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ABSTRACT

Deep reinforcement learning (deep RL) has achieved superior performance in complex sequential
tasks by using deep neural networks as function approximators to learn directly from raw input
images. However, learning directly from raw images is data inefficient. The agent must learn feature
representation of complex states in addition to learning a policy. As a result, deep RL typically suffers
from slow learning speeds and often requires a prohibitively large amount of training time and data to
reach reasonable performance, making it inapplicable to real-world settings where data is expensive.
In this work, we improve data efficiency in deep RL by addressing one of the two learning goals,
feature learning. We leverage supervised learning to pre-train on a small set of non-expert human
demonstrations and empirically evaluate our approach using the asynchronous advantage actor-critic
algorithms (A3C) in the Atari domain. Our results show significant improvements in learning speed,
even when the provided demonstration is noisy and of low quality.

1 Introduction

The widespread successes of deep Reinforcement Learning (deep RL) have brought a resurgence in using deep neural
networks for RL tasks. Using a deep neural network as its function approximator, deep RL can learn state representations
directly from raw input pixels and has achieved state-of-the-art results in various domains (Mnih et al. 2015, Silver et al.
2016, Kempka et al. 2016, Lillicrap et al. 2016, Duan et al. 2016, Silver et al. 2018). However, despite this impressive
ability, deep RL remains data inefficient and often requires a long training time to achieve reasonable performance.
This drawback has made deep RL impractical in real-world applications where data is expensive to collect, such as in
robotics, self-driving cars, finance, or medical applications (Bojarski et al. 2017, Deng et al. 2017, Miotto et al. 2017).

Similar to classic RL algorithms, deep RL suffers from poor initial performance since it learns tabula rasa (Sutton
& Barto 2018). Inherently, deep RL takes even longer to learn because, unlike in classic RL where hand-engineered
features were used, deep RL has to learn features directly from raw observations, in addition to policy learning.
Therefore, one can speed up deep RL by addressing its two learning components: feature learning and policy learning.
In this work, we tackle the feature learning problem and show that faster learning can be achieved by addressing one of
the two problems.

There have been many techniques proposed to speed up feature learning in deep RL, from transfer learning (Taylor &
Stone 2009, Pan et al. 2010), to reward shaping (Ng et al. 1999, Brys et al. 2015), to using auxiliary tasks (Zhang et al.
2016, Jaderberg et al. 2017, Mirowski et al. 2017, Papoudakis et al. 2018, Du et al. 2018). Learning from demonstrations
(Argall et al. 2009) is yet another way to help speed up learning in deep RL and has recently gained traction due to
its ability to bootstrap the agent at the beginning of training (Kurin et al. 2017, Vinyals et al. 2017, Hester et al. 2018,
Pohlen et al. 2018). In this work, we make use of human demonstration data by first using supervised learning to
pre-train a neural network to learn the underlying state features and then transfer the learned features to an RL agent
(Erhan et al. 2009, 2010, Yosinski et al. 2014). We evaluate our approach using a recently-developed deep RL algorithm,
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the Asynchronous Advantage Actor-Critic (A3C) (Mnih et al. 2016) algorithm in six Atari games (Bellemare et al.
2013). Unlike previous work where a large amount of expert human data is required to achieve good initial performance
boost, our approach shows significant learning speed improvements on all experiments with only a relatively small
amount of noisy, non-expert demonstration data. The simplicity of our approach has made it generally adaptable to
other deep RL algorithms and potentially to other domains since the collection of demonstration data becomes easy. In
addition, we apply Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al. 2017) on learned feature
maps for both the human data and the agent data, providing a detailed analysis on why pre-training helps to speed up
learning. Our work makes the following contributions:

1. We show that pre-training on a small amount of non-expert human demonstration data is sufficient to achieve
significant performance improvements.

2. We are the first to apply the transformed Bellman (TB) operator (Pohlen et al. 2018) in the A3C algorithm
(Mnih et al. 2016) and further improve A3C’s performance on both baseline and pre-training methods.

3. We propose a modified version of the Grad-CAM method (Selvaraju et al. 2017), which we are the first to
provide empirical analysis on what features are learned from pre-training, indicating why pre-training on
human demonstration data helps.

4. We release our code and all collected human demonstration data at https://github.com/gabrieledcjr/
DeepRL.

This article is organized as the following. In the next section, we review some of the related work in using pre-training
to improve data efficiency. Section 3 provides background on deep RL algorithms and the transformed Bellman
operator. In Section 4, we propose our pre-training methods for deep RL. Followed by Section 5 where we describe
the experimental designs. Results and analysis are presented in Section 6. We conclude this article in Section 7 with
discussions and future works.

