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Abstract

Research on Multi-Agent Systems (MAS) has led to the development of several models, languages, and
technologies for programming not only agents, but also their interaction, the application environment
where they are situated, as well as the organization in which they participate. Research on those topics
moved from agent-oriented programming towards multi-agent-oriented programming (MAOP). A MAS
program is then designed and developed using a structured set of concepts and associated first-class
design and programming abstractions that go beyond the concepts normally associated with agents.
They include those related to environment, interaction, and organization. JaCaMo is a platform for
MAORP built on top of three seamlessly integrated dimensions (i.e. structured sets of concepts and asso-
ciated execution platforms): for programming belief desire intention (BDI) agents, their artefact-based
environments, and their normative organizations. The key purpose of our work on JaCaMo is to support
programmers in exploring the synergy between these dimensions, providing a comprehensive program-
ming model, as well as a corresponding platform for developing and running MAS. This paper provides
a practical overview of MAOP using JaCaMo. We show how emphasizing one particular dimension
leads to different solutions to the same problem, and discuss the issues of each of those solutions.

1 Introduction

Current trends in computer science are facing up to the challenges of building distributed and open
software systems operating in dynamic and complex environments. In this context, multi-agent techno-
logies can provide concepts and tools that support possible answers to the challenges of practical
development of such systems by taking into consideration issues such as autonomy, decentralization,
interaction, and flexibility.

Within the broad field of research in multi-agent systems (MAS), various techniques and concepts
related to autonomous agents led to concrete programming models'. These are concerned with agent-
oriented programming languages, interaction and protocol languages, environment infrastructures, and
agent organization model and management systems. The results produced so far indicate the importance of
these concepts and abstractions for the development of multi-agent applications.

Nevertheless, and perhaps a bit surprisingly, as we discussed in Boissier ez al. (2013), the engineering
of MAS has been hampered by the use of programming approaches that are mainly focused on subsets of

' We invite the reader to refer to the proceedings of the EMAS Workshop series and its predecessors for a broad

overview of the area.
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2 O.BOISSIER ETAL.

those concepts available at design time, but then not available for programming, or not consistent with
those used in programming. Because of this, developers miss the benefits of a comprehensive approach
that suitably integrates all these concepts in a way that keeps these abstractions coherent from the design
to the programming and execution.

Multi-agent-oriented programming (MAOP), as proposed in Boissier et al. (2013), aims at supporting
the MAS paradigm at the programming level. It provides a structured approach based on three integrated
dimensions of concepts that are useful for designing such complex systems: the agent dimension that is
used to program the individual (interacting) autonomous entities, the environment dimension used to
develop shared resources and connections to the real world, and, finally, concepts from the organization
dimension allow the structuring and regulation of interrelations between the autonomous agents, and
between the autonomous agents and the shared environment. We put forward a particular approach to
MAOP that is supported by an existing fully fledged platform called JaCaMo? (Boissier et al., 2013). One
of the most important aspects of JaCaMo is that the platform supports programming constructs that match
each of the design abstractions of MAOP.

This paper provides an overview and discussion of the main practical programming aspects that concern
MAOP, using JaCaMo as a reference platform. To this end, we take as a starting point a conceptual model
resulting from the integration of the three main dimensions that structure all these concepts.

After presenting this conceptual model (in Section 2), we illustrate the approach by presenting the
development of illustrative programs explaining incrementally how to use and compose these different
concepts in order to develop MAS. We first show how to program agents and the shared environment
where they are situated (Section 3), then we discuss the programming of coordinated behaviour among
those autonomous entities exploiting direct communication, shared environments (Section 4), and agent
organizations (Section 5). All along these sections, we discuss how alternative solutions result from
different synergies between the available dimensions, that is, an emphasis on a particular dimension
generates a particular solution for the given problem. We discuss the benefits and limitations of each of
those solutions to approach the same problem. The JaCaMo platform is used as a development tool for that
exercise. This way, we illustrate MAOP from a practical point of view and discuss the development
of a simple (abstract) system integrating the agent, environment, and organization dimensions. Before
concluding, we briefly discuss some related work (Section 6).

2 Concepts

In this section, we discuss the concepts underlying the abstractions that are used in the MAOP approach
that is promoted in this paper. We first give a global view on a JaCaMo MAS introducing briefly some of
the concepts that are important in this approach. After that, we discuss the programming abstractions that
are essential for MAS designers and programmers and which will be extensively used in the remainder of
the paper. As mentioned previously, the concepts are organized into three separate dimensions, and this is
reflected in the structure of this section.

2.1 Multi-agent system

A JaCaMo MAS is composed of a dynamic set of agents interacting within a shared, possibly distributed,
environment that consists of a dynamic set of artefacts (Boissier et al., 2013). Agents are goal-oriented
autonomous entities, encapsulating a logical thread of control, that pursue their goals by perceiving and
acting upon artefacts and by communicating with other agents. Artefacts are used to model any kind of
resource or tool that agents can use and possibly safely share, to achieve their goals. An agent can perceive
the observable state of an artefact, reacting to events related to that state change, and act by performing
actions that correspond to operations provided by an artefact’s usage interface. Environments can be
decomposed into one or multiple workspaces, which are artefact containers representing a logical space,

2 The acronym JaCaMo comes from combining the names of the three platforms on which JaCaMo is based, namely
Jason, Cartago, Moise.
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Dimensions in programming multi-agent systems 3

defining a notion of locality’. An agent can join (and work with artefacts of) multiple workspaces
at the same time. Workspaces can be located on different network nodes, in case of physically
distributed environments.

The agent organization abstraction level makes it possible to specify and handle as a first-class aspect
the coordinated and organized activity taking place in the system, resulting from the concurrent and
complex tasks performed by groups of agents interacting with each other or acting within the environment.
Changes in the state of the environment may lead agents to react and they may also affect the state of the
organization. In order to support the joint work of agents, an organization can regulate and coordinate
agent activities. For example, if there is a dependency between the tasks of two agents, when the first task
is perceived as concluded through the state of the environment, the organization can require or expect the
agent responsible for the second task to engage in the action it has previously committed to execute. The
possibility to specify rules at the organizational level regulating and coordinating agent activities
can significantly reduce the amount of work developers need to do when implementing agents for
complex applications.

Of course, as agents are autonomous, this can only happen if they actively choose to participate in, and
to comply with, one or more of the currently existing organizations in the system.

A MAS combines and inter-connects several different life cycles, each consisting of the creation,
execution, and destruction of entities such as artefacts, workspaces, agents, and organizations. In this
global picture, it is also important to stress the notion of autonomy, making clear the difference between
agents and artefacts. Even though at some level both entities may be considered as processing/acting
entities, only agents are meaningfully described as autonomous entities. Agents are deemed able to make
reasoned/motivated decisions about the courses of action that they will take. This implies, as it will be
explained below, that agents do not act upon other agents as they do with artefacts; rather, they interact
with each other: the acceptance of information or the adoption of tasks from received messages
are controlled by a decision-making process of the receiver. The set of abstractions expressed in agent
organizations are targeted towards the agents in order to regulate and control their autonomy.

2.2 Programming dimensions

In order to support the design and programming of JaCaMo MAS, we propose three sets of (programming)
abstractions. Each of these sets of abstractions, to which we refer as dimensions, take part in the creation of
a multi-agent oriented program: the agent, environment, and organization dimensions.

In this paper, we focus on some of the abstractions and concepts from each dimension and we only discuss
the main relations between these dimensions (cf. Figure 1). We give references for the interested reader where
all the abstractions and details of our approach can be found. The objective here is to look only at the most
foundational concepts and relations so that the reader can get the overall picture of our approach. Even though
a few other concepts are introduced in later sections with a more practical view, the description of all the
concepts in MAOP and JaCaMo in particular is not possible in this paper due to space constraints.

It should be noted that a MAS may lead to distributed execution of a number of heterogeneous agents,
artefacts, and organizations; one of the reasons for heterogeneity is that those entities are potentially
programmed by different people or indeed representing the interest of different, possibly competing,
companies. Moreover, this programming approach give strong support for changes in and reorganization
of the system code while the system remains running.

For example, through run-time creation of organization and artefact instances, agents joining and leaving
organizations through the roles they choose to adopt, and so forth. This is useful for many of the features
needed in modern computer systems pertaining, for instance, to the Internet of Things (IoT) domain.

2.3 Agent dimension

The agent dimension gathers all the programming abstractions that are used to program agents as autono-
mous software entities that have their own thread of control. Agents constantly perceive and act on the

3 In fact, it is also physically a locality, since a workspace runs on a single host.
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Figure 1 Multi-agent-oriented programming dimensions—agent (A), Environment (E), Organization (O) —with
some of their inter-relations and with some of the concepts they use. In this figure, dashed purple links show the
relations and inter-dependencies between the dimensions, for example, the agent dimension is related to the
environment dimension through acting and perceiving
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environment (i.e. on artefacts), interact with other agents, and take part in higher-level entities of the agent
organization. In order to exhibit the property of autonomy as explained above, the programming
abstractions that are used to program an agent allow it to reason about what to achieve by means of
symbolically represented goals and, also importantly, how to do so by means of plans, given the current
understanding of the perceived state of the system represented by means of beliefs.

