
The Knowledge Engineering Review, Vol. 14:4, 1999, 319±340 (KER 14404)
Printed in the United Kingdom
Copyright # 1999, Cambridge University Press

An overview of regression techniques for knowledge
discovery*

Iç LHAN UY SAL and H . A L TAY GUÈ V EN I R

Department of Computer Engineering and Information Sciences, Bilkent University, 06533 Ankara, Turkey

(email: {uilhan,guvenir}@cs.bilkent.edu.tr)

Abstract

Predicting or learning numeric features is called regression in the statistical literature, and it is the

subject of research in both machine learning and statistics. This paper reviews the important

techniques and algorithms for regression developed by both communities. Regression is important

for many applications, since lots of real life problems can be modeled as regression problems. The

review includes Locally Weighted Regression (LWR), rule-based regression, Projection Pursuit

Regression (PPR), instance-based regression, Multivariate Adaptive Regression Splines (MARS)

and recursive partitioning regression methods that induce regression trees (CART, RETIS andM5).

1 Introduction

Predicting the values of numeric or continuous attributes is known as regression in the statistical

literature, and it is a research area for many researchers in this ®eld. Predicting real values is also an

important topic for machine learning. Most of the problems that humans learn in real life, such as

sporting abilities, are continuous. Dynamic control is one such problem which is the subject of

research in machine learning. For example, learning to catch a ball, moving in a three-dimensional

space, is an example of this problem which is studied in robotics. In such applications, machine

learning algorithms are used to control robot motions, where the response to be predicted by the

algorithm is a numeric or real-valued distance measure and direction. As an example of such a

problem, Salzberg and Aha (1994) proposed an instance-based learning algorithm for a robot

control task in order to improve a robot's physical abilities.

In machine learning, most research has been done for classi®cation, where the single the predicted

feature is nominal or discrete. Regression di�ers from classi®cation in that the output or predicted

feature in regression problems is continuous. Even though most of the research in machine learning

is concentrated on classi®cation, recently the focus of the machine learning community has moved

strongly towards regression, since a large number of real-life problems can be modeled as regression

problems. Various names are used for this problem in the literature, such as functional prediction,

real value prediction, function approximation and continuous class learning. We prefer its historical

name, regression, in this paper.

In designing expert systems, an important topic in knowledge engineering, induction techniques

developed in machine learning and statistics have become important, especially for cases where a

*This research is supported, in part, by TUBITAK (Scienti®c and Technical Research Council of Turkey)

under Grant 198E015.

domain expert is not available, or the knowledge of experts is tacit or implicit (Adeli, 1990; Peterson

et al., 1990). These techniques are also important to discover new rules, even in cases where domain

experts or formal domain knowledge is available (McTear & Anderson, 1990). Probably the most

important advantage of induction techniques is that they enable us to extract knowledge

automatically.

By the term ``knowledge'', we mean two types of information. One is the information used for

prediction of a new case, given example cases; the other is the information used for extracting new

rules about the domain which have not yet been discovered, by interpreting induced models. To help

the reader to determine which regression techniques are suitable for each type of knowledge, a

comparison is given in section 9 by including other important properties. The techniques covered in

this paper can be employed in such systems by knowledge engineers, when the underlying problem is

formalized as a prediction of a continuous target attribute.

The idea behind using induction for knowledge systems is particularly accepted by a newly

emerged discipline, Knowledge Discovery in Databases (KDD), which incorporates researchers

from various disciplines (Fayyad et al., 1996a, b; Weiss & Indurkhya, 1998). The main source of

knowledge in this ®eld is large databases. Since databases can store large amounts of data belonging

to many di�erent domains, the use of automatic methods such as induction for knowledge discovery

is viable, because it is usually di�cult to ®nd an expert for each di�erent domain or relation in

databases. Today, database management systems enable only deductive querying. Incorporating an

inductive component into such databases to discover knowledge from di�erent domains auto-

matically is the long-term expectation from this new ®eld (Imielinski & Mannila, 1996). This

particularly requires the cooperation of knowledge engineers and database experts. Such expecta-

tions make regression an important tool for the stand-alone or domain-speci®c KDD systems

today, and Knowledge and Data Discovery Management Systems (Fayyad et al., 1996a; Weiss &

Indurkhya, 1998) in the future.

In the paper, we review most current regression techniques developed in machine learning and

statistics. After describing the main focus for the development of new techniques in the next section,

we review instance-based regression, locally weighted regression, rule-based regression, projection

pursuit regression, tree-based regression and multivariate adaptive regression splines, respectively,

in sections 3±8. After a comparison of techniques described in section 9, for both important

properties of these techniques and performance, we conclude by addressing future work in

section 10.

2 Parametric vs. non-parametric regression

The most common approach in regression is to ®t the data to a global parametric function. Simple

regression in statistical analysis is an example of parametric learning. This model includes a

dependent variable y and predictor (independent) variables (x's), and states that the value of y

changes at a constant rate as the value of any independent variable changes. Thus, the functional

relationship between y and x's is a straight line:

yi � b0 � b1xi1 � b2xi2 � � � � � bpxip � ei �1�
The subscript i denotes the observations or instances; the second subscript designates p

independent variables. There are p� 1 parameters, bj; j � 0; . . . ; p, to be estimated. As can be seen

from the simple regression example, in the parametric model, the structure of the function is given,

and the procedure estimates the parameters, bj, according to a ®tting criterion. This criterion is

generally a minimization of an error function for all data points in a training set. Very often, this is a

least squares criterion, which minimizes the sum of the squares of the prediction errors of the

estimated linear function for all instances. The error term ei denotes the error of estimation for each

instance i, and it is assumed to be normally distributed.

In machine learning, parametric learning methods have found wide application areas in the form

of neural networks, and they have been very successful when the assumed structure of the function is

iç . u y s a l and h . a . gÏv en i r 320

su�ciently close to the function which generated the data to be modeled. However, the aim in

machine learning is to ®nd a general structure rich enough to model a large fraction of all possible

functions. This idea leads us to non-parametric and nonlinear regression methods, where no

assumption is made about the structure of the function or about the distribution of the error.

Most popular current non-parametric regression and learning techniques to predict a numeric

feature are reviewed in the following sections.

In the rest of the paper, training set D is represented by the instance matrix X, where rows

represent instances and columns represent predictors, and a response vector y represents the

continuous or numeric response to be predicted for all instances. Estimated values of y are shown

with a column vector �y, where �yi is a scalar of the vector. Coe�cients in equation (1) are represented

by a column vector bb. Any instance or any row in the instance matrix is represented by xi, where

i � 1; . . . ; n and n is the number of instances in the training set. Any column ofX is represented by xj,

where j � 1; . . . ; p, and p is number of predictor features. xij; yi and bj represent scalars ofX; y and bb,
respectively. For the operations where bb is included, a column consisting only of constant 1 values is

inserted into the instance matrix as the ®rst row so as to enforce the ®rst term in equation (1)

(j � 0; . . . ; p). The notations xj and y are used as variables to represent predictor features and a

response feature, respectively. To denote instance vectors �xi�with a variable, x is used. To represent

residuals, a column vector r is used, where ri, i � 1; . . . ; n, is a scalar of it. To denote a query

instance, a row vector q is used.

