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Full title: Constraint Capture and Maintenance in Engineering Design 

Abstract. The Designers’ Workbench is a system, developed by the Advanced Knowledge 

Technologies (AKT) consortium to support designers in large organizations, such as Rolls-Royce, to 

ensure that the design is consistent with the specification for the particular design as well as with the 

company’s design rule book(s). In the principal application discussed here, the evolving design is 

described against a jet engine ontology. Design rules are expressed as constraints over the domain 

ontology. Currently, to capture the constraint information, a domain expert (design engineer) has to 

work with a knowledge engineer to identify the constraints, and it is then the task of the knowledge 

engineer to encode these into the Workbench’s knowledge base (KB). This is an error prone and time 

consuming task. It is highly desirable to relieve the knowledge engineer of this task, and so we have 

developed a system, ConEditor+ that enables domain experts themselves to capture and maintain these 

constraints. Further we hypothesize that in order to appropriately apply, maintain and reuse constraints, 

it is necessary to understand the underlying assumptions and context in which each constraint is 

applicable. We refer to them as “application conditions” and these form a part of the rationale 

associated with the constraint. We propose a methodology to capture the application conditions 

associated with a constraint and demonstrate that an explicit representation (machine interpretable 

format) of application conditions (rationales) together with the corresponding constraints and the 

domain ontology can be used by a machine to support maintenance of constraints. Support for the 

maintenance of constraints includes detecting inconsistencies, subsumption, redundancy, fusion 

between constraints and suggesting appropriate refinements. The proposed methodology provides 

immediate benefits to the designers and hence should encourage them to input the application 

conditions (rationales). 

Keywords: Constraints; Application Conditions; Rationales; Capture; Maintenance; Design 
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1. INTRODUCTION 

“Knowledge management has been identified as one of the key enabling technologies for 

distributed engineering enterprises in the 21st Century. Central to the application and exploitation of 

knowledge in engineering is the engineering design process” (McMahon et al., 2004). The Advanced 

Knowledge Technologies1 project has identified six major challenges involving the acquisition, modelling, 

reuse, retrieval, publishing and maintenance of knowledge. The challenges relevant in the context of the 

work reported in this paper are knowledge acquisition and maintenance, where the knowledge here refers to 

the design rules and rationales in engineering design, represented against the domain ontology. Knowledge 

acquisition is about extracting knowledge from sources of expertise and transferring it to a knowledge base. 

Knowledge acquisition is well known to be a “critical bottleneck” in knowledge-based system (KBS) 

development. The traditional approach to knowledge acquisition is mainly an interactive process involving 

the domain expert and knowledge engineer. This approach can be tedious, time-consuming and error-prone, 

especially if the knowledge engineer is unfamiliar with the domain. Knowledge maintenance is concerned 

with making necessary changes to existing knowledge bases so that redundant and inappropriate 

information is removed. This normally involves the following activities:  

 Verification and validation of knowledge based systems: Verification and validation of the content 

of knowledge repositories is at the heart of knowledge maintenance. Verification is a process of 

ensuring that the knowledge base is consistent and complete within itself. Validation is the process 

of determining if a KBS meets its users’ requirements (Meseguer and Preece, 1995).   

 Updating/refining of knowledge bases: The challenge is to keep the knowledge repository 

functional. This may involve the regular updating/refining of content as it changes (e.g. as price 

lists are revised). But it may also involve a deeper analysis of the knowledge content. Some 

content has a considerable longevity, while other knowledge dates very quickly. If a repository of 

knowledge is to remain active over a period of time, it is essential to know which parts of the 

knowledge base must be discarded and under what conditions.  

                                                 
1Advanced Knowledge Technologies (AKT), Accessed online 29 August 2006 at http://www.aktors.org 
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 Dealing with the obsolescence of knowledge: Certain sections of the knowledge may be based on 

assumptions/conditions which later become untrue. One has to identify and shelve/remove such 

sections, when necessary. When the knowledge base is updated, a lot of redundant knowledge can 

be accumulated in the knowledge base. 

The issues faced in KB maintenance within engineering were first raised by the XCON configuration 

system at Digital Equipment Corporation (Soloway et al., 1987; Barker and O'Connor, 1989). “Initially it 

was assumed that knowledge-based systems could be maintained by simply adding new elements or 

replacing existing elements. However this simplicity proved to be illusory as indicated by the experience of 

R1/XCON. ” (Coenen, 1992).    

Engineering Design is constraint-oriented and much of the design process involves the 

recognition, formulation and satisfaction of constraints (Serrano and Gossard, 1992; Lin and Chen, 2002). 

The engineering design process has an evolutionary and iterative nature as designed artifacts often develop 

through a series of changes before a final solution is achieved. A common problem encountered during the 

design process is that of knowledge (e.g. constraint) evolution, which may involve the identification of new 

constraints or the modification or deletion of existing constraints. The reasons for such changes include 

development in the technology, changes to improve performance, changes to reduce development time and 

costs. Typically, maintenance involves various issues/problems: 

 Original experts are unlikely to be available: The transient nature of modern organizations and 

workforces, the rapid flow of knowledge and experience out of companies due to staff leaving 

make it difficult for new designers to properly use stored design knowledge and subsequently to 

maintain it. 

 Insufficient documentation provided: Several constraints may be applicable only in particular 

contexts. These contexts are often implicit to the designer formulating them but are not 

documented. Also, many constraints are based on assumptions that have become untrue 

subsequently. These assumptions are often not made explicit. 

 Maintenance is time consuming and complex: Maintenance of constraints in an engineering design 

environment is a complicated process that can be complicated and time consuming to do 
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manually. Thus there is a pressing need for tools to support maintenance of this kind of 

knowledge. 

 The evolutionary nature of constraints establishes the need to constantly update, revise, and 

maintain them. One needs to identify all the constraints that require modification. Also, one needs 

to make sure that the knowledge base is consistent after making any changes. 

Also, verification in KBSs plays a very important role. As we automate more and more processes, the need 

for verification becomes even more critical. Many automated processes perform incorrectly for a long time, 

as no person is responsible for checking the process (Hicks, 2003). As the KB evolves, constant 

addition/revision of rules can result in many redundancies. It is important to prevent or at least reduce the 

number of redundant rules in a KB. Removing/reducing the redundancy in a KB will make it easier to 

maintain the KB. Moreover design often involves the reuse and modification of past designs. For example, 

research has identified that up to 90% of all design activities are based on the variants of existing designs 

(Fletcher and Gu, 2005). Knowing the contexts in which certain design rules are applicable becomes 

extremely important for design maintenance and reuse. 

 
1.1 Constraints, Assumptions and Contexts as Design Rationales 

Constraints are continually being added, deleted and modified throughout the development of a new 

device. Design begins with a functional specification of the desired product: a description of properties and 

conditions that the product should satisfy (i.e. constraints). Constraints themselves form a rationale 

associated with the design decisions taken by designers. A typical rationale is of the form: “A component X 

exists in the design because of the need to satisfy constraint Y.” The ability to capture and use this type of 

design rationale in concurrent engineering has been referred to as Design Rationale Management by 

(Bahler and Bowen, 1992), who describe a constraint-based design advice system that generates machine-

generated suggestions to support coordination among multiple design engineers. The Designers’ 

Workbench (Fowler et al., 2004) provides similar functionality by checking if the design satisfies all the 

relevant constraints, providing details of the violated constraints and enabling the designers to resolve 

them.  

 Constraints themselves may be formulated based on a number of assumptions and may be relevant 

only in certain contexts. Designers often tend to assume “normal” situations (Brown, 2006). They tend to 
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make assumptions about the match between the current design situation and one where their chosen 

technique worked well before by assuming that some key detail is relevant or irrelevant. These assumptions 

are not deliberate, but form the tacit knowledge underlying expert skill. In order to support maintenance of 

designs it is important to make these assumptions visible. We need to find ways to capture the assumptions 

and contexts as part of the rationale associated with a constraint. We refer to this type of rationale as the 

application conditions associated with a constraint. A recent article (Hooey and Foyle, 2007) reported on 

the requirements for design rationale capture tool to support all the design phases of NASA’s complex 

systems. They stressed the need to capture the assumptions and constraints as the rationale for a given 

design element particularly in the conceptual design phase. This article describes how this information is 

rarely captured in a systematic and usable format because there are no tools that adequately facilitate and 

support the capture and use of this critical information. An example quoted in the paper is: “The minimum 

volume for the Crew Exploration Vehicle cockpit is based on an assumption of a specific crew size”. The 

above example is clearly a constraint (minimum volume for the Crew Exploration Vehicle) together with 

its application condition (specific crew size). Also, if a design element or a constraint is modified, there is 

no easy way to propagate that change to understand the implications and consequences of those changes. 

Thus it is important to capture information pertaining to when a particular section of the design knowledge 

is applicable and also enable machines to use this information to support maintenance. The following 

section describes the research aims and hypothesis of the work reported in this paper. 