The plan construct of the programming language is used to define sequences of actions and the
manipulation of beliefs and goals when necessary. These are the ‘recipes’ for action that provide knowhow
to the agent. Changes in beliefs and goals may happen by means of plan execution but also as a
consequence of interaction with other agents and the environment. Furthermore, the changes in both these
types of mental attitudes are recorded internally in an agent as events. It is the events that then lead to
the execution of particular plans depending on the current state of environment, the agents beliefs, possibly
the other intentions (i.e. other plans the agent is already committed to execute), and so forth.

All these abstractions make it possible for agents to be proactive, that is, to act so as to achieve their
goals, but also to be reactive, that is, to react to changes in beliefs about the environment, the agent
organization, or other agents. It should be noted that agents may interact with other agents through
particular actions that are called communicative actions®.

2.4 Environment dimension

The environment dimension offers a set of programming abstractions to represent the shared environment.
These programming constructs concern first the notion of artefact, the basic environment entity that
encapsulates computing or other forms of resources. Artefacts are used by agents through a set of
operations that agents can perform on the artefact. It offers also a partial view on its state through a set of
observable properties and on its activities through a set of signals. Both observable properties and signals
are perceived by the agents only after they focus on the corresponding artefact (thus potentially avoiding
information overload by only focussing the attention on the artefacts that matter to the agent). It should be

4 More details about the concepts in the agent dimension can be found in Bratman (1987), Rao (1996), Labrou et al.
(1999), Bordini et al. (2007).
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Dimensions in programming multi-agent systems 5

noted that the connections between the agent and the environment dimensions happen through the trans-
formation of observable properties and signals issued from the artefacts into beliefs/events of the agents and
to the transformation of actions within executing plans of the agents into calls to operations on artefacts.

Note that artefacts can make direct references to real-world environments, to various forms of existing
computational resources, or simply support agent coordination through shared resources in an implicitly
controlled way. This dimension offers a second important programming abstraction, used to structure the
activities of the situated agents by defining topological or symbolic regions called workspaces. Artefacts
are situated in a workspace. Agents may dynamically join or leave one or several workspaces. Joining a
workspace allows agents to perceive all artefact activity taking place in it>.

2.5 Organization dimension

Finally, the organization dimension gathers the abstractions that are used to structure and guide how the
activities resulting from the actions and interactions of the agents within the environment should be
coordinated. In an organization, a group can be used to provide social structure by means of roles that
agents may decide to adopt within that group. When taking part in an organization, an agent plays at least
one role in a particular group. Norms are used by MAS designers to express the behaviour that is expected
from agents playing a particular role in the context of a particular group.

These programming constructs are used to state that agents playing specific roles will have certain
obligations or permissions within the group activities in order to achieve collective goals. The individual
behaviours are part of collective plans, called schemes, that provide a structured way to achieve a
collective goal in which various different agents will have to work on different parts (sub-goals) of that
activity by using some resources deployed in some configuration of the environment®.

The development of a JaCaMo application starts by the definition of instances of the abstractions from
each of these dimensions and their connections. Since some concepts from different dimensions are
aligned (e.g. organizational goals and agent goals, environment operations and agent actions, observable
properties and agent beliefs), developers currently use the same identifier to link the dimensions. For
instance, if a norm obliges and agent to achieve goal g34, the agent has to have, at runtime, a plan to
achieve goal g34’. In the next section, these definitions and their integration are concretely illustrated
through code excerpts.

3 Programming agents and shared environments

In this section, we will explore how to program systems of multiple situated agents, interacting with artefacts
and also with other agents. Situatedness is a basic concept in MAOP. It means that agent’s decisions are based
on their perception of their surrounding environment and also that the result of their reasoning are actions to be
taken upon that environment. To illustrate this relation between the agent and environment dimensions, we
start by showing how to use JaCaMo to program agents and artefacts, how to program their interactions, how
to distribute them on multiple hosts, and finally how agents can directly interact with each other.

From a methodological point of view, the availability of the agent and environment dimensions
promotes a clean separation of concerns about what in a system can be better modelled/programmed as

More details about the concepts in the environment dimension can be found in Weyns et al. (2007), Omicini ef al.
(2008), Ricci et al. (2009).
® More details about the concepts in the organization dimension can be found at Demazeau and Rocha Costa (1996),
Lemaitre and Excelente (1998), Hubner et al. (2002), Boissier et al. (2007), Rocha Costa and Dimuro (2009).
7 This assumption can be relaxed by defining an “interaction’ language (not only for agent communication but also
for perception and action), some sort of common language or application ontology that defines a set of goals, actions,
and percepts that are translated into environment observable properties and operations, into agent beliefs and actions,
and into agent and organization goals. It can also be relaxed if agents are capable of learning, possibly from the
application ontology, what g34 means. For the particular example of plans for required social goals, it is worth
mentioning that in MAOP agents often acquire plans at runtime through interaction with other agents or a planner (e.g.
encapsulated as an artefact). This kind of sophistication, however, is not considered in this paper and we assume the
developer uses matching identifiers to link the dimensions.
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Figure 2 Situated agents interacting with an artefact

task/goal-oriented entities (agents), designed to pro-actively achieve such goals and what can be better
modelled/programmed instead as resources/tools (artefacts) useful to achieve those goals. Examples of the
latter case span from artefacts modelling I/O devices and OS services (e.g. stdin/stdout, graphical user
interface, files) to shared data, coordination media (shared knowledge bases, blackboards, message ser-
vices, etc.), and artefacts representing legacy resources or systems.

3.1 Agent—environment programming

We first show a simple program where three agents (named agt1, agt2, and agt 3 ) perceive one artefact
(named art1), as shown in Figure 2. The first two agents have the same initial program (file a.as1l),
however, they have different initial beliefs. To start a MAS with such an initial state, a JaCaMo project file
as shown below is used®. After the initialization, new agents and artefacts can be created by the agents
themselves (we discuss this later).

mas ker_hil {

agent agtl: a.asl { // a.asl is the source code file for agent agtl
beliefs: b4(10) // initial belief for agtl
focus : wsl.artl // initial focus on artifact artl situated in workspace wsl

¥

agent agt2: a.asl { // a.asl is also the source code for agent agt2
beliefs: b3(20)
focus : wsl.artl

¥

agent agt3: c.asl { // agent agt3 has a different source code file: c.asl
beliefs: b4(10), b3(20)

goals : g2 // initial goal for the agent agt3

focus : wsl.artl
}
workspace wsl { // creation of a workspace with artl inside

artifact artl: tools.Art1(5,0) // artl is created from tools.Artl artifact type
}

3.2 Agent—environment interaction

All three agents in Figure 2 perceive the artefact situated in workspace ws1 by focussing on it and thus will
have beliefs representing the current state of the observable properties b1 and b2 (these properties have
one assigned value, as indicated by /1 in Figure 2). For instance, if the value of b1 is 10 in artefact art1,
the agents have abelief b1 (10) [source (percept) ] intheir belief base and this belief is automatically
updated every time the value changes in the artefact. Agents agtl and agt2 will also act on artl

8 The code for the examples used in this paper is available at http://jacamo.sf.net/ker2017. The
technical documentation of the JaCaMo platform with all the programming constructs that can be used to write a
MAGOP is available on the JaCaMo website at http://jacamo.sf.net/
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Dimensions in programming multi-agent systems 7

executing the operation inc . The square brackets following a belief predicate are used to add annotations
to a belief. They may be omitted in the code when there are no constraints on particular annotations of a
belief but all beliefs in the belief base will have at least the annotations about the origin of the beliefs.
Agents can react to changes in the environment using plans. For instance, the program a . as1 of agents
agt1and agt2 contains the following plan (p 1anB1) which is triggered when the value of b1 changes’:

@planB1 // label of the plan
+b1(X) : X < 10 <- inc(X/2).

That can be read as “Whenever the belief about the value of b1 changes, provided the value of b1 is
currently less than 10, the agent may execute the operation inc. to increase that value by half’. The part of
the plan between: and < — is called context. It states the conditions under which the course of actions in the
plan body is appropriate for handling the triggering event (the initial part of the plan preceeding:).

An agent program could be as simple as a line like the one above alone. The developer does not need to
explicitly program the perception of the environment (this is done automatically in the agent reasoning
cycle based on what artefacts the agent has focussed on) nor handle how the action request is passed on for
execution by the artefact.

Beyond reactive behaviour as introduced above, proactive behaviour can be programmed by creating
goals and reacting to changes in the agent’s goals. For instance, the new plan planB1 below creates a goal
g5 given the same context conditions of the last example. The plan to achieve that goal may have many
steps, including the creation of other goals, addition/deletion of beliefs, and execution of actions
(i.e. operations provided by artefacts).