2 Related Work

Our work is closely related to transfer learning (Taylor & Stone 2009, Pan et al. 2010) where learned knowledge from
source task(s) is transferred to target task(s) such that the target task does not need to learn features and/or policies
from scratch, thus obtaining faster learning. In supervised learning, transferring parameters from a model pre-trained
on ImageNet (Russakovsky et al. 2015) has shown to be an effective way of speeding up image classification in a
new dataset, especially when the source dataset is similar to the target dataset (Yosinski et al. 2014). In deep RL,
the performance of a target agent can be improved by making use of the knowledge learned in one or more similar
source agents (Du et al. 2016, Glatt et al. 2016, Parisotto et al. 2016, Rusu et al. 2016, Teh et al. 2017). All works
mentioned above perform pre-train and transfer under the same problem settings. That is, pre-train in supervised
learning and transfer to supervised learning, or pre-train in RL and transfer to RL. In this work, we consider a different
mechanism that transfers between different problem settings. We pre-train a supervised classification model on the
human demonstration data, then transfer the learned features to an RL agent.

Existing work has shown that pre-training can effectively speed up learning in RL. For example, Abtahi & Fasel (2011)
considered learning latent features with unsupervised learning through Deep Belief Networks as a pre-training method;
Anderson et al. (2015) pre-train hidden units of a Q-network by learning to predict state dynamics. These works show
learning speed up in relatively easy RL domains such as Mountain Car, Puddle World, and Cart-Pole. Our approach
is in spirit to these earlier works and differs in that we consider a much complex domain, Atari, and learn features
directly from raw input images instead of using hand-engineered features in a simpler domain. Learning directly from
raw inputs is extremely challenging to an RL agent as it has to learn both the feature representations and the policy
simultaneously.

Leveraging human knowledge via learning from demonstration (LfD) is another effective way to pre-train an RL agent
and has shown to be successful in robotics problems (Argall et al. 2009). LfD has recently been applied widely in
deep RL. Christiano et al. (2017) uses human feedback to learn a reward function; Hester et al. (2018) pre-train a Deep
Q-network (DQN) (Mnih et al. 2015) with human demonstrations by combining a large margin supervised loss with
temporal difference loss, such that the agent closely imitates the demonstrator’s policy at the beginning and later on
learn to surpass the demonstrator. Our work similarly leverages a supervised loss as pre-training but differs in that we
consider only the cross-entropy supervised loss as a feature learner, but not to imitate the policy. Pohlen et al. (2018)
builds upon Hester et al. (2018) and proposes a reward-invariant update rule that uses the transformed Bellman (TB)
operator in the DQN algorithm which better leverages expert demonstrations. In our work, we instead apply the TB
operator in the A3C algorithm. The work of Silver et al. (2016) also trains human demonstrations in supervised learning
then uses the supervised learner’s network to initialize RL’s policy network. However, their work uses a vast amount

2

https://github.com/gabrieledcjr/DeepRL
https://github.com/gabrieledcjr/DeepRL


A PREPRINT - DECEMBER 24, 2018

A3C Only

Conv1 (Kernel: 8x8 Stride: 4x4 Channels: 32)

Conv2 (Kernel: 4x4 Stride: 2x2 
Channels: 64)

Conv3 (Kernel: 3x3 Stride: 1x1 
Channels: 64)

FullyConnected fc1
 (Units: 512)

FullyConnected fc2
(Units: # of actions)

FullyConnected fc3 
(Units: 1)

ReLU ReLU ReLU ReLU

value of 
state

policy
(mapping from state 

to action/class)

Figure 1: Network architecture for each parallel actor in the A3C agent. We follow the same architecture as in Mnih
et al. (2015) where there are three convolutional layers (conv1, conv2, and conv3), followed with two fully-connected
layers (fc1 and fc2), and a third fully-connected layer (fc3) for learning the state value function as was done in Mnih
et al. (2016).

of expert demonstration data to train the supervised learner, while ours only uses a small amount of non-expert data.
Our work is also the first to provide a comparative analysis on how pre-training with human data impacts learning in
deep RL algorithms, as well as how our approach complements existing deep RL algorithms when (a small amount of)
human demonstrations are available.

3 Background: Deep Reinforcement Learning

An RL problem is typically modeled using a Markov Decision Process (MDP) that is represented by a 5-tuple
〈S,A, P,R, γ〉. At each time step t, an RL agent receives some state representation St ∈ S and explores an unknown
environment by taking an action At ∈ A(s). A reward Rt+1 ∈ R ⊂ R is given based on the action the agent
took and the next state St+1 it reaches. The goal of an RL agent is to learn to maximize the expected return value
Gt =

∑∞
k=0 γ

kRt+k+1 for each state at time t. The discount factor γ ∈ [0, 1] determines the relative importance of
future and immediate rewards (Sutton & Barto 2018).