 
1.2     Research Aims and Hypothesis 

Enabling domain experts to maintain knowledge in a knowledge-based system has long been an 

ideal for the knowledge engineering community (Bultman et al., 2000). This paper identifies a situation 

where it is highly desirable to eliminate the knowledge engineer from doing a laborious, error-prone and 

time-consuming task. The paper reports on a system ConEditor+ that we have developed to enable domain 

experts themselves to capture and maintain constraints. Further, we hypothesize that it is important to 

capture the assumptions and context in which a constraint is applicable in a machine interpretable format 

and that this rationale information (referred to as application conditions) together with the constraints and 

the domain ontology can be used by a machine to support the maintenance of constraints.  By supporting 

the maintenance of the constraints we mean that an explicit representation of application conditions 
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together with the constraints and the domain ontology could help a machine in reducing the number of 

inconsistencies and also in performing appropriate refinements of subsumption, redundancy and fusion 

between pairs of constraints. Design rationale systems usually capture the information in a human readable 

format. Although the information may have some structure, the information cannot be understood, 

interpreted and used by machines to provide immediate benefits to the designers. Design rationales are also 

often difficult to retrieve and hence rarely used. We aim to capture application conditions as rationales 

together with the constraints and enable the system to use this information to detect inconsistencies and 

suggest appropriate refinements between constraints. The main research question we plan to address is as 

follows: 

“Could an explicit representation of application conditions together with the constraints and the domain 

ontology help a machine in: a) reducing the number of inconsistencies and b) appropriately detecting 

subsumption, redundancy and fusion between pairs of constraints? In other words, could an explicit 

representation of application conditions together with the constraint and the domain ontology be used by 

machines to support the maintenance of constraints?” The following section describes the layout of this 

paper. 

 
1.3     Layout  

The context for the principal system reported here, ConEditor+ (Ajit et al., 2005), is the 

Designers’ Workbench which has been developed to enable a group of designers to produce cooperatively a 

component which conforms to the component’s overall specifications and the company’s design rule 

book(s). Section 2.1 provides an introduction to the Designers’ Workbench and the motivation for the 

development of ConEditor+. Section 2.2 gives an overview of the system ConEditor+. Section 2.3 

summarizes our proposed approach. Section 3 describes the conceptual design by considering the kite 

design domain. Section 4 describes the implementation of our proposed approach. We discuss the 

evaluation and results in Section 5, followed by a review of relevant work in section 6. The conclusions and 

plans for future work follow in Section 7.  
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2. CONSTRAINT CAPTURE AND MAINTENANCE IN ENGINEERING 

DESIGN: A PROPOSAL 

2.1.  Introduction to the Designers’ Workbench 

Designers in Rolls-Royce, as in many large organizations, work in teams. Thus it is important when a 

group of designers are working on aspects of a common project, that the subcomponent designed by one 

engineer is consistent with the overall specification, and with those designed by other members of the team. 

Additionally, all designs have to be consistent with the company’s design rule book(s). Making sure that 

these various constraints are complied with is a complicated process, and so we have developed the 

Designers’ Workbench which seeks to support these activities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Screenshot of the Designers’ Workbench 

The Designers’ Workbench (Figure 1) uses an ontology (Gruber, 1995) to describe the element to be 

designed. Design rules are expressed as constraints over the domain ontology. The system supports human 

designers by checking that their configurations satisfy both physical and organizational constraints. 

Configurations are composed of features, which can be geometric or non-geometric, physical or abstract. A 
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graphical interface (GUI) enables the designer to easily add new features, assign property values, and 

perform constraint checks. If a constraint is violated, the affected features are highlighted and a report is 

generated. The report gives the designer a short description of the constraint that is violated, the features 

affected by that violation, and a link to the source document. The designer can resolve the violations by 

adjusting the property values of the affected features. On selecting the affected feature from the ontology, a 

table is displayed with the corresponding properties and values. These property values can then be adjusted, 

and this usually resolves the constraint violations. More details about this system can be found in (Fowler 

et al., 2004). 

 
2.1.1.    Capturing the knowledge in the design rule book(s) 

As noted above, the Designers’ Workbench needs access to the various constraints, including 

those inherent in the company’s design rule book(s). Currently, to capture this information, a design 

engineer (domain expert) works with a knowledge engineer to identify the constraints, and it is then the 

task of the knowledge engineer to encode these into the Workbench’s KB. This is an error prone and time 

consuming task. As the constraints are explained succinctly in the design rule book(s), a non-expert in the 

field can find it very difficult to understand the context and formulate constraints directly from the design 

rule book(s), and so a design engineer has to help the knowledge engineer in this process. Most design rules 

are specified using technical drawings. Adding a new constraint into the Designers’ Workbench’s KB 

requires coding a query in  RDQL language (Seaborne, 2004), and a predicate in SICStus2 Prolog. 

It would be useful if a new constraint could be formulated in an intuitive way, by selecting classes 

and properties from the ontology, and somehow combining them using a predefined set of operators. This 

would help engineers to formulate constraints themselves and relieve the programmer of that task. This 

would also enable designers to have greater control over the definition and refinement of constraints, and 

presumably, to have greater trust in the results of the constraint checking process. This led to the 

development of a system, called ConEditor+, which enables a domain expert to capture and maintain 

constraints. ConEditor+ is explained further in the next section. 

                                                 
2Swedish Institute of Computer Science, version 3.10, Accessed online 29 August 2006 at                                         
  http://www.sics.se/sicstus/  
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2.2.    ConEditor+ 

ConEditor+ has been designed to enable domain experts to capture and maintain constraints.  

ConEditor+’s graphical user interface (GUI) is shown in Figure 2. A constraint expression can be created 

by selecting entities from a domain ontology and combining them with a pre-defined set of keywords and 

operators from the high level constraint language, CoLan (Bassiliades and Gray, 1995; Gray et al., 2001). 

CoLan has features of both first-order logic and functional programming. CoLan is designed to enable 

scientists and engineers to express constraints. 

 

Figure 2. Screenshot of ConEditor+ 

An example of a simple constraint expressed in CoLan, against a domain ontology (a jet engine 

ontology) used by the Designers’ Workbench is as follows3: 

constrain each f in ConcreteFeature to have max_operating_temp(has_material(f)) >= operating_temp(f) 

                                                 
3 The naming convention of the properties defined in the domain ontology could be changed appropriately to make 

the constraint more readable. As an example, the constraint above could be expressed alternatively as: 
constrain each f in ConcreteFeature to have max_operating_temp_of(material_of(f)) >= operating_temp_of(f) 
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The above constraint states that for every instance of the class Concrete Feature, the value of the maximum 

operating temperature of its material must be greater than or equal to the environmental operating 

temperature. Let us now look at how the example constraint stated above can be formulated using 

ConEditor+.  

ConEditor+’s GUI (Figure 2) essentially consists of six components, namely:  

(A) Keywords Panel: The keywords panel consists of a list of keywords from the CoLan language. In the 

example considered, the keywords constrain each, in, to have are selected from this panel. A single mouse 

click on a keyword appends it to the text area in the result panel. Alternatively, clicking the “Add” button, 

after selecting the keyword from the panel, appends the keyword to the text area in the result panel. 

(B) Menu Bar: The menu bar contains a list of menus and submenus with operations for loading, editing, 

deleting, searching, saving constraints and performing syntax checks. 

(C) Functions Panel: The functions panel consists of six buttons (‘Erase’, ‘Create Table’, ‘Submit’, 

‘Query’, ‘Open’, ‘Save’) that can be clicked to perform some of the frequently used operations from the 

menu bar.  

(D) Taxonomy Panel: The taxonomy panel lists all the top level classes (i.e. classes having its parent as 

“Thing” in OWL ontology) in the domain ontology together with their subclasses, properties (both object 

and datatype), and properties of the range classes as a taxonomy.  Each class or object property can be 

expanded by a double mouse click to list all the subclasses and properties below it in the taxonomy. Nodes 

represented by letter ‘P’ denote properties while the remaining nodes denote classes. Selecting a node using 

the mouse and clicking the “Add” button appends the entity represented by the node to the constraint 

expression being formed in the result panel. In the example considered, the entities “Concrete Feature”, 

“max_operating_temp”, “has_material” and “operating_temp” are selected from this panel. 

(E) Tool Bar: The tool bar displays the operators (arithmetic, relational and logical) and delimiters. In the 

example considered, the operator ‘>=’ and the delimiters ‘(’, ‘)’ are selected from the tool bar. Again, a 

single mouse click on the selected operator appends the operator to the text area in the result panel. 

(F) Result Panel: The result panel consists of a text area, displaying the constraint expression formulated by 

the user and any output messages (e.g. syntax error message) from ConEditor+. This panel consists of two 
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tabs: namely, the “Edit Area” and the “Console” that displays the constraint expression formulated by the 

user and the output messages from the system respectively. 

ConEditor+ provides a mechanism to input constraints in the form of tables too. When a constraint is 

modified and saved, ConEditor+ normally stores the modified constraint as a new version along with the 

original constraint. The rationale for storing different versions of a constraint is to enable designers to study 

the constraint evolution (Goonetillake and Wikramanayake, 2004). Each constraint is allocated a unique 

identification number (ID) that includes its version number. The system provides facilities to retrieve 

constraints using keyword-based searches e.g., search and retrieve all the constraints containing the 

specified keyword(s) or the constraint associated with a specified ID. 