This plan may take a long time to finish—for instance, depending on how difficult it is to achieve all the
required goals and execute all the required actions—so an observer of the behaviour of the agent could
perceive it as a long-term proactive behaviour.

@planB1
+b1(X) : X < 10 <- !g5.

@planGb
+1gb : ... <= ... // the plan to achieve gb

On the environment side, the artefact ar t1 is an instance of the artefact type Art1 and is programmed
in Java with some provided classes and annotations that support artefact programming. For instance, the
implementation of the operation inc., which increments the value of the observable property b2, is
public class Artl extends Artifact { // program for the Artl artifact type

void init(int b1, int b2) { // creation of observable properties
defineObsProperty("b1", bl);

defineObsProperty("b2", b2);
}

QOPERATION void inc(double v) {
ObsProperty prop = getObsProperty("b2"); // get a reference for b2
prop.updateValue (prop.intValue () +v) ; // and increments it by v

It is worth noting that, as operations are atomically executed in an instance of an artefact, developers do
not need to handle concurrency issues such as when several agents trigger the inc. operation at the same
time. Furthermore, the platform takes care of suspending a particular agent intention when it requires an
action to be executed in the environment. The intention remains suspended until the corresponding
operation in the artefact is completed. In a plan body such as ... al; a2;..., the programmer can safely
assume that action a2 will only be executed after the execution of al. Suspending intentions that are
waiting for the execution of environment actions allows agents to carry on executing intentions related to
other aspects of the environment or to its internal reasoning. The agent continues its reasoning cycles, that

° The syntax of AgentSpeak, the language that inspired our agent language, was in turn inspired by Prolog and thus
identifiers starting in upper case are variables.
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is, perceiving and acting on the environment, so as to maintain its reactivity to other possible changes in
the environment.

3.3 Changing the environment

In the code examples we introduced so far, the environment is fully defined in the project file by the
application developer through the definition of workspaces, artefacts, and the agents that join/focus on
them. In that case, the environment is fully created and configured at the launching of the system. How-
ever, in some cases it may be important to reconfigure and create new parts of the environment while the
system is running. For instance, creating artefacts in reaction to some particular situation or from some
deliberation of one or several agents. This means that the agents themselves should be able to create and
change the environment configuration at run-time. This is another important feature of JaCaMo that
enables agents to control the whole environment life cycle by creating workspaces, joining them, creating
new artefacts, focussing on them, using them, and destroying them. As an example, the following agent
program excerpt illustrates the use of this feature to achieve goal g4 within plan planG4.

@planG4
+!lgd <-
makeArtifact (art4,"tools.Art1",[5,0], ArtId); // creates a new artifact that can be
// referenced with variable ArtId,
focus (ArtId); // and focuses on it
inc(10) [artifact_id(ArtId)]; // uses the artifact (by doing operation "inc")
.send(agt3,tell,myart(art4)); // sends the name of the new artifact to agt3

.wait( b2(X) & X > 20 ); // waits for the observable property bl to be
// greater than 20
disposeArtifact (ArtId). // removes the artifact

The possibilities for agents to dynamically change the environment include also other programming
constructs that can be used in the development of a MAOP. For instance, an agent can create or destroy
other agents while executing. Furthermore, we discuss later in this paper how agents can deploy and
reconfigure organizations at runtime.

3.4 Distribution

Another important feature of MAOP is that it allows us to distribute the execution of agents and artefacts in
a straightforward way. In JaCaMo, this is done as follows. Let us consider that agents of type c, in order to
achieve goal g2, need to perform a heavy computation and several machines should be used to distribute
the load. Considering further that such computation is better implemented in Java. We could implement it
in an artefact, hence externalizing (i.e. moving outside of the agent program) that computation as shown in
Figure 3. In JaCaMo, workspaces and agents can be distributed on multiple machines; the simplest way of
doing this is using project files'®. In the example below, two project files would be needed. The first project
file ker_h1 runs in host1 and the following lines are added to the previous version of this project file:

mas ker_hil {
... // configuration of agtl and agt2 as before

agent agt3: c.asl {
beliefs: b4(10), b3(20)
goals : g2
focus : wsl.artl

}

workspace wsl { // creation of a workspace with artl and art2 inside
artifact artl: tools.Art1(5,0)
artifact art2: tools.Art2()

' Note that this can also be done in an agent program as shown in the previous section with a particular language
construct called internal actions. We do not show it here due to space constraints.
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Figure 3 Distributed agents and workspaces

The second project file, to be executed in host2, should be as follows:

mas ker_h2 {
agent agtd: c.asl {
beliefs: b4(10), b3(20)

goals : g2
focus : wsl.artl // wsl is running on another host
ws2.art2

}

workspace ws2 {
artifact art2: tools.Art2()
}

}

The JaCaMo infrastructure manages the communication between the distributed components (work-
spaces, agents) so that we can deploy the system differently by just changing the project files (i.e. different
distributed deployments do not require changing the code of the agents or artefacts).

In this setup, there are two artefacts with the same name (ar t 2) but in different workspaces, one is used
by agt 3 and the other by agt4. These artefacts have the calc operation that returns some value instead of
changing some observable property as done, for example, in the operation inc. of artefact Art 1. The calc
operation is implemented as follows:

QOPERATION void calc(double a, OpFeedbackParam<Double> b) {
int r = ...; // a complex computation is done here
b.set(a+r);

¥

Note that return values are modelled as action feedback, and there can be more than one. The Java API
exploits OpFeedbackParam argument types to represent such feedback.

The agents do not need to know where artefacts are running to use their operations. For example, agents
of type c, based on which artefacts they are focussing, can use distributed artefacts in plans as follows':

@planG2
+!g2 : b4(X) & X mod 5 == 0 // ’mod’ is the remainder operator
<- calc(X,Y); // operation of artifact art2 @ host 2
set(Y). // operation of artifact artl @ host 1

""" If an agent requests an operation which is provided by multiple artefacts (located in the workspaces that the agent

has joined) and without explicitly stating which one is meant, no error occurs and one is selected non-deterministically
by the infrastructure.
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Figure 4 Agent communication

Although we do not exemplify this here, often artefacts are used to connect human users to the
system or to connect the system to elements of a real-world environment. The examples included in
the JaCaMo distribution exemplify artefacts used for graphical user interfaces and various other uses
of artefacts.

3.5 Agent—agent interaction

Besides the interaction that agents can have with or through the artefacts in the environment, direct agent—
agent interaction is also possible. It is based on speech acts. To illustrate this kind of interaction, two
changes are made in the program of agt2 and project file as follows: (i) the goal g2 of agt 3 will not be set
in the project file anymore, it will be delegated by agt 2 instead, and (ii) the belief b3 of agent agt4 will
be informed by agt2 , as shown in Figure 4.

To program the first change, agent agt2 uses the . send (internal) action to send an achieve message to
agt3. This action has three parameters: the name of the receiver, the performative (stating how the sender
intends the message to affect the receiver), and the content. The performative used in this example,
achieve, asks the receiver to achieve a new goal corresponding to the content of the message. The code
used by agt?2 to send the message is thus the following:

.send(agt3,achieve,g2)

When agt3 receives this message, the default interpretation for the message (as implemented in the
platform but user customization is possible) leads to the creation of a new goal g2. The program for agent
agt3 does not need to be changed since it already has a plan to react to the creation of a goal g2
(previously created from the project file instead).

To implement the second change, agt2 uses the fell performative:

.send (agt4,tell,b3(15))

The default interpretation of a fell message on the receiver side leads to the creation of a belief
corresponding to the content of the message (b3 (15) in that case). Again, the code for agent agt4 does not
need to be changed. In JaCaMo, the source of an agent’s beliefs is either external (through the initial project
file, from tell messages sent by other agents, or perception of the environment in particular through observable
properties of artefacts) or internal (i.e. created with a belief addition operator ‘+” within some executed plan in
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Dimensions in programming multi-agent systems 11

the agent program). Similarly, goals can be created externally (through the initial project file or achieve
messages sent by other agents'?) or internally (using the goal addition operator ‘!’ in the agent program).

3.6 Wrapping up

In this section, we showed how to program a set of agents situated in a shared environment populated with
artefacts. The following features have been demonstrated through programming constructs from the agent
and environment dimensions:

Situatedness: using the environment dimension and the ability to join workspaces where artefacts have
been deployed. Artefacts can be individual computational tools, multi-agent coordination tools, graphical
interfaces, or interfaces with the external world. Agents can perceive this environment and represent part
of it through beliefs. They can also act on it through the current set of actions associated with the operations
that are exposed by the currently instantiated artefacts.

Autonomy: agents have a reasoning cycle, with support to reactive and proactive behaviour through
programming constructs such as goals, plans, intentions, etc.

Interaction: agents can interact through communicative actions and the shared environment.

