite, Rovers and Zeno Travel.

Testing was performed on a 2.3 GHz i7 computer with 12 GB of memory running Ubuntu
64-bits. We only consider the first plan returned by the planners as most of them do not continue
searching for better plans. Each experiment was limited to 30 minutes of wall-clock time.

5.1 FLAP2 vs. SGPlan and YAHSP2

Table 1 shows the number of solved problems and the average time employed by these planners
to find the first solution. Average times are calculated considering only those problems that were
solved by the three planners.

As it can be observed, FLAP2 solves more problems and shows a more stable behaviour. Both,
SGPlan and YAHSP2 present some difficulties in domains with strong interactions between the

FLAP2 SGPlan YAHSP2
Domain Prob | Solved [ Average time | Solved [ Average time | Solved [ Average time
BlocksWorld | 34 34 0.40 22 5.80 34 57.78
Depots 20 20 1.99 19 0.15 16 121.24
DriverLog 20 20 3.38 17 1.02 20 0.11
Satellite 20 20 4.19 20 0.07 20 0.05
Rovers 20 20 4.21 20 0.04 20 0.04
ZenoTravel 20 20 6.91 20 0.23 20 0.16
[ Total [ 134 ] 134 ] 3.52 [ 118 ] 1.22 [ 130 ] 29.90 ]

Table 1 Number of problems solved and average time (in seconds) of FLAP2, SGPlan and YAHSP2.
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Figure 3 Makespan of the plans of SGPlan and YAHSP2, normalized by the makespan of the plans of
FLAP2.

goals (BlocksWorld, Depots and DriverLog), but they are significantly faster in the other three
domains. The landmarks heuristic and the plateau escaping mechanism of FLAP2 are very helpful
to deal with strong dependencies among the goals. FLAP2 also easily solves the problems from
the Rovers, Satellite and ZenoTravel domains, but the overhead to cope with threats among
actions together with a higher branching factor prevents FLAP2 from being as faster as SGPlan
or YASHP2 in these domains.

Regarding the plan quality, Figure 3 shows the makespan of the plans computed by the three
planners. The results are normalized by the makespan of the plans obtained by FLAP2 for a
better viewing. This way, a value of 2 indicates a plan with a makespan twice as much as the
makespan of FLAP2, and a value of 0.5 a plan two times shorter.

In general, FLAP2 generates plans with better quality than SGPlan and YAHSP2. SGPlan
produces slightly worse plans, 1.36 times longer in the six domains. The plan quality of YAHSP2
is much worse as the generated plans are 2.4 times longer than FLAP2 on average.
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FLAP2 OPTIC TFD
Domain Prob | Solved [ Average makespan | Solved [ Average makespan | Solved [ Average makespan
BlocksWorld | 34 34 10.92 24 15.88 34 7.25
Depots 20 20 11.93 11 14.86 10 9.10
DriverLog 20 20 14.47 15 12.93 16 13.40
Satellite 20 20 17.00 16 11.50 20 14.25
Rovers 20 20 12.65 20 13.35 17 14.29
ZenoTravel 20 20 8.56 16 8.31 20 8.31
[ Total [ 134 ] 134 ] 12.59 [ 102 ] 12.81 [ 117 ] 11.10 ]

Table 2 Number of problems solved and average makespan of FLAP2, OPTIC and TFD.

5.2 FLAP2 vs. OPTIC and TFD

Table 2 shows the number of solved problems and the average makespan of FLAP2, OPTIC and
TFD. As it can be observed, FLAP2 also solves more problems than OPTIC and TFD. The
average makespan is computed taking into account only those problems that were solved by the
three planners. Regarding the makespan, FLAP2 is in a intermediate position between TFD, that
produces plans of very good quality, and OPTIC.

In Figure 4 we show the computation time of FLAP2, OPTIC and TFD to find the first solution
plan. For the average times shown in these figures, we considered only the problems that the three
planners have managed to solve. FLAP2 is much faster than OPTIC in the Blocks World, Depots,
Satellite and ZenoTravel domains. On the contrary, OPTIC is slightly faster than FLAP2 in the
Rovers domain. On average, OPTIC is 113.94 times slower than FLAP2 in all the six domains.
TFD is also slower than FLAP2, especially in the Depots and DriverLog domains. On average,
TFD is 45.3 times slower than FLAP2 in all the six domains.

In summary, we can conclude that FLAP2 is very competitive in comparison with these four
top-performing planners. It solves more problems than SGPlan, YAHSP2, OPTIC and TFD in
the tested domains. FLAP2 also produces plans of better quality than the sequential planners
SGPlan and YAHSP2, and is far more faster than OPTIC and TFD, planners that, like FLAP2,
handle partial-order plans.

6 Conclusions

The flexibility of the Partial-Order Planning (POP) paradigm allows for the generation of high-
quality parallel plans. However, current sequential planners outperform partial-order planners
because they require less computational effort as they not need to cope with interactions among
actions and can use very effective state-based heuristics.

In this paper we present FLAP2, an improved version a FLAP. FLAP is a forward partial-
order planner that combines three different heuristics to guide the search and implements a novel
plateau-escaping method that diversifies the search in different directions. FLAP2 changes the
way the heuristics are combined and applies a recursive method to deal with plateaus, thus
significantly improving the planning performance.

We compared FLAP2 with SGPlan, YAHSP2, OPTIC and Temporal Fast Downward (TFD),
four top-performing planners that can generate plans with concurrent actions. Like FLAP2,
OPTIC and TFD handle partial-order plans, combining the action selection and the scheduling
processes. On the contrary, SGPlan and YAHSP2 are total-order planners that parallelize the
computed plans at a later stage.

FLAP2 is the only one that was able to solve all the problems in the selected benchmark set.
Regarding the makespan (plan duration), partial-order planners generate plans of much better
quality than the total-order planners. Particularly, FLAP2 has shown to obtain plans of very good
quality, only surpassed by TFD, which is able to produce plans with a slightly better makespan.
As for the planning time, FLAP2 has shown to be competitive with the sequential planners,
SGPlan and YAHSP2, especially in domains with strong interactions between the problem goals,
and far more faster than the other partial-order planners, OPTIC and TFD.
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Figure 4 Planning time (in seconds) of FLAP2, OPTIC and TFD.

As a future extension, we intend to investigate the adaptation of the heuristic functions of
FLAP2 to optimise the makespan and to mitigate the problem of hprg with dead-end states
in non-reversible domains. Then, we want to exploit the good performance of FLAP2 and its
flexibility as a partial-order planner to develop a new version for dealing with temporal planning
problems.
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