3 Instance-based regression

Instance-Based Learning (IBL) algorithms are very popular, since they are computationally simple

during the training of instances (Aha et al., 1991; Dasarathy, 1991). In most applications, training is

done simply by storing the instances. This section describes the application of this technique for

regression (Kibler et al., 1989).

In instance-based regression, each instance is usually represented as a set of attribute value pairs,

where the values are either nominal or numeric, and the value to be predicted is continuous. The

problem to be solved is, for a given query instance, to predict the target value as a function of other

instances whose target values are known. The nearest neighbour is the most popular instance-based

algorithm. The target values of the most similar neighbours are used in this task. Here the similarity

is the negation of the Euclidean distance between instances. Formally, if we let real numbers, R, be a

numeric domain, and X be an instance space with p attributes, we can then describe the

approximation function, F, for predicting numeric values as follows:

F�x1; . . . ; xp� � �yi where �yi 2 R �2�
There is a variety of instance-based algorithms in the literature. Here, the simplest one, the

proximity algorithm, is described in Figure 1. The proximity algorithm simply saves all training

instances in the training set. The normalization algorithm maps each attribute value into the

continuous range (0±1). The estimate �yt for test instance xt is de®ned in terms of a weighted

Figure 1 The proximity algorithm.

[1] 8xi 2 Training Set

[2] normalize�xi�
[3] 8xtTest Set
[4] normalize�xt�
[5] 8xifxi 6� xtg: Calculate Similarity�xt; xi�
[6] Let Similars be set of N most similar instances to xt in Training Set

[7] Let Sum �Pxi2Similars Similarity�xt; xi�
[8] Then �yt �

P
xi2Similars

Similarity�xt;xi�
Sum F�xi�

An overview of regression techniques for knowledge discovery 321

similarity function of xt's nearest neighbours in the training set. The similarity of two normalized

instances is described by equation (3):

Similarity�xt; xi� �
Xp
j�1

Sim�xtj; xij� �3�

where Sim�x; y� � 1:0ÿ jxÿ yj, and ti.

The assumption in this approach is that the function is locally linear. For su�ciently large sample

sizes, this technique yields a good approximation for continuous functions. Another important

property of instance-based regression is its incremental learning behaviour. By default, instance-

based regression assumes that all the features are equivalently relevant. However, the prediction

accuracy of this technique can be improved by attaching weights to the attributes. To reduce the

storage requirements for large training sets, averaging techniques for the instances can be

employed (Aha et al., 1991). The most important drawback of instance-based algorithms is that

they do not yield abstractions or models that enable interpretation of the training sets (Mitchell,

1997).

4 Locally weighted regression

Locally Weighted Regression (LWR) is similar to the nearest neighbour approach described in the

previous section, especially for three main properties. First, the training phases of both algorithms

include just storing the training data, and the main work is done during prediction. Such methods

are also known as lazy learning methods. Secondly, they predict query instances by strongly

in¯uencing nearby or similar training instances. Thirdly, they represent instances as real-valued

points in p-dimensional Euclidean space. The main di�erence between IBL andLWR is that, while

the former predicts instances by averaging the nearby instances, the latter makes predictions by

forming an averaging model at the location of query instance. This local model is generally a linear

or nonlinear parametric function. After a prediction for query instance is done, this model is deleted,

and for every new query a new local model is formed, according to the location of the query

instance. In such local models, nearby instances of the query have large weights on the model, and

distant instances have fewer or no weights. For a detailed overview of the locally weighted methods,

see Atkenson et al. (1997), from where the following subsections are summarized.

4.1 Nonlinear local models

Nonlinear local models can be constructed by modifying global parametric models. A general global

model can be trained to minimize the following training criterion:

C �
X
i

L�f�xi; bb�; yi� �4�

where yi is the response value corresponding to the input vector xi, bb is the parameter vector for the

nonlinear model �yi � f�xi; b�, and L is the general loss function for predicting yi. If this model is a

neural net, then the bb will be a vector of the synaptic weights. If we use least squares for the loss

function L, the training criterion will be

C �
X
i

�f�xi; bb� ÿ yi�2 �5�
To ensure points nearby to the query have more in¯uence in the regression, we can add a

weighting factor to the criterion:

C�q� �
X
i

�L�f�xi;bb�; yi��K�d�xi; q��� �6�

where K is the weighting or kernel function, and d�xi; q� is the distance between the data point xi and

iç . u y s a l and h . a . gÏv en i r 322

the query q. Using this training criterion, f becomes a local model, and can have a di�erent

set of parameters for each query point.

4.2 Linear local models

The well-known linear global model for regression is simple regression (1), where least squares

approximation is used as the training criterion. Such linear models can be expressed as

xibb � yi �7�
where bb is the parameter vector. Whole training data can be de®ned with the following matrix

equation:

Xbb � y �8�
whereX is the training matrix whose ith row is xi and y is a vector whose ith element is yi. Estimating

the parameters bb using the least squares criterion minimizes the following criterion:

C �
X
i

�xibbÿ yi�2 �9�

We can use this global linear parametric model, where all the training instances have equal

weights; for locally weighted regression, by giving nearby instances to the query point higher

weights. This can be done using the following weighted training criterion:

C �
X
i

��f�xi; bb� ÿ yi�2K�d�xi; q��� �10�

Various distance (d) and weighting (K) functions for local models are described by Atkenson et al.

(1997). Di�erent linear and nonlinear locally weighted regression models can be estimated with

those functions.

4.3 Implementation

In LWR, as stated before, the computational cost of training is at a minimum, since training

includes only storing new data points in the memory. However, the lookup procedure for prediction

is more expensive than in other instance-based learning methods, since a new model is constructed

for each query. Here, the use of a k-d tree data structure to speed up this process is described

brie¯y (Atkenson et al., 1997).

The di�culty in the table lookup procedure is to ®nd the nearest neighbours, if only nearby

instances are included in LWR. If there are n instances in the database, for a naõÈ ve implementation

we need n distance computations. For an e�cient implementation, a k-d tree can be employed.

A k-d tree is a binary data structure that recursively splits a d-dimensional space into smaller

subregions, and those subregions are the branches or leaves of the tree data structure. The search for

the nearest neighbours starts from the nearby branches in the tree. For a given distance threshold,

there is no need to search further branches by implementing this data structure. Figure 2 illustrates a

two-dimensional region.

5 Regression by rule induction

Inducing rules from a given training set is a much studied topic in machine learning. Weiss and

Indurkhya (1993b, 1995) employed rule induction for a regression problem, and reported signi®cant

results. In this section, we ®rst review the rule-based classi®cation algorithm (Weiss & Indurkhya,

1993a), Swap-1, which learns decision rules in Disjunctive Normal Form (DNF), and later on

describe its adaptation for regression.