Openness: agents can enter and leave workspaces and also create and change the environment structure
and configuration at run time, by dynamically creating and disposing artefacts.

Distribution and deployment: the JaCaMo project files makes it possible to specify the initial deployment of
multi-agent applications that could involve multiple workspaces running on different nodes (hosts).

4 Programming coordinated agents in a multi-agent system

The abstractions provided by the different dimensions can be flexibly combined in order to define the
strategies to solve problems, for example, coordination problems. In this section we see this point by
considering a classic coordination mechanism, the Contract Net Protocol (Foundation for Intelligent
Physical Agents (FIPA), 2002). We show here how to program it with the agent dimension (i.e. using
direct agent interaction as commonly done in MAS) and based also on the environment dimension using
environment constructs (such as artefacts and workspaces) as a coordination medium. In the next section,
we will look at another approach, based on the organization dimension, in which organization specifica-
tions are used to express the strategies of this coordination mechanism.

The example, used throughout this section and the following, considers an initiator agent that
announces a call for proposals (cfp) asking for some agent (a contractor) to perform a task. Several
participant agents may answer the call with their proposals or refusal to do the task. The protocol ends with
the initiator agent selecting a winner and announcing its decision to the participant agents.

4.1 CNP with a message-based implementation

The CNP can be programmed using message passing between agents, as illustrated in Figure 5. The
askOne performative is used by the initiator (agent agt 1) to consult the participants (agents agt2—agt4 )
about their price for task t 1. The default behaviour for a receiver of such a message is to consult its belief
base for the message content (the query is task (t1,Price) in this case) and to send back a fell message
with the result of the query (e.g. send(agtl,tell,task(tl,300)). It should be noted that the
initiator simply chooses the lowest-price bid.

In this section, we do not intend to program agents with sophisticated reasoning, so their programs,
presented below, are the simplest we can write. Comments are used to explain them. Code initiator.asl for
agent agtl contains an initial goal aiming at achieving allocate(t1) and the plan labelled allocateTask
that achieves this goal'>.

12 This assumes full cooperation. However, also different scenarios can be handled, where, for example, an agent can
reject a goal delegated by another agent, or one which the organization forbids.

3" We use the .broadcast command instead of . send, which is used to send a message to all agents in the
system.
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askOne
task(t1,Price)

tell
task(t1,300)

agtl
: initiator

tell
winner(agt2)

Figure 5 CNP: message-based version

lallocate(tl). // initial goal: allocate task ti1

Q@allocateTask // plan that implements the protocol on the initiator side
+!allocate(T)
<- .broadcast (askOne,task(T,P)); // announces task tl to all agents
.wait (2000); // waits 2 seconds for the proposals
// places all received bids into list L
.findall (bid(P,A) ,task(T,P) [source(A)],L);
.print("Bids: ",L);
.min(L,bid (WOf,WAg)) ; // selects the best bid
.print ("Winner is ",WAg," with ",W0f);
.broadcast(tell,winner(WAg)). // announces the winner of the allocation

Code agt2.asl for a participant agent has an initial belief where a price is fixed for the task task (t1,300).
It also has two plans, one for handling the case of winning an allocation and another for performing task t1.

task(t1,300). // initial belief (used to respond to askOne)
+winner(A) : .my_name(A) <- !t1. // if I am the winner, I have to do the task
+1t1 <= ... // plan to achieve t1

Code agt3.asl used for another participant agent does not fix the price with an initial belief but with
a rule generating a random price for task t1. It also has the two plans for the winning case and for doing

task t1.

task(t1,P) :- P = math.random * 100 + 500. // rule that sets a random value for task til
+winner (A) : .my_name(A) <- !ti. // if I am the winner, I have to do the task
+1t1 <= ... // plan to achieve t1

Code agr4.asl for another participant agent is more sophisticated in the sense that the agent will only answer to
the askOne price query if it comes from a friend and if it has a plan for task t1 in its plan library (see plan
fixingPrice). As we can see this code also has a plan for the winning case and one for completing a task.
However, this plan is for task t2 and not for task t1 for illustration purposes, as explained below in the
execution steps.

friend(agtl). // agtl is my friend

@fixingPrice

+7task(T,P) [source(A)] // plan for answering a query goal issued by another agent A
: friend(A) & // the query comes from an agent that is my friend
.relevant_plans({+!T},Plans,_) & // getting the list of all plans for task T
Plans \== []

<- P=300. // answer with fixed price (300) if I have a plan for T

+winner (A) : .my_name(A) <- !t2. // if I am the winner, I have to do the task

+1t2 <= ... // plan to achieve t2

Downloaded from https://www.cambridge.org/core. Biblioteca Central PUC - RS, on 07 Dec 2021 at 12:28:22, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms
. https://doi.org/10.1017/5026988891800005X


https://doi.org/10.1017/S026988891800005X
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Dimensions in programming multi-agent systems 13

Inspection of agent agt1

- Beliefs joined(main,cobj_0);_ ;.
task(t1,563.5476946876424) ).
task(t1,800);. 3.

Figure 6 MindInspector of agent agt 1 after the call for proposals

When we launch these agents using a JaCaMo project, the execution produces the following steps:

1. agt1l broadcasts to all agents a query for the price of task t1 (line 5) and waits 2 seconds for the
answers (line 6);

. agt2 answers with a fixed price according to its initial belief task (t1,300);

. agt3 answers with a random value following the rule in its belief base;

. agt4 does not answer given that it does not have a plan for task t1 (it only has a plan for task t2);

. agt1 receives the answers as beliefs in its belief base (contents of messages with a tell performative are

interpreted as belief additions) as illustrated by the screenshot of the JaCaMo mind inspector in
Figure 6;

6. agtl collects the bids (line 8) into a list based on a query task (T,P) [source (A)] (i.e. the bids it
has received from agents agt 2 and agt3), selects the best bid in line 10 (the agent who placed the bid
with the lowest price for the task), and broadcasts the name of the winner to all agents (line 12);

7. agt2 starts the task as soon as it receives the message saying it has been awarded the contract for
that task.

[ I SO I ]

The output of the execution of these agents on the console is as follows:

[agt1l] Bids: [bid(553.278486221895,agt3),bid(300,agt2)]
[agtl] Winner is agt2 with 300
[agt2] Doing task ti1

We now briefly discuss this implementation of the CNP and highlight some of its drawbacks:

1. The initiator agent uses .broadcast for the announcements (i.e. cfp and winner), so all agents, even
those not interested in the allocation process, receive the message and have their belief bases updated
with the new belief (unless they are customized to ignore specific messages).

2. In open systems, where new agents can enter and leave at any time, if an agent arrives after the cfp
announcement (and before the deadline), it will miss the opportunity to participate in the ongoing
allocation process.

3. In usual implementations of CNP, participant agents do not know the bids placed by the other agents and
thus are not able to decide whether to make a better offer. Allowing that to happen in the CNP
implementation described above would require all bids to be broadcast, which would cause a significant
increase in the number of exchanged messages that would be required for allocating the tasks.

Even though we could improve the agent programs to avoid some unnecessary messages, in the next
section we avoid these drawbacks using artefacts instead.

4.2 CNP with an artefact-based implementation

The artefact-based implementation, as illustrated in Figure 7, slightly changes the previous protocol to
better highlight the possibilities brought about by the use of artefacts. Instead of broadcasting the cfp,
agtl creates an artefact that shows, as an observable property, the required task and the current best
proposal. Participant agents interested in that allocation process can focus on that artefact and, if they have
a better proposal (although this is not allowed in the original ‘sealed bid” CNP protocol), they can place
further bids using the operation bid. After the deadline, agt 1 checks the best proposal and announces the
winner using again the artefact (the operation set_winner). Agents then perceive who is the winner
based on the winner observable property of that artefact.
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tell
newCNP(t1)

agt1
:initiator

Figure 7 CNP: artefact-based version

To implement this version, the program of the initiator agt 1 is changed to'*:

tallocate(tl). // initial goal: allocate task til

@allocateTask
+lallocate(T)
<- // creates the CNP artifact and initializes it with the task to be allocated "ti1"
makeArtifact(tl,"protocols.CNP", ["t1"], ArtId);
focus(ArtId); // focuses on this artifact
// broadcasts the name of the CNP artifact to announce its creation to others
.broadcast (tell, newCNP(t1));

.wait (2000) ; // waits an amount of time for the proposals
?best_proposal (WAg,WO0f) ; // consults the belief base for the best proposal
.print ("Winner is ",WAg," with ",WOf);

set_winner (WAg) . // sets the winner on the CNP artifact

Comparing the code of plan allocateTask to the one in the previous section, it can be noted that the program is
shorter, since part of the previous code was externalized in the CNP artefact, for example, the determination of
the best proposal. We can also notice that the belief base of agt1 is not populated with all the proposals as
before. It only gets the updates of the current best_proposal belief from the CNP artefact.

