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Abstract

The problem of traffic congestion incurs numerous social and economical repercussions and has

thus become a central issue in every major city in the world. For this work we look at the

transportation domain from a multiagent system perspective, where every driver can be seen as

an autonomous decision-making agent. We explore how learning approaches can help achieve an

efficient outcome, even when agents interact in a competitive environment for sharing common

resources. To this end, we consider the route choice problem, where self-interested drivers need to

independently learn which routes minimise their expected travel costs. Such a selfish behaviour

results in the so-called user equilibrium, which is inefficient from the system’s perspective. In order

to mitigate the impact of selfishness, we present Toll-based Q-learning (TQ-learning, for short).

TQ-learning employs the idea of marginal-cost tolling, where each driver is charged according

to the cost it imposes on others. The use of marginal-cost tolling leads agents to behave in a

socially-desirable way such that the system optimum is attainable. In contrast to previous works,

however, our tolling scheme is distributed (i.e., each agent can compute its own toll), is charged a

posteriori (i.e., at the end of each trip), and is fairer (i.e., agents pay exactly their marginal costs).

Additionally, we provide a general formulation of the toll values for univariate, homogeneous

polynomial cost functions. We present a theoretical analysis of TQ-learning, proving that it

converges to a system-efficient equilibrium (i.e., an equilibrium aligned to the system optimum)

in the limit. Furthermore, we perform an extensive empirical evaluation on realistic road networks

to support our theoretical findings, showing that TQ-learning indeed converges to the optimum,

which translates into a reduction of the congestion levels by 9.1%, on average.

1 Introduction

Efficient urban mobility plays a major role in modern societies. Notwithstanding, the fast-growing

demand for mobility associated with the lack of appropriate investments has compromised the

efficiency of traffic systems, as evidenced by the increasing number (and intensity) of traffic

congestions. In fact, according to the Centre for Economics and Business Research (2014), the

cost imposed by traffic congestions on the economy of the USA was around US$ 124 billion

in 2013. In the UK, the amount was of US$ 20.5 billion during the same period. Such values

correspond to approximately 0.7% of the GDP of these countries. Furthermore, as suggested by

the same report, such costs are expected to increase by 50% and 63% until 2030, respectively.
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Traditional approaches for dealing with arising traffic congestions include increasing the phys-

ical capacity of existing traffic infrastructure. Nonetheless, such approaches have proven unsus-

tainable from many perspectives and may even deteriorate the traffic performance (Braess 1968).

Hence, against this background, ways of making a more efficient use of the existing infrastructure

have been increasingly studied.

In this work, we approach traffic from the drivers perspective. In particular, we consider the

route choice problem, which models how commuting drivers choose routes to travel from their

origins to their destinations everyday. In such scenarios, agents are self-interested and try to

minimise some kind of cost (e.g., travel time) associated with their trips. As a result, the expected

outcome corresponds to an equilibrium point where no driver benefits from unilaterally changing

its route. This is the so-called User Equilibrium (UE) (Wardrop 1952), which is equivalent to the

Nash equilibrium (Nash 1950).

Although appealing from the drivers’ perspective, the UE does not represent the system at its

best operation (i.e., when average travel time is minimum). In fact, the average travel time under

UE can be considerably higher than the so-called system optimum (SO). However, the SO is only

attainable if some agents take sub-optimal routes to improve the system’s performance, which is

not realistic given that agents are self-interested. Accordingly, the deterioration in the system’s

performance due to drivers’ selfishness is known as the Price of Anarchy (PoA) (Koutsoupias &

Papadimitriou 1999).

In this sense, different approaches have been proposed to align the UE with the SO, including:

charging tolls (Cole et al. 2003, Bonifaci et al. 2011, Sharon et al. 2017), computing difference

rewards (Wolpert & Tumer 1999, 2002, Proper & Tumer 2012, Colby et al. 2016), enforcing

altruism (Chen & Kempe 2008, Hoefer & Skopalik 2009), etc. Among these fronts, charging tolls

stand out for their relatively simplicity and for their less restrictive assumptions. One of the most

important such schemes was introduced by Pigou (1920) and is known as marginal-cost tolling

(MCT), in which each agent is charged proportionally to the cost (e.g., travel time) it imposes

on others. By employing MCT, the UE is biased towards the SO in such a way that they both

coincide.

In this article, we approach the toll-based route choice problem from the multiagent

reinforcement learning perspective and provide theoretical guarantees on the agents’ convergence

to a system-efficient equilibrium (i.e., aligning the UE to the SO). Learning is a fundamental

aspect of route choice because drivers must learn independently how to adapt to the changing

traffic conditions. In this sense, we introduce Toll-based Q-learning (TQ-learning), in which each

driver is represented by a Q-learning agent whose objective is to learn which route minimises its

expected cost. TQ-learning deploys marginal-cost tolls and, as such, defines the cost of a link

as comprising two terms: the travel time and the toll charged on it. Furthermore, TQ-learning

introduces a generalised toll formulation that charges an agent a posteriori (i.e., only after it

has completed its trip) and that can be computed by the agents themselves. In this sense, as

compared to existing approaches, our toll formulation is more general (i.e., it applies to most

traffic scenarios), it is fairer (i.e., agents pay exactly their marginal costs), and it is easier to

deploy (i.e., it has fewer infrastructure requirements). To the best of our knowledge, this is the

first time that learning agents are proven to converge to a system-efficient equilibrium without

having full knowledge about the reward functions.

In particular, the main contributions of this work can be enumerated as follows:

• We generalise the marginal-cost toll formulation for univariate, homogeneous polynomial cost

functions. We show that the proposed formulation comprises the most commonly-used cost

functions in the literature, and that it can be computed locally by the agents themselves (i.e.,

without knowing the overall traffic situation).

• We devise Toll-based Q-learning (TQ-learning), through which each agent can compute the

toll it has to pay a posteriori (i.e., whenever it finishes a trip) and can use such information
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to learn the best route to take. We then show that the proposed a posteriori tolling scheme

is fairer and simpler than a priori schemes.

• We provide theoretical results showing that our method converges to the UE in the limit (as

opposed to existing works, which assume that the UE is given) and that, by using MCT, the

UE corresponds to the SO. Thus, in the limit, the PoA achieves its best ratio. These results

are supported by an extensive experimental evaluation, showing that our method minimises

congestions even in large, realistic road networks available in the literature.

The rest of this article is organised as follows. Sections 2 and 3 discuss the background and

related work. Our method is introduced in Section 4, theoretically analysed in Section 5, and

empirically validated in Section 6. Finally, conclusions, limitations, and future work are presented

in Section 7.

2 Background

This section presents the theoretical background upon which we build our work. We begin by

formally introducing the route choice problem (Section 2.1) and related problems (Section 2.1.1).

We then describe the basics of reinforcement learning, briefly discussing its challenges in

multiagent settings (Section 2.2).

2.1 Route Choice

An instance of the toll-based route choice problem is defined as a tuple P = (G, D, f, τ). Let

G= (N, L) represent a road network, where the set of nodes N represents intersections and the

set of links L represents roads between intersections. Each driver i ∈D (with |D|= d) has an OD

pair, which corresponds to its origin and destination nodes. A trip is made by means of a route1

R= {(nu, nv) ∈ L | ∀p ∈ [0, |R| − 1], npv = np+1
u },

which is a loop-less2 sequence of links connecting an OD pair. Such a demand for trips generates

a flow of vehicles on the links, where xl is the flow on link l ∈ L. The cost cl : xl→ R+ associated

with crossing link l ∈ L is given by:

cl(xl) = fl(xl) + τl(xl), (1)

where fl : xl→ R+ represents its travel time and τl : xl→ R+ denotes the toll charged for using

it. In order to enhance presentation, hereafter we leave xl implicit and use simply cl, fl, and τl
to represent the cost, travel time, and toll on link l, respectively. The cost of a route R is then

computed as:

CR =
∑
l∈R

cl. (2)

Travel times fl are typically abstracted as volume-delay functions (VDF), which map a flow of

vehicles into a travel time (a.k.a. latency). The toll values τl, on the other hand, should be defined

according to a specific purpose, e.g., maximising revenue, minimising link usage, etc. We refer

the reader to Ortúzar & Willumsen (2011) for a more detailed overview.