The main advantage of inducing rules in DNF is its explanatory capability. It is comparable to

decision trees, since trees can also be converted into DNF models. The most important di�erence

An overview of regression techniques for knowledge discovery 323

between them is that the rules are not mutually exclusive, as in decision trees. In decision trees, for

each instance there is exactly one rule, a path from a root to a leaf, that is satis®ed. Because of this

restriction, decision tree models may not produce compact models. However, because of this

property of rule-based models, a problem emerges such that, for a single instance, two or more

classes may be satis®ed. The solution found for this problem is to assign priorities or an ordering to

the rules according to their extraction order, according to this ordering. According to this ordering,

the ®rst rule that satis®es the query instance, determines the class of a query. The Swap-1 rule

induction algorithm (Weiss & Indurkhya, 1993a) and its sample output are shown in Figures 3 and

4, respectively.

Figure 2 The black dot is the query point, and the shaded dot is the nearest neighbour. Outside the black box
does not need to be searched to ®nd the nearest neighbour.

[1] Input: D, a set of training cases

[2] Initialize R1 empty set, k 1, and C1 D

[3] repeat

[4] create a rule B with a randomly chosen attribute as its left-hand side

[5] while (B is not 100-percent predictive) do

[6] make single best swap for any component of B, including

deletion of the component, using cases in Ck

[7] If no swap is found, add the single best component to B

[8] endwhile

[9] Pk rule B that is now 100-percent predictive

[10] Ek cases in C that satisfy the single-best-rule Pk

[11] Rk�1 Rk [fPkg
[12] Ck�1 Ck ÿ fEkg
[13] k k� 1

[14] until (Ck is empty)

[15] ®nd rule r in Rk that can be deleted without a�ecting performance on cases

in training set D

[16] while (r can be found)

[17] Rk�1 Rk ÿ frg
[18] k k� 1

[19] endwhile

[20] output Rk and halt.

Figure 3 Swap-1 algorithm.

iç . u y s a l and h . a . gÏv en i r 324

While constructing a rule, the Swap-1 algorithm searches all the conjunctive components it has

already formed, and swaps them with all possible components it will build. This search also

includes the deletion of some components from the rule. If no improvement is established from

these swaps and deletions, then the best component is added to the rule. To ®nd the best

component to be added, the predictive value of a component, as a percentage of correct decisions,

is evaluated. If the predictive values of them are equal, maximum instance coverage isused as the

second criterion. These swappings and additions end when the rule reaches 100% prediction

accuracy.

Table 1 illustrates a sample rule induction. After forming a new rule for the model, all

instances that the rule covers are removed from the instance set, and the remaining instances are

considered for the following steps. When a class is covered, the remaining classes are considered,

in turn. This process iterates until the instance set becomes empty, that is, all instances are

covered.

After formation of the rule set, if the removal of any rule does not change the performance of the

training set, such rules are removed from the model. Furthermore, to reach an optimum rule set, an

optimization procedure is used (Weiss & Indurkhya, 1993a).

The rule induction algorithms for classi®cation, such as Swap-1, can also be applied to regression

problems. Since these algorithms are designed for the prediction of nominal attributes, using a

preprocessing procedure, the numeric attribute in regression to be predicted is transformed into a

nominal one.

For this transformation, the P-class algorithm, shown in Figure 5, is used by Weiss and

Indurkhya (1995). This transformation is in fact a one-dimensional clustering of training instances

on response variable y, in order to form classes. The purpose is to make y values within one class

similar, and across classes dissimilar. The assignment of these values to classes is done in such a way

that the distance between each yi and its class mean must be minimum.

The P-Class algorithm does the following. First, it sorts the y values, then assigns an approxi-

mately equal number of contiguous sorted yi to each class. Finally, it moves a yi to a contiguous

class if it reduces the distance of it to the mean of that class.

This procedure is a variation of the KMEANS clustering algorithm (Duda & Hart, 1973;

Kaufman & Rousseeuw, 1990). Given the number of initial clusters, on randomly decomposed

clusters, the KMEANS algorithm swaps the instances between the clusters if it increases a

clustering measure or criterion that employs inter- and intra-cluster distances. Given the number

CA > 0:5 and CP > 3:5 Class � 2

THAL > 6:5 Class � 2

�True� Class � 1

Figure 4 A solution induced from heart-disease data.

Table 1 Example of swapping rule components

Step Predictive value (%) Rule

1 31 p3

2 36 p6
3 48 p6 & p1
4 49 p4 & p1
5 69 p4 & p1 & p2

6 80 p4 & p1 & p2 & p5
7 100 p3 & p1 & p2 & p5

An overview of regression techniques for knowledge discovery 325

of classes, P-Class is a quick and precise procedure. However, no idea is stated in the literature

about an e�cient way to determine the number of classes.

After the formation of classes (pseudo-classes) and the application of a rule induction algorithm

such as Swap-1 to these classes, in order to produce an optimum set of regression rules, a pruning

and optimization procedure can be applied to these rules, as described by Weiss and Indurkhya

(1993a, 1995). An overview of the procedure for the induction of regression rules is shown in

Figure 6.

The naõÈ ve way to predict the response for a query instance is to assign the average of responses.

The average may be a median or mean of that class. However, di�erent approaches also can be

considered by applying a parametric or non-parametric model for that speci®c class. For example,

the nearest-neighbour approach is used for this purpose, and signi®cant improvements of this

combination against the naõÈ ve approach are reported by Weiss and Indurkhya (1995).

[1] Input:fyg a set of output values

[2] Initialize n � number of cases, k � number of classes

[3] repeat for each Classi
[4] Classi � next n=k cases from list of sorted y values

[5] end

[6] repeat for each Classi (until no change for any class)

[7] repeat for each case j in Classi
[8] 1. Move Caseij to Classiÿ1, compute Errnew
[9] If Errnew > Errold return CaseijtoCi

[10] 2. Move Caseij to Classi�1 , compute Errnew
[11] If Errnew > Errold return Caseij to Ci

[12] next Casej in Classi
[13] Next Classi

[14] repeat for each Classi (until no change for any class)

[15] If Mean�Classi� �Mean�Classj� then
[16] Combine Classi and Classj
[17] end

Figure 5 Composing Pseudo-Classes (P-Class).

1. Generate a set of Pseudo-classes using the P-Class algorithm.

2. Generate a covering rule-set for the transformed classi®cation problem using a rule

induction method such as Swap-1.

3. Initialize the current rule set to be the covering rule set and save it.

4. If the current rule set can be pruned, iteratively do the following:

(a) Prune the current rule set.

(b) Optimize the pruned rule set and save it.

(c) Make this pruned rule set the new current rule set.

5. Use test instances or cross-validation to pick the best of the saved rule sets.

Figure 6 Overview of method for learning regression rules.

iç . u y s a l and h . a . gÏv en i r 326

6 Projection pursuit regression

One problem with most local averaging techniques, such as the nearest-neighbour technique, is the

curse of dimensionality. If a given amount of data is distributed in space, then the distance between

adjacent data points increases with the increasing number of dimensions (Hall, 1989). In Friedman

and Stuetzle (1981), a numeric example is given for this problem. Projection Pursuit Regression

(PPR) forms the estimation model by re¯ecting the training set onto lower dimensional projections

as a solution for high dimensional data sets.

