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Abstract

The subject of this paper is design intentionality. The paper is concerned with the property of the mind to hold intentional
states (its capacity to represent or reflect existing and nonexisting realities) and with the way that these mental states are
constructed during design tasks. The aim is to develop a mathematical theory of design intentionality, capturing the struc-
tures and processes that characterize an intentional system with the mental ability to address design tasks. The philosophical
notion of intentionality is approached methodologically from a complexity theoretic perspective. More specifically, the fo-
cus is placed on the mathematical characterization of the organizational complexity of intentional states and the type of
phase transitions that occur on the mental states of an intentional system during design tasks. The paper uses category theory
in order to build a framework that is able to mathematically capture the meaning of these notions.
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1. INTRODUCTION

This paper is concerned with the mental capacity of certain or-
ganisms, like humans, to address design tasks. The ability to
address design tasks has been approached and explained in
many different ways. For example, design has been predomi-
nantly approached as a cognitive ability that is associated
with a special form of information processing capacity (e.g.,
Stiny & March, 1981; Akin, 1986; Goel & Pirolli, 1989), or
with a special form of logical reasoning (e.g., March, 1976;
Coyne, 1988; Takeda et al., 1990; Roozenburg, 1993). In other
studies, the ability to design has been approached as a knowl-
edge-level competence that requires certain types of knowledge
(Brazier et al., 2001; Smithers, 1996, 1998, 2002) or certain
knowledge structures (Yoshikawa, 1981).

Although design is often perceived as a mental skill or capac-
ity, there is to date no theory that explicitly associates our under-
standing of design ability with theory of mind and the philosoph-
ical notion of intentionality. In order to address this gap, the
paper focuses on the property of the mind to hold intentional
states (i.e., its capacity of representing or reflecting existing
and nonexisting realities), and the way that these mental states
are constructed during design tasks. Despite the existence of
many theories that contribute to understanding design at
some level of observation (e.g., information processing level,
logical reasoning level, knowledge level), there is no mathemat-
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ical account able to express how intentional states are con-
structed during design tasks. This account would be useful as
a basis for looking at the relationship between the mental activ-
ity of design and the structures and processes that characterize
its realization at potentially different levels of observation. For
example, although there is some empirical evidence that iden-
tifies certain neurological correlates of the ability to design
(Goel & Grafman, 2000; Vartanian & Goel, 2005; Alexiou
et al., 2009; Gilbert et al., 2010), there is no theoretical and
mathematical framework able to support hypotheses on how
neurological structures and processes are linked with the mental
capacity of constructing intentional states during design tasks.
The same difficulty may apply to mapping the relationship be-
tween the construction of intentional states during design and
the social structures and processes that underlie design activity
(Alexiou, 2007; Alexiou & Zamenopoulos, 2008). Thus, over-
all, the paper aims to develop a mathematical account on the
type of structures and processes that are involved in the forma-
tion of intentional states during design tasks.

In this paper the philosophical notion of intentionality is ap-
proached from a complexity theoretic perspective. In general,
complexity science aims to develop a set of methods and the-
ories for understanding the organizational principles that under-
lie the creation of higher level functions or structures (see, e.g.,
Haken, 1983; Badii & Politi, 1997; Schuster, 2001; Boccara,
2004). Complexity science strives to identify whether there
are certain common principles that govern how components
as diverse as atoms, cells, animals, or humans organize them-
selves, and in doing so lead to the formation of macroscopic
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phenomena like chemical patterns, living structures, cognitive
functions, social, or economic constructs. Part of this enquiry is
the identification of the organizational structures and processes
that lead to intentionality (Atlan, 1998). However, the potential
of complexity science in understanding design as a mental ca-
pacity has not been explored fully, despite the increasing import
of complexity in design studies. Complexity has been perceived
and employed as a scientific approach for conducting design re-
search, as a theoretical and methodological toolkit for address-
ing design tasks, and as a subject/problem of design practice
(for areview, see Zamenopoulos & Alexiou, 2005a). Yet, com-
plexity science also presents us with an interesting hypothesis
about the nature of design: that the (mental) capacity to design
can be perceived and studied by looking at the organizational
structures and processes that govern the formation of inten-
tional states during design tasks. Currently there are only ten-
uous links between design intentionality and organizational
level notions usually encountered in complexity theory, such
as self-organization, bifurcations, coordination, or phase transi-
tion. The aim of the paper is to develop a mathematical theory
of the organizational complexity that characterizes the inten-
tional states of a design-capable system during design tasks.
The paper is organized as follows. Section 2 discusses the
nature of design phenomena and introduces the core premise
of this study about design intentionality. Section 3 explicates
the scope and meaning of intentionality theoretically, but also
in relation to some fundamental mathematical expressions.
The mathematical treatment is based on category theory. Sec-
tion 4 develops some new mathematical structures that aim to
capture variations in the complexity of intentional states. Sec-
tion 5 brings together the proposed mathematical expressions
with the theoretical discussion about design intentionality.
Section 6 summarizes and discusses the contribution of the
proposed mathematical and theoretical framework.