Toll values can be defined according to different objectives. In this work, we consider the case

of biasing the user equilibrium (UE) towards the system optimum (SO). According to Pigou

(1920), this can be achieved by means of marginal cost tolling (MCT), under which each agent

is charged proportionally to the cost it imposes on others. Specifically, the marginal cost toll on

link l is the product of its flow and the derivative of its VDF function with respect to the current

1We abuse notation here and use np
u (np

v) to denote the start (end) node of the pth link of route R.
2As discussed forward, links’ costs are represented by positive reals. Since for every route with a cycle we
can obtain an equivalent sequence without cycles, then cycles can be ignored without loss of generality.
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flow xl on that link (Beckmann et al. 1956, Pigou 1920), i.e.,

τl = xl · (fl(xl))′. (3)

It should be noted, on the other hand, that charging tolls arbitrarily (e.g., charging a constant

price on selected links) does not necessarily lead to the SO (Beckmann et al. 1956).

As usual in the literature, we approach route choice using a macroscopic traffic model. This

kind of model represents dynamic aspects of traffic as aggregated quantities, such as flow and

travel time (Bazzan & Klügl 2013). Here, a link’s flow can be seen as the total number of vehicles

whose route includes the considered link, regardless of when the vehicles effectively traverse that

link. This means that costs can be efficiently computed altogether (e.g., when all drivers reach

their destinations), which makes the model fast to calculate and run.

2.1.1 Related problems
We highlight that the route choice problem shares some similarities with other problems. Next,

we describe the most representative ones (at least for our purpose). The interested reader is

referred to Ramos (2018) for a more detailed overview.

In traffic engineering, route choice is mainly approached from two perspectives. Discrete choice

models try to accurately approximate the behaviour of human travellers (McFadden 2001).

Assignment methods are centralised mechanisms employed to find an allocation of vehicles into

routes so as to satisfy a given solution concept (Bar-Gera 2010, Ramos & Bazzan 2015, 2016).

In common, these works propose centralised approaches to facilitate the work of traffic managers

on analysing different traffic patterns, policies, etc. On the other hand, route choice provides a

decentralised, driver-centered approach, which allows one to investigate how self-interested drivers

learn (with limited knowledge) and adapt to each other while trying to maximise their rewards.

In the game theory literature, route choice has also been approached using congestion games

(Rosenthal 1973) and, in particular, (selfish) routing games (Roughgarden 2005). These games,

however, assume that drivers control a negligible, infinitesimally small amount of traffic, whereas

in route choice the flow of vehicles is fundamentally discrete. Again, our approach models traffic

from the drivers’ perspective, allowing one to precisely investigate how drivers interact while

learning and adapting to each other.

Multi-armed bandits (Robbins 1952) can also be used to model route choice (Auer et al. 2002,

Awerbuch & Kleinberg 2004). In this problem, at each round, the agent selects one among K ∈ N
available arms (routes) and the environment returns a payoff (negative cost) for the selected arm.

This payoff is sampled from a distribution that is unknown to the agent. The agent then needs

to decide on which arms to play (and in which order) to maximise its cumulative reward. Despite

their similarities, multi-armed bandits and route choice are conceptually different. Whereas in the

former the rewards are simply random variables, in the latter they are a function of the choices

made by all drivers. Such a dependence on what everyone else is doing poses an additional layer

of complexity to an agent’s decision process, thus making route choice more challenging.

2.2 Reinforcement Learning

In reinforcement learning (RL), an agent learns by trial and error how to behave within an

environment (Sutton & Barto 1998). The basic RL cycle can be described as follows. Initially,

an RL agent observes the current state of the environment and chooses an action based on its

knowledge. Afterwards, the agent executes the chosen action and receives a reward, which is then

used to update its knowledge base. An agent’s knowledge here refers to its policy, i.e., a mapping

from states to actions. A complete RL cycle is called an episode.

The RL problem is typically formulated as a Markov decision process (MDP), which consists

in a tuple (S,A, T , r), where S represents the set of environment states, A represents the set

of actions, T : S ×A× S → [0, 1] defines the transition function, and r : S ×A→ R denotes the
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reward function. In route choice, drivers know their routes a priori (or at least a subset of them)

and just need to decide on which one to take everyday. In this sense, an agent’s actions represent

the possible routes between its origin and destination. The reward3 for taking action a ∈ A can

then be denoted as:

r(a) =−CR, (4)

with a=R. Whenever a driver takes a route, it will inevitably reach its destination, thus rendering

the state definition irrelevant here. Thus, in the context of reinforcement learning, the route choice

problem is typically modelled as a stateless MDP.

Solving a stateless MDP involves finding a policy π (e.g., which route to take) that maximises

the agent’s average reward. To learn such a policy, the agent needs to repeatedly interact with

the environment so as to learn its dynamics. A particularly suitable algorithm for this purpose is

Q-learning (Watkins & Dayan 1992), whose stateless version learns the expected return Q(a) of

selecting each action a while balancing exploration (gain of knowledge) and exploitation (use of

knowledge). In particular, after taking action a and receiving reward r(a), the stateless Q-learning

algorithm updates Q(a) as:

Q(a) = (1− α)Q(a) + αr(a), (5)

where the learning rate α ∈ (0, 1] weights how much of the previous estimate should be retained.

As for exploration, a typical strategy is ε-greedy, in which the agent chooses a random action with

probability ε or the best action otherwise. The Q-learning algorithm is guaranteed to converge to

an optimal policy if all state-action pairs are experienced an infinite number of times (Watkins

& Dayan 1992).

Although Q-learning is guaranteed to converge to an optimal policy in the single-agent case, it

has no guarantees in multiagent settings. In fact, no convergence guarantees exist for the general

multiagent RL setting (i.e., for an arbitrary number of players and actions). The point is that,

when multiple agents need to learn their policies simultaneously in a shared environment, their

actions may affect the reward received by others. In other words, an agent’s best policy may

change as other agents change their own policies. Formally, we say that this kind of situation

invalidates the so-called Markov property, thus rendering the environment no longer stationary

(Tuyls & Weiss 2012, Buşoniu et al. 2008, Laurent et al. 2011). In practical terms, we can say that

learning an optimal policy becomes a moving target. In spite of the aforementioned challenges,

interesting progress has shown possible when more specific (rather than general) multiagent RL

scenarios are considered, as discussed next.

Multiagent reinforcement learning (MARL) problems may be approached from different

perspectives. Stochastic (or Markov) games (Littman 1994) represent a straightforward approach,

where agents’ decisions are represented in a joint action space A=A1 ×A2 × . . .×Ad, where

Ai denotes the actions available to agent i ∈ {1, . . . , d}. Several algorithms have been proposed

in this context for 2-player zero-sum games (Littman 1994), 2-player general-sum games (Hu

& Wellman 1998, 2003), and coordination games (Littman 2001, Verbeeck et al. 2007, Vrancx

et al. 2010). However, route choice usually involves several (not only two) agents, which rarely

cooperate (Sandholm 2007). Gradient ascent algorithms were also proposed to handle multiagent

learning scenarios (Zinkevich 2003, Bowling 2005, Abdallah & Lesser 2006). Nonetheless, their

convergence guarantees still only apply to 2-player games.

Another common approach to deal with MARL is to model agents as independent learners

(Claus & Boutilier 1998). In this kind of approach, each agent has its own stateless MDP and

interprets the behaviour of other agents as the dynamics underlying its environment. In spite

of its simplicity, independent learners have obtained promising results (Foerster et al. 2017,

3Observe that although the reward an agent receives is formulated as a function of its route, it actually
depends on the flow of vehicles on the links that comprise that route. This is expressed by means of
the VDF function, as explained in Section 2.1, whose value is a function of the flow of vehicles on its
links. Furthermore, since we assume a macroscopic traffic model, we remark that all routes’ costs can be
computed together, when all drivers complete their trips.
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Omidshafiei et al. 2017, Ramos et al. 2017, Lanctot et al. 2017, Matignon et al. 2012, Kaisers

& Tuyls 2010, Vrancx et al. 2008, Lauer & Riedmiller 2004, Crites & Barto 1998, Tesauro 1994,

Boyan & Littman 1994, Sen et al. 1994, Tan 1993). Moreover, we highlight that this approach is

particularly suitable in the context of traffic (Bazzan 2009), given that drivers have a very limited

knowledge about what others are doing (not to mention their policies).