On the participant side, the code agr2.asl, agt3.asl, and agt4.asl are extended with the following two plans:

@focusCNP
+newCNP(T) : task(T,_) <- lookupArtifact(T,ArtId); focus(ArtId).

@bidding
+best_proposal(_,X) : task(tl,MyPrice) & MyPrice < X <- bid(MyPrice).

In the focusCNP plan, the agent reacts to receiving the announcement of the creation of the CNP
artefact by looking for the artefact with the given name (variable 7) and focussing on it if it has a belief
task for the announced task handled by the CNP artefact. The bidding plan reacts to changes in the
best_proposal observable property: if the agent’s price is better than the current proposal, the agent places
anew bid through the CNP artefact using the bid operation available on CNP artefacts. It is worth noting that
agents now have the possibility to improve their bids compared to the bids from other participants throughout
the execution of the biding phase. More importantly, agents can retrieve information about all available
artefact instances when joining a workspace. The broadcast in the code above alerts agents currently in the
system about the new CNP artefact so that agents do not need to be constantly looking for newly
created artefacts. Therefore, agents that just entered the system do not miss the opportunity to participate
in allocations that had been already announced when they joined the system and that are still within
the deadline. Note also that many instances of the same artefact type can be created at the same time,

!4 In the agent code, t 1 is the name of the artefact, whilst Ar t Td is the identifier of the artefact whose name is t 1.
The value of ArtId is determined by the underlying infrastructure that manages artefacts.
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so several CNP processes for various different tasks can be running in parallel. The code of the CNP
artefact is as follows:

public class CNP extends Artifact {
boolean open = true;

// creates two observable properties for the task given

// as argument when the artifact instance is created

void init(String task) {
defineObsProperty("task", task);
defineObsProperty("best_proposal", "none", Integer.MAX_VALUE);

}
Q@OPERATION void bid(double p) {
if (lopen)
return;

// update of observable property for the best proposal
ObsProperty prop = getObsProperty("best_proposal");
int best = prop.intValue(1);
if (p < best) {
prop.updateValue(0, new Atom(getOpUserName()));
prop.updateValue(1l, (int)p);

}

QOPERATION void set_winner(String w) {
// add a new observable property to the artifact
defineObsProperty("winner", new Atom(w));
open = false;

The execution of these agents has the following steps:

1. agt1 creates the artefact (line 6) and broadcasts the information about the newly created task allocation
to all agents (line 9) so that they can focus on the relevant artefact if interested,;

2. agt3 focusses on the artefact and places a bid;

3. agt2 focusses on the artefact and places a better bid;

4. agt4 does not focus on that artefact since it is not interested in task t 1. As shown in Figure 8§, its belief
base does not include the observable properties from the CNP artefact.

5. agt1l looks for the best proposal in line 11 (the best_proposal observable property) and simply
sets the agent that placed it as the winner in line 13 (of course, agt 1 could use more complex criteria to
decide the winner);

6. agt3, the winner, does the task.

The output of the execution is the same, but the belief bases of the agents are quite different: (i) agent
agt4 does not focus on the CNP artefact and so does not have the belief about the current best proposal for
that task; (ii) agent agt 1 does not store all proposals, only the current best one. The state of the belief bases
at the end of the execution is shown in Figure 8.

An important point here is that the programmers choices in regards to the use of the programming
dimensions may have impacts on the properties of the resulting program. In this section, we have addressed
the limitations listed at the end of Section 4.1 by using an artefact-based implementation in which:

1. Agents not interested in the allocation processes (e.g. agt4) simply do not focus on the CNP artefact.

2. Since the current best proposal is an observable property, agents can have better strategies to choose their
own bids'®. For instance, the following plan implements a strategy that always wins the CNP (unless the
deadline finishes right before its latest proposal arrives):

+best_proposal(_,X) <- bid(X-1).

'S Of course we could change the protocol in the message-based version too, but it would require a lot of extra
message passing that are avoided by the features provided by artefacts.
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Inspection of agent agt2

Inspection of agent agt1 - Beliefs best_proposal(agt3,35); .
focused(main,t1y_;,cobj_2);, ;.

- Beliefs best_proposal(agt3,35)[_}. joined(main,cobj_0); ;. Inspection of agent agt4
.fo.cused(rr?am,ﬂ.[___],cobLZ)[_._]. newCNP(t1); ;. - Belicfs friondl(agt1)
joined(main,cobj_0);..}. task(t1,300)..;. joined(main,cobj_O)
task("t1")..- task("t1")..3- myPrice(10); ;.
winner(agt3);, ;. winner(agt3);, ;. newCNP(t1); }.

Figure 8 MindInspector of agents agt 1, agt2, and agt4 after the execution of the CNP

3. As mentioned before, even though in this version agent agtl broadcasts an announcement of the
newly created CNP instance, agents entering the system can search, for instances, of CNP artefacts
available in the system, focus on them according to the tasks that they can handle or are interested in,
and place their proposals, provided they are not too late with respect to the deadline that agent agt 1 has
inits allocateTask plan.

The decision to externalize some operation into an artefact (such as the determination of the current
best proposal in our example) should be carefully considered during the design of the system, as it may
transfer some decision making from an agent to an artefact, possibly limiting the autonomy of the agents
(in this case, the determination of the best proposal). For some applications, in particular open systems
where the developer does not know what the incoming agents will do, such a limitation in the autonomy
could be useful against malicious agents. Note, however, that, as with all design choices about which
dimension to use for implementing a particular feature, this should be carefully considered by designers
of a MAS.

5 Programming agent organizations

This section goes a step further in the programming of MAS using a MAOP approach. It introduces
elements from the organization dimension in order to structure the set of agents interacting in the system
and to set up coordinated collective activities within it. While the first subsection explains this with the use
of a JaCaMo project file, the second subsection shows how agents can deploy it on-the-fly. The last
subsection presents how to use the organization dimension to regulate collective activity, which is of great
importance in open systems.

5.1 Shaping an agent organization

The organization is mainly used to shape the set of agents into groups and roles (structure), to specify
the coordinated achievement of goals (function), and to assign them to agents in the system by means
of roles and norms. By assigning goals to roles using norms, we provide a way to abstract away from
the agents and to define the functioning of the system independently of the particular agents that will be
available at runtime. As soon as agents start to play roles, the organization becomes instantiated, bringing
obligatory, permitted, or forbidden goal achievements to the agents in the context of their roles and
participation in groups. These organizational abstractions provide support for handling the overall
complexity of the system.

As we did with the programming of agents and environment in Section 3, we start with a simple
organization program exemplifying the structural, functional, and normative components of an agent
organization. In JaCaMo, the organization is specified in a XML file, org.xml in this case. Figure 9
depicts a simplified graphical representation for the content of this file. The structural specification
states that for an organization to comply with this specification it must be composed of one group instance
of the root group orgGroup. All agents taking part in that organization plays the member role. The g
roup named orgGroup contains subgroups of type taskExecutionGroup , where participating
agents can play three roles: hirer (at least one and at most one agent playing it), contractorl
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Figure 9 Simplified graphical view of the org.xml organization specification. Only the necessary elements for
understanding the organization specification are shown

(at least one agent playing it), or contractor?2 (at least one agent playing it). An agent cannot play
more than one role in this subgroup because there are no compatibility relation between the roles
in the specification. These three roles inherit from the abstract role taskHandler the compatibility
with the role member (i.e. an agent can play the member role while playing the hirer,
contractorl, or contractor2 roles). As role taskHandler is an abstract role, no agent can adopt
it directly.

For this example, the functional specification has only one social scheme (taskExecution).
This scheme is composed of a goal decomposition tree stating that by achieving goals g1, g2, and g3 the
goal execute is achieved (operator and). Due to their dependencies, they have to be achieved in
sequence. As defined by the normative specification, the norms linking the taskExecution scheme to
the roles of the taskExecutionGroup state the duties of the agents when participating in the group. In
this example any agent is obliged to achieve g1 when playing the hirer role, g2 when playing the
contractorlrole, and g3 when playing the contractor?2 role. As these goals are part of the scheme,
they can only be achieved by agents that are obliged or permitted to do so through the roles they
are playing.

We now describe the agents that participate in this organization. An important principle in this
programming approach is that agent may achieve goals g1, g2, and g3 required by the organization in
their own way. For simplicity here, the same agent program (file d.as1) is used for all agents who
participate in this simple organization:

+1gl <- inc(2).
+1g2 <- inc(3).
+1g3 : b1(X) <- calc(X,W); set(W).

This program simply reuses the actions of the artefacts as defined in Section 3 to achieve the organi-

zational goals. In this first implementation, agents are obedient, that is, they obey obligations, permissions,

and prohibitions as determined by the norms of the organization'®.