Another important characteristic of PPR is its successive re®nement property. At each step of

model construction, the best approximation of the data is selected and added to the model, while

removing the well described portion of the instance space. The search on the data set continues for

the remaining part, and this process iterates by increasing the complexity of the model at each step.

The successive re®nement concept is applied to regression in a di�erent way here, by subtracting the

smooth from residuals. A smooth is a function formed by averaging responses (y). An example of

smooth is shown in section 6.2.

The model approximated by the PPR algorithm is the sum of the smooth functions S of the linear

projections, determined in each iteration:

j�x� �
XM
m�1

Sbbm�bbm:X� �11�

where bbm is the parameter vector (projection), X is the training set against predictor variables, Sbbm is

the smooth function, and M is the number of terms or ``smoothes'' in the model.

6.1 Projection pursuit regression algorithm

At each iteration of the PPR algorithm, a new term, m in equation (11), is added to the regression

surface j. The critical part of the algorithm is the search for the coe�cient vector bb or projection of

the next term. After ®nding a coe�cient vector at each iteration, the smooth of the estimated

response values resulting from the inner product (bbm:X) is added to the model as a new term, where

the term is a function of all features. The linear sum of these functions (11) forms the model, which is

employed for the prediction task.

The search for the coe�cient vector for each term is done according to a ®tting criterion (®gure of

merit), such that the average sum of the squared di�erences between residuals and the smooth is the

minimum. For this purpose, I�bb�, the fraction of unexplained variance that is explained by smooth

Sb, is used as an optimality criterion, or ®gure of merit. I�bb� is computed as

I�bb� � 1ÿ
Xn
i�1
�ri ÿ Sbb�bb:xi��2=

Xn
i�1

r2i �12�

where ri is a residual which takes the value of yi in the ®rst step of the algorithm. The coe�cient

vector bb that maximizes I�bb� is the optimal solution.

In the ®rst line of the algorithm, current residuals and the term counter are initialized. In the

second step, the coe�cient vector that results in the best smooth close to the residuals according to

®tting criterion I is found. A smooth is found for each bb vector, in ascending order of the linear

combination �bb:X�. If the criterion value found is below a given threshold, the iteration of the

algorithm is continued by the new residual vector, which is found by subtracting the smooth from

the current residuals at Step 4. With this subtraction operation, the algorithm gains successive

re®nement characteristics.

For searching of the coe�cient vector that maximizes the ®tting criterion, a modi®cation of the

Rosenbrock method (Rosenbrock, 1960) is chosen by Friedman and Stuetzle (1981), and as a

smoothing procedure, a method is described in the next subsection.

Some models approximate the regression as a sum of the functions of individual predictors

(standard additive models), and because of that, they cannot deal with interactions between

An overview of regression techniques for knowledge discovery 327

predictors. In such models, the projections are done onto individual predictors rather than onto a

projection vector, which is the linear sum of the predictors, as in PPR. These projection vectors,

instead of individual predictors, allow PPR to deal with interactions, which is the third main

property of PPR.

6.2 Smoothing algorithm

The traditional smoothing procedures assume that the observed variation, response yi, is generated

by a function which has a normally distributed error component. The smooth constitutes an

estimation for that function. As an example, in simple linear regression, this function is a linear

combination of predictors. As stated above, PPR tries to explain this variation with not just one

smooth, but with a sum of smoothes over linear combinations of predictors.

Generally, the smooth functions employed here are not expressions, rather, they are a local

averaging of the responses or residuals. Taking the averages of responses in neighbourhood regions

forms this smooth function. The boundaries of the neighbourhood region where the averages are

taken are called bandwidth. For example, in the k-nearest neighbour algorithm, k is used for the

constant bandwidth. In Friedman and Stuetzle (1981), a variable bandwidth algorithm is employed,

where larger bandwidths are used in regions of high local variability of response. To clarify the

concept of smoothing, we describe the constant bandwidth smoothing algorithm of Tukey (1977),

called ``running medians''.

Running medians is a simple procedure that averages the response by taking the median of the

neighbour region. Running medians of three algorithms described by Tukey (1977) are shown with a

simple example in Figure 8. The smooth of each response is found by the median of three values in

the sequence. One of them is the response itself, and other two are neighbours.

Friedman and Stuetzle (1981) employ running medians of three in their variable bandwidth

smoothing algorithm, which is shown in Figure 9.

In Step 1, a smooth for the response is formed. In Step 2, for each smoothed response value, we

®nd the variance of the neighbours in the interval determined by a given constant bandwidth. In

Step 3, these variances are smoothed by a given constant bandwidth. Finally, by employing these

smoothed variance values as a bandwidth for each smoothed response determined in Step 1, we

obtain a variable bandwidth smooth.

[1] ri yi, M 0, i � 1; . . . :; n

[2] Search for the coe�cient vector bM, that maximize ®tting criterion I�bb�
by using Equation (12)

[3] If I�bb� is greater than the given threshold

[4] ri ri ÿ SbbM�1�bbM�1:xi�, i � 1; . . . ; n

[5] M M� 1

[6] go to Step 2

[7] Otherwise stop, by excluding last term M.

Figure 7 Projection pursuit regression algorithm.

Given : 4 7 9 3 4 11 12 1304 10 15 12 13 17

Smooth : ? 7 7 4 4 11 12 12 15 12 13 13 ?

Figure 8 Running medians of three.

iç . u y s a l and h . a . gÏv en i r 328

7 Regression by tree induction

Tree induction algorithms construct themodel by partitioning the data set. The task of constructing a

tree is accomplished by employing a search to select an attribute to be used for partitioning the data at

each node of the tree. The explanation capability of regression trees and their use to determine key

features from a large feature set aremajor advantages for these applications. In terms of performance

and accuracy, regression tree applications are comparable to other models. Regression trees are also

noted to be strong when there are higher order dependencies among the predictors.

The characteristic common to all regression tree methods is that they partition the training set

into disjoint regions recursively, where the ®nal partition is determined by the leaf nodes of the

regression tree. To avoid over®tting and form simpler models, pruning strategies are employed in all

regression tree methods.

In the following subsections, three di�erent regression tree methods are described: CART, RETIS

and M5. They share the common properties described above, but show signi®cant di�erences in

some of the measures and traits they demonstrate.

7.1 CART

Using trees as regression models was ®rst applied in the CART (Classi®cation and Regression

Trees) program, developed by the statistical research community (Breiman et al., 1984). This

program induces both regression and classi®cation trees.

In the ®rst step, we start with the whole training set represented by the root node to construct the

tree. A search is done on the features to construct the remaining part of the tree recursively. We ®nd

the best feature and feature value at which to split the training set represented by the root node. This

splitting forms two leaf nodes that represent two disjoint regions in the training set. In the second

step one of these regions is selected for further splitting. This splitting is again done according to a

selected feature value. This splitting process continue at a selected leaf node recursively to construct

the regression tree.

In the CART system, a constant function (a constant response value) is used for estimation of a

query or test instance that falls into the regions represented by leaf nodes. Generally, this function is

the average of the response values of instances. Each disjoint region has its own estimated value that

is assigned to any query instance located in this region.