Hence, in this work we follow this direction and model agents as independent Q-learners. In

particular, we advance the state-of-the-art by introducing Toll-based Q-learning (which allows

agents to compute—and pay—tolls for the routes they take), which is guaranteed to converge to

a UE that is aligned to the SO. Our algorithm deals with the non-stationarity inherent to MARL

by systematically decreasing the learning and exploration rates until agents converge to a fixed

point corresponding to a system-efficient equilibrium. We then prove (see Section 5) that, using

our algorithm, Q-values converge to their true values in the limit and that exploration does not

destabilise the equilibrium.

3 Related Work

In this section we discuss representative literature on system-efficient equilibria in route choice

(and related problems). In order to enhance presentation, we categorise existing works into: toll-

based approaches (Section 3.1), difference rewards based approaches (Section 3.2), and other

approaches (Section 3.3). For a more detailed overview, the interested reader is referred to the

works of van Essen et al. (2016), Ramos (2018), and Ortúzar & Willumsen (2011).

3.1 Toll-Based Approaches

The use of tolls to enforce system-efficient behaviour has been widely explored in the literature.

There is a plethora of works in this line, considering drivers with heterogeneous utility preferences

(Cole et al. 2003, Fleischer et al. 2004, Meir & Parkes 2018), toll information mechanisms

(Kobayashi & Do 2005), tolls with bounded values (Bonifaci et al. 2011), RL-based tolls (Tavares

& Bazzan 2014, Ramos et al. 2018, Chen et al. 2018), and so on. We concentrate, however, in the

marginal-cost tolling (MCT) scheme (Pigou 1920). The concept of MCT has been investigated in

several works, such as those by Sharon et al. (2017), Mirzaei et al. (2018), Sharon et al. (2019),

Ye et al. (2015), Yang et al. (2004), and Meir & Parkes (2016). As opposed to these works,

nonetheless, here we approach the problem from the drivers perspective and investigate how they

behave when facing tolls. In particular, we introduce a learning procedure that allows drivers

to compute their own toll values (using local information) and to learn the best route to take

based on that information. In this sense, we go beyond existing works and show that, using our

approach, self-interested drivers converge to a system-efficient equilibrium.

Another drawback of existing tolling schemes is that they charge tolls a priori, i.e., before

agents start their trips. Ideally, however, tolls should only be charged after their real marginal

costs are available (i.e., at the end of the trips). A priori tolling is indeed appealing from the agents’

perspective, since such agents can see in advance the toll associated with each of their possible

actions. Nonetheless, these schemes usually define toll values based on historical congestion levels,

meaning that the agents may end up paying a toll that is higher than their actual marginal costs.

In particular, since MCT is based on the impact an agent causes on others, one cannot assess

such impact before it happens (except if one can predict drivers decisions along their trips).

Hence, we say that these schemes are unfair (see discussion in Section 5.3). In this work, by

contrast, we assume that tolls are charged a posteriori and per route. We then present a general

toll formulation that can be computed directly by the agents.

We highlight that our toll formulation can simplify the infrastructure requirements for

deploying marginal-cost tolling schemes by assuming that each vehicle has a navigation device

responsible for charging the toll whenever a trip is finished. Additionally, our modelling makes

the drivers’ decision process easier since they can better understand the costs being charged,

as pointed out by the National Surface Transportation Infrastructure Financing Commission
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(2009). Traditional tolling schemes could also benefit from connected navigation devices. However,

such approaches would strongly depend on stable communication (otherwise tolls would not be

available a priori), whereas our approach remains robust even under precarious communication

conditions (since tolls could be computed at any time once the corresponding trip is finished).

3.2 Difference Rewards Based Approaches

Wolpert and Tumer (Wolpert & Tumer 1999, 2002) introduced the idea of difference rewards,

which also relates to our approach. In a stateless context, the difference reward that agent i

receives after taking action ai is given by Di(ai) =G(a)−G(a−i), where a is the joint action of

all agents, a−i is the joint action without action ai, and G(·) is the global reward signal (which, in

traffic scenarios, could represent the system’s average travel time). In other words, the difference

reward an agent receives can be seen as the amount that the system’s performance deteriorates

due to its individual action. By using difference rewards, agents’ reward signal is aligned with the

system’s utility, which enforces agents to converge to the SO. Notwithstanding, difference rewards

can only be computed by a central authority with full observability, or by assuming that agents

can observe/compute function G. Such assumptions, however, tend to be unrealistic, especially

in traffic scenarios.

Methods for approximating the difference reward signals were also proposed (Colby et al.

2016, Agogino & Tumer 2004). Nonetheless, these approaches still depend on some sort of

global information (e.g., the value of G(a)) and take too long to converge (e.g., hundreds of

thousands of episodes even for small, competitive scenarios). In contrast, our approach drops any

full observability assumption and can be run distributedly by the agents. Furthermore, by using

only local information, our approach converges much faster to the optimum.

3.3 Other Approaches

Similarly to charging tolls, some works investigated the SO by explicitly assuming that agents

behave altruistically. Chen & Kempe (2008) and Hoefer & Skopalik (2009) investigated altruism

in routing games. Levy & Ben-Elia (2016) developed an agent-based model where drivers choose

routes based on subjective estimates over their costs. However, whereas tolls can be imposed on

agents, altruistic behaviour cannot be assumed or made mandatory (Fehr & Fischbacher 2003).

Furthermore, these works assume that agents know each others’ payoff to compute their utilities.

Route guidance mechanisms have also been employed to approximate the SO. These include

mechanisms for: negotiating traffic assignment at the intersection level (Lujak et al. 2015), biasing

trip suggestions (Bazzan & Klügl 2005), allocating routes into abstract groups that offer more

informative cost functions (Malialis et al. 2016, Rădulescu et al. 2017), etc. Notwithstanding, in

general, these works assume the existence of a centralised mechanism.

4 Toll-Based Q-Learning

This section introduces Toll-based Q-learning (TQ-learning, for short), a reinforcement learning

algorithm through which agents can compute the tolls associated with their routes using only

local information and use such values to learn their best routes. Specifically, we model the toll-

based route choice problem as a stateless Markov decision process (MDP) and represent drivers

by means of Q-learning agents. At every episode, each agent chooses a route from its origin to its

destination and, once the trip is completed, the agent observes its travel time.4 As for the tolls, we

propose a general tolling scheme that allows the agents to compute the tolls by themselves, using

only local information (Section 4.1). Together, the travel time and toll value experienced by an

agent in a given route compose the cost of that route. Each agent then uses such cost to update

the Q-value for the corresponding route. The complete algorithm is presented in Section 4.2.

4We remark that, using a macroscopic traffic model (see Section 2), travel times are computed whenever
all drivers complete their trips.
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4.1 Tolling Scheme

Our generalised tolling scheme assumes that each agent can observe its travel time and compute

its toll a posteriori. In practical terms, this is equivalent to coupling each driver with a mobile

navigation device, which computes and provides such information (de Palma & Lindsey 2011). We

remark that, by definition, travel times and tolls are defined per link, whereas agents’ decisions

are based on routes. In this sense, hereafter we refer to a route’s travel time (and toll value) as

the sum of its links’ travel times (and toll values).

Toll values are defined according to the marginal cost of the agents, as defined in Equation (3).

Recall that such cost is obtained through the derivative of the link’s cost, which depends on the

volume-delay function (VDF) being employed. Sharon et al. (2017) have shown that, for the

BPR (1964) function, the marginal cost toll can be written as τl = β(fl − Fl), where fl and Fl
represent the actual (i.e., as given by the VDF function) and free flow (i.e., the lower bound when

xl = 0) travel times on link l, and β represents a VDF-specific constant. Nonetheless, given that

different VDFs are available in the literature, we go beyond and generalise the toll formulation

according to the following proposition.

Proposition 1 The marginal-cost toll value τl on any link l with a univariate, homogeneous

polynomial VDF function is β(p1x
β
l ), where β and p1 represent VDF-specific constants.

Proof First we analyse the case of linear and polynomial functions. Then, we define the general

MCT formulation.

Linear functions are in the form fl(xl) = p1xl + p0. We consider two such examples from

the literature. The OW function (Ortúzar & Willumsen 2011) is represented as fl(xl) = Fl +

0.02xl = p1xl + p0, with p0 = Fl and p1 = 0.02 representing VDF-specific constants. The linear

Braess functions can be represented as fl(xl) =
(
kcil
d

)
xl = p1xl + p0, with p0 = 0 and p1 = kcil

d

representing VDF-specific constants (Stefanello & Bazzan 2016).