16 JaCaMo provides a library of plans that enable the agents to react to the state of the norms managed by the
organization. For example, this library has a plan that creates goal g for the agent whenever the agent is obliged by the
organization to achieve g. The use of this library is optional, as in other applications agents may prefer to decide
weather to adopt the goal or not based on their own reasons.
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In order to deploy such an organization when the system execution is initiated, the JaCaMo project file
introduced in Section 3 is enriched with a set of instructions for creating group and scheme instances,
and to assign roles to agents:

agent agtl: d.asl {

focus : wsl.artl // NB: no initial goals anymore
}
agent agt2: d.asl {

focus : wsl.artl
}
agent agt3: d.asl {

focus : wsl.artl, ws2.art2
}
agent agt4: d.asl {

focus : wsl.artl, ws2.art2
}

workspace wsl {

artifact artl: tools.Art1(5,0)
}
workspace ws2 {

artifact art2: tools.Art2()

}
organisation ol : org.xml { // org.xml contains the specification
group torgl: orgGroup {
players: agtl member // agtl plays role member in torgl
- // same for agt2, agt3, agt4
group tagl: taskExecutionGroup { // tagl subgroup of torgl
players: agtl hirer // agtl plays role hirer in tagl
agt2 contractorl // agt2 plays role contractorl in tagl
agt3 contractor2 // agt3 plays role contractor2 in tagl
agt4 contractor2 // agt4 plays role contractor2 in tagl
responsible-for: si // tagl is responsible for scheme s1
}
group tag2: taskExecutionGroup {
players: agtl hirer
agt2 contractoril
agt3 contractorl
agt4 contractor2
responsible-for: s2
}

scheme s1: taskExecution
scheme s2: taskExecution

}

As we can see, group tagl is in charge of (responsible-for) the execution of scheme s1 of type
taskExecution while group tag2 is in charge of scheme s2.

Participating in the organization means for the agents to adopt roles and to commit to achieve the
goals under their duties as stated by the norms. The organization management infrastructure in JaCaMo
interprets organization specifications in order to coordinate collective agent activities at runtime. It will
start the coordinated execution of a scheme as soon as the group instance that is in charge of it is well
formed (i.e. to say that the minimal numbers of agents that are required to play the roles have already
adopted those roles) and that the scheme is also well formed (which in this case means to say that all agents
have committed to performing the corresponding goals under their responsibility). The developer does not
need to implement coordination mechanisms. The infrastructure lets the agents know whenever they have
goals to achieve according to the scheme specification. The scheme specification defines the order in
which the goals have to be achieved. For example, the scheme specifies that goal g2 has to be pursued after
goal g1 has been achieved (due to a g2 dependence relation); agent agt1 is committed to g1 and agent
agt2 to g2. In this case, agt2 has to wait for agtl to achieve gl before starting to pursue g2 . The
infrastructure itself checks if new goals have been enabled to be pursued because its dependencies have
been achieved by other agents. The agent committed to a goal that become enabled can then start acting on
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that particular goal. This coordinated execution within an organization is a distributed process taking
place in each of the group and scheme instances that are running in the current state of the organization.
The execution of this system follows these steps:

1. agents, environment, and organization are instantiated as defined in the project file;

2. agtl is obliged to commit to goal g1 in scheme s1, because it plays role hirer in group tagl,
which is responsible for s1;

3. similarly, agl commits to goal g1 in scheme s2, ag2 commits to goal g2 in schemes s1 and s2, ag3
commits to goal g2 in scheme s2 and goal g3 in scheme s1, ag4 commits to goal g3 in schemes s1
and s2;

4. the schemes are now well formed and the goal g1 iS enabled in both;

. agents committed to g1 are thus obliged to achieve it and they do so;

6. since g1 is satisfied, g2 is now enabled and agents committed to it are obliged to achieve it and they do
so using their own plans;

7. g3 is now enabled and agents committed to it are obliged to achieve it, and they do so.

W

As can be seen in this example, designers can structure both the set of agents and the collective
activity taking place among them. Changing the organization deployment in a JaCaMo project file or the
specification in files such as org.xml makes it possible to change the structure and the functioning of the
system respectively at the organization instance or at the organization specification levels. For example, even if
the system is composed of the set of agents with the previous simple code to achieve each of the goals g1, g2,
and g3, the collective activity may differ depending on the way the agent organization is created. By changing
the scheme and dependence between goals, we are changing the collective behaviour of the agents, and we can
do this without changing any code of the agents and without interrupting the system execution. In the same
way, changing the minimum or maximum number of agents playing roles leads to different coordinated
activities in the system by limiting or opening the possibility for more or less agents to participate in the
execution process. It should also be noted that the system has a boundary to the specification of the organi-
zation: only agents being part of the instance of or gGroup have the possibility to participate in some task
execution process by adopting either the hirer or contractor1 roles in the appropriate group instance. For
example, any agent that is not part of the organization does not receive information about the organization
activities. Besides this possibility, organizations introduce means for coordination, expectations on the beha-
viour of the other agents participating in the same social scheme, modularity in terms of sets of agents (e.g.
several group instances of taskExecutionGroup may exist), and in terms of activities (e.g. s1 and s2 in
the JaCaMo project file following the defined schemes) attached to different groups of agents.

5.2 Changing the organization

Now that the elements to program organizations have been introduced and we have shown how an initial
organization is deployed by the designer through project files, we can discuss how agents themselves can
further instantiate their own organization on-the-fly'’. For instance, an agent playing the hirer role may
launch a new coordinated task for the agents belonging to its group instance by creating a new instance of
the appropriate taskExecution scheme (line 6 below).

// plan to react to the event that group GrArtId is well formed,
// it has thus enough committed agents
+formationStatus (ok) [artifact_id(GrArtId)]
: // It is me playing role hirer in that group
.my_name (Me) & play(Me,hirer,GrName) [artifact_id(GrArtId)]

<- .concat("sch",Me,SchName) ; // create a new scheme name
createScheme (SchName, taskExecution, SchArtId); // create a new scheme instance
focus(SchArtId); // focus on this scheme
addScheme (SchName) [artifact_id(GrArtId)]. // add this new scheme to the

// responsibilities of group GrArtId

7" For space reasons, we do not explain how agents adapt and redefine the specification of their organization,
although this is possible and can be used for interesting forms of self-organizing systems.
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Figure 10 Simplified graphical view of the new version of the org.xml organization specification. Only elements
necessary for understanding the organization specification are presented here. Note the compatibility relation added between
initiator and hirer in order to allow an agent to play both roles in the context of the same or gGr oup instance

orgGroup

Going a step further in this ability for agents to instantiate their organization, we add a new scheme to
the previous organization specification. This new taskAllocation scheme aims at coordinating the
recruitment of agents to execute tasks g2 and g3 following the CNP introduced in Section 4. It defines a
sequence of the cfp, bid, and announce goals. The goal cfp has one argument G which is used to
enable the agent that will achieve this goal to specify the task that is the target of the allocation process (e.g.
gl, g2, or g3) for which agents will have to bid.

As specified by norms and by the social scheme (taskAllocation), any agent playing role
initiator is obliged to manage the task allocation—that is the cfp—and to announce the winner
(announce), while agents playing role participant are obliged to make some proposal (bid).

Using this new organization specification, agent agt1 defines two group instances of taskAllo-
cationGroup in which it adopts the initiator role. Both groups are responsible of a social scheme
following the taskAllocation specification: one for allocating g2 and one for allocating g3. When the
scheme is successfully finished (i.e. goal allocate is achieved), using the plan below, agent agt1 creates a
group instance of taskExecutionGroup where it adopts the role hirer and asks the winner of each task
allocation process (cf. org.xml and Figure 10) to play the contractorl or contractor?2 roles in
the TaskExecutionGroup instance.

+!create_ex_group(SchG2,SchG3) // SchG2 is the scheme that selected an agent for g2
// SchG3 is the scheme that selected an agent for g3

<- createGroup(nteg, taskExecutionGroup, GrArtId); // create a new group
?play(_,member,PGrName) ; // retrieves the name of the root group
setParentGroup (PGrName) [artifact_id(GrArtId)]; // linking to the parent group
focus (GrArtId);
adoptRole(hirer) [artifact_id(GrArtId)];
?winner (W2) [artifact_id(SchG2)]; // retrieve the winner for g2
?winner (W3) [artifact_id(SchG3)]; // retrieve the winner for g3
.send(W2,achieve,enter (GrName,contractorl)). // ask these agents to enter in
.send(W3,achieve,enter (GrName,contractor2)). // the new group

Using organization specification and programming as shown above, agents can instantiate functional
schemes (i.e. social plans), groups, and norms that coordinate and structure the activities taking place in the
MAS. The task-allocation process that was hidden and hard coded in the shared coordination artefact of the
previous section is made explicit and declarative. Agents have the possibility to reason about and change
the protocol, the way the task should be executed, and so forth. Furthermore, openness is facilitated, that is,
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agents can discover and understand how to participate in interactions following these coordination patterns
specified in the functional, structural, and normative specifications.