2.3.    Proposed Approach 

Due to restricted availability of Rolls-Royce designers and because it is a simpler domain, we used 

the kite domain for our initial study (Yolen, 1976; Streeter, 1980; Eden, 1998; AKA, 2006; CEKS, 2006; 

Leigh, 2006; Lords, 2006; Wardley, 2006). For a successful kite design, one has to make sure that the 

design complies with all the appropriate rules/constraints.  

 

Figure 3. Basic Parts of a Flat Diamond Kite 

Figure 3 shows the diagram of a flat diamond kite with all its basic parts. Consider the following 

constraint together with its application condition: 
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Constraint – “The density of the cover material of the kite must be greater than 0.5 ounce per square inch.” 

Application condition – “This is applicable only when there is a requirement to produce low cost kites for 

beginners. Kites for experts have lighter materials that are of higher quality and hence costlier.” 

      As shown in the example above the application condition specifies the context in which the 

constraint is applicable. We believe that it is important to make the application conditions explicit so that it 

can be used to apply constraints appropriately and also be used in the reuse and maintenance of constraints.  

Often, the information of application conditions is implicit to the person who formulates the constraint. The 

assumptions/conditions on which a constraint is based may no longer be true and in such cases, it becomes 

necessary to deactivate or remove those constraints from the KB.  

 Although design rationales can provide a lot of information about the reasoning involved in 

making a design decision, rationales are extremely hard to collect mainly because the process is very 

intrusive and requires a lot of the designers’ time. If rationales are useful to the designers, there is a greater 

incentive for designers to assist in the capture of the information, particularly if the designer who is 

recording it can immediately use the rationale. As (Grudin, 1996) and (Brown, 2006) have pointed out, 

there cannot be a disparity between who invests effort in a groupware system, and who benefits. No 

designer can be expected to altruistically enter quality design rationale solely for the possible benefit of a 

possibly unknown person at an unknown point in the future for an unknown task. There must be immediate 

value. In addition, knowing how the information will be used provides guidance about what information 

should be captured and how it should be represented. Thus, it is important to concentrate on the immediate 

use of such information (Burge and Brown, 2003). Representation of the rationales in a machine 

interpretable form would enable systems to use them together with the constraints and the domain ontology 

to detect inconsistencies, redundancy, subsumption, fusion and suggest appropriate refinements between 

constraints. 

 Our proposed approach is to capture the application conditions together with the constraint and 

use that information together with the domain ontology to support the maintenance of constraints. In order 

to tackle the various maintenance issues/problems effectively, our proposed solution is summarized as 

follows: 
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 Capture the assumptions and context of each constraint, in a machine interpretable form, as an 

application condition (rationale) 

 Use the application condition together with the constraint and the corresponding domain ontology 

to detect inconsistencies, redundancies, subsumptions and fusions between constraints and suggest 

appropriate refinements (described in greater detail in Section 3). 

The following two sections describe the conceptual design and implementation of our proposed approach 

with examples.   

3. CONCEPTUAL DESIGN 

ConEditor+ captures both the constraints and the application conditions in the same language, 

CoLan. Representation of a sample constraint with its application condition in CoLan is shown below: 

constrain each k in Kite such that has_type(k) = “Flat” and has_shape(k)  = “Diamond”                             

to have tail_length(has_tail(k)) = 7 * spine_length(has_spine(k)) 

In the above constraint, the application condition (in italics) is introduced by the clause “such that”. This 

constraint states that “For every instance of the class Kite, when the type of the kite is flat and shape of the 

kite is diamond, the length of the tail of the kite needs to be seven times the length of the spine of the kite”. 

In order to make it clearer, we divide a constraint represented in CoLan into three parts namely antecedent, 

application condition and consequent. Thus, a constraint is represented by the following general structure: 

constrain each x1 in C1

                  each x2 in C2                 (Antecedent)           

…………….       

such that P1 (x1) 

                       P2 (x2)                 (Application Condition)     

          …………….           

    to have R1 (x1)  

                  R2 (x2)                   (Consequent) 

        …………….            

     The representation of the CoLan constraint described above, in first-order logic, is as follows: 
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∀ k [(Kite(k) ^ (has_type(k) = “Flat”) ^ (has_shape(k) = “Diamond”)) → (tail_length(has_tail(k)) = 7 * 

spine_length(has_spine(k)))] 

A constraint in CoLan, in general, can be represented by a first order-logic sentence as: 

S ≡ ∀ x1,….xn [(C1(x1) ^ …..^ Cn(xn) ^ P1(x1,….xn) ^   …..^ Pm(x1,….xn)) → R(x1,….xn)] 

where S is a sentence; x1,….xn are variables; C1,… Cn are classes; P(x1,….xn), Pm(x1,….xn), R(x1,….xn) 

represent predicates/properties. 

There are a number of ways in which we can use the information inherent in application 

conditions together with the constraint and the associated ontology to enable the maintenance of 

constraints. We propose four main types of knowledge refinement rules namely, redundancy, subsumption, 

contradiction and fusion between pairs of constraints. These rules are applied between all possible pairs of 

constraints. The knowledge refinement rules are described below with examples from the kite domain.  A 

formal notation in first-order logic for each knowledge refinement rule together with the logical proof can 

be found in (Ajit, 2008). 

 
3.1. Redundancy 

(a) Duplication 

(i) constrain each c in ConventionalSledKite such that has_level(c) = “beginner”                   

to have density(has_material(has_cover(c))) < 0.5 

(ii) constrain each c in ConventionalSledKite such that has_level(c) = “beginner”                   

to have density(has_material(has_cover(c))) < 0.5 

By comparing the two constraints above, one can infer that the constraints (i) and (ii) are identical.  

 
(b) Class Equivalence 

(iii) constrain each c in ConventionalSledKite such that has_level(c) = “beginner”                   

to have density(has_material(has_cover(c))) < 0.5 

(iv) constrain each t in TraditionalSledKite such that has_level(t) = “beginner”                   

           to have density(has_material(has_cover(t))) < 0.5 

As ConventionalSledKite is an equivalent class to TraditionalSledKite in the domain ontology, one can 

infer that the constraint (iii) is equivalent to constraint (iv). 
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(c) Property Equivalence 

(v) constrain each c in ConventionalSledKite such that has_level(c) = “beginner”                   

to have density(has_material(has_cover(c))) < 0.5 

(vi) constrain each c in ConventionalSledKite such that has_class(c) = “beginner”                   

to have density(has_material(has_cover(c))) < 0.5 

As has_level is an equivalent property to has_class in the domain ontology, one can infer that the constraint 

(v) is equivalent to constraint (vi). 

ConEditor+ reports all such redundancies to the domain expert and suggests that they be removed. 

 
3.2. Subsumption 

(a) Subsumption via sub-class: 

(vii) constrain each s in SledKite such that has_size(s) = “standard”                    

to have kite_line_strength(has_kite_line(s)) >= 15  

(viii) constrain each c in ConventionalSledKite such that has_size(c) = “standard”                    

to have kite_line_strength(has_kite_line(c)) >= 15 

As ConventionalSledKite is a subclass of SledKite in the domain ontology, one can infer that the constraint 

(vii) subsumes constraint (viii). The domain expert is notified of this fact and ConEditor+ suggests that the 

domain expert considers removing or deactivating constraint (viii).  

 
(b) Subsumption via application condition 

(ix) constrain each s in SledKite such that has_size(s) = “standard” or has_size(s) = “large”                                            

  to have kite_line_strength(has_kite_line(s)) >= 15 

(x) constrain each s in SledKite such that has_size(s) = “standard”                   

to have kite_line_strength(has_kite_line(s)) >= 15  

 By comparing the two constraints above, one can infer that the constraint (ix) subsumes constraint (x). The 

domain expert is notified of this fact and ConEditor+ suggests that the domain expert considers removing 

or deactivating constraint (x). 
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(c) Subsumption via conjunction 

(xi) constrain each s in SledKite such that has_size(s) = “standard”  

to have kite_line_strength(has_kite_line(s)) >= 15 and has_cord_length(s) > 21  

(xii) constrain each s in SledKite such that has_size(s) = “standard”                   

to have kite_line_strength(has_kite_line(s)) >= 15  

Again, one can infer that the constraint (xi) subsumes constraint (xii). The domain expert is notified of this 

fact and ConEditor+ suggests that the domain expert considers removing or deactivating constraint (xii). 

 
3.3. Contradiction 

(xiii) constrain each k in Kite such that has_type(k) = “stunt”                   

to have kite_line_strength(has_kite_line(k)) > 30 

(xiv) constrain each k in Kite such that has_type(k) = “stunt”                   

to have kite_line_strength(has_kite_line(k)) < 25 

By comparing the two constraints above, one can infer that the constraint (xiii) contradicts constraint (xiv). 

The domain expert is notified of this fact and ConEditor+ suggests that the domain expert takes an 

appropriate action (modify/delete).   