Polynomial functions can be defined as fl(xl) =
∑n
β=0 pβx

β . In this work, we consider the

specific case of univariate (single variable), homogeneous (all terms with the same degree)

polynomial functions, which can be written in the simpler form fl(xl) = p1x
β
l + p0. Such a subclass

of polynomial functions includes VDFs that are well-known in the transportation literature, such

as the one by the Bureau of Public Roads (1964). The so-called BPR function is represented

as fl(xl) = Fl

(
1 + α xlCl

β
)

= Fl + xβl

(
αFl
Cβl

)
= p1x

β
l + p0, with p0 = Fl and p1 = αFl

Cβl
representing

VDF-specific constants. Note that this polynomial definition generalises over linear and constant

functions. Specifically, linear functions correspond to the special case where β = 1 and constant

functions correspond to the special case where p1 = 0.

The MCT of link l is defined as τl = xl · (fl(xl))′. By using the definition of univariate,

homogeneous polynomial functions above, we have that

τl = xl(p1x
β
l + p0)′

= xl(p1βx
β−1
l )

= β(p1xlx
β−1
l )

= β(p1x
β−1+1
l )

= β(p1x
β
l ),

(6)

which completes the proof. 2

We emphasise that Proposition 1 only holds when the VDF is defined as an univariate (i.e., with

a single parameter, such as flow), homogeneous (i.e., all terms with the same degree) polynomial.

It should be noted, however, that this assumption is not unrealistic, given that the most

commonly-used VDF functions in the literature are in this class. Moreover, the above proposition

can be extended to overcome these limitations. Such an extension is left as future work.
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From Proposition 1, observe that computing toll values requires some parameters, such as

the flow of vehicles. Recall that this information may not be directly available to the agents.

Fortunately, however, such information can be obtained by means of the agents’ travel times.

In this regard, we can combine Proposition 1 with the formulation of Sharon et al. (2017), thus

obtaining the following corollary.

Corollary 1 The toll value on link l can be rewritten as τl = β(p1x
β
l ) = β(p1x

β
l + p0 − p0) =

β(fl − Fl), considering Fl = p0 and fl(xl) = p1x
β
l + p0. In other words, whenever an agent finishes

its trip (i.e., a posteriori), it can compute the toll on the corresponding route based on its actual

and free flow travel times.

As seen, agents can compute the tolls associated with their routes knowing neither the reward

of all routes nor the actions taken by the other agents. Having defined the toll values, we can

rewrite the routes reward function as in Equation (7), which follows from Proposition 1 and

Equations (1), (2), and (4).

r(ati) = −Cati
= −

∑
l∈ati

cl

= −
∑
l∈ati

fl + τl

= −
∑
l∈ati

fl + β(fl − Fl)
= −(fati + β(fati − Fati)).

(7)

We remark that, by using Equation (7), agents can compute their tolls using only local

information. This is an important distinguishing feature of TQ-learning as compared to difference

rewards (discussed in Section 3, since it eliminates the need for having a central authority with

full knowledge about the complete traffic state. This is particularly suitable in traffic settings,

where such information is hardly available.

4.2 Learning Process

We can now discuss the learning process in detail. Again, the problem is represented as a stateless

MDP and each driver i ∈D as a Q-learning agent. The set of routes of agent i is denoted by

Ai = {a1, . . . , aK}. The reward r(ati) that agent i receives for taking route ati at episode t is given

by Equation (7). The drivers’ objective is to maximise their cumulative reward. An overview of

TQ-learning is presented in Algorithm 1.

The learning process is described as follows. At every episode t ∈ [1, T ], each agent i ∈D
chooses an action ati ∈Ai using an ε-greedy exploration strategy. The exploration rate ε at episode

t is given by ε(t) = µt. After taking the chosen action, the agent observes its travel time fati and

computes its reward r(ati) following Equation (7). Note that, by computing the toll only after the

agent observes its travel time, we ensure that our mechanism charges tolls a posteriori. Finally,

the agent updates Q(ati) as in Equation (5). The learning rate α at episode t is given by α(t) = λt.

We highlight that, as opposed to the traditional Q-learning algorithm (Watkins & Dayan

1992), our approach computes the toll value for its route and uses that information as part of the

reward definition. By using this information to guide the learning process, we ensure that agents’

optimal choices are aligned with the social welfare, which promotes convergence to a system

efficient equilibrium. In the next section, we prove these points by means of a theoretical analysis.

5 Theoretical Analysis

In this section, we provide a theoretical analysis of our approach. The aim is to show that TQ-

learning converges to a system-efficient equilibrium, i.e., a user equilibrium (UE) whose average

travel time equals the system optimum (SO). We begin with the main results of our analyses,

namely that TQ-learning converges to a system-efficient equilibrium (Section 5.1). This result is

made possible by combining a canonical analysis by Beckmann et al. (1956) with the fact that
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Algorithm 1: Toll-based Q-learning

input: D; A; λ; µ; T ; β and Fl (for every link l ∈ L)

1 Q(ai)← 0 ∀i ∈D, ∀ai ∈Ai ; // initialise agents’ Q-tables

2 for t ∈ T do

3 α← λt; ε← µt ; // update learning and exploration rates

4 for i ∈D do

5 ati← select action (route) using ε-greedy;

6 end

7 f ← compute travel time of all links and routes;

8 for i ∈D do

9 fati ← observe travel time on route ati;

10 τati ← β(fati − Fati) ; // compute i’s toll

11 r(ati)←−(fati + τati) ; // compute i’s reward

12 Q(ati)← (1− α)Q(ati) + αr(ati) ; // update i’s Q-table

13 end

14 end

TQ-learning converges to an equilibrium (Section 5.2). Finally, in Section 5.3, we also discuss the

advantages of charging tolls a posteriori rather than a priori.

5.1 Main Results

The next theorem, adapted from Beckmann et al. (1956), states that the use of marginal-cost

tolling (MCT) is enough to align the UE to the SO, thus obtaining a system-efficient equilibrium.

Theorem 1 (Beckmann et al. (1956)) Consider a toll-based instance P ′ = (G, D, f, τ) of

the route choice problem, where the cost experienced by any driver i ∈D after traversing link l

is given by cl = fl + τl, with fl and τl representing the travel time and marginal-cost toll charged

at that link, respectively. Under these settings, the average travel time under user equilibrium for

P ′ equals that of the system optimum for P = (G, D, f).

Intuitively, Theorem 1 says that given an instance P of the route choice problem, if we apply

MCT to it—thus obtaining an instance P ′ of the toll-based route choice problem—then the UE

in P ′ will be equivalent to the SO in P . In other words, the UE with MCT achieves the same

average travel time of the SO of the original problem. We refer the reader to Beckmann et al.

(1956) for the complete proof. An illustrative example on how this theorem applies to Pigou

(1920)’s network is presented in the next example.

Example 1 Consider the network in Figure 1, adapted from Pigou (1920), which is traversed

by 10 agents. To traverse the network, each agent must take one out of two possible routes, A or

B, whose travel times are given by fA(xA) = 10.0 and fB(xB) = xB, respectively.

By definition, the UE in this network is achieved when all vehicles choose route B, which results

in an average travel time of 10.0. The SO, on the other hand, corresponds to the case where each

route receives half of the flow, which results in an average travel time of 7.5. Here, the price of

anarchy (PoA) is 4/3.

Now consider the same example, but adopting the MCT scheme. The cost on each link now

corresponds to the sum of its travel time (as before) and the toll charged on it, i.e., cl = fl + τl.

Specifically, for routes A and B we have that cA = 10.0 + 0.0 = 10.0 and cB = xB + xB = 2xB,

respectively. In this case, the UE is achieved when each route receives half of the drivers, which

corresponds to an average cost of 10.0 and an average travel time of 7.5. This is precisely the

SO. Hence, under MCT, we have that SO=UE and that PoA is 1.
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o d

fA(xA) = 10
τA(xA) = 0

fB(xB) = xB
τB(xB) = xB

Figure 1: Example network adapted from Pigou (1920), with two routes and 10 agents.

Note that Theorem 1 is about the equivalence of SO and UE under MCT. However, it does not

consider how the UE can be achieved. In other words, Theorem 1 simply assumes that the UE is

given. Indeed, this is a common assumption of other works in the literature, such as in (Sharon

et al. 2017). However, since route choice is a multiagent problem, guaranteeing convergence to

the UE is not trivial (as discussed in Section 2.2). Therefore, in order for Theorem 1 to apply

to our approach, we need first to show that TQ-learning indeed achieves the UE. In contrast to

other works in the literature, we show that TQ-learning converges to the UE, and then we show

that such UE is aligned to the SO. This is shown in Theorem 2. The complete proof is presented

in Section 5.2.