To construct optimum disjoint regions, an error criterion is employed. The optimum value of this

criterion produces a decomposition at any step of the tree induction process described above, so that

the correct region, feature, feature value (splitting surface) and estimates for each region are

selected. To determine the predicted target values in these regions, averaging methods such as mean

and median are used. As a ®tting criterion, the variances of the regions are used (14):

Error�Variance� �
Xn
i�1
�yi ÿ �y�2 �13�

[1] Running medians of three;

[2] Estimating the response variability at each point by the average squared residual

of a locally linear ®t with constant bandwidth;

[3] Smoothing this variance estimates by a ®xed bandwidth moving average;

[4] Smoothing the sequence obtained by pass (1) by locally linear ®ts with bandwidths

determined by the smoothed local variance estimates obtained in pass (3).

Figure 9 Variable bandwidth smoothing algorithm.

An overview of regression techniques for knowledge discovery 329

where n is the number of instances in the region,

Splitting Error � 1

n

X
xi2Xleft

�yi ÿ �yleft�2 �
X

xj2Xright

�yj ÿ �yright�2
8<:

9=; �14�

After computing the splitting error for all possible splits of a particular predictor, the splitting

that maximizes the following criterion is selected:

C � Varianceÿ Splitting Error �15�

The node and predictor that reach the maximum criterionC are selected for splitting. An example

regression tree is shown in Figure 10 . The construction process is illustrated in Figure 11.

Formally, the resulting model can be de®ned in the following form (Breiman et al., 1984;

Friedman, 1991):

If x 2 Rm; then f�x� � gm�xfajgP1 � �16�

where fRmgP1 are disjoint subregions representing p partitions of the training set. The functions g are

generally in simple parametric form. The most common parametric form is a constant function (17),

which is illustrated with the example given in Figure 10.

gm�xjam� � am �17�

Figure 10 Example of regression tree.

Figure 11 An example of the tree construction process. Four regions are determined by predictors x1
and x2.

iç . u y s a l and h . a . gÏv en i r 330

The constant values of leaves or partitions are generally determined by averaging. More formally,

the model can be denoted by using basis functions:

�f�x� �
XM
m�1

amBm�x� �18�

The basis functions Bm�x� take the form
Bm�x� � I�x 2 Rm� �19�

where I is an indicator function having the value one if its argument is true, and zero otherwise. Let

H�Z� be a step function, indicating a positive argument:

H�Z� � 1 if Z > 0
0 otherwise

n
�20�

and let LOF(g) be a procedure that computes the lack of ®t of an estimation function g to the data.

The recursive partitioning algorithm is given in Figure 12.

The ®rst line of the algorithm assigns the whole training set as the initial region. The ®rst loop

iterates the splitting until reaching a maximum number of regions. The next three loops select the

optimum basis function Bm� (intuitively, the optimum region), predictor xv� and split point t�. At

lines 12 and 13, the selected region for splitting, Bm� , is replaced with its two partitions. This is done

by adding a factor to its product; withH�ÿ�xv� ÿ t��� for the negative portion of the region at line 12

by creating a new basis function; and with H���xv� ÿ t��� for the positive portion of the region at

line 13, by modifying or removing the previous basis function. Finally, the basis functions formed by

the algorithm will take the following form:

Bm�x� �
YKm

k�1
H�skm:�xv�k;m� ÿ tkm�� �29�

where the quantity Km is the number of splits that gave rise to Bm, and the arguments of the step

functions contain the parameters associated with each of these splits. The quantity skm takes ��=ÿ�1
values, indicating the right/left portions, v�k;m� labels the predictor variables, and tkm represents

values on the corresponding variables. A possible output of the algorithm is shown in Figure 13.

The partition may lead to very small regions with a large tree. This situation may cause over®tting

with unreliable estimates. Stopping the process early may also not produce good results. The

solution to this problem is to employ a pruning strategy.

[1] B1�x� 1

[2] For M � 2 to Mmax do : lof � 1
[3] For m � 1 to Mÿ 1 do :

[4] For v � 1 to n do :

[5] For t 2 fxvjjBm�xj� > 0g
[6] g P

i 6�m aiBi�x� � amBm�x�H���xv ÿ t�� � aMBm�x�H�ÿ�xv ÿ t��
[7] lof mina1...aMLOF�g�
[8] if lof < lof �, then lof � lof;m� m; v� v; t� t end if

[9] end for

[10] end for

[11] end for

[12] BM�x� Bm� �x�H�ÿ�xv� ÿ t���
[13] Bm� �x� Bm� �x�H���xv� ÿ t���
[14] end for

Figure 12 Recursive partitioning algorithm.

An overview of regression techniques for knowledge discovery 331

Pruning the regression tree by removing leaves will leave holes, which is an important problem,

since we will not be able to give an answer to queries that fall into these regions or holes. That is why

the removal of regions is done pairwise, with siblings, by merging them into a single (parent) region.

This pruning strategy is described by Breiman et al. (1984).

Recursive partitioning regression is an adaptive method (one that dynamically adjusts its strategy

to take into account the behaviour of a particular problem to be solved (Friedman, 1991)). For

example, recursive partitioning has the ability to exploit low local dimensionality of functions. In

local regions, the dependence of the response may be strong on a few of the predictors, and these few

variables may be di�erent in di�erent regions. Another property of recursive partitioning regression

is that they allow interpretations, especially when a constant estimation is done on the leaves.

On the other hand, it has some drawbacks and limitations, the most important one being that the

estimation is discontinuous. The model cannot approximate even simple continuous functions such

as linear functions, which limits the accuracy of the model. As a consequence of this limitation, one

cannot extract from the representation of the model the structure of the function (e.g. linear or

additive), or whether it involves a complex interaction among the variables.

7.2 RETIS

In the basic CART algorithm described above, the estimated response value, �y on the leaves of the

regression tree was a constant function (17). On the other hand, RETIS (Regression Tree Induction

System) (Karalic, 1992a, b), a di�erent system used to construct regression trees developed by the

machine learning community, is an extension of CART that employs a function on the leaves. This

is a linear function of continuous predictors. The use of linear regression at the leaves of a regression

tree is called as local linear regression (Karalic, 1992a). RETIS can also be categorized as a LWR

system (section 4).

RETIS is not just a modi®cation of CART at the leaf nodes. The employment of linear regression

B1 � H�ÿ�xva ÿ ta��H�ÿ�xvb ÿ tb��
B2 � H�ÿ�xva ÿ ta��H���xvb ÿ tb��H�ÿ�xvc ÿ tc��
B3 � H�ÿ�xva ÿ ta��H���xvb ÿ tb��H���xvc ÿ tc��
B4 � H���xva ÿ ta��

Figure 13 A binary tree representing a recursive partitioning regression model with associated basis functions.

iç . u y s a l and h . a . gÏv en i r 332

enforces modi®cations in the construction of the regression tree. In the process of tree construction,

the CART system forms subtrees to minimize the expected variance (21). However, when applying

local linear regression to the regression tree, the variance is not an appropriate measure as an

optimality criterion. If the relationship between the predictors and response is linear, this region

may not be appropriate for splitting even if the variance is very large. This situation is illustrated

with an example in Karalic (1992a). Suppose we have a region with four instances described with

only one predictor, as shown in Figure 14. Although for cases where the variance is large, the error

committed when using linear regression is almost zero. Such regions are not appropriate for further

splitting. That is why an alternative splitting criterion is employed in RETIS, given in equation (23).