 

3.4. Fusion 

(a) Fusion via class 

(xv) constrain each c in ConventionalSledKite such that has_wind_condition(c) = “moderate”                   

to have has_bridle_attachment_angle(c) < 40 

(xvi) constrain each m in ModernSledKite such that has_wind_condition(m) = “moderate”                   

to have has_bridle_attachment_angle(m) < 40 

If ConventionalSledKite and ModernSledKite are the only two subclasses of SledKite in the domain 

ontology and if every instance of SledKite is an instance of either ConventionalSledKite or ModernSledKite 

then the constraints (xv) and (xvi) can be fused together and replaced by the constraint (xvii) as follows: 

(xvii) constrain each s in SledKite such that has_wind_condition(s) = “moderate”                   

to have has_bridle_attachment_angle(s) < 40 
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(b) Fusion via application condition 

(xviii) constrain each j in JapaneseKite such that has_wind_condition(j) = “strong”                   

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j)) 

(xix) constrain each j in JapaneseKite such that has_type(j) = “stunt”                   

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j)) 

The constraints above can be fused together by using “or” between the application conditions, i.e., the 

constraints (xviii) and (xix) can be fused together and replaced by the constraint (xx) as follows: 

(xx) constrain each j in JapaneseKite such that has_wind_condition(j) = “strong” or  

has_type(j) = “stunt” to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))    

 
(c) Fusion via conjunction 

(xxi) constrain each j in JapaneseKite such that has_wind_condition(j) = “strong”                   

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j)) 

 
(xxii) constrain each j in JapaneseKite such that has_wind_condition(j) = “strong”                   

to have kite_line_strength(has_kite_line(j)) >= 15 

The constraints above can be fused together by using “and”, i.e., the constraints (xxi) and (xxii) can be 

fused together and replaced by the constraint (xxiii) as follows: 

(xxiii) constrain each j in JapaneseKite such that has_wind_condition(j) = “strong”                 

to have has_bridle_point_distance(j) > 3 * surface_area(has_cover(j)) and 

kite_line_strength(has_kite_line(j)) >= 15 

In all cases, ConEditor+ makes suggestions but allows the domain expert to decide on what action, if any, 

to take. In all the examples above, we have considered universally quantified constraints involving a single 

variable; these types of expressions are common in our knowledge base. However, more complex first-

order logic expressions involving existential quantifiers and many variables or a combination of both 

existential and universal quantifiers can also be expressed in CoLan using ConEditor+.  

Thus, we have described four main types of knowledge refinement rules among constraint pairs 

with all the refinements (except contradiction) having sub-types:  (1) Redundancy: (a) duplication (b) class 
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equivalence (c) property equivalence (2) Subsumption: (a) via subclass (b) via application condition (c) via 

conjunction (3) Contradiction (4) Fusion: (a) via class (b) via application condition (c) conjunction.  

      Knowledge refinement rules can be combined and applied together to a pair of constraints. For an 

example, consider the following constraints:  

(E1) constrain each s in SledKite such that has_type(s) = “stunt” or  

has_wind_condition(s) = “strong”                                    

to have kite_line_strength(has_kite_line(s)) > 30 

(E2) constrain each c in ConventionalSledKite such that has_type(c) = “stunt”                   

to have kite_line_strength(has_kite_line(c)) < 25 

By comparing the constraints (E1) and (E2), we have: 

(a) ConventionalSledKite is a subclass of SledKite in the domain ontology.  

(b) The application condition of constraint (E2) is subsumed by the application condition of constraint (E1). 

(c) The consequent of constraint (E1) contradicts the consequent of constraint (E2).  

Hence, one can infer that the constraint (E1) contradicts constraint (E2) and makes the KB 

inconsistent. The domain expert is notified of this fact and ConEditor+ suggests that the domain expert 

takes an appropriate action (modify/delete). In the example above, we have applied a combination of the 

following knowledge refinement rules: (a) Subsumption via subclass (b) Subsumption via application 

condition (c) Contradiction. ConEditor+ applies such combinations of knowledge refinement rules to detect 

inconsistencies and suggest appropriate refinements among constraint pairs. ConEditor+’s algorithm to 

determine the order in which refinement rules are applied, is outlined below: 

       Consider a pair of constraints A and B. Let the antecedents be represented by ANa and ANb, 

application conditions by ACa and ACb, consequents by Ca and Cb for constraints A and B respectively.  

Step 1: Check for redundancy (whether A is identical to B):  

             If ANa not equal/equivalent to ANb then go to step 2a. 

             If ACa not equal/equivalent to ACb then go to step 2a. 

             If Ca equal/equivalent to Cb then conclude redundancy, notify user (domain expert), suggest  

             refinement action(s) and exit. 

Step 2a: Check for subsumption (whether A subsumes B): 
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              If ANa not equal/equivalent/subsumes ANb then go to step 2b. 

              If ACa not equal/equivalent/subsumes ACb then go to step 2b. 

              If Ca equal/equivalent/subsumes Cb then conclude subsumption, notify user (domain expert),  

              suggest refinement action(s) and exit. 

Step 2b: Check for subsumption (whether B subsumes A): 

              If ANb not equal/equivalent/subsumes ANa then go to step 3a. 

              If ACb not equal/equivalent/subsumes ACa then go to step 3a. 

              If Cb equal/equivalent/subsumes Ca then conclude subsumption, notify user (domain expert),  

              suggest refinement action(s) and exit. 

Step 3a: Check for contradiction (whether A contradicts B): 

              If ANa not equal/equivalent/subsumes ANb then go to step 3b. 

              If ACa not equal/equivalent/subsumes ACb then go to step 3b. 

              If Ca contradicts Cb then conclude contradiction, notify user (domain expert),  

              suggest refinement action(s) and exit. 

Step 3b: Check for contradiction (continued): 

              If ANb not equal/equivalent/subsumes ANa then go to step 4a. 

              If ACb not equal/equivalent/subsumes ACa then go to step 4a. 

              If Ca contradicts Cb then conclude contradiction, notify user (domain expert),  

              suggest refinement action(s) and exit.. 

Step 4a: Check for fusion (whether A and B can be fused): 

              If ANa not equal/equivalent to ANb then go to step 4c. 

              If ACa not equal/equivalent to ACb then go to step 4b. 

              Conclude that fusion is possible, notify user (domain expert),  

              suggest refinement action(s) and exit. 

Step 4b: Check for fusion (continued): 

              If Ca not equal/equivalent to Cb then exit. 

              Conclude that fusion is possible, notify user (domain expert),  

              suggest refinement action(s) and exit.. 
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Step 4c: Check for fusion (continued): 

              If ACa not equal/equivalent to ACb then exit. 

              If Ca not equal/equivalent to Cb then exit. 

              If ANa can be fused with ANb [using Rule 4 (a)] then conclude that fusion is possible, notify user    

              (domain expert), suggest refinement action(s) and exit. 

 

Figure 4. Domain ontology of kites developed in Protégé 

 

4.    IMPLEMENTATION 

ConEditor+ is implemented in the Java programming language. The domain ontology in the Web Ontology 

Language (OWL) (McGuinness and Harmelen, 2004) was developed using Protégé (Noy et al., 2000) and 

parsed using Jena (Seaborne, 2004). Figure 4 shows the domain ontology developed for the kite domain 

using the Protégé editor. ConEditor+ converts the ontology in OWL into an equivalent P/FDM Daplex 

schema using a transformation program developed in Java. This conversion is currently required as we 
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have used an already existing constraint language (CoLan) that was developed for databases (Bassiliades 

and Gray, 1995; Gray et al., 2001). A transformation program to convert a XML DTD specification into 

Daplex schema has been implemented previously in (Selpi, 2004). The Daplex schema is used by the 

Daplex compiler within ConEditor+ to compile constraints in CoLan and detect any syntactic errors. The 

Daplex Schema is also used by a translator developed in Prolog to convert the constraints in CoLan into a 

semantic web4 enabled XML constraint interchange format (CIF) (Gray et al., 2001). ConEditor+ uses this 

machine interpretable format (CIF) to detect inconsistencies (contradictions) and to suggest various ways to 

refine (fuse constraints, eliminate redundancies and subsumptions) the knowledge base prior to constraint 

solving. ConEditor+ performs a static comparison of all possible pairs of constraint expressions, i.e. 

ConEditor+ compares constraints at the syntactical level, rather than comparing the solution sets. So 

ConEditor+ is comparing pairs of constraints of the form e.g. P(x1, x2) & Q(x1,x3,a) and P(x1, x2) & 

Q(x1,x3,b) - and by looking at the values of the constants (a, b), and the structure of the predicates (P, Q), 

working out that there is an inconsistency, subsumption, redundancy or fusion. Comparison of all possible 

pairs of constraints results in time complexity of O(n2) . Further, in each comparison, all the terms in one 

constraint are compared with all the corresponding terms in another constraint. Hence the complexity of 

each comparison is O(n2). Comparison of all possible pairs of constraints is sufficient (or complete) for 

detecting (i) Redundancy and (ii) Subsumption. This is explained as follows: 

 
(i) Redundancy 

Consider ‘n’ constraints, namely, S1, S2, ……., Sn.  Let us assume S1≡ S2≡ …….≡ Sn, i.e., redundancy 

exists between all the n constraints. By comparing all possible pairs of constraints, ConEditor+ detects the 

following nC2 cases: S1≡ S2, S1≡ S3, ……, S1≡ Sn, S2 ≡ S3, …… S2 ≡ Sn,….,Sn-1 ≡ Sn.  One can infer from the 

above nC2 cases that redundancy exists between all ‘n’ constraints. Moreover, when the domain expert 

eliminates redundancy in each of the nC2 cases, redundancy between all the ‘n’ constraints are eliminated.  