The first successful deep RL method, deep Q-network (DQN), learns to play 49 Atari games directly from screen pixels
by combining Q-learning with a deep convolutional neural network (Mnih et al. 2015). In classic Q-learning, an agent
learns a state-action value function Qπ(s, a) = Es′ [r + γmaxa′ Q

π(s′, a′)|s, a], which is the expected discounted
reward determined by performing action a in state s and thereafter following policy π (Watkins & Dayan 1992). The
optimal Q∗ can be deduced by following actions that have the maximum Q value, Q∗(s, a) = argmaxπQ

π(s, a).
Directly computing the Q value is not feasible when the state space is large or continuous. The DQN algorithm uses a
convolutional neural network as a function approximator to estimate Q(s, a; θ) ≈ Q∗(s, a), where θ is the network’s
weight parameters. For each iteration i, DQN is trained to minimize

Li(θi) = Es,a,r,s′
[
(y −Q(s, a; θi))

2
]

where y = r + γmaxa′Q(s′, a′; θ−i ) is a target network parameterized as θ−i that was generated from previous
iterations. {s, a, r, s′} are state-action samples drawn from an experience replay memory, which is used to store the
agent’s experiences. At each time step, a batch of 32 samples (or minibatch) is drawn from the experience replay
memory to perform an update—this off-policy method could break the correlation between data (i.e., the sampled data
is i.i.d.) which stabilizes the learning. All rewards are clipped to [−1, 1] to cope with different reward scale in games.
The use of a target network, an experience replay memory, and the reward clipping are essential to stabilizing learning.
The ε-greedy policy is used by the agent to obtain sufficient exploration of the state space; for a probability of ε, the
agent selects a random action to explore.

3
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3.1 Asynchronous Advantage Actor-Critic (A3C)

The DQN algorithm suffers from two drawbacks: long training times and high computational requirements for memory
and GPU resources. The A3C algorithm, in contrast, trains faster without the need of a GPU. In this work, we choose to
use the A3C algorithm for all experiments.

A3C combines the actor-critic algorithm with deep RL. It differs from value-based algorithms where only a value
function is learned. An actor-critic algorithm is policy-based and maintains both a policy function π(at|st; θ) and a
value function V π(st; θv). The policy function is called the actor, which takes actions based on the current policy π.
The value function is called the critic, which serves as a baseline to evaluate the quality of the action using the state value
V π(st; θv). The network architecture of the A3C algorithm is shown in Figure 1. There are three convolutional layers
(conv1, conv2, and conv3), one fully connected layer of size 512 (fc1), followed by two branches of fully connected
layer: fc2 is the policy function output layer which is of the same size as the number of actions and fc3 is the value
function output layer of size 1.

In A3C, k actor-learners run in parallel with their own copies of the environment and parameters for the policy and
value function, which enables exploration of different parts of the environment and therefore observations will not be
correlated. Each actor-learner performs a parameter update every tmax actions, or when a terminal state is reached—this
is similar to using minibatch update as was done in DQN. Updates are synchronized to a master learner that maintains a
central policy and value function, which will be the final policy upon the completion of training.

The policy network is directly parameterized and improved via policy-gradient (Sutton & Barto 2018). To reduce the
variance in policy gradient, an advantage function is used and calculated as A(st, at; θ, θv) = Q(n)(st, at; θ, θv) −
V (st; θv). The Q(n) function is defined as

Q(n)(st, at; θ, θv) =

n−1∑
k=0

γkrt+k + γnV (st+n; θv) (1)

where n is upper-bounded by tmax. The loss function for the policy network is then defined as

L(θ) = ∇θ log π(at|st; θ)A(at, st; θ, θv) + β∇θH(π(st; θ))

where H is the entropy of policy π that encourages exploration therefore helps prevent premature convergence to
sub-optimal policies. The value network is updated using the loss function

L(θv) = ∇θv
[
(Q(n)(st, at; θ, θv)− V (st; θv))

2
]

3.2 Transformed Bellman Operator

Reward clipping is introduced in DQN and is also used in A3C to cope with different reward scales among Atari games
(Mnih et al. 2015, 2016). However, this is problematic because the RL agent will not be able to distinguish between
states with high rewards versus those with low rewards, resulting in learning a suboptimal policy. The poor performance
in some Atari games has been attributed to reward clipping (Hester et al. 2018).

In this work, we apply the transformed Bellman operator (Pohlen et al. 2018) to the A3C algorithm to overcome the
problem of reward clipping. We use the raw rewards instead of clipping them to the scale of [−1, 1]. A function
h : R→ R is used to reduce the scale of Q(n)(st, at; θ, θv) (Equation 1) and is transformed as

Q(n)(st, at; θ, θv) =

n−1∑
k=0

h
(
γkrt+k + γnh−1 (V (st+n; θv))

)
(2)

h : z 7→ sign(z)
(√
|z|+ 1− 1

)
+ εz (3)

h−1 : x 7→ sign(x)

(√1 + 4ε(|x|+ 1 + ε)− 1

2ε

)2

− 1

 (4)

where εz is for regularization that ensures h−1 is Lipschitz continuous and a closed form inverse.

