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Abstract

Poor definition and uncertainty are primary characteristics of conceptual design processes. During the initial stages of
these generally human-centric activities, little knowledge pertaining to the problem at hand may be available. The
degree of problem definition will depend on information available in terms of appropriate variables, constraints, and
both quantitative and qualitative objectives. Typically, the problem space develops with information gained in a
dynamical process in which design optimization plays a secondary role, following the establishment of a sufficiently
well-defined problem domain. This paper concentrates on background human—computer interaction relating to the
machine-based generation of high-quality design information that, when presented in an appropriate manner to the
designer, supports a better understanding of a problem domain. Knowledge gained from such information combined
with the experiential knowledge of the designer can result in a reformulation of the problem, providing increased
definition and greater confidence in the machine-based representation. Conceptual design domains related to gas
turbine blade cooling systems and a preliminary air frame configuration are introduced. These are utilized to illustrate
the integration of interactive evolutionary strategies that support the extraction of optimal design information, its
presentation to the designer, and subsequent human-based modification of the design domain based on knowledge
gained from the information received. An experimental iterative designer or evolutionary search process resulting in a
better understanding of the problem and improved machine-based representation of the design domain is thus established.

Keywords: Interactive Evolutionary Design; Problem Definition; Information Extraction, Processing, and
Presentation

1. INTRODUCTION pensive analysis. Evaluation time can be measured in

Evolutionary engineering design concerns the integratiorTQfeconds'.These models are not'mt.end.ed o provide defini

of population-based stochastic search, exploration, anEr]/e solutions. They prqwde an !nd|gat|on of performanc.e

optimization processes with complex, multivariate designt at, when comblinggl with gxperlentla}l knowledge, is sgfﬁ

problem domains. The research described in this paper pa?—Ient to support initial decision making as to appropriate
design direction.

ticularly relates to the integration of such processes with c wal desi I ists of h
higher levels of design, where problem conceptualization is onceptual design generally consists of a search across
n ill-defined space of possible solutions using fuzzy ob-

a complex, largely human-centered activity, supported by &

range of relatively basic computational simulations of the’seclt“{.e funchgns e}[ndl Valgl:.e concepts (I)f th; f'nc?l structurgz._
problem domain. The design models typically utilized dur- olutions and partial sofutions are expiored and assessed in

ing this stage of design do not involve computationally ex_terms .Of their fe'aS|b|I|ty with regard to t_he constra_un.ts and
objectives considered relevant at that time. Heuristics, ap-
proximation, and experimentation play a major role with a
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gain an understanding of the functional requirements an@. INTERACTIVE EVOLUTIONARY
the resulting structure&ero et al., 1994; Gero & Schnier, COMPUTATION (EC)
1995; Maher et al., 1995Simple computer-based models,
which may be both qualitative and quantitative in nature,There is a history of research relating to interactive evolu-
may be utilized in order to establish an initial direction. tionary computing that, in the main, relates to partial or
This decision-making environment is characterized by uncomplete human evaluation of the fitness of solutions gen-
certainty in terms of lack of available data and a poorlyerated from evolutionary search. This has generally been
defined initial specification. Discovery and the accumula-introduced where quantitative evaluation is difficult if not
tion of knowledge appertaining to problem definition andimpossible to achieve. Examples of applications include
objective preferences are prevalent in this highly dynamigraphic arts and animatidi$ims, 1994, 1991), automo-
human- or machine-based process. The following quotéive design(Graf & Banzhaf, 1995 food engineering
(Goel, 1997 relating to creative design captures these(Herdy, 1997, and database retriev&@hiraki & Saito, 199%
aspects: Such applications rely upon a human-centered, subjective
evaluation of the fitness of a particular design, image, taste,

problem formulation and reformulation are integral partsand so forth, as opposed to an evaluation developed from
of creative design. Designers’ understanding of a proban analytic model.
lem typically evolves during creative design processing. Partial human evaluation and interaction are also in evi-
This evolution of problem understanding may lead todence, for instance, user interaction relating to an evolu-
(possibly radical changes in the problem and solution tionary nurse scheduling system where a schedule model
representations. . .] in creative design, knowledge needed provides a quantitative evaluation of a solution. However,
to address a problem typically is not available in a formthe model may not prove adequate in terms of changing
directly applicable to the problem. Instead, at least somé&equirements, qualitative aspects, and so forth. In this case
of the needed knowledge has to be acquired from othethe user must add new constraints in order to generate so-
knowledge sources, by analogical transfer from a differlutions that are fully satisfactorjinoue et al., 1999 In the

ent problem for exampldg. . .] creativity in design may pharmaceutical industry, computational biology involves the

occur in degrees, where the degree of creativity may demodeling of biomolecular systems. Genetic algorithi@®4.)

pend upon the extent of problem and solution reformu-can provide the search process for the identification of

lation and the transfer of knowledge from different optimal biomolecule combinations. The process can be en-

knowledge sources to the design problem. hanced, however, by the user introduction of new combina-
tions as an elite solution into selected GA generatibesine

This paper presents a number of techniques and preet al., 1997.
cesses that support human interaction through the machine- All the above applications utilize a major advantage of
based generation of relevant, high-quality solutionstochastic population-based search techniques. This relates
information appertaining to the design problem at handto their capabilities as powerful search and exploration al-
Such information provides problem specific knowledgegorithms that can provide diverse, interesting, and poten-
which, when analyzed and processed by the designer artéhlly competitive solutions to a wide range of problems.
design team, leads to a better understanding of primary proirarmee and Bonharfl999 propose that such solutions
lem factors and a reformulation of the problem to bettercan also provide information to the user that supports a
explore perceived areas of importance. better understanding of the problem domain while helping

A brief introduction to the overall concept of interactive to identify the best direction for future investigation. This
evolution is followed by a common decision-making anal-perspective relates to human interaction when operating
ogy illustrating the manner in which problem definition, in within ill-defined and uncertain decision-making environ-
terms of variables, constraints, and objective preferencesnents in order to improve definition, increase confidence,
can change as problem-specific knowledge is accumulateénd identify direction. The role here for EC relates to ex-
An early attempt at capturing such knowledge within anploration and the gathering of optimal information from
engineering design domain relating to gas turbine bladsimple conceptual design models. Such information sup-
cooling systems is then introduced, followed by more re-ports model development by the user in an iterative, inter-
cent work where a more interactive, continuous search andctive EC environment, where the first task is to evolve the
exploration process was developed. design space before attempting to solve the problem.