 
 
 
 
 
                                                 

4 The semantic web is an evolving extension of the world wide web in which web content can be expressed in a 
form that can be understood, interpreted and used by computers to find, share and integrate information more easily. In 
(Berners-Lee et al., 2001). 
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(ii) Subsumption  

The principles described above in (i) apply in (ii) too. Consider ‘n’ constraints, namely, S1, S2, ……., Sn.  

Let us assume S1 subsumes {S2, S3,…, Sn}, i.e., one constraint subsumes all the other n-1 constraints (n>2). 

By comparing all possible pairs of constraints, ConEditor+ detects the following nC2 cases: S1subsumes S2, 

S1 subsumes S3, ……, S1 subsumes Sn. One can infer from the above nC2 cases that S1 subsumes {S2, S3,…, 

Sn}. Moreover, when the domain expert eliminates subsumption in each of the nC2 cases, all cases of 

susbumption are eliminated.  

However, comparison of all possible pairs of constraints is insufficient (or incomplete) for detecting (iv) 

Inconsistency and (v) Fusion. This is explained as follows: 

 
(iv) Inconsistency  

Consider ‘n’ constraints, namely, S1, S2, ……., Sn. Let us assume ∀x {S1: P(x) < Q(x), S2: Q(x) < R(x),..…, 

Sn: R(x) < P(x)}, where x ∈ C, C is a class in the domain ontology, Q and R are properties in the domain 

ontology. By comparing S1, S2 and Sn, one can infer that there exists an inconsistency between them. This 

kind of inconsistency cannot be detected by comparing all pairs of constraints. 

 
(v) Fusion  

Consider ‘n’ constraints, namely, S1, S2, ……., Sn.  Let us assume S1, S2, ……., Sn  , could be fused into a 

single constraint S by applying the rule of fusion via class to ‘n’ constraints, where n>2. This kind of fusion 

cannot be detected by comparing all pairs of constraints.  

The reasons/justification for comparing only pairs of constraints in ConEditor+ are as follows: 

(a) Comparison of all constraints (more than pairs) is more complex and substantially increases the 

complexity of the algorithm, especially, when we consider an arbitrary number of first-order logic 

expressions. We plan to investigate this issue as part of the future work. 

(b) Moreover, the main aim of our research work is to demonstrate the usefulness of design rationales 

(application conditions) in the maintenance of constraints. The research aims and hypothesis have 

been specified in Section 1.2 in more detail.  Details of the experiments conducted to evaluate our 

research work are provided in the following section. 
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5.    EVALUATION  

This section is divided into three parts: Section 5.1 describes a preliminary evaluation done at 

Rolls-Royce, Derby; Section 5.2 describes two experiments: Experiment 1 to address the main research 

question of our work and Experiment 2 to test the usability of ConEditor+; Section 5.3 describes an 

evaluation done to strengthen our claims by applying our proposed approach to an additional domain, 

consisting of a more demanding KB.  

 
5.1  Preliminary Evaluation 

We performed a preliminary evaluation of ConEditor+ at Rolls-Royce, Derby. The main aim of 

this experiment was to determine whether the designers at Rolls-Royce would consider using ConEditor+ 

to capture design rules as constraints. A demonstration by one of the investigators (Suraj Ajit) was given to 

a group of five design engineers at Rolls-Royce. The demonstration involved the following phases:  

 
Phase 1: Presenting the constraint as in the rule book i.e. as a mixture of textual and graphical information  

The English rendering of the constraint is: 

Bolted joints must conform to the formula 

Nmin = PCD + 2*M + Max. Nut Width 

where Nmin = trap diameter of the flange, PCD = pitch circle diameter of flange and 150.0<PCD<=180.0, M 

= gap in the flange = 0.5.  

 
Phase 2: Expressing the constraint in CoLan 

This constraint was expressed in CoLan by the investigator and discussed with the Rolls-Royce designers: 

constrain each j in Bolted Joint such that has_nut(j) is a Captive Nut and 

dimension(pcd(has_flange(j))) > 150.0 and dimension(pcd(has_flange(j))) <= 180.0            

and is_internal(has_flange(j)) to have gap(has_flange(j))= 0.5                       

and trap_diameter(has_flange(j)) = dimension(pcd(has_flange(j)) + 2 * gap(has_flange(j)) + 

dimension(captive_nut_width(has_nut(j)) + tolerance(captive_nut_width(has_nut(j))) 
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Phase 3: Formulating the constraint using ConEditor+ 

In the final stage of the demonstration, the CoLan expression was input to ConEditor+ by the investigator 

together with a description of the usage of ConEditor+’s GUI.  

The design engineers were then asked to comment on ConEditor+ and, in particular, whether they would 

consider using ConEditor+ to capture design rules. The design engineers reported that they found 

ConEditor+ simple, user-friendly and intuitive to use.  However, they reported that they would need some 

training before they could actually perform phases 2 and 3 unsupported. They also made the general point 

that the company has a Design Standards group that has the responsibility for creating and maintaining the 

company-wide rule book(s). They would expect this group to use systems such as ConEditor+ to formulate 

constraints. The designers would then subsequently use the information either in the current form or in a 

Designers’ Workbench-like environment.  

 
5.2 Experiments 

Following the preliminary evaluation, two experiments were conducted and the details of these 

experiments are given below.  

Experiment 1:  

The aim of this experiment was to address the following research question: 

Could an explicit representation of application conditions together with the constraints and the domain 

ontology help a machine in: a) reducing the number of inconsistencies and b) appropriately detecting 

subsumption, redundancy and fusion between pairs of constraints?  

We studied the kite design domain and captured constraints together with the corresponding application 

conditions (rationales). We ran an experiment with ConEditor+ using: (I) KB1 containing 15 constraints 

together with their application conditions, (II) KB2 containing the same constraints without any application 

conditions.  The reader is encouraged to refer (Ajit, 2008) for the complete list of constraints and the 

corresponding application conditions that have been captured from the kite design domain. 

Results: For KB1, ConEditor+ detected 3 subsumptions, 0 contradictions, 3 redundancies and 2 cases of 

fusion between pairs of constraints. For KBB2, ConEditor+ detected 2 subsumptions, 5 contradictions, 3 

redundancies and 4 cases of fusion between pairs of constraints. For KB2, it is evident that the absence of 
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application conditions caused a number of inconsistencies (5 contradictions), and also, ConEditor+ 

suggested a number of inappropriate refinements. This is explained further below: 

For example, let us consider two KBs, namely, A and B containing the following constraints: 

KB A (with application conditions): 

(i) constrain each k in Kite such that has_level(k) = “beginner”                   

to have density(has_material(has_cover(k))) < 0.5 

(ii) constrain each k in Kite such that has_level(k) = “advanced”                   

to have density(has_material(has_cover(k))) > 1.0 

KB B (without application conditions): 

(iii) constrain each k in Kite to have density(has_material(has_cover(k))) < 0.5 

(iv) constrain each k in Kite to have density(has_material(has_cover(k))) > 1.0 

As shown above, the KB A contains two constraints [(i) and (ii)] with the corresponding application 

conditions. The KB B contains the same pair of constraints [(iii) and (iv)] without the corresponding 

application conditions. For KB A, ConEditor+ does not detect any inconsistency. For KB B, ConEditor+ 

detects a contradiction between the two constraints [(iii) and (iv)]. Hence, it can be concluded that the 

absence of application conditions could cause inconsistencies between constraints. Also, this can cause 

ConEditor+ to suggest inappropriate refinements as shown below: 

For example, let us consider two KBs, namely, C and D containing the following constraints: 

KB C (with application conditions): 

(v) constrain each d in Delta_kite such that has_level(d) = “beginner”                   

to have bridle_length(has_bridle(d)) > 3 * has_height(d) 

(vi) constrain each d in Delta_kite such that has_wind_condition(d) = “strong”                   

to have kite_line_strength(has_kite_line(d)) > 90  

KB D (without application conditions): 

(vii) constrain each d in Delta_kite to have bridle_length(has_bridle(d)) > 3 * has_height(d) 

(viii) constrain each d in Delta_kite to have kite_line_strength(has_kite_line(d)) > 90  



Constraint Capture and Maintenance in Engineering Design              27 
 

Again, we have considered two KBs C and D, with and without application conditions respectively. For KB 

C, ConEditor+ does not suggest any refinement. For KB D, ConEditor+ inappropriately suggests that the 

two constraints [(vii) and (viii)] be fused and replaced by the constraint (ix): 

(ix) constrain each d in Delta_kite to have bridle_length(has_bridle(d)) > 3 * has_height(d) and 

kite_line_strength(has_kite_line(d)) > 90 

Conclusion: One can infer from the results of experiment 1 and the examples described above that an 

explicit representation of the application conditions together with the constraint reduced the number of 

inconsistencies and also prevented ConEditor+ from suggesting inappropriate refinements. 

 
Experiment 2:  

The aim of this experiment was to determine the usability of ConEditor+. In particular, we aimed to seek 

answers for the following main questions (Rubin, 1994; Dumas and Redish, 1999; Barnum, 2002): 

a) Could the subjects successfully perform the allocated tasks within the time benchmark? 

b) Did the subjects perform the tasks accurately? What kind of mistakes did the subjects make (if 

any)? Could the GUI be modified to eliminate or minimize these errors? 

c) How easy and intuitive did the subjects find the system to use? 