4
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4 Supervised Pre-Training for Deep RL

Deep reinforcement learning can be divided into two sub-tasks: feature learning and policy learning. Although deep RL
in itself has succeeded in learning both tasks simultaneously, it still suffers from long training time and slow learning.
We believe that by addressing feature learning, we can jumpstart the performance in an RL agent since it will be able to
focus more on policy learning, which in turn speeds up the entire learning process.

In this article, we propose to use supervised pre-training on human demonstration data as a way to address feature
learning. We train a multiclass-classification network over a set of non-expert human demonstrations, where actions
demonstrated by the human were used as the ground truth labels for a given input game frame. The network uses the
same architecture as in A3C (shown in Figure 1) where the fc2 layer is used as the classification output layer. Note
that we exclude the fc3 layer for the classification task. The network classifier minimizes a softmax cross entropy loss
using the RMSProp (Tieleman & Hinton 2012) optimizer with a set of hyperparameters shown in Table 1. We also use
gradient clipping and L2 regularization for more stable training.

However, we identify two problems when using non-expert human demonstration for pre-training. First, we assume the
actions provided by the human are the correct labels—the low quality of our data shown in Table 2 indicates that we are
pre-training with noisy data. In this work, we empirically study if the noise in the data would still allow us to learn
important features. Second, the collected human data is highly imbalanced. For example, in the game of Breakout,
after hitting the ball, the human usually do nothing until the ball bounces and starts falling back to the paddle, which
results in most collected actions being the “NOOP” action. In some games, the human demonstrator tends to use the
simpler actions like “LEFT” instead of the compound actions like “LEFTFIRE”. The class imbalance problem plagues
all six games used in our experiments. To cope with this, we use proportional sampling. During minibatch sampling,
we randomly sample over all available actions based on their proportion to the entire demonstration data; doing so
ensures that each minibatch includes a relatively balanced set of classes. We pre-train a classification model for each
Atari game for 750,000 training iterations.

After pre-training, the learned weights and biases from the classifier are then used to initialize the A3C’s network
(instead of random initialization). Note that when using all layers’ parameters from the pre-trained model (including
the output fc2 layer), normalizing the output layer’s weights is necessary to achieve a positive result; we empirically
observe that the values of the output layer tend to explode without normalization. To normalize the output layer, we
keep track of the maximum value of the output layer during training, which is then used as the divisor to all weights and
biases. We refer to our pre-training method as the pre-trained model for A3C (PMfA3C). We also apply pre-training to
the transformed Bellman operator variant of the A3C algorithm, and we refer to it as PMfA3C-TB.

5 Experimental Design

We evaluate our approach in six Atari games: Asterix, Breakout, MsPacman, NameThisGame, Pong, and SpaceInvaders.
We use the deterministic version four of the Atari 2600 environment from OpenAI Gym (Brockman et al. 2016). We
follow the Atari settings described in the DQN algorithm and OpenAI baselines Atari wrapper (Mnih et al. 2015,
Dhariwal et al. 2017). Here are the Atari settings used:

• At the beginning of a game, the agent executes a random x (0 ≤ x ≤ 30) number of “NOOP” actions.

• Take an action for games (e.g., Breakout) that remains static unless pressing “FIRE.”

• Apply max pooling over the game frames to remove flickering effects of the game.

• Consider loss of life as the end of an episode or as a terminal state, but only do a hard-reset on the game
environment (i.e., reset back to the initial game state) when losing all lives.

• Use a frame skip of four, meaning that an action is repeated for four frames before a new action is selected.

The network architecture for A3C is shown in Figure 1. The four most recent game frames are used as input to the
network, each frame is converted to grayscale and resized to 84 × 84 without cropping. We use the same set of
hyperparameters for all games (except for Pong). We summarize the hyperparameter values in Table 1. Gradient
clipping is also used in A3C. For all experiments, we train a total of 50 million steps, distributed over 16 parallel A3C
actors. Each step consists four game frames (since we use frame skip of four) thus all experiments run a total of 200
million game frames.

5
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Table 1: All games use the same set of hyperparameters except for Pong, where we found setting RMSProp epsilon to
1× 10−4 gives a much more stable learning.