I�X� �
Xn
i�1
�yi ÿ g�xi��2 �22�

where n is the number of instances, g is the linear function that best ®ts the instances of the region,

and I is called the impurity measure. Consequently, the ®gure of merit (the splitting criterion) is

de®ned as in equation (23):

C � 1

n
�nleftIleft � nrightIright� �23�

The use of equation (22) instead of equation (14) in computing the ®gure of merit is the main

di�erence between CART and RETIS. When estimating a response value for a query, the value that

results from the linear function on the leaf node on which the query falls is used.

After construction of a regression tree, a pruning strategy is employed, as in most other tree

induction models. See Niblett and Bratko (1986) for an in-depth explanation of pruning. The

strategy used in RETIS computes two di�erent error measures: static error and backed-up error. The

static error is computed at a node, supposing it is a leaf, and backed-up error is computed at the

same node for the case in which the subtree is not pruned. If the static error is less than or equal to

the backed-up error, then the subtree is pruned at that node, and the tree node is converted into a

leaf node.

7.3 M5

M5 is another system (Quinlan, 1992) that builds tree-based models for the regression task, similar

to CART and RETIS. The advantage of M5 over CART is that the trees are generally much smaller

than regression trees. On the other hand, the tree construction in M5 is similar to CART. Standard

deviation is employed as the error criterion in M5, instead of variance as used in CART. The

reduction on the error (33) on subregions after splitting a region is the measure used to decide on

splitting.

error � s�X� ÿ
X
i

jXij
jXj s�Xi� �24�

Figure 14 An example region, with large variance, which is inappropriate for splitting.

An overview of regression techniques for knowledge discovery 333

where s is standard deviation and i is the number of subregions of a region whose instances are

denoted by X. After examining all possible splits, M5 chooses the one that maximizes the expected

error reduction (24).

M5 is also similar to RETIS in that it employs a linear regression model on the nodes to estimate

responses by using standard linear regression techniques (Press et al., 1988). These linear models are

constructed on all the nodes, starting from the root down to the leaves. However, instead of using all

the attributes or predictors, a model at a node is restricted to the attributes referenced by linear

models in the subtree of that node.

After constructing the tree and forming linear models at the nodes as described above, each model

is simpli®ed by eliminating parameters to maximize its accuracy. The elimination of parameters

generally causes an increase in the average residual. To obtain linear models with fewer parameters,

the value is multiplied by �n� p��nÿ p�, where n is the number of instances and p is the number of

parameters in the model. The e�ect is to increase the estimated error of models with many

parameters and with a small number of instances or training cases. M5 uses a greedy search to

remove variables that contribute little to the model. In some cases, M5 removes all of the variables,

leaving only a constant (Quinlan, 1992).

The pruning process is the same as RETIS. To prune the constructed tree, each non-leaf node is

examined, starting near the bottom. If the estimated error at a node is smaller than its subtree, then

that node is pruned.

A smoothing process is employed in M5 for estimation of the response variable. The smoothing

process described by Quinlan (1992) is as follows:

1. The predicted value at the leaf is the value computed by the model at that leaf.

2. If the instance follows branch Si of subtree S, let ni be the number of training cases at Si, PV�Si�
the predicted value at Si, andM�S� the value given by the model at S. The predicted value at S is

given by recursive equation (25):

PV�S� � niPV�Si� � kM�S�
ni � k

�25�

where k is the smoothing constant.

The accuracy of the model is enhanced by the smoothing process. Improvements in accuracy and

model simpli®cation are obtained by M5 over CART; some applications with di�erent training sets

are experimented on and reported by Quinlan (1992).

8 Multivariate adaptive regression splines

As stated in the previous section, a fundamental drawback of recursive partitioning regression

(CART) is the lack of continuity, which a�ects the accuracy. Another problem with that method is

its inability to provide good approximations to some functions, even to the most simple linear ones.

Multivariate Adaptive Regression Splines (MARS) addresses these two problems of recursive

partitioning regression to increase accuracy (Friedman, 1991).

8.1 Piecewise parametric ®tting paradigm and splines

There are di�erent paradigms for global parametric modelling to generalize low dimensional data.

One of them is piecewise parametric ®tting. The basic idea is to approximate a function by several

simple parametric functions (usually low order polynomials), each de®ned over di�erent subregions

of the training set. The constraint for the formation of polynomial ®tting is that it must be

continuous at every point.

The most popular piecewise polynomial ®tting procedures are based on splines, where the

parametric functions are polynomials of degree q. The procedure is implemented by constructing a

set of globally de®ned basis functions. These functions span the space of the qth order spline

iç . u y s a l and h . a . gÏv en i r 334

approximations, and ®t the coe�cients of the basis function to the data using the least squares

technique. The spline basis functions are denoted by

f�xÿ tk�q�gK1 �26�
where ftkgK1 is the set of split (knot) locations. The subscript + indicates a value of zero for negative

values of the argument. This is known as a truncated power basis in the mathematical literature. A

general review of splines is given by De Boor (1978).

8.2 MARS algorithm

The MARS algorithm is a modi®ed recursive partitioning algorithm which addresses the problems

stated above. The reason that recursive partitioning algorithms are discontinuous, because of the

use of the step function. If the step function were everywhere replaced by a continuous function,

where it appears in that algorithm (lines 6, 12 and 13), it could produce a continuous model. The

step function employed in that algorithm can be considered as a special case of a spline basis

function, where q � 0.

The one-sided truncated power basis functions for representing qth order splines are

bq�xÿ t� � �xÿ t�q� �27�
where t is the knot location, q is the order of the spline and the subscript indicates the positive part of

the argument. For q > 0, the spline approximation is continuous. A two-sided truncated power

basis is of the form

b�q �xÿ t� � ���xÿ t��q� �28�
The step functions that appear in recursive partitioning algorithms are seen to be two-sided

truncated power basis functions for q � 0 splines. The solution for discontinuity is solved by

employing spline functions, of the order of q > 0, instead of step functions in the algorithm.

The second modi®cation is related to the second problem, the inability of the algorithm to provide

good approximations to certain functions. After the ®rst modi®cation, the algorithm tends to

involve functions with more than a few variables (higher order interactions). At each split, one such

function is removed, and two new functions are produced with one more variable. This causes a one

level increase in the interaction order. With such complex functions, having high level orders, it

becomes di�cult to approximate simple functions like linear ones.

The solution for this problem is not to delete the lower order parent after splitting. With this

modi®cation, all basis functions now become eligible for further splitting. The new model involves

either high or low order interactions, or both.

A third problem emerges after the employment of splines in the algorithm. Since the algorithm

allows multiple splits on the same predictor, along a single path of the binary tree, ®nal basis

functions may include several factors, involving the same variable in their product. For q > 0,

higher orders than q may be produced on a single predictor.

After the second modi®cation, not deleting the parents after splits, a restriction on the basis

function can be applied to involve distinct predictors. Since we do not remove the parent after

splitting, many such splits can be done on the same parent. By employing another split to that

parent instead of splitting a child, MARS does not increase the depth or add a new factor to the

product.