Theorem 2 Consider an instance P of the route choice problem. If all agents use Toll-based

Q-learning, then the system converges to the user equilibrium in the limit.

From Theorem 2, we can conclude that our algorithm can find the UE both in the original

problem (P ) as well as in the corresponding toll-based version (P ′). This means that, by employing

MCT, TQ-learning achieves a system-efficient equilibrium (Theorem 1). In other words, TQ-

learning reduces the PoA to its best ratio of 1. Therefore, based on Theorems 1 and 2 we can

formulate the following corollary.

Corollary 2 Consider an instance P of the route choice problem, where all drivers use Toll-

based Q-learning. Since tolls are based on marginal costs, the agents converge to a system-efficient

equilibrium in the limit, i.e., the user equilibrium is aligned to the system optimum. Thus, the

price of anarchy converges to 1 in the limit.

5.2 Convergence to the UE

In this section, we prove Theorem 2 by showing that TQ-learning converges to the user

equilibrium. For simplicity and without loss of generality, we assume that the actions’ rewards

are in the interval [0, 1].

The intuition underlying the proof of Theorem 2 is that, given that learning (α) and

exploration (ε) rates are decreasing with time (using decays λ and µ, respectively), then the

system is becoming more stable (Theorem 3). We say that the environment is stabilising if

randomness (due to agents exploration) is decreasing along time. Consequently, we can show

that, in the limit, the actions with the highest Q-values are precisely the optimal ones (Lemma

3), which leads the agents to exploit only optimal actions in the limit (Lemma 2), thus achieving

the UE (Theorem 2).

Initially, the next proposition defines the probability that best5 and non-best actions are chosen

by a given agent i at episode t.

5Hereafter, we refer to the action with highest Q-value as the best action and to the other actions as
non-best. Observe that the best action is not necessarily optimal.



12 g. ramos, b. da silva, r. rădulescu, a. bazzan, a. nowé

Proposition 2 Using ε-greedy exploration with ε(t) = µt, at episode t agent i chooses its best

action
+
ati = arg maxati∈Ai Q(ati) with probability6 ρ(

+
ati) = 1− µt(K−1)

K and any other action āti ∈
Ai \

+
ati with probability ρ(āti) = µt(K−1)

K .

Proof In a given episode t, by definition, ε-greedy exploits the best action
+
ati =

arg maxati∈Ai Q(ati) with probability 1− ε or explores any action āti ∈Ai with probability ε.

Observe that the best action can also be selected under exploration. In this sense, the best

action is selected with probability (1− ε) + ε
K . A non-best action (i.e., ignoring the best action),

on the other hand, is selected with probability ε− ε
K . Now, considering that the value of ε at

episode t is given by µt, we can rewrite the probability of agent i selecting the best action at that

given episode as:

ρ(
+
ati) = (1− µt) + µt

K

= 1 + µt−Kµt
K

= 1− µt(K−1)
K .

Similarly, we can rewrite the probability of agent i selecting any non-best action at a given episode

t as follows:
ρ(āti) = µt − µt

K

= Kµt−µt
K

= µt(K−1)
K .

2

From Proposition 2, observe that
+
ρ→ 1 and ρ̄→ 0 as t→∞ and ε→ 0. To this respect, as time

goes to infinity, the values of α and ε become so small that the probability of noisy observations

changing the Q-table (and, mainly, the best action) goes to zero. When the system behaves in

this way, we say it is stabilising. Under such circumstances, we can apply Theorem 3, adapted

from Ramos et al. (2017) (we refer the reader to their work for a complete proof).

Theorem 3 (Ramos et al. (2017)) The environment is stabilising as t→∞. In this sce-

nario, the probability that the Q-values of best actions (of any agent) become non-best after ∇
agents decide to explore a non-best action is bounded by O(ρ̄∇(

+
ρ+ ρ̄)), which goes to zero as

t→∞.

Observe that an agent can, eventually, change its best action given that it is learning. However,

the agent should be able to prevent its Q-values from reflecting unrealistic observations. Of course,

stability does not imply that the Q-value estimates are correct and that the agents are under

UE. These are shown to be true, however, in Lemma 3 and Theorem 2, respectively.

We can now advance to the main part of the proofs and show that, in the limit, the action with

highest estimated Q-value is indeed the optimal action. In this regard, we firstly characterise the

agent’s behaviour in terms of the UE, as shown in the next lemma.

Lemma 1 Under user equilibrium, every agent i ∈D using ε-greedy exploration exploits its

best route
+
ai = arg maxai∈Ai Q(ai).

Proof By definition, under UE, for each pair of routes a′ and a′′ of the same OD pair, with

xa′ > 0, we have that r(a′)≥ r(a′′). For the sake of contradiction, assume that the system is

under UE and that there exists a pair of routes a′ and a′′ belonging to the same OD pair for

which xa′ > 0 but r(a′)< r(a′′). Recall that we model the problem as a stateless MDP and agents

as Q-learners with ε-greedy exploration. Consequently, Q-values can be seen as estimates of the

reward values of their corresponding actions. Therefore, given that the reward on a′ is lower than

6In order to improve presentation, whenever it is clear from the context, we refer to ρ(
+
ati) and ρ(āti) as

+
ρti and ρ̄ti, respectively. Whenever possible, we also omit t and i.
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on a′′, then all the xa′ vehicles using a′ would deviate to a′′ (i.e., they would exploit a′′, not a′)

as soon as their Q-values are correct (which is the case in the limit, as shown next in Lemma 3).

This contradicts the initial assumption, which completes the proof. 2

Observe that, in the UE definition, the notion of best refers to the value associated with each

action (route). In RL-settings, these values correspond to actions’ Q-values. Therefore, now we

need to show that agents actually choose actions with highest estimated Q-values and that such

actions are indeed the optimal ones. These are shown in Lemmas 2 and 3, respectively.

Lemma 2 In the limit, agents exploit their knowledge most of the time, i.e., they tend to

choose the actions with highest estimated Q-values.

Proof This lemma follows directly from Proposition 2 and Theorem 3, since
+
ρti→ 1 and ρ̄ti→ 0

as t→∞ and ε→ 0. 2

Lemma 3 In the limit, the action with highest estimated Q-value
+
ai = arg maxai∈Ai Q(ai) is

indeed the optimal action
∗
ai = arg maxai∈Ai r(ai), i.e.,

+
ai =

∗
ai as t→∞.

Proof This lemma can be proved by contradiction. Assume that agent i has an action
+
ai =

arg maxai∈Ai Q(ai) with highest estimated Q-value but that this action is not optimal, i.e.,
+
ai 6=

∗
ai = arg maxai∈Ai r(ai). In order for that be possible, we need that r(

+
ai)< r(

∗
ai) and Q(

+
ai)>

Q(
∗
ai) hold at the same time. Although counter-intuitive, this behaviour often occurs in the initial

episodes, given that the agents’ learning process leads travel times to oscillate. In this case, some

Q-values may not correspond to the most accurate reward estimate of an action. However, due to

exploration, agent i will eventually take route
∗
ai. In fact, in the limit all actions will be infinitely

explored. Thus, as t→∞, we have that Q(
∗
ai) will increase until it eventually becomes the highest

one, i.e., Q(
∗
ai)≈ r(

∗
ai)>Q(

+
ai)≈ r(

+
ai), which contradicts the initial assumption. 2

Observe that, as agents are adapting to each other, it is possible that an agent’s optimal

action seem no longer optimal due to other agents’ behaviour. Nevertheless, from Theorem 3 and

Lemmas 2 and 3, we have that such agent will keep exploring (non-best actions) as well. Hence,

this agent will eventually take its true optimal action and update its perception accordingly, so

that the optimal action has the highest Q-value again.

We remark that one of the key requirements of Q-learning is that each action should be

infinitely explored. However, such exploration should not lead optimal actions to seem sub-optimal.

This is shown in the next lemma.

Lemma 4 In the limit, agents using ε-greedy exploration with ε(t) = µt can still explore non-

best actions without invalidating the user equilibrium, i.e., exploration does not destabilise the

equilibrium.

Proof Suppose that the system has converged to the UE in the limit (after a sufficiently large

number of episodes). At this point, all agents are using their best actions, i.e., the ones with

highest estimated Q-values (Lemmas 1 and 2). Observe that agents can still explore other actions,

though less frequently (Proposition 2 and Lemma 2). Thus, in order to prove this lemma, one

needs to show that, under UE, exploration will not generate an abrupt change in the Q-values.