Parameter Value
RMSProp learning rate 7× 10−4

RMSProp epsilon 1× 10−5

RMSProp decay 0.99
RMSProp momentum 0

Maximum gradient norm 0.5
Parameters unique to supervised pre-training

Number of mini-batch updates 750,000
Batch size 32

L2 regularization weight 1× 10−4

Parameters unique to A3C only
k parallel actors 16

tmax 20
transformed Bellman operator ε 10−2

5.1 Collection of Human Demonstration

We use the keyboard interface from OpenAI Gym (Brockman et al. 2016) to enable interactions between the human
demonstrator and the Atari environment. For each game, the demonstrator is provided with game rules and a set of valid
actions with their corresponding keyboard keys. The frame skip is set to one to provide smoother game transitions during
human plays (whereas we reset it to four during agent training). To simulate frame skipping during the demonstration,
we collect every fourth frame of the game. At each collection step, we save: 1) the game image (i.e., the state), 2)
the action taken by the demonstrator, 3) the reward received, and 4) if the current state is a terminal state. For each
episode, we allow a maximum of 20 minutes of playing time for the human demonstrator. The demonstration ends
when the game reaches the time limit or when the game ends—whichever comes first. Table 2 provides a breakdown of
the demonstration size and quality for all games.

5.2 Evaluation Procedures

For all experiments, we perform policy evaluation on the RL agent at every one million training steps. We get the
average testing score over 125,000 testing steps and report the average over four trials. We report the highest average
reward of the RL agent and also measure the learning speed improvement using three metrics adapted from Taylor &
Stone (2009):

1. Best reward: the highest average reward attained by the agent from over four trials.
2. Final performance: the final learned performance of the agent. We use the reward obtained at step 50 million

as the value for the final performance.
3. Total reward: the total reward accumulated (i.e., the area under the learning curve (AUC)) by the agent. We

approximate the AUC using the trapezoidal rule: AUC ≈
∑T
t=1

f(xt−1)+f(xt)
2 ∆xt, where f(xt) is the reward

value at time t and ∆xt = xt − xt−1 = 106 is the evaluation frequency. Note that for readability, we scale
down all calculation results by one million and consider ∆xt = 1, this does not affect the comparison results.

4. Reward improvement: the ratio of the total reward improvement of the pre-trained agent compared to the
baseline agent. We calculate it as %Ratio =

AUCpre-trained−AUCbaseline

AUCbaseline
× 100

6 Results

First, we present the performance of the baseline A3C and the transformed Bellman operator variant A3C (A3C-TB).
Figure 2 shows that A3C-TB outperforms the baseline A3C in five out of the six games. Although Pong in A3C-TB has
a low performance,1 we still consider the results as consistent with the findings in Hester et al. (2018) that using reward

1In the game of Pong, its rewards r ∈ {−1, 0, 1} are already at the same reward scale as applying the reward clipping in A3C at
r ∈ [−1, 1]. Thus, reward clipping has no effect in Pong’s performance. However, applying the transformed Bellman operator scales

6
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Table 2: Human demonstration size and quality. The data is of a small amount and the demonstrator is a non-expert,
compared to the best human demonstration score in the state-of-the-art Ape-X DQfD algorithm (Pohlen et al. 2018)
(Ape-X DQfD did not collect human demonstration for SpaceInvaders).

Game Worst score Best score Best score # of states # of episodes
(Ape-X DQfD)

Asterix 6250 14300 18100 12870 5
Breakout 26 59 79 10190 10

MsPacman 4020 18241 55021 14504 8
NameThisGame 2510 4840 19380 17113 4

Pong -13 5 0 21674 6
SpaceInvaders 545 1840 - 16807 8
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Figure 2: Performance of the baseline A3C and the transformed Bellman operator variant A3C (A3C-TB). The x-axis is
the total number of training steps (among all 16 actors), where each step consists of four game frames (we use frame
skip of four). The y-axis is the average testing score over four trials where the shaded regions correspond to the standard
deviation.

clipping leads to an agent learning a suboptimal policy. As we discussed in Section 3.2, A3C-TB enables using raw
reward signals such that the RL agent can distinguish between low and high rewarding states, which leads to better
policy learning. This is even more important to address when learning from demonstrations for games that have distinct
reward signals. For example in the game of MsPacman, human tends to take actions that move towards states with high
rewards (e.g., eating an edible ghost is more rewarding than eating the dots). However, in a baseline A3C agent where
the rewards are clipped, it sees all rewards as equal and might not be able to leverage the human knowledge of “eating
an edible ghost.”

Next, we present and discuss results for our pre-training approaches, PMfA3C and PMfA3C-TB. Note that we do not
compare our results to recent algorithms in Hester et al. (2018) and Pohlen et al. (2018) since our training steps are
much shorter and are not directly comparable to those that were trained on large-scale.

6.1 Pre-Training Methods

We apply pre-training methods as described in Section 4 to both PMfA3C and PMfA3C-TB. A multiclass-classification
network is pre-trained using the human demonstration dataset. All weights and biases from the classifier are used to

down Pong’s reward values, which slows down the reward propagation. We believe this is the reason why Pong’s performance is
negatively affected in A3C-TB.
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Figure 3: Performance of baseline and pre-training using A3C. The x-axis is the total number of training steps (among
all 16 actors), where each step consists of four game frames (we use frame skip of four). The y-axis is the average
testing score over four trials where the shaded regions correspond to the standard deviation.

initialize A3C’s network layers, conv1, conv2, conv3, fc1, and fc2; the fc3 layer is initialized randomly. Figure 3 shows
the learning curve of both PMfA3C and PMfA3C-TB. Compared to the baseline A3C, PMfA3C outperforms in three
out of six games; PMfA3C-TB shows a much stronger performance and exceeds the baseline in five out of six games.