The objective of this paper is to illustrate the potential of In the development of such highly interactive evolution-
interactive evolutionary processes in supporting the deary design system$EDS), EC may provide the underlying
signer during the complex problem formulation aspects osearch capability whereas other technologies, some from
conceptual design. In order to achieve this the interactiveéhe computational intelligence domain, can provide the nec-
system is described as a whole, rather than concentratingssary control, information extraction, data-processing, and
upon the finer details of single components. Such detailpresentation tasks. Perhaps overall systems could be con-
however, can be found in the referenced texts. sidered “immersive” in that the user plays an integral, cen-
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tral role in receiving optimal or interesting information from  As details of properties are gathered it will likely become
the system and analyzing such information off-line beforeapparent that the ideal solution is hard to find and the con-
introducing change in terms of the underlying model orcept of compromise becomes a reality. Hard constraints may
evaluation function. In this manner it is possible that usersoften, whereas objective preferences will constantly be dis-
experiential knowledge of a particular problem area can beussed and redefined in the light of accumulated knowl-
captured in a further evolutionary search of the redefinededge regarding districts and property availability within
design space. It is also likely that the design space fronthem. Particular characteristics of areas initially thought to
which the final solution is identified is significantly differ- be unsuitable may suddenly appear attractive. The search
ent from the initial space within which the interactive searcheffort may shift as it is discovered that such areas have
commenced. suitable properties within the preset price range. Alterna-
tively, the initial hard constraint relating to maximum price
may soften as close to ideal properties in favored locations
3. MOVING GOAL POSTS become available. Possible compromises must then be ex-
plored in an attempt to accommodate any related increased
Discovery and knowledge accumulation are aspects of prokeost.
lem solving that are common across decision making as a The whole decision-making process becomes an uncer-
whole. We can illustrate the manner in which problem spacegin mix of subjective or objective decisions as require-
change with knowledge gained in a relatively simple man-ments evolve, objectives rapidly change, and external
ner via decision-making environments familiar to mostpressures relating to time constraints begin to take prece-
(Parmee, 2001 Although unrelated to design activities, dence. At the end of the day it is quite probable that the
such environments could be seen as analogous in terms ohosen home differs significantly from the one first envis-
discovery, knowledge accumulation, problem reformula-aged. Perhaps a guest bedroom may have been sacrificed
tion, and the eventual identification of a best compromiseand the garden may be far smaller but the location is ideal.
solution. Alternatively, the route to work may be longer and more

For illustrative purposes let us therefore consider a jobtortuous but a property close to ideal at the right price in an
related relocation to a new city and the daunting problem ofup and coming neighborhood may have been found.
finding a family home. The initial investigation will likely Although seemingly simple, the overall search process is
relate to identifying appropriate districts based upon crite-highly complex. Uncertainty, compromise and problem re-
ria relating to quality of local schools; safety or security definition are inherent features. Analogies relating to de-
issues; proximity to places of work, transport, highway net-sign decision-making scenarios are apparent. Such everyday
works, shopping and leisure facilities, and so forth, plus thedecision-making scenarios can perhaps help us when devel-
average price and type of housing and the overall environeping interactive search environments that support more
ment. Other criteria relate directly to the ideal propertycomplex decision processes. The concept of unexpected dis-
such as maximum cost, number of bedrooms, garden, gaovery as the decision makers move through the search
rage, parking, and so on. Several of the above criteria wouldpace is of particular interest.
be considered hard constrairii®., maximum costin the
first instance.

The decision-making team is the family who would all
_proba_bly ratg the relative importance of th.e.above_ crlter|a4_1_ Background
in a slightly different manner and whose opinions will carry
a varying degree of influence. It is also likely that experi- There are many examples of the application of evolutionary
ence relating to former moves will play a role. A pretty computing techniques to specific design problems, the pub-
clear vision of what the ideal property will look like and lication of such applications being increasingly evident across
consist of will exist initially. A preferred location may also the spectrum of engineering journals in recent years. Such
have been identified with an initial ranking of alternative applications tend to be domain specific and generally relate
districts. to the optimization of a particular component where well-

Initial information gathering will provide quantitative and defined mathematical models of the component provide an
qualitative data relating to location from a wide variety of evaluation function(e.g., Parmee & Vekeria, 1997; Elby
sources, some reliable and some only ancdotal. Graduallgt al., 1998; Hajela, 1998; Koza et al., 1998; Olhoffer et al,
an overall picture will be established that will result in the 2000. More rarely, application has related to whole system
possible elimination of some options and the inclusion ofdesign or optimizatioke.g., Parmee, 19®% Emmerich et al.,
new possibilities. Of significant importance is the possible2000; Hillermeier et al., 2000 Significantly less research
discovery of other previously unknown locations during effort has concentrated on the higher conceptual levels of
explorative trips to those areas already identified. Such lothe design process, where problem representation and un-
cations may be considered interesting and worthy of furcertainty can cause significant difficulty in terms of the
ther investigation. design of an appropriate evaluation function. GEir898),

4. EVOLUTIONARY DESIGN SYSTEMS
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Schnier and Ger@l998, Corney(2000, and O'Reilly and  edge with evolutionary search. The details of all the above
Testa(2000 provide interesting approaches to conceptualplus associated work relating to evolutionary constraint sat-
design through the utilization of evolutionary and associ-isfaction or optimization, structural design, and systems iden-
ated adaptive techniques. tification can be found in Parme&&001).