One remaining problem, which is not solved with MARS, is the value of q. The general idea is to

use q � 1. A discussion of this problem is given by Friedman (1991).

In summary, the following modi®cations are done to the recursive partitioning algorithm:

(a) replacing the step function H���xÿ t�� by a truncated power basis function ���xÿ t��q�; (b) not
removing the parent basis function Bm� after its split, thereby making it and both its daughters

eligible for further splitting; (c) restricting the product associated with each basis function to factors

involving distinct predictor variables.

An overview of regression techniques for knowledge discovery 335

After using two-sided truncated power basis functions instead of a step function, the MARS

algorithm (shown in Figure 15) now produces multivariate spline basis functions of the following

form:

B�q�m �x� �
YKm

k�1
H�skm:�xv�k;m� ÿ tkm��q� �29�

For pruning of the resulting model after the MARS algorithm, it is now no longer necessary to

employ the two-at-a-time deletion strategy used in the previous algorithm. Because the parents are

not deleted, there will be no holes left after any deletion. Any pruning algorithm can thus be

employed for the MARS procedure.

In the algorithm above, truncated power basis functions �q � 1� are substituted for step functions

in lines 6, 12 and 13. The parent basis function is included in the modi®ed model in line 6, and

remains in the model through lines 12±14. Basis function products are constrained to contain factors

involving distinct variables by the control loop in line 4. Figure 16 illustrates the regions after

constructing the model. Note that the split regions are not deleted from the model, as in CART, and

another splitting for the same region can be applied with the same or a di�erent predictor.

9 Discussion

We have reviewed six di�erent regression techniques, each having di�erent characteristics when

compared to others. Three of them (instance-based regression, locally weighted regression, and rule-

based regression) have been developed mainly by the machine learning community, and others

(projection pursuit regression, regression tree induction and multivariate adaptive regression

splines) mainly by the statistical community. The common property of all these methods is that all

of them are non-parametric, and they are the most popular among current regression methods.

In instance-based learning, a lazy approach is employed, where no model is constructed in the

training phase. The model is the training set itself. The whole computational complexity of this

method is in its prediction, especially the determination of neighbour instances. The prediction is

based on the location of the query, and it is computed according to the target values of neighbour

instances. The criterion used to detect neighbour instances is the similarity measure based on

distance.

Locally weighted regression is another lazy or memory-based approach, where the instances are

[1] B1�x� 1;M � 2

[2] Loop until M >Mmax : lof � 1
[3] For m � 1 to Mÿ 1 do :

[4] For v =2fv�k;m�j1 � k � Kmg
[5] For t 2 fxvjjBm�xj� > 0g
[6] g Pmÿ1

i�1 aiBi�x� � amBm�x�H���xv ÿ t��� � aMBm�x�H�ÿ�xv ÿ t���
[7] lof mina1...aMÿ1LOF�g�
[8] if lof < lof � , then lof � lof;m� m; v� v; t� t end if

[9] end for

[10] end for

[11] end for

[12] BM�x� Bm� �x�H���xv� ÿ t���ÿ
[13] BM�1�x� Bm� �x�H�ÿ�xv� ÿ t���ÿ
[14] M M� 2

[15] end loop

[16] end algorithm

Figure 15 MARS algorithm.

iç . u y s a l and h . a . gÏv en i r 336

simply stored in memory during the training phase. The di�erence between locally weighted

regression and instance-based methods is in the prediction phase, where a local parametric model

is constructed for each query instance by using the neighbour instances. Since, at each query

instance, a new local model is constructed, it is more complex than the previous approach.

The projection pursuit regression method has the ability to reduce dimensionality by projecting

instances to lower dimensional (one or two) vectors or surfaces. The idea of projection is also used in

exploratory data analysis to determine clusters on projections (Friedman & Tukey, 1974). The same

idea is adapted to regression. A successive re®nement technique is also applied in the projection

pursuit regression, which shows signi®cant improvements for most applications.

All the remaining methods reviewed in this paper estimate models by partitioning the training set

into regions. Rule-based regression techniques accomplish this by partitioning the data using the

rule induction techniques of machine learning. On the other hand, in the other partitioning methods

(CART, RETIS, M5 and MARS), this is done by splicing the features recursively into two regions,

by constructing a binary regression tree. The main di�erence between these methods and MARS is

that MARS is continuous at the borders of the partitioned regions, while others are discrete. CART

simply uses the averages of the regions for prediction; RETIS and M5 make prediction by

constructing linear models. On the other hand, since MARS produces a large number of over-

lapping regions, its computational complexity is larger than other partitioning methods.

The properties of regression methods are summarized in Table 2. Five di�erent properties are

used to compare the algorithms. The main characteristic of memory-based models is storing the

instances and delaying processing to the prediction phase. The model constructed is in fact the

training set itself. Recursive partitioning algorithms construct the models by partitioning the data

into regions. Interpretability is one of the main concerns for most knowledge acquisition and

knowledge engineering applications, in order to extract information that can be veri®ed by experts.

The algorithms covered in this paper that induce models have this property. If the local positions of

Figure 16 An example for regions of the MARS algorithm.

Table 2 Properties of regression algorithms (the names of programs developed with those methods are shown

in parentheses)

Properties

Instance
based

regression
(KNN)

Locally
weighted

regression
(LOESS)

Proj.
pursuit

regression
(PPR)

Rule
based

regression
(Rule)

Tree-
based

regression
(CART)

Adaptive
regression

splines
(MARS)

Memory-based (lazy) @ @

Partiitioning @ @ @

Interpretable @ @ @ @

Adaptive @ @ @ @ @

Incremental @ @

An overview of regression techniques for knowledge discovery 337

the test or query instances a�ect the model, prediction and contribution of variables in the

regression task, such algorithms are called adaptive. Another important property given in the table

is incrementality of the algorithm. This is the opposite of batch processing. For large training sets, or

databases, particularly, processing can be done without loading all of the data set into memory if

this property is satis®ed. The order of the training instances is ignored when constructing any such

model.

Besides these properties, a comparison of the accuracy between these methods is required. In

classical statistical literature, the comparisons are done based on the ®tting of the model on the

training instances, by means of computing variance explained by the constructed model. If we

construct a model for exploratory data analysis, this approach is valid since the model is mainly

used for interpretation. However, from the perspective of machine learning and knowledge

discovery, the predictive performance of the method is very important. For that purpose, the

accuracy is measured on the test cases. The general method used here is to employ cross-validation.

Cross-validation is applied in order to get very accurate results about the algorithms. The data is

partitioned into k partitions. At each step, one of these partitions is used as the test data, and the

remaining part is used for training. After k iterations, the average number of accuracies found at

each step is used as the ®nal accuracy result.