Table 3 shows the quantitative performance improvements of our pre-training methods over the baseline. PMfA3C and
PMfA3C-TB achieve the best performance in the game of MsPacman among all experiments with a remarkable total
reward improvement of 67.36%. This verifies the importance of being able to learn from raw reward signals (instead of
clipped rewards) in games with various reward scales. SpaceInvaders and Pong also show good reward improvement
ratios in both pre-training methods compared to the baseline. While the performance increase in Breakout might not
seem obvious visually from the learning curves, their total rewards indicate a 10.64% and an 8.06% improvement
for PMfA3C and PMfA3C-TB respectively. Contrarily, we note that PMfA3C did not help in NameThisGame and
Asterix. The former shows comparable results as the baseline A3C with a negligible improvement of 0.91%. When
using PMfA3C for Asterix, it shows the worst performance among all experiments with an 18.01% performance drop
compared to the baseline. However, we point out that when applying the TB operator, A3C-TB and PMfA3C-TB,
Asterix outperforms the baseline by 21.08% and 15.38% respectively.

In summary, our experiment results show that: 1) using the TB operator is important for games with various reward
scales and 2) pre-training is beneficial for training in the RL agent.

6.2 Ablation Studies

In reusing networks for image classification, Yosinski et al. (2014) pointed out that the lower layers of a network tend
to learn more general features while upper layers tend to learn more specific features towards the task. This is what
inspired us to use all layers from the pre-trained network since both networks are trained on data collected from the
same game.

To understand how reusing just a subset of the whole pre-trained network affects the performance speedup and how it
compares to our best approach PMfA3C-TB, we conduct the following ablation studies:

• PMfA3C-TB: reuse all layers (as was done in Section 6.1).
• PMfA3C-TB fc1: reuse conv1, conv2, conv3, and fc1.
• PMfA3c-TB conv3: reuse conv1, conv2, and conv3.
• PMfA3c-TB conv2: reuse conv1 and conv2.
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Table 3: Quantitative evaluation of pre-training methods using four metrics: best reward, final performance, total reward,
and reward improvement.

Game Best reward Final performance Total reward Reward
improvement

Asterix

A3C 6398.44 6398.43± 1072.22 187702.21± 26249.69 -
A3C-TB 7500.58 7345.85± 1258.83 223942.78± 47077.93 21.08%
PMfA3C 5201.08 5022.76± 1134.26 153889.07± 15016.30 −18.01%

PMfA3C-TB 8566.49 8566.49± 724.55 216571.05± 18629.16 15.38%

Breakout

A3C 413.88 400.40± 8.04 14198.48± 606.64 -
A3C-TB 405.03 391.23± 60.39 14197.93± 181.07 −0.29%
PMfA3C 427.56 406.03± 7.83 15709.87± 171.10 10.64%

PMfA3C-TB 419.28 398.13± 16.98 15343.39± 472.31 8.06%

MsPacman

A3C 2052.07 1980.46± 231.12 78419.18± 6027.52 -
A3C-TB 2172.01 2071.19± 405.62 80959.67± 6773.66 3.24%
PMfA3C 2514.61 2514.61± 247.60 103950.65± 8529.05 32.56%

PMfA3C-TB 3539.0 3493.90± 510.68 131239.08± 9851.32 67.36%

NameThisGame

A3C 5942.29 5775.73± 435.45 264140.63± 9830.70 -
A3C-TB 7276.32 7276.32± 799.27 282540.94± 14059.33 6.97%
PMfA3C 5952.68 5868.82± 164.64 266544.47± 5827.28 0.91%

PMfA3C-TB 7869.28 7869.28± 99.12 306014.77± 4438.13 15.85%

Pong

A3C 19.89 19.79± 0.67 791.71± 32.08 -
A3C-TB 19.84 19.84± 0.23 604.60± 46.49 −23.63%
PMfA3C 20.67 20.67± 0.20 948.38± 8.21 19.79%

PMfA3C-TB 20.44 19.96± 0.37 937.61± 19.44 18.43%

SpaceInvaders

A3C 832.98 805.96± 123.04 30533.94± 1413.44 -
A3C-TB 975.27 948.26± 70.67 33293.51± 1506.37 9.04%
PMfA3C 952.71 908.50± 50.73 35163.27± 697.12 15.16%

PMfA3C-TB 1081.21 1032.48± 111.07 36902.61± 2529.46 20.86%

• PMfA3c-TB conv1: reuse conv1 only.