It is within uncertain, poorly defined domains that hu- The IEDS supports a relatively continuous, iterative user
man or evolutionary process interaction has been introer evolutionary search process through the utilization of
duced, as described in Section 2. However, little of thisEC, agent-based approaches and a number of other comple-
work concerns engineering design. One related area thamentary techniques. The manner in which evolutionary
has received a great deal of attention is that of evolutionargomputing-based information gathering can support deci-
multiobjective satisfaction or optimization, in which there sion making in complex conceptual design environments is
are several examples of applications relating to uncertaintjtlustrated via an overview of the system in Section 5. A
and the development of fuzzy models. The reader is dimore detailed treatment can be found in the individual ref-
rected to Zitzler et al(2001) and Deb(200]) for applica- erenced texts.
tion examples and state of the art theory.

Aprototypg mteracpve evolutionary machine-based searcq_z_ The Qualitative Evaluation System (QES)
and exploration environment has been proposed that pro-
vides relevant problem information to the designer orThe QES strategy is an earlier attempt to provide support to
decision-making teariParmee et al., 2000; Parmee et al.,the designer when attempting to determine trade-offs be-
2001). The intention is that such information can be pro-tween both quantitative and qualitative criteria. This sup-
cessed and subsequent discussion can result in the recogpbrt utilizes a linguistic rule bas@.e., natural language
tion of similarities with other problem areas and the discoverystatements of rules generated in close collaboration with
of possible alternative approaches. Population-based ev&olls Royce turbine engineérthat resides within a fuzzy
lutionary search generates a large amount of possibly releexpert system. The rules relate to the comparative effective-
vant information, most of which may be discarded throughness of a GA-generated design solution in terms of manu-
the actions of various operators. Interactive systems sugacturability, choice of materials, and a number of special
port the capture of such information and its utilization in preferences relating to in-house capabilities. Quantitative
the subsequent reformulation of the problem through thespects of a design are combined with qualitative ratings to
application and integration of experiential knowledge. generate a measure of the overall fithess of the solutions.

It is apparent that a core activity of design decision mak-Domain knowledge concerning variable preferences and heu-
ing relates to the gathering of information concerning di-ristics is utilized and combined, using a concept of compro-
verse aspects of the problem space. It has been proposetse(Roy et al., 1996, 1996).

(Parmee & Bonham, 199%hat a primary role of evolution- The work concerns the preliminary design of gas turbine
ary machine-based search and exploration processes relatsgine cooling hole geometries. The primary objective is to
to the generation of such information. This moves the uti-minimize the mass flow through the radial cooling hole
lization of EC away from application over a set number ofpassage. A GA incorporating adaptive restricted tourna-
generations or until some convergence criteria is met. Inment selectioARTS) identifies a number of single high
stead, a more continuous exploratory process, in whiclperformance(HP) solutions from the design space. The
changes to objective weightings, variable ranges and corQES receives all the design variable values of each of these
straints based upon the information generated results in solutions as inputs and develops an overall qualitative rat-
moving, evolving problem space. ing concerning the effectiveness of the design as a whole.

Initial related research resulted in the development of ARTS is utilized to first identify a number of “good”
cluster-oriented GAGCOGAS. The objective of the COGA quantitative(i.e., minimal mass coolant flondesign solu-
approachis the extraction of relevant design information frontions. These good solutions are next evaluated by the QES,
good solutions over over HP regions of complex multi- which takes the variable values of each solution as inputs
variate problem spaces. This approach has been improveahd outputs a qualitative rating for the design. The QES has
and developed and now represents an integral component tifree components: the fuzzifier, the fuzzy inference engine,
the IEDS. Other related work concerns evolutionary con-and the defuzzifier. Designer knowledge provided by Rolls
ceptual design exploration for the identification of optimal Royce engineers is stored in a static fuzzy rule base. During
alternative system configurations through the utilization ofthe fuzzification stage each variable range is divided into
dual-agent strategies for search across mixed discrete or cofive subranges and expressed using linguistic terms. A crisp
tinuous design hierarchiéBarmee, 1996These approaches value for the effectiveness is obtained through center of
led to an initial attempt to concurrently satisfy both quanti- gravity type defuzzification.
tative and qualitative criteriathrough the integration offuzzy The knowledge base for the system is developed using
rule bases with evolutionary search. This work, althoughfuzzy rules and facts embodying qualitative aspects of the
not interactive, is briefly described in Section 4.2 to illus- design problem in terms of manufacturability, choice of
trate earlier attempts to capture and integrate designer knowtnaterials, and the designer’s special preferences. The knowl-
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edge base is presented in three categoii@grvariable  fluctuation. This can perhaps provide insight into the prob-
knowledgewhich relates to the relative importance of eachlem characteristics that aid the designer in terms of both
variable in terms of the objective functiomtravariable = modeling the system and determining preference rankings
knowledgewhich relates to preferred subsets of each varifor each criterion. For instance, if the priority is for a solu-
able’s rangdge.g., blade wall thickness needs tolbw/ in  tion that can be considered low risk in terms of possible
terms of material cost butighin terms of stress consider- problems relating to manufacturing, material, and special
ations; ancheuristics which mostly concern specific cases preferences aspects, a plane cast internal geometry can be
where there is no uncertainty concerning the conclusion. chosen. Losses relating to quantitative performance must

The inter- and intravariable knowledge is then integratedhen be made up within other areas of the turbine design to
using a concept of compromise that is implemented to reachieve a compromise. However, if quantitative perfor-
duce the severity of qualitative ratings. Intervariable knowl-mance is paramount, then a pedestal geometry that best
edge determines the degree of compromise possible on evesgtisfies preferences relating to the three qualitative criteria
variable (slight compromise, less compromise, compro-may be considered appropriate, although the robustness of
mise, and more compromise the design may suffer.