An abrupt change occurs in an agent’s Q-table only if it receives a reward that leads the Q-value

of a non-best action to become better than that of the best one. However, from Theorem 3, we

have that such abrupt changes will not affect the UE and that even if they do, a little amount of

additional exploration is enough to lead the Q-values back to their true values (Lemma 3). 2
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We now have the required tools for proving Theorem 2. Recall that our final objective is to

show that our approach converges to a system-efficient equilibria (i.e., the SO) as soon as MCT

is employed. From Theorem 1, this is only attainable if TQ-learning is guaranteed to converge to

the UE. Therefore, proving Theorem 2 is sufficient to show that, by employing MCT, TQ-learning

converges to the SO.

Proof of Theorem 2 According to Theorem 3, the system becomes stable in the limit and

abrupt changes do not affect the Q-values (i.e., non-best actions cannot become the best ones).

Moreover, from Lemma 2, we know that in the limit all agents keep exploiting most of the time.

Remember that exploiting means choosing the action with the highest estimated Q-value, which

in the limit corresponds to the optimal one, according to Lemma 3. Finally, from Lemma 4 we

have that exploration does not affect the UE. Therefore, TQ-learning can be said to converge to

the user equilibrium. 2

5.3 Fairness

In this section, we analyse the fairness of our approach. We begin with a more precise definition

of fairness, which is given as follows.

Definition 1 (MCT fairness) A marginal-cost tolling scheme is fair if the agents are

charged exactly their marginal costs (i.e., the cost they impose on others).

Observe that tolls can be seen as a mean to penalise undesired (i.e., selfish) behaviour. In this

sense, from Definition 1, we can conclude that if toll values do not correspond to marginal costs,

then such tolls may end up penalising the wrong agents (i.e., those that are not acting selfishly).

In other words, unfair tolling should be avoided.

In contrast to other works in the literature, TQ-learning charges tolls a posteriori. The next

theorem shows that charging agents a posteriori translates into a fairer tolling scheme, since

agents only pay for the cost they are actually imposing on others. A more concrete example

comparing a priori and a posteriori tolling schemes in terms of fairness is presented forward, in

Example 2.

Theorem 4 Consider a toll-based instance P = (G, D, f, τ) of the route choice problem. Then,

charging tolls in P a posteriori is fairer than charging a priori.

Proof Building upon Definition 1, to show that a posteriori toll charging is fairer than a priori

toll charging, we need to show that the former charges exactly the marginal cost, whereas the

latter may not. For simplicity, we perform this analysis from the links perspective (although it

easily extends to routes). In general terms, the toll charged on link l is given by τl = β(p1x
β
l )

(as formulated in Proposition 1). Assume, without loss of generality, that p1 = β = 1. In this

case, we have that τl = xl, which corresponds to one of the cost functions presented in Pigou

(1920)’s example. Abusing notation, assume that τ tl = xtl corresponds to the toll charged on link

l at episode t based on the flow on that link at that episode. Observe that the flow on link l can

change from one episode to another. This is especially true at the beginning of the learning process,

when the system is not yet stable. Such a difference can be expressed as ∆t
l = |xt−1l − xtl | ≥ 0.

In the case of a priori toll charging, τ tl is computed based on previous steps. For simplicity,

assume that τ tl = xt−1l . On the one hand, if ∆t
l = 0, then the toll τ tl charged on link l is precisely xtl ,

given that xt−1l = xtl . On the other hand, if the flow on link l changes from one episode to another,

then xt−1l 6= xtl and ∆t
l > 0. Observe that the marginal cost for taking link l at episode t should

be xtl , whereas a priori toll charging considers xt−1l . Therefore, whenever ∆t
l > 0, agents using l

would be charged above (or below) the cost they are actually imposing on others. Consequently,

a priori toll charging is unfair whenever ∆t
l > 0. This cost can be even higher when τ tl is not
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Table 1 Example comparing a priori and a posteriori tolling in the road network of Figure 1, with three
episodes.

flow a priori tolling a posteriori tolling

episode xA xB τA τB τA τB

1 4 6 0.0 0.0 0.0 6.0

2 0 10 0.0 6.0 0.0 10.0

3 5 5 0.0 10.0 0.0 5.0

based on the flow of a single previous episodes, but on many previous episode (e.g., an average

of previous flows).

In contrast, a posteriori toll charging defines that τ tl = xtl , which corresponds precisely to the

cost agents are imposing on others. Observe that ∆t
l does not affect the toll values here. Thus, a

posteriori toll charging (as used in TQ-learning) can be said fairer than a priori toll charging. 2

Example 2 Consider again the 10-agent network presented in Example 1 and Figure 1. In

this extended example, we consider a hypothetical sequence of three episodes (in which every agent

chooses a route). Such a sequence is presented in Table 1. In the table, we present the toll values

for both routes (A and B) as generated by a priori (as usual in the literature, assuming that tolls

are initialised with zero, as in Sharon et al. (2017)) and a posteriori (as in our approach) tolling

schemes.

In the case of a priori tolling, assume that toll values are initialised with 0.0, as in Sharon

et al. (2017). On subsequent episodes, the toll of each route is defined as the marginal cost of

such route in the previous episode. The rationale behind such model is that agents can check

the tolls that they are going to pay on each route before they actually take any route. However,

this leads to outdated toll values. We note that, by definition, MCT schemes should charge each

agent according to its marginal cost, which is not achieved by a priori tolling schemes. As seen in

Table 1, in the second episode, even though all agents are using route B, the toll they are going

to pay is only 6.0, which corresponds to 60% of their actual marginal cost. Later on, in the third

episode, half of the agents are using each route, which corresponds to the SO. Nevertheless, agents

using route B need to pay a toll of 10.0. Therefore, the prices charged by a priori tolling may be

(and often are, as shown in this example) unfair.

In the case of a posteriori tolling schemes, by contrast, tolls are charged only after a route is

taken. At this point, one could argue that our approach prevents agents from analysing the costs

of their decisions a priori. However, as tolls are incorporated into agents’ utility functions, the

effects of such a posteriori charges are naturally captured by the learned Q-functions. As seen in

Table 1, the tolls defined by a posteriori tolling schemes always correspond to the actual flow of

vehicles (and their marginal costs). Consequently, a posteriori tolling schemes can be said to be

fairer than a priori tolling schemes.

6 Experimental Evaluation

In this section, we empirically analyse the performance of our approach to validate our theoretical

results. Recall that learning in route choice means finding the best route to take, which can be

seen as a moving target given the existence of multiple agents with possibly conflicting interests.

In this context, the term convergence refers to the point at which the agents keep exploiting

their knowledge most of the time and the system is stable (so that agents only observe small

fluctuations in their costs). Our aim is to show that, by using our approach, such a stable point

corresponds to a system-efficient equilibrium, i.e., a user equilibrium (UE) that is aligned to the

system optimum (SO).
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6.1 Methodology

We simulate our method in several road networks available in the literature,7 described as follows.

• B1, . . . ,B7: expansions of the synthetic network introduced with the Braess paradox (Braess

1968, Stefanello & Bazzan 2016). The Bp graph has |N |= 2p+ 2 nodes, |L|= 4p+ 1 links,

a single origin-destination (OD) pair, and d= 4,200 drivers.

• BB1,BB3,BB5,BB7: also expansions of the Braess graphs, but with two OD pairs

(Stefanello & Bazzan 2016). The BBp graph has |N |= 2p+ 6 nodes, |L|= 4p+ 4 links, and

d= 4,200 drivers.

• OW: synthetic network (Ortúzar & Willumsen 2011) with |N |= 13 nodes, |L|= 48 links, 4

OD pairs, d= 1,700 drivers, and overlapping routes.

• Anaheim: abstraction of the Anaheim city, USA (Jayakrishnan et al. 1993), with |N |= 416

nodes, |L|= 914 links, 38 OD pairs, d= 104,694 drivers, and highly overlapping routes.

• Eastern-Massachusetts: abstraction of the eastern region of the Massachusetts state, USA

(Zhang et al. 2016), with |N |= 74 nodes, |L|= 258 links, 74 OD pairs, and d= 65,576 drivers.

Again, the routes are highly overlapped.

• Sioux Falls: abstraction of the Sioux Falls city, USA (LeBlanc et al. 1975), with |N |= 24

nodes, |L|= 76 links, 528 OD pairs, d= 360,600 drivers, and with highly overlapping routes.