Figure 4 shows the results for our ablation study. We found the most intuitive results in Pong where the more pre-trained
layers are reused, the better the results are. In Breakout and SpaceInvaders, reusing different layers show no obvious
distinctions in performance compared to reusing all layers. In Asterix, reusing all pre-trained layers still has the
best performance; when reusing only a part of the pre-trained layers, the performance is similar to the baseline A3C.
MsPacman and NameThisGame have the most varying results when different layers are reused. It is interesting to
note that they show inverted performance for different reusing strategies—PMfA3C-TB conv1 has the worst result
in MsPacman among all reusing strategies but shows the best result in NameThisGame. Despite this distinction, all
pre-training methods in these two games outperform the baseline, regardless of the choice of reuse layers.

In summary, our ablation study shows that reusing the entire pre-trained network consistently performs well—it either
achieves the best results or is comparable to reusing other layers. We point out that reusing layers that are closer to the
output layer (PMfA3C-TB fc1 and conv3) also shows competitive results in four out of six games. This is consistent
with the findings in Yosinski et al. (2014) that lower layers learn general features while higher layers learn task-specific
features, and transferring general features are more beneficial when the training and testing data are different. In our
case, however, since the classification model and the A3C network are trained on data that are collected from the same
game, leveraging task-specific features can be more helpful than reusing only general features.

6.3 What is really learned from pre-training?

In order to understand the benefit of our pre-training method, we visualize the feature maps in the last convolutional layer
to assess if an RL agent can learn meaningful high-level information about the game through pre-training. We adopt
the Gradient-weighted Class Activation Mapping (Grad-CAM) as our visualization method since it is model-agnostic
and can be used in any convolutional-based network without needing to change architectures (Selvaraju et al. 2017).
Using Grad-CAM, we analyze how different regions in feature maps are activated by corresponding actions under three
settings: 1) a randomly initialized RL agent, 2) a pre-trained classification model, and 3) a final learned RL agent in
PMfA3C-TB. By comparing feature map patterns among the three scenarios, we will be able to obtain an intuitive
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Figure 4: Performance of baseline and pre-training using A3C. The x-axis is the total number of training steps (among
all 16 actors), where each step consists of four game frames (we use frame skip of four). The y-axis is the average
testing score over four trials where the shaded regions correspond to the standard deviation.

understanding of what is learned through pre-training and how an RL agent uses the pre-trained knowledge during its
learning.

Grad-CAM is a visualization tool designed to increase the interpretability of prediction results of a deep neural
network (Selvaraju et al. 2017). Specifically, Grad-CAM computes the gradient of the target logits (output values before
applying softmax) with respect to feature maps of a convolutional layer. The importance weight of each neuron can then
be obtained by performing global averaging pooling (Lin et al. 2013) over the gradients. For a classification task, the
target logits refer to the score of a target class, while in the context of RL, the target class can be considered as the action
a taken based on the current policy π. Given any game state s, the score ya of an action a is defined as ya = π(a|s; θ),
where θ parameterizes the policy network in A3C. We then compute gradients for ya with respect to the feature maps of
the last convolutional layer (denoted as Mk).2 We compute the importance weight (denoted as αak) in A3C as

αak =

global average pooling︷ ︸︸ ︷
1

Z

∑
i

∑
j

∂ya

∂Mk
ij︸ ︷︷ ︸

gradients via backprop

Selvaraju et al. (2017) also combines forward activation maps and pass through a rectifier linear units (ReLU) to show
the features that has a positive effect on the action of interest. This gives us the action-discriminative saliency map as

LaGrad-CAM = ReLU

(∑
k

αakM
k

)
However, the output of the discriminative saliency map did not provide an interpretable visualization under A3C.
According to (Selvaraju et al. 2017), the weight αak captures the importance of the feature map k. Since αak can have
both positive and negative values, we choose to emphasize only on positive weights (i.e., captures the most important
features). Thus, we instead apply ReLU directly to αak, transforming LaGrad-CAM as

LaGrad-CAM =
∑
k

ReLU
(
αak
)
Mk

2In Selvaraju et al. (2017) the feature maps are denoted as Ak, we change this notation to avoid confusion with the notation of the
action a in the context of RL.
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We present Grad-CAM results for two games, Pong and Breakout, as the running example in this section for analyzing
what features are learned. Video clips for all six games’ Grad-CAM results are available online at https://sites.
google.com/view/pretrain-deeprl. Figure 5 shows example Grad-CAM results for a sequence of five frames
in Pong and Breakout and each frame is used as the input image to the network. We run a forward pass to compute
the target logits ya and output an action a based on the current policy π. Note that actions are not executed in the
environment but only used to compute LaGrad-CAM—we do not perform gradient updates to the network. To ensure we
compare the three models (random initialized, pre-trained, and final learned RL) with the same set of game inputs, we
perform one episode of evaluation (until the game ends or reaches 5,000 testing steps, whichever comes first) using
the final learned RL agent and save all game images it encounters, then use these images as a sequential state input to
calculate Grad-CAM for the random initialized agent and the pre-trained model. Grad-CAM is visualized as a heatmap
of scale [0, 1]: red (value close to 1) indicates regions that are important for a corresponding action while blue (value
close to 0) indicates unimportant regions. The top row shows the feature map for a randomly initialized agent; the
second row is the feature map of a pre-trained classifier; the third row shows a final learned RL agent’s feature map; the
bottom row shows the original game image.