Having evaluated solutions botjuantitativelyvia the The QES provides a good indication of the relative mer-
ARTS GA process andualitativelyvia the QES, the results its of HP solutions in terms of a number of qualitative
were initially presented in textual form. However, further criteria. A possible problem area here however is the flex-
development combined quantitative and qualitative compothility of the rule base. There is a requirement for on-line
nents in a graphical manner that facilitates overall underrule changes that should be easy to implement by users
standing of the major aspects of the problem. Four solutionsvith no knowledge of fuzzy inference technologies. A high
for each of three internal cooling-hole geometriptane, degree of flexibility in terms of the representation of ob-
ribbed and pedestabre presented in Figure 1 with their jectives and their weightings is a major requirement dur-
relative quantitative fitness plainly shown by the major barsing these higher levels of the design process. It is possible
of the chart. The qualitative ratings for each solution arethat the major utility offered by the QES relates to more
then shown as a series of embedded, shaded bars. Suchaatine design tasks where problem definition is already
representation presents much information in a relativelyhigh.
transparent manner. It is apparent, for instance, that, al-
though the plane castinternal geometry provides a low quans
titative fitness, the solutions are relatively robust in terms™
of the qualitative criteria. The qualitative bars relating to The QES illustrates the manner in which qualitative criteria
the other two geometries show a much greater degree afan be combined with quantitative evaluation to provide

INTRODUCING THE IEDS STRATEGY
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Fig. 1. A graphical representation of ARTS and the QES.
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important information to support designer decision makingdancy, and the setting of appropriate variable parameter
However, it does not readily support on-line interaction.ranges. The basic structures of COGAs and the associated
The requirement for a system that supports the on-line exadaptive filter have been described in a number of papers
traction of information that can be presented to the user in &Parmee, 1998, Parmee & Bonham, 1999Their function
succinct manner, thereby supporting easily implementedelates to the rapid identification of HP regions of complex,
change, has led to an investigation of various techniquemultivariate design space. At the COGA core is an explor-
that can be combined within an overall architecture. ative GA. High levels of search space exploration are re-
The satisfaction of multiple objectivese., >10) is a  quired and were initially promoted through variable mutation
major requirement, and such objectives must be entireflCOGA regimes. More recently, the integration of various
flexible in terms of preferences or weightings to allow ad-sampling techniqgueBonham & Parmee, 1999 with the
equate exploration of the problem domain and to support £OGA strategy has improved exploratory performance. The
better understanding of the complex interactions betweeadaptive filter extracts and scales populatignsterms of
variable space and objective space. fithes9 with a continuous GA evolutionary process by only
The developed system involves a number of machineallowing solutions that lie above a filter threshold to pass
based processes that can communicate, as shown simplyiimto a final clustering set. The design exploration capa-
Figure 2. The user is an integral part of the system in achilities are well described in Parmee and Bonh@dr@99,
cepting, analyzing, and processing information from thealong with extensive discussion relating to possible inter-
system, introducing objective change via the preferenceactive utilization.
component and variable parameter and constraint changesCOGA operation within the information gathering com-
directly into the evolutionary component. The evolutionaryponent is illustrated via the preliminary design of military

component can operate in several modes: aircraft. This is a complex design domain characterized by
uncertain requirements and fuzzy objectives relating to the
1. single evolutionary process, long gestation periods between the initial design brief and

realization of the product. Changes in operational require-
ments in addition to technological advances cause a de-
mand for a responsive, highly flexible strategy in which
3. multiple coevolving processes. design change and compromise are inherent features for
much of the design period. Design exploration leading to
innovative and creative activity must be supported. The
5.1. HP region identification and ability to introduce rapid change to satisfy the many oper-
information extraction ational, engineering, and marketing considerations as they
themselves change is essential. In this case, the COGA soft-
Mode 1 relates to regional identification aspects where thevare is manipulating the BAE Systems MINICAPS model
COGAs of the information gathering component extract(Webb, 1997. This model is a much condensed version of
information relating to variable interaction, variable redun-the Computer-Aided Project Studi€SAPS suite of soft-

2. multiple individual evolutionary processes with no co-
operation, and

On-line Database -t
Rule-Based : )
Preferences Scenario
{A)
F Faolntion
Machine-Based = ['“‘*”'1"1"_1]'0[1
Agents gathering
PIOCCSSES

3
Scenario Scenario

(B)
Evolution

L]
Evolution

Y
External Agents
(Design Team)  |g

Fig. 2. A schematic of the interactive evolutionary design station.
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ware for conceptual and preliminary airframe design.fithess solutions to pass into the final clustering set. This is
MINICAPS maintains many of the characteristics of theillustrated by the wide ridge of solutions arcing from the
overall suite, especially in terms of multiple objectives. Thetop left to the bottom right of the 2-D hyperplafigig. 3(a)].
9 input variables that define the problem space can generate As filtering becomes increasingly severe in subsequent
up to 13 outputs. runs, this region becomes a narrow ridge of solutions and
Developed software allows identified HP solution clus- we gradually see the emergence of two HP regions in the
ters to be projected onto any 2-dimensiof2dD) hyper-  top left and lower right quarterfsFig. 3(b,0)]. At higher
plane of the included variables. Figure 3 illustrates thefiltering thresholds, the two specific regions of HP, A and
manner in which COGAs can be utilized to better under-B, become appareffig. 3(d)].
stand the distribution of HP solutions within a complex These examples clearly illustrate the effect of varying
high-dimensional fitness landscafiee., a landscape de- the filtering threshold. Low filtering provides the designer
scribed by multiple variable ranges and a measure of pewith maximum information relating to the general nature of
formance of all possible variable value combinatio$ie  the search space. Conversely, high filtering greatly reduces
results of consecutive independent COGA runs are showthe set cover and produces a limited number of near optimal
on 2-D hyperplanes relating to wing thickness to chord rasolutions.
tio and wing leading edge sweep angle variables. Initially, The perceived utility of this approach is that information
low adaptive filtering thresholds allow high levels of lower relating to a wide range of solutions is available during
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preliminary runs utilizing low filter settings. Regions of  The right-hand column, however, shows the correspond-
medium performance in terms of primary objectives maying distribution of HP solutions in the climb mach number
be discovered that may be considered HP if objective preferuise height hyperplane. In this case a more uniform dis-
erences change. Objectives initially considered of lessetribution of such solutions across this hyperplane is evi-
importance may become more significant if a certain pay-dent. The engineer must tread carefully when assessing
off can be achieved by adopting an alternative desigrappropriate bounds for these two variables. It was initially
approach based on solutions discovered during these egrssumed that these hyperplanes indicate low sensitivity of
ploratory runs. Such regions can therefore be presented fahe respective objectives to these variables because HP so-
design team discussion and further off-line investigationlutions are available throughout the variables' rarg@gmee
and processing. This may result in a redefinition of the& Bonham, 1999. However, further analysis of the solu-
problem and of the variables, constraints, and objectives dion distribution indicates that it is possible that the higher
the defining model. performing solutions may occupy isolated peaks within the