The number of routes in the above networks can be overly high. As in the literature, we

limit the number of available routes to the K shortest ones,8 which we computed using the KSP

algorithm (Yen 1971).

An experiment corresponds to a complete execution, with 10,000 episodes, of TQ-learning on a

single network. We measure the performance of a single execution by computing its proximity to

the system optimum (SO), which is defined as in Equation (8), where v denotes the average travel

time of the agents at the last episode of the simulation, and v∗ represents the system-optimal

average travel time (as reported in the literature). Since v∗ represents the minimum average travel

time, then the closer φ is to 1.00, the better.

φ(v, v∗) =

(
1− |v − v

∗|
v∗

)
(8)

We tested different value combinations for our method’s parameters (i.e., λ, µ, and K). For

each combination, we ran 30 repetitions. The best configurations, as shown in Table 2, were

selected for further analyses in the next subsection.

In order to better assess the performance of TQ-learning, we compared it against other

approaches available in the literature:9

• Difference rewards10 (Wolpert & Tumer 1999, 2002). This algorithm was implemented using

Q-learning, but using the difference functions as rewards. Here, when computing the difference

functions, G(a) corresponds to the average travel time of the system and G(a−i) corresponds

to the average travel time of the system as if agent i were not using the road network.

• Standard (toll-free) Q-learning (Watkins & Dayan 1992). The reward associated with a given

route corresponds to its negative cost, as in Equation (4).

7The road networks are publicly available at https://github.com/goramos/transportation networks.
8As for the BB networks, we enforced the route with fewest links among the shortest ones, otherwise the
system optimum would not be attainable, as discussed in (Ramos 2018).
9We remark that, although other tolling schemes are also available in the literature (see discussion in
Section 3), these cannot be directly applied to our problem. This is because such approaches do not
present a learning scheme and cannot be run distributedly by the drivers.
10Since our objective here is to compare the quality of the solutions obtained by the methods, we adopted
the traditional version of difference rewards (DR, which assumes full observability in order to compute
the difference signals) rather than the most recent, function approximation-based version (FADR) by
Colby et al. (2016). The reason is that DR obtains better results than FADR (as discussed in Section 3).
Hence, we believe this choice promotes a fairer comparison of DR against our method.



Toll-Based Reinforcement Learning for Efficient Equilibria in Route Choice 17

Table 2 Configuration of parameters that produced the best results for each network.

Network K λ µ

B1 4 0.99 0.99

B2 8 0.999 0.999

B3 8 0.999 0.999

B4 12 0.999 0.999

B5 12 0.999 0.999

B6 16 0.999 0.999

B7 16 0.999 0.999

BB1 4 0.999 0.999

BB3 8 0.999 0.999

BB5 4 0.999 0.999

BB7 4 0.999 0.999

OW 12 0.999 0.999

Anaheim 16 0.999 0.999

Eastern-Massachusetts 16 0.999 0.999

Sioux Falls 12 0.9997 0.999

In what follows, any claim about whether one approach is better than the other is supported

by Student’s t-tests at the 5% significance level.

6.2 Results

The average performance of the algorithms in different networks in terms of proximity to the

system optimum (Equation (8)) is presented in Table 3. As seen, TQ-learning indeed approximates

the system optimum (SO) in all tested networks. On average, our results are within 99.814% of

the SO, with a standard deviation of only 0.006%. We highlight that the average travel times

achieved by TQ-learning correspond to the system optimum and that, due to the toll values, no

agent has incentive to change route. In other words, the achieved solution also corresponds to the

user equilibrium. Thus, as expected, the experimental results are consistent with the theoretical

analysis, showing that TQ-learning converges to a system-efficient equilibrium in the limit.

In the case of difference rewards, it was also possible to approximate the system optimum.

In fact, as seen in Table 3, in several networks there is no statistically significant difference

between the results obtained by TQ-learning and difference rewards. Nevertheless, we highlight

that the overall results obtained by our approach are slightly better than those obtained by

difference rewards, outperforming them at the 7% significance levels. Furthermore, our approach

has shown to fare better on networks with multiple origin-destination pairs and more drivers,

which evidence its robustness in more realistic scenarios. Also important, the standard deviation

obtained by TQ-learning was two orders of magnitude lower than that obtained by difference

rewards, on average. Such improvements over difference rewards are due to the nature of the

reinforcement signals, which in our case are based on marginal costs and, thus, more accurately

represent the impact an agent causes on others using the same links of the network. Finally, we

also remark that, in spite of the similar results, our approach has less restrictive assumptions

than difference rewards. In particular, as opposed to difference rewards, TQ-learning does not

assume the existence of a central authority with full knowledge about the cost functions. In

fact, our method can run in a distributed fashion, with each agent computing its own reward

based exclusively on locally available information. Concerning standard Q-learning, the results

are considerably worse than those by other methods, as expected. In fact, our statistical tests

show that standard Q-learning was dominated by the other algorithms in all cases. This is due to

the fact that, using standard Q-learning, agents do not take the system welfare into account when
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Table 3 Average (and standard deviation) proximity to the SO achieved by the algorithms in different
networks. Statistically best results are shown in bold.

Network TQ-learning Difference rewards Q-learning

B1 0.99999 (10−5) 0.99999 (10−5) 0.78856 (10−2)

B2 1.00000 (10−6) 1.00000 (0.00) 0.85413 (10−2)

B3 0.99999 (10−5) 1.00000 (10−5) 0.87778 (10−2)

B4 0.99999 (10−5) 0.99999 (10−5) 0.90301 (10−2)

B5 1.00000 (10−5) 0.99997 (10−5) 0.91957 (10−3)

B6 0.99998 (10−5) 0.99999 (10−5) 0.93498 (10−3)

B7 0.99989 (10−5) 0.99991 (10−5) 0.94448 (10−3)

BB1 1.00000 (0.00) 1.00000 (0.00) 0.66677 (10−4)

BB3 1.00000 (10−6) 0.99997 (10−5) 0.86196 (10−2)

BB5 0.99999 (10−6) 0.99993 (10−4) 0.95033 (10−2)

BB7 0.99998 (10−5) 0.99996 (10−5) 0.97718 (10−3)

OW 0.99968 (10−4) 0.99969 (10−4) 0.99635 (10−4)

Anaheim 0.99341 (10−5) 0.99678 (10−5) 0.98597 (10−5)

Eastern-Massachusetts 0.98429 (10−4) 0.97124 (10−2) 0.96120 (10−4)

Sioux Falls 0.99497 (10−4) 0.99387 (10−3) 0.98662 (10−4)

Average 0.99814 (10−5) 0.99742 (10−3) 0.90726 (10−2)

making their decisions. Consequently, the system optimum becomes unattainable, as detailed in

Example 1, and agents end up converging to a point close to the user equilibrium. In contrast,

TQ-learning (and also difference rewards) shapes the agents’ rewards in order to penalise selfish

behaviour, thus enforcing agents to make more altruistic decisions. Therefore, by using our tolling

scheme, the trips became 9.1% faster on the tested networks, on average.

In order to better understand the learning process, Figure 2 plots the evolution of the average

travel time along episodes for the tested algorithms, in two representative networks. As can

be seen, TQ-learning and difference rewards approximate the system optimum, as expected.

Nonetheless, we can highlight two main differences between them. Firstly, as previously discussed,

the standard deviation of our approach is lower, since marginal costs reflect the current situation

of traffic better than difference signals. Secondly, as shown in Figure 2b, the average travel times

obtained by difference rewards seem to decrease sooner than those by TQ-learning. Nevertheless,

as seen in the inset, our algorithm ends up achieving results closer to the optimum.

We also highlight that, in the initial episodes, all algorithms remain very far from the optimum

on the Sioux Falls network (Figure 2b). This is a consequence of the size of the agents population,

meaning that the amount of exploration in the initial episodes has a huge impact on traffic

performance. This is not the case of smaller networks, such as the OW (Figure 2a). In all cases,

however, as agents start to exploit their knowledge, the average travel time (and, thus, congestion

levels) decreases steadily.

Lastly, Figure 2 also shows the performance of standard Q-learning. As previously discussed,

standard Q-learning converges to the user equilibrium, not to the system optimum. The plots

confirm such a hypothesis, as evidenced by the insets. We also remark that, in the tested networks,

the distance between the two solution concepts is small (around 9%, on average). In real networks,

however, such a difference lies around 30% (Youn et al. 2008), meaning that the benefits brought

by our tolling scheme would be even more visible in practice.