5.3 Regulated organizations

Besides making it possible for agents to discover and use the groups, roles, and the coordinated
activities that could take place, agent organizations also allow agents to regulate their own functioning.
This section illustrates this kind of regulation and how openness can be managed through organization
programming using norms. Consider that some participants in the taskExecution did not achieve the
goals allocated to them, even though they were obliged to do so. In the execution, the scheme does not
progress to the next goal in the sequence (goal g3), nor the execution of the scheme is finished, as the
organization is waiting for the execution of other goals: goal g2 is enabled and goal g3 is waiting
(see Figure 11).

Considering the deadline for goals g2 and g3, after the corresponding elapsed time the platform that
manages the current state of the scheme and the corresponding norms raises a signal informing the agents
committed to the scheme that some obligations were not fulfilled.

+oblUnfulfilled( obligation(Ag,_,done(Sch,Goal,Ag),_ ) )[artifact_id(AId)]

Any agent participating in the scheme can then react to such events. For instance, one of the
other agents could choose to add the violating agent into a black list and setting the outstanding goal as
satisfied in order to allow the scheme to progress. For that, agents can use a BlackList artefact for
sanctioning agents, as exemplified below. A unique instance of this artefact is used to gather the names of
the agents that have been blacklisted in previous task allocation processes for being bad contractors (their
names is accessible through an observable property containing a list of names of the agents known to have
not fulfilled their obligations). The artefact then provides an operation addBadContractor for blacklisting
agents. The following plan illustrates the use of that operation:

+oblUnfulfilled( obligation(Ag,_,done(Sch,Goal,Ag),_ ) )[artifact_id(AId)]

// the hirer agent sanctions contractor agents that failed their tasks
.my_name (Me) & play(Me,hirer,_)

<- .print("Participant ",Ag," didn’t achieve ",Goal," on time in ", Sch);
addBadContractor(Ag); // add Ag in the blacklist managed by some artifact
// make the execution of the scheme progress by marking the goal as satisfied
.concat ("goalSatisfied(",Goal,")",Cmd);
admCommand (Cmd) [artifact_id(AId)]. // exectution of Cmd on AId

From this solution, we could go further and use the elements of the organization dimension to enrich the
organization specification by including the explicit regulation. Briefly, in JaCaMo sanctions are not
directly expressed as an element of the norm formula. However, the normative specification may contain
norms that are sanctions or rewards based on the (un)fulfilment of other norms. For instance, a norm can be
written to express that any agent playing the hirer role has the obligation to sanction (i.e. to achieve
a blacklisted goal) any agent playing contractorl or contractor2 that do not fulfil
their obligations.

5.4 Wrapping up

In this section, we showed how to program organizations structuring and coordinating the activities of
agents situated in a shared environment populated with artefacts. From these various programs, we can
highlight the following features:

Boundaries and modularity: using the explicit organization model representation and the ability to
adopt roles, to create groups, to create schemes, and to assign them to particular groups, we can structure
and coordinate the interactions and deployment of the agents in the system. It is also possible to have
several and various agent organizations in the same system. Agents can perceive this organizational
shaping and represent it through beliefs, as well as to conduct some reasoning about the organizations.
Agents can also act on them through the current set of actions that are provided by the underlying
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Figure 11 Organization inspector showing scheme sl for taskExecution

organization management infrastructure. In JaCaMo, this infrastructure is deployed by dedicated artefacts
providing distributed organization management and uniform interaction means (through agent actions’)
between agents and their organization and environment.

Autonomy and regulation: even though organizations have norms, agent behaviour is not regimented in
our approach. The MAOP approach that is promoted here allows the agents to keep their thread of
decisions with respect to their own set of goals and actions as well as those coming from the organizations
and their norms. However, the allowed autonomy is monitored by the organization management
mechanisms that trigger events signalling violations. These events may, in turn, lead some agents to
making decisions about applying appropriate sanctions.

Adaptation and reorganization: given an organization specification, the examples in this section
show how agents can deploy and create various organization instances on-the-fly, and to change
them by creating/deleting groups and schemes. This feature of adaptation at the organization-instance
level may be extended to the organization specification also. Due to lack of space, it was not possible to
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illustrate this feature in this paper. Nevertheless, agents do have the possibility to create and change their
own organization specification at run time as they do for the organization instances.

6 Related work

The idea of adopting a multi-dimensional approach in modelling, programming, and engineering
MAS was used in the Vowels decomposition paradigm (Demazeau, 1995) more than two decades
ago and supported by two proposals of multi-agent platforms: Volcano (Ricordel & Demazeau, 2002)
and MASK (Occello et al., 2002). In particular, Vowels is a methodology for developing MAS—from
analysis to deployment—based on four basic ‘bricks’: Agents (A), Environment (E), Interactions (I), and
Organizations (O). The accompanying tools are Vowels-oriented multi-agent platforms designed to support
the building process with both methodological and software tools, for various kinds of applications
and domains.

According to the Vowels paradigm, given a problem to solve (or a system to simulate) in a particular
domain, the user chooses the agent models, an environment model, the interaction models, and the
organization models to be instantiated. Agents range from simple fine-grained automata to complex
coarse-grained knowledge-based systems. The environments are most usually spatial but there is no
constraint about them. Interaction structures and languages range from physics-based interactions to
speech acts. Organizations range from static to dynamic ones, and follow any kind of structure from
hierarchies to markets.

Vowels is guided by three principles for ‘gluing the bricks’. The first principle (declarative) says that a
MAS is composed of several agents, an environment, a set of possible interactions, and possibly at least
one organization. The second principle (functional/computational) says that the functions that are
performed by the MAS are those of the agents enriched by the ones resulting from the added value
generated by the MAS itself, usually known as collective intelligence. Finally, the third principle
(recursion) says that a MAS could be potentially considered as agent entities at higher-level MAS. A key
point of the approach is to see the A, E, I, O bricks as not atomic components, but as elements that can be
composed of several parts, and these parts are distributed across the MAS when it is deployed. An
architecture definition language called Madel (Multi-Agent DEscription Language) is used to describe the
main parts of the system under construction, in the transition between development and deployment
(Ricordel & Demazeau, 2002).

Vowels and Volcano were among the first developments showing the advantages of a methodology and
a platform for adding, mixing, and reusing models of different aspects of MAS (Agent, Environment,
Interaction, Organization), in terms of a high level of reuse, and the high abstraction level of the
manipulated concepts (Demazeau, 1995). Recent work has also highlighted the importance of the
dimensions of MAS for software development (Baldoni et al., 2016a).

The MAOP approach proposed in this paper and supported in practice by the JaCaMo platform shares
the same high-level principles of that work. The main difference concerns how such principles are put in
practice. While Vowels and Volcano refer explicitly to a component-oriented approach to developing
systems, JaCaMo instead achieves the integration of the dimensions by integrating specific programming
languages and programming frameworks, setting up a single set of specific first-class programming
concepts, used from design to runtime. Another difference is the place for the I dimension, which in
JaCaMo is spread along the A, E, and O dimensions. We have discussed the agent—agent (i.e. commu-
nicative actions) and agent—artefact interactions (i.e. perception/action), however, the interaction in the
context of an organization is not explored in detail in this paper. The interaction, as considered in the MAS
domain, includes the specification of interaction protocols as first-class entities that regulate how agents
and artefacts interact (Baldoni et al., 2016b; Zatelli et al., 2016). This feature allows the developer to
specify the interaction outside the agents, as protocol specifications. The specification of protocols outside
the agent is a requirement when we want to use them to regulate agent behaviour. Another characteristic of
this approach is that changes in the interaction protocols of a system requires changes in the protocol
specification but not in the code of the agents. This feature is under development in the JaCaMo platform
(Zatelli et al., 2016).
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Besides Vowels and Volcano, many specific agent programming languages and platforms have been
developed in the last two decades'®. Our work is related in particular to BDI-based platforms that are
explicitly oriented to practical development and in particular including an explicit support not only for
the agent level, but also for the other dimensions, environment, and organization in particular. In fact, to
the best of our knowledge, JaCaMo is the first fully fledged platform based on programming languages for
the MAS dimensions that allow programmers to explore the synergies between those dimensions of
concepts and programming constructs.

Other existing approaches consider either the agent—organization dimensions or the agent—environment
dimensions only, or do not have fully functional development platforms. Starting with the agent—orga-
nization dimensions, JACK (Winikoff, 2005) has the concept of team (similar to the JaCaMo concept of
group). Although teams can be used to structure agent roles, in this paper we highlighted the benefits of
using organizations to coordinate and regulate MAS, features not available in JACK. A closer-related
work is 20PL (‘Organization-Oriented Programming Language’) (Dastani et al., 2008). This platform
consists in a rule-based language that allows the programming of multi-agent organizations in terms of
norms and which is meant to be exploited in synergy with agent programming languages—2APL in
particular (Dastani, 2008). So far, the work has been given solid theoretical foundations but lacks a clear
description of how the approach integrates with the agent level from a practical programming point of
view. The main differences with respect to JaCaMo are: (i) the set of concepts in the organization
dimension and (ii) the conception of the environment. The organization dimension in JaCaMo is not only
concerned with regulation (through norms), it also addresses coordination with concepts like schemes
and groups.