During collaborative work, this approach has consis-fithess landscape and could therefore be considered highly
tently been supported by practicing engineers who are vergensitive to slight perturbation of the variable values. The
aware of the possible existence of interesting solutions thadesigner in this case has the following possible options:
require further investigation, in addition to a concentration
of effort on “HP solutions” in terms of major objectives.
The COGA approach supports the identification of interest-
ing regions or solutions that the designer may wish to re-
visit and investigate in finer detail. This relates back to the
house-hunting analogy, where interesting districts may be
discovered while traveling to a favored location. In the house-
hunting case, however, search is across a 2-D plane, whereas
in terms of design, the negotiation of a complex high-
dimensional surface is necessary. This involves identifying
interesting solutions while concentrating on those objec-
tives perceived at that time to be most significant.

Upon successful identification of HP regions, local per-
turbations can be applied to the solutions defining each
region to generate further solutions, thereby improving the
regional set cover. Such perturbed solutions do not pass
through the adaptive filter, and therefore may be of rela-
tively low fitness. The standard deviation of the fitness of
all the final solutions within the region will now give an  Further research involving software agent analysis of the
indication of solution sensitivity within that region. In this variable vectors relating to the solutions of HP regions is
manner, information relating to solution robustness can beontinuing. Objectives of this analysis include agent-
accumulated to further assist the designer in the selectiogenerated advice to the user relating to possible variable
of appropriate design direction. range reduction while directing the designer to those hyper-

Another aspect of this approach relates to designer corplanes containing high-value information, that is, informa-
fidence in the preliminary design models being utilized.tion appertaining to the setting of appropriate variable bounds
The return of single HP solutions may be considered higlor relating to highly sensitive variable combinations. The
risk due to uncertainties relating to the relatively simpleoverall objective of such agent-based support is to lessen
analysis adopted by the model. The identification of simi-the load on the designer relating to the processing of infor-
larly medium- or high-performing solutions in the immedi- mation concerning multidimensional aspects of the prob-
ate neighborhood could prove reassuring. Alternatively, dem at hand.
lack of such solutions may cast doubt upon tpessibly
gér\(l)glgo%smgle solution, leading to gnglysw an_d furtherPIZ_ COGAs as multiobjective

pment or amendment of the preliminary design modelr ™" . .
: . T I information gatherers

One aspect of variable interaction is shown in Figure 4.
The left-hand column shows HP regions relating to the turriMode 2 concerns the concurrent identification of HP re-
rate and excess power, plotted in the gross wing plan aregions of the problem space relating to individual objectives
or wing aspect ratio hyperplane. These graphs plainly indiand the subsequent definition of common HP regions where
cate to the engineering designer the settings for the uppdrest-compromise solutions satisfying several objectives may
and lower bounds of the two variables for further searchbe found. Again, the COGA techniques of the information
effort. Clicking on any solution will cause its value and the gathering component are involved. Identified HP regions
variable vector associated with it to appear on the screencan be overlaid upon selected 2-D hyperplanes described

¢ Maintain the existing variable ranges of that hyper-
plane and search across the whole space described by
them in order to identify individual optimal solutions.

e Concentrate search in major areas containing the very
HP solutions.

e Select a very HP solution that lies within a preferred

subset of the variables’ ranges and accept that this so-

lution offers “the best” values for the variables. This,

in effect, transforms the two variables to fixed param-

eters, therefore reducing the dimensionality of the over-

all design space.

¢ ldentify a small grouping of very HP solutions and
radically reduce the space so that subsequent search,
in terms of the two variables, is concentrated within
this succinct region. It is possible that such a region
offers greater solution robustness due to the density of
very HP solutions.
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Fig. 4. Acomparison of a projection of results on two differing hyperplanesdpthe attained turn rate objective afig) the specific

excess power objective.

by pairs of variables selected from the set of variable papower (SEP, and ferry rangd FR), which are plotted on

rameters that describe the problem space.

the gross wing plan area or wing aspect ratio, variable pa-

Figure 5a) shows HP regions relating to three MINI- rameter hyperplane. All objectives are considered to be of
CAPS objectives: attained turn rat&TR), specific excess equal importance. No objective preferences or weightings
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Fig. 5. The identification of compromise HP regions relating through filter threshold relaxagpf.common region for ferry range
and attained turn raté®TR) has been identified but specific excess po¢&EP objectives cannot be satisfiedh) Relaxing the SEP
filter threshold allows lower fitness solutions through and boundary mdeg&urther relaxation results in the identification of a
common region for all objectives.