A demonstration was given by the developer of ConEditor+ to each of the five subjects (two mechanical 

engineering research students, two computer science research students and one computer science research 

fellow) individually. The demonstration was given using instructions from a script to maintain consistency 

and consisted of the following main tasks: description of all the features of ConEditor+ ; a walkthrough of 

the process of converting a sample constraint in English to CoLan, inputting the CoLan constraint using 

ConEditor+, eliminating syntactic errors and performing appropriate refinements (redundancy, 

subsumption, contradiction, fusion). Each subject was then asked to perform the following tasks: 

Task 1: The following constraint was presented in English and CoLan. 

English: “Every standard sized or stunt type Sled Kite must have a kite line with strength greater than or 

equal to 15 units” 

CoLan: 

constrain each s in SledKite such that has_size(c) = “standard”   or  has_type(s) = “stunt”               

to have kites_line_strength(has_kite_line(c)) >= 15 
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The subject was asked to input the above constraint in CoLan using ConEditor+. 

Task 2: ConEditor+ already consisted of a constraint (shown below) in its KB that was subsumed by the 

constraint the subject input in task 1.  After successfully inputting the constraint in task 1, ConEditor+ 

detects subsumption and suggests the user to consider deleting the following constraint: 

constrain each c in ConventionalSledKite such that such that has_size(c) = “standard”    

to have kites_line_strength(has_kite_line(c)) >= 15 

Each subject was asked to follow ConEditor+’s suggestion and delete the above constraint. 

Task 3: Each subject was asked to answer a questionnaire and also provide oral feedback on the usability of 

ConEditor+ to its developer. The questionnaire contained various questions regarding the usability and 

usefulness of various features of ConEditor+. The subjects were asked to use a 5 point rating scale (1 being 

poor and 5 being excellent). More details about the experiment and the questionnaire used can be found in 

(Ajit, 2008).  

The developer observed all the actions performed by each subject and took notes. A pilot 

experiment was conducted before the actual experiment using a computer science research student as the 

subject and that helped rectify some elementary errors in the script and GUI. 
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Figure 5. Graph showing results of an experiment to evaluate usability of ConEditor+ 
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Results: All the subjects ultimately completed the allocated tasks accurately within the corresponding time 

benchmarks. Tasks 1 and 2 were allocated a time benchmark of 5 and 3 minutes each respectively. The 

subjects were not aware of this time benchmark. All the errors committed by subjects can be summarized 

as follows: Two subjects double clicked on the keywords panel instead of a single click. This resulted in the 

selected keyword being appended twice to the constraint expression. The GUI has now been changed to 

support a double mouse click instead of a single click. Two subjects reported that they would like to see the 

console tab in the display panel activated automatically after inputting a constraint rather than manually 

activating the console tab. The GUI was modified to support this feature. Two subjects also suggested that 

they would like a search facility being provided in the taxonomy panel to be able to easily locate entities in 

a large taxonomy. We plan to incorporate this feature as part of the future work. All the subjects reported 

that they found ConEditor+ easy to use and helpful for the maintenance of constraints. The average overall 

rating given by the subjects, for the usability (including capture and maintenance facilities) of ConEditor+ 

was 3.8 (see graph in Figure 5). So the results of experiment 2 indicate that ConEditor+ is easy to use and it 

aids the capture and maintenance of constraints.  

5.3  Extension/Evaluation of Jet Engine Ontology and Maintenance of a more complex set                          
of Constraints 

 
After successful application and evaluation of ConEditor+ in the domain of kite design, we 

decided to apply our proposed approach to part of the considerably more demanding Rolls-Royce domain. 

We initially reviewed the ontology used to support Designers’ Workbench, and then analyzed a 

considerable number of additional Rolls-Royce's design standard documents (72) which contain 

rules/standards for the design of various parts and processes involved in civil aero-engines. Interviews were 

held with a design engineer at Rolls-Royce, Derby. We then extended the jet engine ontology to 

incorporate the additional information (e.g. classes, properties) obtained from these analyses. The jet engine 

ontology was then evaluated by a domain expert in Rolls-Royce. Following several discussions with the 

domain expert and modifications to the ontology, the ontology was approved by the domain expert. A 

confidential technical report (Ajit et al., 2007) describes the list of all constraints and application conditions 

obtained from the analysis of design rule books for part of the Rolls-Royce domain, together with their 

corresponding representations in CoLan.  
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6. RELEVANT WORK 

       In product development and design, constraints arise in many forms. Constraints can either be 

represented as rules or objects (Sriram and Maher, 1986). One of the first attempts to manage constraints 

for automation of computation in engineering applications was the work done by (Harary, 1962) and 

(Steward, 1962). Since then there has been considerable amount of work done on the representation, use 

and management of constraints including the development of rule-based systems (Frayman and Mittal, 

1987; Wielinga and Schreiber, 1997; Junker, 2001) and also in the field of diagnosis (Felfernig et al., 

2004). Constraint management done in systems above mainly refers to the detection of redundant and 

contradictory constraints during constraint solving whereas ConEditor+ detects redundant, subsumed, 

contradictory and fusible constraints prior to constraint solving.  ConEditor+ compares pairs of constraints 

by looking at the values of the constants, and the structure of the predicates rather than by computing the 

solution sets of constraints.  

It became important to represent the defaults and preferences declaratively as constraints, rather 

than encoding them in the procedural parts of the program (Borning et al., 1989). In most cases, domain-

oriented or method-oriented tools (in the form of templates) were provided to capture constraints/rules from 

the domain experts. The cost of developing such tools is high, especially when their restricted scope is 

taken into account (Eriksson et al., 1995). In comparison to the above tools, ConEditor+ is a domain 

independent tool that can be used by domain experts to capture constraints using the appropriate domain 

ontology. These constraints are converted into a standard format (in CIF) for use by other systems. A 

similar tool for capturing constraints has been developed by (Gray and Kemp, 2006). This tool uses a 

diagrammatic representation in the form of a relationship graph to capture constraints. The drawback of this 

tool is that the diagram can become cumbersome for large domain ontologies.  

There has been a lot of work done on the verification of knowledge-based systems. Suwa and his 

colleagues (Suwa et al., 1982) are credited with one of the earliest works in automated verification. Other 

notable works include (Nguyen et al., 1985; Preece et al., 1992; Zlatareva, 1998; Hicks, 2003; Qian et al., 

2005). In comparison to the above cited work, the focus of our research is to prevent errors in the 

knowledge-base, as much as possible. We believe that it is important to explicitly represent the assumptions 

and contexts in which each constraint is applicable and that this would prevent a substantial number of 
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errors from occurring in the knowledge-base. Subsequently we use the proposed knowledge refinement 

rules to detect errors (or anomalies) and also suggest ways to refine (simplify/optimize) the KB. 

 CoLan is close to the constraint language Galileo proposed by (Bowen et al., 1990) that has been 

used to support conceptual design and design knowledge representation. Both CoLan and Galileo are based 

on first-order logic and can be used to express both existentially and universally quantified constraints. 

However we believe CoLan provides better readability for domain experts compared to Galileo and other 

constraint programming languages such as ILOG OPL language (Junker and Mailharro, 2003). Moreover 

CoLan was developed by one of our colleagues and we have the software to convert Colan into standard 

XML CIF format that makes it portable. Also, Colan is mainly used in ConEditor+ as a declarative 

language for expressing constraints and not used for constraint programming. CoLan is converted into CIF 

which, in turn, is converted into a query in RDQL and a predicate in Prolog by the Designers’ Workbench 

for constraint processing. 

Design rationale systems capture a lot more information regarding the reasoning of design 

decisions. However design rationale systems (Regli et al., 2000; Bracewell and Wallace, 2003) usually 

capture the information in a human readable format. Although the information may have some structure, 

the information cannot be understood, interpreted and used by machines to provide benefits to the designers 

immediately. Design rationales are difficult to retrieve and hence rarely used. ConEditor+ captures 

application conditions as rationales together with the constraints and uses the information (including 

domain ontology) to detect inconsistency, subsumption, redundancy, fusion and suggest appropriate 

refinements between constraints to designers. This should encourage designers to input application 

conditions associated with the constraints because it provides immediate benefits. 

 
7.    CONCLUSIONS AND FUTURE WORK 

This paper describes a methodology together with a system that has been developed to enable 

domain experts to capture and maintain constraints in an engineering design environment. The context is a 

system known as the Designers’ Workbench, developed to support engineering designers by checking that 

their configurations satisfy all the constraints. The Designers’ Workbench is faced with the task of 

accumulating the constraints. This requires a knowledge engineer to study the design rule book(s), consult 
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the design engineer (domain expert) and encode all the constraints into the Designers’ Workbench’s KB. 

This is a tedious, time-consuming and error-prone task. Hence, we have developed a system, ConEditor+, 

to enable domain experts themselves to capture and maintain engineering design constraints.  