At the beginning of training when the network weights are randomly initialized (top row of Figure 5), both Pong and
Breakout agents act randomly and overall consider the entire game state to be important. In particular, Pong agent sees
the top part (where the score is located shows more red color) and somehow the bottom part to be more important than
the middle part (orange color) of the game image; Breakout agent also considers the top part to be important—with
more focus on the location of bricks (red-orange color) than the location of the score (yellow-green color)—but the
bottom part of the image is shown to be not important at all (blue color).

The important regions change notably when the network reuses weights from pre-trained models (second row of Figure
5). Interestingly, in both games, the agent learns to pay attention to the paddle movements. In Pong, both the opponent’s
paddle (left) and the agent’s paddle (right) are identified to be important; in Breakout, the paddle at the bottom becomes
the most important (whereas under random initialization the bottom part of the image is considered to be the least). The
result is intuitive for the pre-trained model as it finds the object that follows the cardinal directions of the actions taken
to be the most important feature—when the demonstrator takes an action, the object that correlates the most to this
action is the paddle.

We see a further change of important regions in the final learned RL policy (third row of Figure 5). Instead of paying
attention to the paddle, both games learn to track the movement of the ball. This is particularly clear in Pong: the
important features evolve following roughly the same trajectory as the movement of the ball, from the bottom-left to the
top-right of the game image.

While the Grad-CAM examples in Figure 5 show that the pre-trained model picks up different important regions than
the final RL policy, we also observe that some pre-training features are carried on to the final RL policy. For example in
Pong, although the RL policy has more focus on the ball, the regions around paddles are still activated with a lower
importance—an inheritance from the pre-train model. In addition, in the Grad-CAM video clips where we show a
complete run on all six games, it is more clear that important features in the pre-training are also identified in the final
RL policy. We refer the readers to the video clips at https://sites.google.com/view/pretrain-deeprl.

7 Conclusion and Discussion

The goal of this article is not to defeat the state-of-the-art results for Atari. Instead, we want to address the problem
of slow learning. Other work focuses on increasing computational resources to speed up the training, while our work
focuses more on improving learning speed, which is the ability to learn better policy with a smaller amount of game
environment interactions. We attain the speedup in learning by supervised pre-training of the deep RL’s network using
non-expert human demonstrations.

We used the transformed Bellman operator (Pohlen et al. 2018) in A3C, which addresses reward clipping that allows
the RL agent to differentiate high and low rewarding states. The transformed Bellman operator helps our pre-training
approach achieve improvements in all six games that we evaluated our approach. Our pre-training approach improves
the reward in MsPacman with 67.36%. In addition, A3C in MsPacman reach the highest average reward of 2,052
at 49 million training steps, while PMfA3C-TB in MsPacman only takes 11 million training steps to surpass A3C’s
highest average reward. This is quite a significant speedup in the learning speed especially when we only pre-trained
PMfA3C-TB’s network on 14,504 game states from a non-expert human.

We also have a much better understanding of what features are being considered during pre-training by using our
modified Grad-CAM. One future direction for pre-training in deep RL is to drive the activation mapping towards the
objects in the game state image. We believe it would be easier for non-expert humans to simply identify the important
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Figure 5: Gradient-weighted Class Activation Mapping (Grad-CAM) visualization for Pong and Breakout. Top row:
random initialization; second row: pre-trained model; third row: final learned RL policy; bottom row: the original game
image.

objects in the game relative to actually playing the game—this would be another way of using humans to improve
learning.

As we investigate further ways to improve our approach, we know there is a limit to how much improvement pre-training
can provide without addressing policy learning. In our approach, we have already trained a model with a policy that
tries to imitate the human demonstrator, and thus we can extend this work by using the pre-trained model’s policy to
provide advice to the agent (Wang & Taylor 2017).

To summarize, learning both features and policy directly from raw images through deep neural networks is a major factor
why learning is slow in deep RL. This article has demonstrated the following: 1) we have shown through Grad-CAM
that using supervised pre-training with non-expert human demonstration data can be used for feature learning, and
2) that our method of initializing deep RL’s network with a supervised pre-trained model can significantly speed up
learning in deep RL.
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