are introduced. As can be seen, regions relating to ATR and The technique allows the projection of objective space
FR overlap, forming a region containing HP compromiseonto variable space. This gives a visual appreciation of the
solutions. There is no mutually inclusive HP region relatinginteraction between the various objectives and supports the
to SEP, however. By returning to COGA and reducing theuser in the determination of initial preferences concerning
severity of the adaptive filter in relation to SEP solutions, their relative performance. A clear indication of the degree
the SEP region can be expanded, as shown in Figib@5 of conflict between objectives is apparent, and experimen-
until a mutually inclusive region involving all objectives is tal changes to the filtering factor relating to each objective
identified. This relaxing of the adaptive filter threshold al- can indicate the degree of difficulty likely to be encoun-
lows lower performance SEP solutions through to the finaltered upon the introduction of more definitive multiobjec-
clustering set. This could be considered equivalent to a lesgive optimization processes.

ening of the relative importance of this objectitiee., re- Current work is investigating the relationship of the so-
defining preference ranking of the objectiyes lutions within the mutually inclusive regions to the non-
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dominated solutions of the Pareto frontier. This worktion across the many possible different design variants is
indicates that a good approximation to the Pareto front isonsidered of more interest than the identification of single
contained within these regions. This approximation can b@ptimal solutions, the system should be able to support such
realized by identifying the nondominated solutions con-exploration while also suggesting the best design direction.
tained within the HP regions relating to all of the objectives. It is generally accepted that it is easier for the decision
It is stressed that this visual representation provides amaker to give qualitative ratings to objectives, that is, “Ob-
indication only. Even if mutually inclusive compromise re- jective Ais much more important than objective B,” than to
gions are apparent in all variable parameter hyperplanes, set the weighiv, of objective A to, say, 0.1 or 0.09. The
possibility still exists that such compromise regions do notmethod of fuzzy preferencé&odor & Roubens, 1994nd
exist to the extent suggested in the graphical representaaduced preference order can be utilized to introduce such
tions. This could be due to highly convoluted HP regions.rule-based preference representation for transformation into
However, solution vectors describing the regions are availappropriate objective weightings. The following predicates
able, and agent-based systems can utilize this data to che¢&vetkovic & Parmee, 200Qcan be introducedTable 1:
the validity of compromise regions across all dimensions. These, together with the complementary relationand
Such agents can then inform the designer of any possible>, can help build the relationship matriXthat is neces-
need for caution when developing assumptions from thesary for a “words to numbers” transformation. For this trans-
visual images. formation, concepts of “leaving scoréFodor & Roubens,
The aim of this work, however, is to support a better1994, among other techniques, can be employed.
understanding of objective interaction and conflict through It is first necessary for the engineer to rank the objectives
graphical representation rather than providing a succincin terms of relative importance, but numeric weightings are
and accurate representation of compromise regions or theot required. If transitivity is assumed, then the number of
Pareto frontier. In this sense, the technique again supportequired questions to establish overall preference ratings is
the generation of information pertaining to the problem atreduced. The preference algorithm has been described fully
hand, in which variables and objectives can vary as probin a number of publication&.g., Parmee et al, 200@&nd |
lem knowledge expands. The approach therefore takes into not intend to reproduce it here. Examples from the GUI
consideration the uncertainties and poor definition inherenfollow that illustrate the preference procedure. The prob-
in the utilization of preliminary design models and in the lem domain again relates to BAE Systems preliminary air-
degree of initial understanding of the problem domain. Therame design.
basic notion of “garbage in, garbage out” must be taken The user first selects those objectives that require inves-
into consideration. Much time could be spent on conducttigation. In this case, take-off distance, landing speed, FR,
ing a more definitive analysis to identify Pareto optimal and mass at take-off have been selected from a possible 13
points that prove erroneous upon the introduction of moreutputs from the MINICAPS model. Having selected the
definitive problem models. The strategy therefore indicate®bjectives, it is necessary to establish equivalence classes
a probable best way forward rather than the global solutiorthat classify them in terms of relative performance. In the
to a design problem that, at this stage, is poorly defined. example in Figure 6, two of the objectives are considered to
The flexibility of the GUI allows objectives to be in- be equally important and two further objectives are consid-
cluded or disregarded while also allowing variable rangesred to have different levels of importance. Three different
to be altered in order to support the investigation of specifidevels of importance are therefore processed.
regions and objective or variable interaction. Further The interface facilitates the on-line change of objective
machine-based support for such activity will be necessarypreferences, which allows further exploratory runs, thus
however, to avoid cognitive overload. An investigation of providing information relating to possible problem redefi-
the agent-based systems briefly described is currently adiition. A more detailed description of preference integra-
dressing this area. tion can be found in Cvetkovic and Parm@€01). Having
selected objectives, established objective preferences, and

5.3. The preference component

The techniques of the previous section support a better Unrape 1. Preference relationships
derstanding of objective interactions and of the degree of
difficulty likely to be encountered in the satisfaction of ini- Relation Intended Meaning
tial objective preferences. A highly flexible interface for
the introduction of such preferences to a more definitive

~ Is equally important

< Is less important
multiobjective search process can now be introduced. Ob- < Is much less important
jective preference relates to a ranking of importance of in- - Is not important
cluded objectives. ! Is important

# Do not know or do not care

A methodology that supports the on-line variation of de-
sign preferences has been developed. As efficient explora=
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Fig. 6. Establishing equivalence classes.

performed the machine-based words to numbers transforature of the IEDS and the associated, user-instigated
mation, the numeric weightings can be passed to the coeva@hanges to variable, objective, and constraint space would
lutionary process module described in the following sectionnecessitate the constant regeneration of such high-
dimensional Pareto surfaces. The alternative approach
5.4. The coevolutionary multiobjective approach adopted here identifies goqd compromise region; of.the
overall search space relating to a number of differing
(mode 3) o
objectives.