         We believe that to apply constraints appropriately, it is necessary to capture the contexts and 

assumptions associated with constraints and an explicit representation of this information (rationales) 

referred to as application conditions would be extremely beneficial to both humans and machines to support 

the maintenance of constraints. We have proposed four main types of knowledge refinement rules that use 

the application conditions together with the constraints and the domain ontology to detect inconsistencies, 

subsumption, redundancy and fusion. We implemented these rules in ConEditor+ and demonstrated with 

the help of an experiment that an explicit representation of application conditions together with the 

constraints and the domain ontology could help the machine in: a) reducing the number of inconsistencies 

and b) appropriately detecting subsumption, redundancy and fusion between pairs of constraints. We also 

believe that ConEditor+ is a useful tool for domain experts to capture and maintain constraints. The 

evaluation done to determine the usability of ConEditor+ has given us encouraging results. Further, we 

applied our proposed methodology and tool to part of the more demanding Rolls-Royce domain to 

strengthen our claims. 

 

Figure 6. Proposed System Architecture 
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          The proposed architecture (Figure 6) shows how ConEditor+ fits into a much broader framework. 

A Design Standards author initially inputs all the design rules (constraints) in CoLan together with the 

associated application conditions into ConEditor+. The design constraints and application conditions are 

then converted from CoLan into CIF. CIF is further converted into Prolog predicates and RDQL queries 

and processed by the Designers’ Workbench. ConEditor+ uses the constraints and application conditions 

represented in CIF together with the domain ontology in OWL to detect inconsistencies, subsumption, 

redundancy, fusion and suggest appropriate refinements to support maintenance. It is planned to interface 

the Designers’ Workbench to a more sophisticated CAD/KBE system as part of the future work. Also, we 

have plans to make ConEditor+ into a Protege (Noy et al., 2000) plug-in that would involve converting the 

constraints into CIF/SWRL (McKenzie et al., 2004). 

ACKNOWLEDGEMENTS          

     We would like to acknowledge the financial support provided by the EPSRC Sponsored Advanced 

Knowledge Technologies project, GR/N15764, which is an Interdisciplinary Research Collaboration 

involving the University of Aberdeen, the University of Edinburgh, the Open University, the University of 

Sheffield and the University of Southampton. We would also like to acknowledge the substantial 

contributions of Mr. Stephen Docherty from the Transmissions and Structures division and Mr. Colin 

Cadas of Rolls-Royce plc, Derby, UK. We are extremely grateful to Dr. Kit Hui and Professor Peter Gray 

for providing us with the software to convert constraints in CoLan to CIF.  

REFERENCES                                                                                                                                             

Ajit, S. (2008). Capture and Maintenance of Constraints in Engineering Design. PhD thesis, Department of Computing 
Science, University of Aberdeen, Aberdeen, UK. 

Ajit, S., Sleeman, D., Fowler, D. W., Knott, D. and Hui, K. (2005) Acquisition and Maintenance of Constraints in 
Engineering Design. In Proceedings of the 3rd International Conference on Knowledge Capture, KCAP 
2005, Banff, Canada, 173-174. 

Ajit, S., Sleeman, D. and Knott, D. (2007). Analysis of Design Rule Books of part of the Rolls-Royce domain. 
Technical Report, Department of Computing Science, University of Aberdeen, Aberdeen, UK. 

AKA (2006) American Kite Association. [online]. Available from: 
http://www.aka.org.au/kites_in_the_classroom/index.htm [Accessed 28 June 2006]. 

Bahler, D. and Bowen, J. (1992) Design Rationale Management in Concurrent Engineering. In Workshop on Design 
Rationale Capture and Use,10th Natl. Conf. on Artificial Intelligence (AAAI-92), San Jose, USA. 

Barker, V. E. and O'Connor, D. E. (1989) Expert Systems for Configuration at Digital: XCON and Beyond. In 
Communications of the ACM, 32 (3), 298-318. 

Barnum, C. M. (2002) Usability Testing and Research. The Allyn and Bacon series in Technical Communication. 
Bassiliades, N. and Gray, P. (1995) CoLan: A Functional Constraint Language and Its Implementation. In Data and 

Knowledge Engineering, 14 (3), 203-249. 

http://www.aka.org.au/kites_in_the_classroom/index.htm


34   Constraint Capture and Maintenance in Engineering Design              
 

Borning, A., Maher, M., Martindale, A. and Wilson, M. (1989) Constraint Hierarchies and Logic Programming. In 
International Conference on Logic Programming (ICLP), Lisbon, Portugal, 149-164. 

Bowen, J., O'Grady, P. and Smith, L. (1990) A constraint programming language for Life-Cycle Engineering. In 
Artificial Intelligence in Engineering, 5 (4), 206-220. 

Bracewell, R. H., Ahmed, S. and Wallace, K. M. (2004) DRED And Design Folders, A Way of Capturing, Storing and 
Passing on, Knowledge Generated During Design Projects. In Design Automation Conference, ASME, Salt 
Lake City, Utah, USA. 

Bracewell, R. H. and Wallace, K. M. (2003) A Tool for Capturing Design Rationale. In Proceedings of the 
International Conference on Engineering Design (ICED 03), Stockholm. 

Brown, D. C. (2006) Assumptions in Design and Design Rationale. In Design Rationale Workshop, DCC'06, 
Eindhoven, The Netherlands. 

Bultman, A., Kuipers, J. and Harmelen, F. V. (2000) Maintenance of KBS's by Domain Experts: The Holy Grail in 
Practice. In Thirteenth International Conference on Industrial & Engineering Applications of Artificial 
Intelligence & Expert Systems IEA/AIE'00. 

Burge, J. and Brown, D. C. (2003) Rationale Support for Maintenance of Large Scale Systems. In Workshop on 
Evolution of Large-Scale Industrial Software Applications (ELISA), ICSM '03, Amsterdam, NL. 

CEKS (2006) Cutting Edge Kite Shop. [online]. Available from: http://www.cuttingedgekites.com/faq.htm [Accessed 
28 June 2006]. 

Coenen, F. P. (1992) A Methodology for the Maintenance of Knowledge based Systems. In Niku-Lari, A. (Ed), 
EXPERSYS-92 (Proceedings), IITT-International, France, 171-176. 

Dumas, J. S. and Redish, J. C. (1999) A Practical guide to Usability Testing. Intellect Books. 
Eden, M. (1998) The Magnificient Book of Kites: Explorations in Design, Construction, Enjoyment and Flight. Black 

Dog & Levanthal Publishers, New York. 
Eriksson, H., Puerta, A., Gennari, J., Rothenfluh, T., Tu, S. and Musen, M. (1995) Custom-tailored development tools 

for knowledge-based systems. In Proceedings of the Ninth Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop, Banff, Canada. 

Felfernig, A., Friedrich, G., Jannach, D. and Stumptner, M. (2004) Consistency-based diagnosis of configuration 
knowledge bases. In Artificial Intelligence, 152, 213-234. 

Fletcher, D. and Gu, P. (2005) Adaptable Design for Design Reuse. In Second CDEN International Conference on 
Design Education, Innovation, and Practice, Canada. 

Fowler, D. W., Sleeman, D., Wills, G., Lyon, T. and Knott, D. (2004) Designers' Workbench. In Proceedings of the 
Twenty-fourth SGAI International Conference on Innovative Techniques and Applications of Artificial 
Intelligence, Cambridge, UK, 209-221. 

Frayman, F. and Mittal, S. (1987) COSSACK: A constraints-based expert system for configuration tasks. In 
Knowledge based Expert systems in Engineering: Planning and Design (Eds. D. Sriram & R. A. Adey), 143-
166. 

Ginsberg, A. (1988) Knowledge-Base Reduction: A New Approach to Checking Knowledge Bases for Inconsistency 
and Redundancy. In AAAI 88, Saint Paul, Minnesota, 2, 585-589. 

Goonetillake, J. S. and Wikramanayake, G. N. (2004) Management of Evolving Constraints in a Computerised 
Engineering Design Environment. In Proceedings of the 23rd National IT Conference, Colombo, Sri Lanka. 

Gray, P., Hui, K. and Preece, A. (2001) An Expressive Constraint Language for Semantic Web Applications. In E-
Business and the Intelligent Web: Papers from the IJCAI-01 Workshop, Seattle, USA, 46-53. 

Gray, P. and Kemp, G. (2006) Capturing Quantified Constraints in FOL, through Interaction with a Relationship Graph 
(to appear). In 15th International Conference on Knowledge Engineering and Knowledge Management 
(EKAW 2006), Podebrady, Czech Republic. 

Gruber, T. R. (1995) Towards Principles for the Design of Ontologies Used for for Knowledge Sharing. In 
International Journal of Human-Computer Studies, 43 (5-6), 907-928. 

Grudin, J. (1996) Evaluating opportunities for design rationale capture. In Design rationale: Concepts, techniques, and 
use. (Ed. J. M. Carroll). 

Harary, F. (1962) A Graph Theoretic Approach to Matrix Inversion by Partitioning. In Numerische Mathematik, 4, 
128-135. 

Hicks, R. C. (2003) Knowledge base management systems-tools for creating verified intelligent systems. In 
Knowledge-Based Systems, 16, 165-171. 

Hooey, B. L. and Foyle, D. C. (2007) Requirements for a Design Rationale Capture Tool to Support NASA's Complex 
Systems. In International Workshop on Managing Knowledge for Space Missions, Pasadena, CA. 

Junker, U. (2001) Quickxplain: Conflict detection for arbitrary constraint propagation algorithms. In IJCAI’01 
Workshop on Modelling and Solving problems with constraints (CONS-1), Seattle, WA, USA. 