To measure the performance of a regression method, a comparison is done between the predicted

and sample values of an instance. A classical measure is the variance of the error computed from

these values, the average squared distance between estimated and sample values. Another is the

Mean Absolute Distance (MAD), which is employed in least absolute deviation regression:

Variance � 1

n
�yi ÿ �yi�2 �30�

MAD � 1

n

Xn
i�1
jyi ÿ �yij �31�

A comparison of the performance of these regression methods, excluding projection pursuit

regression and locally weighted regression, is given by Weiss and Indurkhya (1998), on the datasets

provided and described by Quinlan (1993). Table 3 summarizes the key characteristics of the

datasets. In this comparison, the accuracy is reported by employing 10-fold cross-validation on test

instances, withMAD and relative error. The relative error is the estimatedMAD (measured by cross

validation), normalized by the initial mean absolute distance from the median. The results reported

by Weiss and Indurkhya (1998) are shown in Table 4.

According to this comparison, two partitioning methods, rule-based regression and MARS,

outperform the other two methods in terms of performance. Another important result from these

comparisons shows that constructing local models for the partitions of data, like splines in the

partitions of MARS model, may signi®cantly improve performance.

Table 3 Dataset characteristics

Dataset Instances Predictors

Price 159 16
Servo 167 19
Cpu 209 6

Mpg 392 13
Peptide 431 128
Housing 506 13

Pole 15 000 48

iç . u y s a l and h . a . gÏv en i r 338

10 Future work

Even though much research has been done on regression, two important aims seem to have directed

these studies. One is the ®tness of the estimation or accuracy; the other is the interpretability of the

constructed model. New research can be conducted in these traditional directions. Additionally,

research can also be directed to increase the e�ciency, both in computational complexity and

storage. Also, constructing systems that deal with outliers, noise, missing values and irrelevant

features is very important, since databases today have a very large number of records and attributes.

Models that enables the detection and interpretation of interactions between attributes can also be

researched in the future.

References

Adeli, H, 1990, Knowledge Engineering, Vol. 1, McGraw Hill.
Aha, D, Kibler, D and Albert, M, 1991, ``Instance-based learning algorithms'' Machine Learning, 6 37±66.
Aha, DW and Salzberg, SL, 1994, ``Learning to catch: applying nearest neighbor algorithms to dynamic

control tasks'' Selecting Models from Data: Arti®cial Intelligence and Statistics IV Springer-Verlag.
Atkenson, GC, Moore, AW and Schaal, S, 1997, ``Locally weighted learning'' Arti®cial Intelligence Review

11(1/5) 11±73.

Breiman, L, Friedman, JH, Olshen, RA and Stone, CJ, 1984, Classi®cation and Regression Trees Wadsworth.
Dasarathy, BV (ed), 1991, Nearest Neighbor (NN) Norms: NN Pattern Classi®cation Techniques IEEE Press.
De Boor, C, 1978, A Practical Guide to Splines Springer-Verlag.

Duda, R and Hart, PE, 1973, Pattern Classi®cation and Scene Analysis Wiley.
Fayyad, UM, Piatetsky-Shapiro, G, Smyth, P and Uthurusamy, R, 1996a, Advances in Knowledge Discovery

and Data Mining AAAI Press.

Fayyad, UM, Piatetsky-Shapiro, G and Smyth, P, 1996b, ``The KDD process for extracting useful knowledge
from volumes of data'' Communications of the ACM, 39(11) 27±34.

Friedman, JH, 1991, ``Multivariate adaptive regression splines'' Annals of Statistics 19(1) 1±141.
Friedman, JH and Stuetzle, W, 1981, ``Projection pursuit regression'' J. Amer. Statist. Assoc. 76 817±823.

Friedman, JH and Tukey, JW, 1974, ``A projection pursuit algorithm for exploratory data analysis'' J. Amer.
Statist. Assoc. C-23(9) 881±890.

Hall, P, 1989, ``On projection pursuit regression'' Annals of Statistics 17(2) 573±588.

Imielinski, T and Mannila, H, 1998, ``A database perspective on knowledge discovery'' Communications of the
ACM 39(11) 58±64.

Karalic, A, 1992a, ``Employing linear regression in regression tree leaves, Proceedings of ECAI'92 (European

Congress on Arti®cial Intelligence) Vienna, Austria, pp. 440±441.
Karalic, A, 1992b, ``Linear regression in regression tree leaves'' Proceedings of ISSEK'92 (International School

for Synthesis of Expert Knowledge) Workshop Bled, Slovenia.
Kaufman, L and Rousseeuw, PJ, 1990, Finding Groups in Data ± An Introduction to Cluster Analysis Wiley.

Kibler, D, Aha, DW and Albert, MK, 1989, ``Instance-based prediction of real-valued attributes'' Comput.
Intell. 5 51±57.

McTear, MF and Anderson, TJ, 1990, Understanding Knowledge Engineering Ellis Horwood.

Mitchell, TM, 1997,Machine Learning McGraw Hill.

Table 4 Comparison of regression methods using published results

5-nn Rule CART MARS

Dataset MAD Error MAD Error MAD Error MAD Error

Price 1643.00 0.40 1335.00 0.32 1660.00 0.40 1559.00 0.38

Servo 0.58 0.63 0.24 0.25 0.20 0.21 0.21 0.23
CPU 29.40 0.38 27.62 0.35 30.50 0.39 27.29 0.35
Mpg 2.14 0.33 2.17 0.33 2.28 0.35 1.94 0.30

Peptide 0.95 0.45 0.86 0.40 0.97 0.46 0.98 0.46
Housing 2.77 0.42 2.51 0.38 2.74 0.42 2.24 0.34
Pole 5.91 0.20 3.76 0.13 4.10 0.14 7.41 0.25

An overview of regression techniques for knowledge discovery 339

Niblett, T and Bratko, I, 1986, ``Learning decision rules in noisy domains'' Developments in Expert Systems
Cambridge University Press.

Peterson, M, Lundberg, D and Ek, A, 1990, Knowledge Engineering System Design in Di�use Domains
Studentlitteratur, Chartwell-Bratt.

Press, WH, Flannery, BP, Teukolsky, SA and Vetterling, WT, 1988, Numerical Recipes in C Cambridge
University Press.

Quinlan, JR, 1992, ``Learning with continuous classes'' In Proceedings AI 92 Singapore, pp. 343±348.

Quinlan, JR, 1993, ``Combining instance-based and model-based learning'' International Conference on
Machine Learning pp. 236±243.

Rawlings, JO, 1988, Applied Regression Analysis: A Research Tool Wadsworth.

Rosenbrock, HH, 1960, ``An automatic method for ®nding the greatest or least value of a function'' Computer
Journal 3 175±184.

Tukey, JW, Exploratory Data Analysis Addison-Wesley.

Weiss, S and Indurkhya, N, 1993a, ``Optimized rule induction'' IEEE Expert 8(6) 61±69.
Weiss, S. and Indurkhya, N, 1993b, ``Rule-based regression'' In Proceedings of the 13th International Joint

Conference on Arti®cial Intelligence pp. 1072±1078.
Weiss, S. and Indurkhya, N, 1995, ``Rule-based machine learning methods for functional prediction'' Journal of

Arti®cial Intelligence Research 3 383±403.
Weiss, S. and Indurkhya, N, 1998, Predictive Data Mining: A Practical Guide Morgan Kaufmann.

iç . u y s a l and h . a . gÏv en i r 340