The preference component has been linked with core co- The distributed method involves individual GAs for the
evolutionary processes. The goal is to explore HP solutionsptimization of each objective. Search relating to an indi-
relating to several objectives while providing maximum in- vidual objective takes place on each evolutionary process.
formation concerning the following: Subsequently, through the application of penalties, the co-
evolving processes are drawn into that region of the overall
space that offers the best compromise relating to all objec-
tives and their preset preferené®armee et al., 2000, 2001
During the coevolutionary run the fitness for each objec-
e is normalized relative to the maximum and minimum
values found for each GA with constant adjustment as new

This approach is an alternative to the generation of highupper and lower limits are identified. In each generation,
dimensional trade-off surfaces comprising very large numthe variables of solutions relating to each objective are com-
bers of nondominated solutions that can be identified usingpared with those of the best individual from the other co-
standard EC-based Pareto approaches. The intention is &wolving GA populations. If a variable is outside a range
generate information that supports a better understandindefined by a range constraint map, it is adjusted by a pen-
of the multiple criteria aspects of the problem. The iterativealty function. The range constraint map reduces maximum

¢ interesting regions of complex, multidimensional, Pa-
reto surfaces;

¢ single objective optimal solutions; and

e a number of solutions that best satisfy a range of ideahv
scenarios.
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allowable distances between variables at each generatioiiustrated in Figure 7, which shows the individual evolu-
Initially, the map must allow each GA to produce a goodtion of each objective. In this case all objectives are of
solution based on its own specified objective. As the runequal importance.

progresses inflicted penalties increasingly reduce variable The machine-generated numeric weightings resulting from
diversity to draw all concurrent GA searches from theirthe preference ranking introduced by the user can now mod-
separate objectives toward a single compromise design réfy the penalties that are inflicted. A heavy penalty inflicted
gion where all objectives are best satisfied. This process igpon a much more important objective is therefore moder-
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ated in order to allow some influence upon the coevolutionPareto optimal points. The coevolutionary multiobjective
ary search, whereas such penalties on objectives of lessapproach provides the following information within one
importance may not change or may be modified to take theun of the process:

objective ranking into account. The effect of varying the

relative importance of the FR objective via the preference
component is shown in Figure&-9.

In most real decision-making situations, variables will
have differing degrees of influence on any given objective.
An on-line sensitivity analysis that ranks variables accord-
ing to their influence on each objective has been intro-
duced. This design sensitivity ranking is then used to adjust
the fitpess of.each §o|ution to ensure that the valugs of thg more in-depth description of the process with further
most mfluenual variables are within th_e range defmed bYresuIts can be found in Parmee and Wat&999.
the constraint map. Solutions are assigned the highest fit-
ness penalty in cases where their most influential variables
lie outside the current constraint map range. This ensureg, AGENT-BASED SUPPORT
that populations contain high levels of compromise solu-
tions in terms of the most influential variables and rela-The amount of information extracted from the evolutionary
tively redundant variables have little or no effect on overallprocess is potentially very large and considerable attention
solution fitness. The Taguchi method was selected to detemust be paid to the manner in which it is filtered, pro-
mine the sensitivity of each variab{®eace, 1992 cessed, and presented to the user. The utilization of agent-

Again, the concentration is upon information gatheringbased approaches was briefly introduced in previous sections;
and visual representation rather than the identification ofn addition, a range of single agentrown & Dunskus,

o HP solutions relating to the individual objectives,

e evolutionary “tracks” that trace the Pareto surface to
some extent,

¢ the bounds of a compromise region where all objec-
tives will likely be best satisfied, and

o the identification of influential and redundant vari-
ables relating to each objective.
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1995 were developed and integrated with the system. Stendesign scenarios relating to multiple objectives and ideal
mark (1999 classifies agents in a general sense as intervariable values. For instance, the designer is likely to have
face, system, advisory, filtering, retrieval, navigation, several ideal scenarios such as: “l would like objective Ato
monitoring, recommender, and profiling agents. In terms ofbe greater than 0.6 and objective C to be less than 83.5;
conceptual design and the IEDS, the following classes obbjectives B, D, and E should be maximized; variable 2
agents appear to offer utilitynterface agentswhich help  should have a value of between 128.0 and 164.5; a value
the designer deal with a system and whitdtthe designer greater than 0.32 is preferred for variable 7,” and so forth.
wishes i} hide some low-level noninteresting details from An incremental agent operates as follows:

him or her;search agentawvhich cover the process of opti-

mization, cooperation, population monitoring, jumping out 1. It uses the designer’s original preferences for both
of regions, constraint questioning, and so foritifprma- objectives and scenarios and runs the optimization
tion agentswhich deal with the information obtained, look process.

for interesting solutions and filter uninteresting ones, make 2 |f some scenarios are not fulfilled, the agent suggests
decisions with regard to what and where to explore, resolve g jncrease in the importance of these scenarios.
conflicts, and so on. These agents are described in more
detail in Cvetkoviq2000 and Parme€2001). Examples of

two particular aspects of agent utilization follow.

3. If some scenarios are still not fulfilled, even when
classed as most important, the agent suggests a change
to ideal variable ranges in the scenario.

_ ) 4. If some scenarios are still not fulfilled, the agent re-
6.1. Interesting solutions ports to the designer and asks for assistance.
Stochastic population-based search generates a mass of in-
formation, much of which is discarded. Experimental soft- Systems have also been considered that involve several
ware agents have been introduced that monitor solutionddents, eachtrying to optimize a single objective. Each agent
generated from single or coevolutionary processes and idefs aware of the quality of his or her own solution. If agent 1's
t|fy those that may be considered interesting by the deciSOlUtion is inferior and ContradiCting to Others, agent 1 should

sion maker. The notion of interesting may relate to, forcompromise and accept a worse solution to benefit the group
instance: as a whole. If agents cannot agree, the user is consulted. If

the user resolves the conflict, the agents remember the de-
¢ a good solution with a large Hamming or Euclidean qjsion for next time.
distance from the majority of the population, The incremental agent strategies have been integrated
* a good solution that may satisfy the majority of con- yith the preferences and coevolutionary multiobjective com-
straints or objectives but is not satisfactory in a few, Ofponents on an experimental basis. Both the scenario and
* a not particularly HP solution where the constituentincremental agent components sit between the designer and
variable values lie within user-preferred ranges. the preference module drawing information from both

The concept of interesting may be largely subjective,(Fig- 9. For a more detailed description of the processes
which suggests that a degree of machine learning may band initial results based upon a MINICAPS example, the
appropriate, whereby the responsible agents learn from usggader is directed to Cvetkovi2000.
reaction to possible interesting solutions presented to them.