Junker, U. and Mailharro, D. (2003) The logic of ilog(j) configurator: Combining constraint programming with a 
description logic. In Proceedings of IJCAI'03 Workshop on Configuration, Acapulco, Mexico. 

Leigh, D. (2006) Delta Kite Designs. [online]. Available from: http://www.deltas.freeserve.co.uk/home.html [Accessed 
28 June 2006]. 

http://www.cuttingedgekites.com/faq.htm
http://www.deltas.freeserve.co.uk/home.html


Constraint Capture and Maintenance in Engineering Design              35 
 

Lin, L. and Chen, L. C. (2002) Constraints modelling in product design. In Journal of Engineering Design, 13 (3), 205-
214. 

Lords, D. (2006) Kite, Kite Buggy and Land Yacht Page. [online]. Available from: 
http://users.techline.com/lord/index.html [Accessed 28 June 2006]. 

McGuinness, D. L. and Harmelen, F. v. (2004) OWL Web Ontology Language Overview, W3C Recommendation 10 
February 2004. [online]. Available from: http://www.w3.org/TR/owl-features/ [Accessed 29 August 2006]. 

McKenzie, C., Gray, P. and Preece, A. (2004) Extending SWRL to Express Fully-Quantified Constraints. In Workshop 
on Rules and Rule Markup Languages for the Semantic Web (RuleML 2004),  International Semantic Web 
Conference, Hiroshima, Japan, 139-154. 

McMahon, C., Lowe, A. and Culley, S. (2004) Knowledge management in engineering design: personalization and 
codification. In Journal of Engineering Design, 15 (4), 307-325. 

Meseguer, P. and Preece, A. D. (1995) Verification and Validation of Knowledge-Based Systems with Formal 
Specifications. In Knowledge Engineering Review, 10, 331-343. 

Nguyen, T. A., Perkins, W. A., Laffey, T. J. and Pecora, D. (1985) Checking an Expert Systems Knowledge Base for 
Consistency and Completeness. In IJCAI '85, Los Angeles, USA, 1, 375-378. 

Noy, N. F., Fergerson, R. W. and Musen, M. A. (2000) The knowledge model of Protege-2000: Combining 
interoperability and flexibility. In International Conference on Knowledge Engineering and Knowledge 
Management (EKAW' 2000), Juan-les-Pins, France. 

Preece, A. D., Shinghal, R. and Batarekh, A. (1992) Verifying Expert Systems: A Logical Framework and a Practical 
Tool. In Expert Systems with Applications, 5 (3/4), 421-436. 

Qian, Y., Zheng, M., Li, X. and Lin, L. (2005) Implementation of knowledge maintenance modules in an expert system 
for fault diagnosis of chemical process operation. In Expert Systems with Applications, 28, 249-257. 

Regli, W. C., Hu, X., Atwood, M. and Sun, W. (2000) A Survey of Design Rationale Systems: Approaches, 
Representation, Capture and Retrieval. In Engineering with Computers: An Int'l Journal for Simulation-
Based Engineering, special issue on Computer Aided Engineering in Honor of Professor Steven J. Fenves, 
16, 209-235. 

Rubin, J. (1994) Handbook of Usability Testing. Wiley Technical Communication Library. 
Sarkar, S. and Ramaswamy, M. (2000) Knowledge Base Decomposition to Facilitate Verification. In Information 

Systems Research, 11 (3), 260-283. 
Seaborne, A. (2004) RDQL - A Query Language for RDF, W3C Member Submission 9 January 2004, HP Labs, 

Bristol. [online]. Available from: http://www.w3.org/Submission/RDQL/ [Accessed 29 August 2006]. 
Selpi (2004). An FDM Prototype for Pathway and Protein Interaction Data. Master's thesis, International Master's 

programme in Bioinformatics, Chalmers University of Technology, Goteborg, Sweden. 
Serrano, D. and Gossard, D. (1992) Tools and Techniques for Conceptual Design. In Artificial Intelligence in 

Engineering Design (Eds.C. Tong & D. Sriram), 1, 71-116. 
Soloway, E., Bachant, J. and Jensen, K. (1987) Assessing the Maintainability of XCON-in-RIME: Coping with 

Problems of a Very Large Rule-Base. In Proceedings of AAAI-87, Seattle, USA, 824-829. 
Sriram, D. and Maher, M. L. (1986) The Representation and Use of Constraints in Structural Design. In Applications of 

Artificial Intelligence in Engineering Problems, Southampton University, UK, 1, 355-368. 
Steward, D. V. (1962) On an Approach to Techniques for the Analysis of the Structure of Large Systems of Equations. 

In SIAM Review, 4. 
Streeter, T. (1980) The Art of the Japanese Kite. Tokyo, Charles E Tuttle Company Inc. 
Suwa, M., Scott, A. C. and Shortliffe, E. H. (1982) An Approach to Verifying Completeness and Consistency in a 

Rule-based System. In AI Magazine, 3 (4), 16-21. 
Wardley, A. (2006) Basics of Stunt Kite Design. [online]. Available from: 

http://www.kfs.org/~abw/kite/rec.kites/skdesign1.html [Accessed 28 June 2006]. 
Wielinga, B. and Schreiber, G. (1997) Configuration-Design Problem Solving. In IEEE Expert, 12 (2), 49-57. 
Yolen, W. (1976) The Complete Book of Kites and Kite Flying. New York, Simon and Schuster Trade. 
Zhang, D. and Nyugen, D. (1994) PREPARE: A Tool for Knowledge Base Verification. In IEEE Transactions on 

Knowledge and Data Engineering, 6 (6), 983-989. 
Zlatareva, N. P. (1998) A refinement framework to support validation and maintenance of knowledge-based systems. 

In Expert Systems with Applications, 15, 245-252. 
 
 
 
 
 
 
 
 
 
 

http://users.techline.com/lord/index.html
http://www.w3.org/TR/owl-features/
http://www.w3.org/Submission/RDQL/
http://www.kfs.org/%7Eabw/kite/rec.kites/skdesign1.html


36   Constraint Capture and Maintenance in Engineering Design              
 

AUTHOR BIOGRAPHIES: 
 
Suraj Ajit: 
 
Suraj Ajit has been a graduate student in the Department of Computing Science at the University of 
Aberdeen. He worked as a Research Assistant for the Advanced Knowledge Technologies project from 
2002 to 2006. He graduated with a first class in B.E. in Computer Science from Bangalore University in 
2001 and is expected to graduate with a PhD in Computing Science from University of Aberdeen in 
2008.His main research interests are in knowledge management, constraints, engineering design, 
ontologies.  Suraj is currently employed by the University of Dundee to work with Calico Jack Ltd on 
industrial applications of ontologies. 
 
Derek Sleeman: 
 
Derek Sleeman was a Lecturer in Computing at the University of Leeds & co-founded the Computer-Based 
Learning Unit in 1969. This lead to his interest in Intelligent Tutoring Systems & an edited volume on that 
subject with John Seely Brown in 1981. He moved to Stanford in 1982 where he was an Associate 
Professor of AI & Education. Sleeman returned to Aberdeen in 1986 where he was appointed the 
University’s first Professor of Computing Science. His Research activities have remained at the intersection 
of AI & Cognitive Science, but the focus has moved from Intelligent Tutoring Systems to Co-operative 
Knowledge Acquisition & Knowledge Refinement Systems, Reuse & Transformation of Knowledge 
Sources, and Ontology Management systems. Sleeman has been a Program Committee member for the 
International /European/ National Conferences in Machine Learning & Knowledge Acquisition, and 
involved in all the KCAP series of meetings; and was the Conference Chair for the 2007 meeting held in 
Whistle (Canada). He has also served on various Editorial boards including the Machine Learning Journal 
& the International Journal of Human-Computer Studies. Currently, he was one of the Principal 
Investigators of the EPSRC-sponsored IRC in Advanced Knowledge Technologies, funded 2000 - 2007, and  
for the DTI/Rolls-Royce sponsored IPAS  project (2005-2008). Derek Sleeman was elected a Fellow of 
Royal Society of Edinburgh in 1992 and a Fellow of ECCAI (European Coordinating Committee of 
Artificial Intelligence) in 2004. 
 
David W. Fowler: 
 
David W. Fowler is currently a Research Fellow at the University of Aberdeen. He received his BSc. in 
Computer Science from Heriot-Watt University, Edinburgh, and MSc. in Artificial Intelligence and 
Automated Reasoning from Queen Mary College, University of London. He received his PhD from the 
University of Aberdeen in 2002. His main research interests are in knowledge representation and ontologies 
applied to engineering domains, and in constraint satisfaction under uncertainty. 
 
David Knott:  
 
David Knott joined Rolls-Royce in 1977 as an Undergraduate Apprentice, and graduated from 
Loughborough University in 1981 with a first class degree in Mechanical Engineering. He is a Chartered 
Mechanical Engineer and Fellow of the Institute of Mechanical Engineers. In 2000 he was appointed as 
Company Specialist – Design Technology with a responsibility for improving the design process across 
Rolls-Royce by acquiring appropriate technology and supporting its application to the company’s products 
and processes. He is currently leading two DTI funded research projects involving multi-disciplinary 
academic and cross-sector industrial collaboration. 