For the agent-environment dimensions, several languages consider their integration by ad hoc
solutions (e.g. Jason and 2APL consider the environment as a Java object that provides perception to the
agents). An initiative for a standard integration of these two dimension is environment interface standard
(EIS) (Behrens et al., 2012). Using EIS, languages like Jason (Bordini et al., 2007), 2APL (Dastani, 2008),
and GOAL (Hindriks, 2009) can share the same implementations of environments. Compared to JaCaMo,
the main objective of EIS is to provide a common interface for different agent programming languages to
interact with existing (software/hardware) environments—for example, using EIS to program the bot
(artificial players) of a game engine platform (Hindriks er al., 2011). Instead, JaCaMo—through of
CArtAgO—oprovides the means to create (and execute, interact with) new environments, possibly dis-
tributed, based on the A&A meta-model. Besides, it allows agents to dynamically reconfigure them, by
creating new artefacts at run-time (as shown in Section 4.2). In spite of this main difference, there are
strong affinities. In EIS, the concept of controllable entity is introduced to represent on the environment
side those entities establishing a connection between agents and the environment, by providing effectoric
capabilities and sensory capabilities to agents. In JaCaMo, one can develop artefacts that are meant to
provide an interface to an existing environment—these are called in literature boundary artefacts (Ricci
et al., 2006). Besides, artefacts can be used to model/represent also the ‘body’ of agents, so as to be
perceived by other agents immersed in the same workspace.

Another important related work is the Golem agent platform (Bromuri & Stathis, 2008). It allows the
programming of both cognitive agents and computational environments, structured as non-cognitive objects
which are organized into ‘containers’. Recent work on that approach presented the initial steps to extend the
platform with norms for developing norm-governed MAS (Urovi et al., 2010). Other agent programming
languages also provide some support for environments and some organizational notions such as roles, but
without including a fully fledged organizational model or first-class environment abstractions. We do not aim to
cover all that work in this section, please refer to the surveys cited above for further details.

On the modelling side, existing work in the Agent-Oriented Software Engineering (AOSE) literature
consider the use of Organization and Environment as dimensions to engineer MAS in conjunction with the
agent dimension. Our work is clearly related to such approaches in terms of modelling. Much contribution has
been given in that direction; interested readers can find comprehensive accounts in Weyns and Parunak (2007),
Sterling and Taveter (2009), Stratulat et al. (2009). These include in particular work that aims at defining a

8 For a overview of the relevant literature, see Bordini ez al. (2005), Bordini ef al. (2006), Dastani (2015).
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unifying meta-model for developing MAS, integrating concepts belonging to different dimensions, for
example, the FAML meta-model (Beydoun et al., 2009). In AOSE, agent, organization, and environment
concepts are used as concepts to drive the analysis and high-level design of MAS. However, they do not
explore their value from a programming perspective. So in this paper, while recognizing the importance of
having conceptual frameworks and methodologies that make it possible to exploit agent, organization,
and environment concepts to model MAS, we argue that such concepts can have a key role also at the
programming level, in particular to be then exploited as first-class abstractions in agent-oriented programming
languages and frameworks.

In this way, we aim at contributing to fill an evident gap that exists between the modelling level and the
implementation level. Typically, MAS meta-models like FAML or the one described in Sterling and
Taveter (2009) are rather comprehensive, including concepts that are similar or analogous to the ones that
take part in the JaCaMo dimensions. For instance, the concept of service that appears in Sterling and
Taveter (2009) or the concept of facet in FAML are strongly related to the notion of artefact which is part
of the JaCaMo meta-model. The same applies for the notion of role. However, in Sterling and Taveter
(2009), for instance, when agent programming platforms and languages are considered for building a MAS
concretely, there is an apparent gap, since the considered platforms (Jason (Bordini et al., 2007), 2APL/
20PL (Dastani, 2008), GOAL (Hindriks, 2009), JACK (Winikoff, 2005), and JADE (Bellifemine et al.,
2007)) are able to deal only (or almost only) with the agent level, so high-level organization and environ-
ment concepts cannot be directly mapped'®. Also, typically low-level workarounds are used (such as
modelling everything as an agent, even environment or organizational abstractions). We argue that the
investigation of platforms like JaCaMo—providing an explicit programming support for the essential,
orthogonal dimensions of MAS—is important also in a model-driven engineering perspective, so as to
have platform-specific models that are rich enough to allow a consistent mapping of high-level concepts
defined at a platform-independent level.

7 Concluding remarks

This paper presented, from a practical point of view, the MAOP approach that we developed over many
years. With explanations and examples using the JaCaMo platform that implements this approach, we
have highlighted the main contributions of such an approach through a coherent set of concepts and first-
class programming abstractions that span over the different key dimensions of MAS: agents (and their
interaction), environment, and organization. This set of abstractions can be used to assist the development
of a MAS. The suggested programming approach exemplified in this paper aims at providing a level of
flexibility with respect to the complexity of the systems to be developed, so that, for example, more
complex concepts and abstractions such as the ones related to organizations can be introduced and used
incrementally, as needed.

On the one hand, the choice of building the JaCaMo platform on top of specific languages and
frameworks (Jason (Bordini et al., 2007), CArtAgO (Ricci et al., 2007), and Moise (Hubner et al., 2007))
provides some constraints on the level of interoperability and openness with respect to the integration with
other existing agent-based models and technologies. In fact, agents implemented in different languages
and technologies could be in principle integrated into a JaCaMo system by means of shared CArtAgO
environments, or by means of FIPA-based communication. On one hand, from the environment point of
view the EIS framework and technology (Behrens et al., 2012) provides a more effective support to
integrate agents written for different technologies to work together within the same environment. On the
other hand, our choices of specific languages made it possible to create the links among the concepts—
both from the syntactic and semantic points of view—that eventually enable the synergy among the
dimensions in our MAOP approach. Despite being based on specific agent-oriented programming models
and technologies, the platform and the MAS developed on top of it can be adapted to support, for example,

19" Some of the concepts used in the modelling are available in some platforms (e.g. teams in JACK and norms in
20PL). However, the set of concepts in these platforms is limited when compared to those used in modelling (e.g. role
and protocols are not available in most of those platforms).
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extensions of the basic BDI agent architecture—by exploiting the customization and extensibility of the
Jason agent platform—and the integration of existing Java-based libraries, suitably wrapped as environ-
ment artefacts.

This approach brings improvements to the programming of MAS, considering the action and percept
model provided in general by agent programming languages on one hand, and the organization on the
other hand. Referring to the first set of improvements, we can mention first dynamic action repertoire: the
repertoire of actions available to agents is dynamic and can be extended/reshaped dynamically by agents
themselves by creating/removing artefacts dynamically at runtime. This is an improvement with respect to
existing agent programming languages, where the set of (external) actions available to an agent is given by
the set of actuators that are statically defined for the agent, typically implemented in an ad hoc way for a
particular environment. By inheriting the semantics of the operation model defined for artefacts, the
expressivity of the agent action model is increased in various ways (Ricci et al., 2012). Typically, actions
in agent programming languages are modelled as atomic events and this tampers with the possibility of
modelling and implementing concurrent actions (overlapping in time), which is an important feature
especially in MAS (Ferber & Miiller, 1996), especially for coordination purposes. By mapping actions into
operations, actions inherit a process-based semantics (Ricci et al., 2012), which makes it possible then to
model long-term actions, overlapping in time, and then to easily design coordinating actions, providing
some synchronization capability. In some BDI agent programming languages the burden of understanding
if an action done by an agent succeeded or not is upon the agent itself (and the agent programmer), by
reasoning about the beliefs (coming from percepts). By mapping actions into operations, the action model
is extended with an explicit and well-defined notion of success/failure for actions: an action succeeds if the
corresponding operation execution on the artefact side completes with success. This in general simplifies
agent programming and reduces agent program size, although agents might still need to reason about
beliefs to ensure successful action execution in non-deterministic environments.

Referring to the second set of improvements, the mapping of atomic actions of organization into operations
on artefacts provides some important features that are important from the design and programming perspectives.
The first one is uniformity—the same action and perception model is used to enable the interaction between
agents and the environment as well as between agents and the organization, without the need for introducing
specific primitives and mechanisms for interaction with the organization. The organization management
infrastructure is distributed, in terms of collections of (interconnected) artefacts possibly belonging to different
workspaces running on distinct network nodes. Furthermore, agents can change dynamically the shape of an
organization by acting on the set of organizational artefacts available to the agents. Finally, agents may be
equipped with high-level reorganizing capabilities, and the specifications of the organization themselves are
part of the information made observable to agents by the organizational artefacts. This means that, for agents
that understand the organization specification format, there is the potential for them to reason about the
organizations in which they partake and therefore to change them at runtime. This allows for complex
on-the-fly restructuring of computational systems to be done with high-level abstractions.
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