This is an area reqL_Jiring ext_ensive further re.search; hov_v7_ CONCLUSIONS

ever, the investigation of this machine-learning aspect is

now underway with the experimental introduction of evo- The objective of the paper was to introduce the potential of
lutionary learning classifier systems to the information gath-user interaction with evolutionary design search and explo-
ering component. The perceived function of these systemsation processes. This was achieved through the presenta-
initially relates to the generation of rules relating to vari- tion of initial results from the practical implementation of a
able interaction and objective interaction. Such rules, whemrototype IEDS and related discussion. The development
presented to the user, should clarify the situation concernef the system and its individual components was described
ing various conflicts, providing a better understanding ofin detail in a number of publications, all of which are ref-
what is and what is not achievable. This work is at a veryerenced in the text. This paper presents an overview of the
early stage, but preliminary results can be found in Bullsystem, providing an illustration of the manner in which it
et al.(2002. may be utilized to support decision making during the early
stages of product design.

COGAs are introduced as information-gathering pro-
cesses that identify HP regions of a complex design space
Experimental negotiating agent systems utilizing the rule-and support the analysis of such regions by ensuring good
based preferences were established by Cvetk®e©0 solution cover across them. COGAs are now a well-
for the identification of solutions that satisfy a range of developed method, and recent developmé&dtsmham et al.,

6.2. Negotiating agents
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Fig. 9. The integration of negotiating agents for ideal scenario satisfaction.

199%, 199%) have significantly improved their perfor- involve the development and utilization of processing and
mance. The included results illustrate the capabilities of thedvising agents and a more in-depth study of front-end HCI
COGA approach, and the manner in which the results aréssues. This area has been investigated to some extent and
presented provides a very graphic illustration of the mannebasic single agents have been developed, but concentration
in which the following can be accomplished: has been on the overall development of the IEDS infrastruc-
o the variable space can be reduced by the setting otfwe anq more background mterachon ISSUES.
: . The linguistic representation approach of the preference
more appropriate variable bounds, and ol ; o o
o . odule fits in well with the utilization of coarse, prelimi-
o the decomposition of the space can be achieved througw . . : . .
. : : “hary design models. The introduction of strict numeric
the selection of particular HP or most appropriate vari- "7 . . : o
N . . . weightings would seem inappropriate when working in un-
able combinations and transforming those variables intg . . , )
. certainty and with poorly defined domains. It would be
fixed parameters. . ) . X
possible to refine the preference rule set by introducing

The identification of groupings of HP solutions can alsofurther levels of relative importance, but the degree to which
increase confidence in the validity of results from prelimi- this is necessary must be commensurate with the required
nary design models. Simple analysis of the solutions withirdegree of solution definition. Such a refinement should per-
each region can provide an indication of the nature of théhaps be gradually introduced as confidence in the problem
multidimensional surface and the sensitivity of the solu-domain increases. As it stands, the preference component
tions to mild perturbations of their constituent variables. has the potential to support further exploration of objective
COGA strategies can also provide, in a very graphicalkpace, leading to radical changes in objective ranking and
manner, information concerning relationships among sevsignificant changes in design direction.
eral differing objectives and the manner in which simple The results from the coevolutionary multiobjective pro-
changes relating to their relative importance in terms of acesses show that the methods outlined here can provide the
reduction in solution performance can reduce conflicts beuser with useful information from one run, although this
tween them. There are obvious dangers of reading too muamay comprise several evolutionary processes communicat-
into the various graphical representations, but backgrounihg via parallel virtual machinéBreshears, 1995Initially,
analysis of the generated solution vectors can eliminate suabach evolutionary process identifies HP solutions that pro-
dangers or provide cautionary warnings to the user. vide the user with an idea of the maximum achievable re-
Further COGA research is required relating to front-endsults for each objective when optimized alone. The gradual
HCI issues concerning the processing and graphical repréatroduction of penalties then draws the individual search
sentation of the extracted data. It is envisaged that this wilprocesses into a best compromise region.
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Runs that optimize two objectives can be shown to apbenefit from an appropriate interactive approach. Population-
proximately traverse the Pareto front of the feasible desigiased stochastic search can provide the level of underlying
space. Results from experimentation involving three objecnonlinear search and exploration required by an interactive
tives show the ability of the method to converge on ansystem, especially when considering ill-defined, uncertain
optimal solution by approximating a Pareto surface fromproblem domains that most likely involve multiple objec-
three different starting pointéParmee & Watson, 1999 tives(both quantitative and qualitatiyevarying degrees of
The on-line identification of sensitive variables via Taguchiconstraint, high dimensionality, and high modality. It is sug-
analysis aids the search process by ensuring that the mogésted that interaction can promote and achieve productive
important variables have the greatest influence on the disearch across a changing fithess landscape that eventually
rection of the searches as they move through the desigresults in the identification of a competitive problem solu-
space. Experimentation suggests that the on-line sensitivitijon. In this sense, the technologies can provide an excel-
analysis has a greater role to play as the number of objedent supporting role that enhances the decision maker’s
tives increases. knowledge and capabilities.

Combining the preference component with the coevolu-
tionary multiobjective processes illustrates the manner in
which the coevolutionary search focuses on significantly ACKNOWLEDGMENTS
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