7 Concluding Remarks

In this article, we investigated how to minimise traffic congestions using a combination of tolls and

reinforcement learning. We considered the route choice problem in particular, which concerns how
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Figure 2: Evolution of average travel time along episodes for TQ-learning, difference rewards, and

standard Q-learning, in two representative networks: (a) OW and (b) Sioux Falls. Shaded lines

depict the standard deviation and dashed lines present the system optimum. The insets detail

the last 4,000 episodes.
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selfish drivers behave when choosing (commuting) routes everyday. Two challenges arise in this

context. Firstly, drivers need to learn independently how to adapt to each others’ decisions, since

the actions taken by one driver may affect the travel time perceived by others. Secondly, drivers’

selfish behaviour deteriorates the system’s performance and, as such, it should be prevented.

In this sense, we introduced Toll-based Q-learning (TQ-learning), which charges tolls based on

agents’ marginal costs and allows agents to learn a behaviour that is also beneficial to the system.

We provided theoretical results on the agents’ and system’s performance. In particular, we

proved that, using TQ-learning, agents converge to a user equilibrium in the limit whose average

travel time corresponds to the system optimum. Moreover, we have shown that, as compared to

other tolling schemes, ours is fairer in a sense that agents pay exactly (rather than approximately)

their marginal costs. Additionally, we performed an extensive empirical evaluation of TQ-learning

on realistic road networks with thousands of agents, whose results support our theoretical findings.

Also important, we remark that TQ-learning features important advantages over existing

tolling schemes and learning methods. Firstly, in contrast to other tolling schemes, ours charges

agents a posteriori (i.e., after they finish their trips), and generalises the toll values formulation

for univariate, homogeneous polynomial cost functions (which encompasses the most commonly

used cost functions in the literature). Such a toll formulation allows agents to compute the toll

associated with their routes using only their own (local) knowledge. Secondly, as compared to

other learning methods, such as difference rewards, TQ-learning drops any full observability

assumption and can be run distributedly by the agents. These features not only allow TQ-

learning to obtain better average results than difference rewards, but also evidence its potential

applicability in real traffic settings.

In spite of the promising results, there is space for improvements. One of the main limitations

of our approach is convergence speed. In fact, the more routes (and agents) we have, the longer

the algorithm needs to run until convergence is achieved. An interesting direction here would be

to investigate more efficient exploration strategies that could potentially speed up convergence

(Hernandez-Leal et al. 2017). Another limitation of our approach is that agents’ preferences

with respect to time and money are assumed to be homogeneous. In practice, however, drivers’

preferences may be heterogeneous. Hence, we would like to investigate the impact of heterogeneous

preferences in the convergence properties of our algorithm. Also important, we would like to

investigate how to fairly redistribute (part of) the toll values among the agents (Ramos et al.

2020). Such a mechanism could be useful to avoid penalising altruistic agents and also to prevent

a self-interested traffic authority from strategically setting prices so as to increase its own profit.

Another topic that deserves further investigation refers to the implications associated with

MCT deployment. We remark that our approach drops full-knowledge assumptions usually made

in the literature, thus representing a further step towards deploying MCT. However, to the best of

our knowledge, no existing work investigated (i) how much MCT would impact the tolls currently

charged from drivers, and (ii) how drivers would behave under such taxation schemes. We believe

such points are worthy investigating, especially in a fully distributed setting, to better understand

the best procedures to adopt when deploying MCT.
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Rădulescu, and Nowé were supported by Flanders Innovation & Entrepreneurship (VLAIO), SBO

project 140047: Stable MultI-agent LEarnIng for neTworks (SMILE-IT). Part of this research

was also supported by the The Flanders AI Research Impulse Program, Belgium. Ramos and

da Silva were partially supported by FAPERGS (grants 19/2551-0001277-2 and 17/2551-000,

respectively). Bazzan was partially supported by CNPq (grant 307215/2017-2). This work was

also partially supported by CNPq and CAPES scholarships.



Toll-Based Reinforcement Learning for Efficient Equilibria in Route Choice 21

References

Abdallah, S. & Lesser, V. (2006), Learning the task allocation game, in ‘Proceedings of the Fifth

International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS06)’,

ACM Press, Hakodate, pp. 850–857.

Agogino, A. K. & Tumer, K. (2004), Unifying temporal and structural credit assignment problems,

in ‘Proc. of the 3rd Intl. Joint Conference on Autonomous Agents and Multiagent Systems’,

AAMAS ’04, IEEE, New York, pp. 980–987.

Auer, P., Cesa-Bianchi, N., Freund, Y. & Schapire, R. E. (2002), ‘The nonstochastic multiarmed

bandit problem’, SIAM Journal on Computing 32(1), 48–77.

Awerbuch, B. & Kleinberg, R. D. (2004), Adaptive routing with end-to-end feedback: Distributed

learning and geometric approaches, in ‘Proceedings of the Thirty-sixth Annual ACM Sympo-

sium on Theory of Computing’, STOC ’04, ACM, New York, pp. 45–53.

Bar-Gera, H. (2010), ‘Traffic assignment by paired alternative segments’, Transportation Research

Part B: Methodological 44(8-9), 1022–1046.

Bazzan, A. L. C. (2009), ‘Opportunities for multiagent systems and multiagent reinforcement

learning in traffic control’, Autonomous Agents and Multiagent Systems 18(3), 342–375.
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Ramos, G. de. O., Rădulescu, R., Nowé, A. & Tavares, A. R. (2020), Toll-based learning

for minimising congestion under heterogeneous preferences, in B. An, N. Yorke-Smith,

A. El Fallah Seghrouchni & G. Sukthankar, eds, ‘Proc. of the 19th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2020)’, IFAAMAS, Auckland.



Toll-Based Reinforcement Learning for Efficient Equilibria in Route Choice 25

Robbins, H. (1952), ‘Some aspects of the sequential design of experiments’, Bulletin of the

American Mathematical Society 58(5), 527–535.

Rosenthal, R. W. (1973), ‘A class of games possessing pure-strategy Nash equilibria’, International

Journal of Game Theory 2, 65–67.

Roughgarden, T. (2005), Selfish Routing and the Price of Anarchy, MIT Press, Cambridge.

Sandholm, T. (2007), ‘Perspectives on multiagent learning’, Artificial Intelligence 171(7), 382–

391.

Sen, S., Sekaran, M. & Hale, J. (1994), Learning to coordinate without sharing information, in

‘Proceedings of the twelfth national conference on artificial intelligence’, pp. 426–431.

Sharon, G., Boyles, S. D., Alkoby, S. & Stone, P. (2019), Marginal cost pricing with a fixed

error factor in traffic networks, in N. Agmon, M. Taylor, E. Elkind & M. Veloso, eds, ‘Proc. of

the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS

2019)’, IFAAMAS, Montreal, pp. 1539–1546.

Sharon, G., Hanna, J. P., Rambha, T., Levin, M. W., Albert, M., Boyles, S. D. & Stone, P.

(2017), Real-time adaptive tolling scheme for optimized social welfare in traffic networks, in

S. Das, E. Durfee, K. Larson & M. Winikoff, eds, ‘Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017)’, IFAAMAS, São Paulo, pp. 828–

836.

Stefanello, F. & Bazzan, A. L. C. (2016), Traffic assignment problem - extending braess paradox,

Technical report, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS.

Sutton, R. & Barto, A. (1998), Reinforcement Learning: An Introduction, MIT Press, Cambridge,

MA.

Tan, M. (1993), Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents, in

‘Proceedings of the tenth international conference on machine learning’, pp. 330–337.

Tavares, A. R. & Bazzan, A. L. (2014), ‘An agent-based approach for road pricing: system-level

performance and implications for drivers’, Journal of the Brazilian Computer Society 20(1), 15.

Tesauro, G. (1994), ‘Td-gammon, a self-teaching backgammon program, achieves master-level

play’, Neural Computation 6(2), 215–219.

Tuyls, K. & Weiss, G. (2012), ‘Multiagent learning: Basics, challenges, and prospects’, AI

Magazine 33(3), 41–52.

van Essen, M., Thomas, T., van Berkum, E. & Chorus, C. (2016), ‘From user equilibrium to

system optimum: a literature review on the role of travel information, bounded rationality and

non-selfish behaviour at the network and individual levels’, Transport Reviews 36(4), 527–548.
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