2. THE NATURE OF DESIGN PHENOMENA AND
DESIGN INTENTIONALITY

In the most general sense, the phenomenon of design arises
with the formation of organisms whose survival depends on
their capacity to construct or adapt their own environment.
For instance, the capacity of birds to build nests, beavers to
dam ponds, or humans to construct hunting tools, can be per-
ceived as primitive examples of design tasks. This capacity
may be equally distributed within a society of individuals.
For instance, the capacity of ants to build nests or people to
create cities or virtual communities in the Internet may be per-
ceived as examples where the ability to design is the product
of the distributed activity of individuals. The capacity of an
organism to change or adapt its environment may be con-
trasted to other logically distinct abilities or strategies: for
example, the capacity of an organism to adapt itself to envi-
ronmental changes, or the capacity to migrate to a new envi-
ronment (Kirsh, 1996). Overall, the phenomenon of design
can be understood as the product of an evolutionary pressure
that leads to the formation of organisms with the individual or
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collective capacity to create artifacts and as a result adapt their
environments for their own benefit.

Although evolutionary pressure may explain the presence
of design abilities in certain organisms, or the formation of
species of design artefacts as a product of exosomatic adapta-
tion (e.g., Steadman 1979), evolutionary theory in itself can-
not describe what makes certain organisms, such as humans,
capable of designing. A typical response to this quest is to as-
sume that design requires cognition; a mind with the capacity
to recognize the possibility of alternative environments and
generate instantiations that fulfill the properties of these (imag-
ined) environments. Design activity then arises in response to
a problematic situation where there is a desire, need, or
idea to construct a change in a certain environment, but the
precise means and ends of this construction are not given. Al-
though, this premise is commonly held in design research
(i.e., see, Archer, 1965; Mitchell, 1990; Smithers, 2002), it
can nevertheless take a number of different interpretations.

The above situation is often interpreted in relation to an in-
formation processing system (i.e., a cognitive designer) that
faces a special type of problem solving task (e.g., Goel & Pi-
rolli, 1989). According to this perspective, a problematic situa-
tion arises with a problem statement or task environment that
an information processing system needs to address. The hy-
pothesis implies a distinction between an external environment
that sets the problem, and an internal environment that repre-
sents the task environment (the problem space). The problem
space is then a representation of a set of possible states, a set
of legal operations, as well as an evaluation function or stop-
ping criteria for the problem solving task (e.g., Ernst & Newell,
1969; Newell & Simon, 1972). The peculiarity of the design
task is that the means (i.e., the representation of the problem
space and the possible operations over the problem space), as
well as the ends (i.e., the evaluation function or the stopping
criteria) are not given in the task environment but are part of
the design process (Simon, 1973; Goel & Pirolli, 1989, 1992).

Another interpretation postulates that a problematic situation
in design arises from the reflective activity of a designer over an
objective reality, that is, a professional, social, or operational
environment that includes humans, tools, external representa-
tions, artifacts, and so forth (Schon, 1983). According to this
paradigm, design is not a characteristic of the task environment
(i.e., of a problem statement), but a characteristic of the cou-
pling or interplay between a subject (i.e., a designer) and an ob-
jective reality (i.e., the environment). A design situation then
arises not as a problem, but as a mental state of a “reflective”
agent. This view essentially conveys the idea that cognitive
functions are not simply the product of an information process-
ing system (an isolated mind); they are instead formed from the
coupling between the mind, the body, and its environment. In
design research, a number of different approaches have been
proposed following this perspective: for example, seeing de-
sign as a hermeneutic act (Snodgrass & Coyne, 2006), as a con-
structive act of a situated cognitive agent (e.g., Gero, 1998), or
as a self-organization process that involves the interaction be-
tween internal and external representations (Portugali & Casa-
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kin, 2002). A more abstract approach sees design as a coevolu-
tionary process between a problem and a solution space (e.g.,
Mabher et al., 1996; Dorst & Cross, 2001).

In the following, the premise that design arises in response
to a particular situation is approached in relation to the capac-
ity of an organism to have intentionality or intentional states.
Before we explain this premise, we briefly introduce the no-
tion of intentionality.

Although the term intentionality has its origins in the writ-
ings of medieval Scholastic philosophers, the contemporary
“technical” meaning of the term was reintroduced in philoso-
phy of mind by Brentano in 1874 (republished in 1995). Ac-
cording to Brentano, intentionality aims to describe the very
essence of the mind: the capacity to represent or reflect objects
or states of affairs in the world, either existing or nonexisting.
The capacity of a mind to represent an object or state of affairs
in the world is intentional in the sense that mental states are “se-
mantically evaluable” and therefore “refer to something,” or
they are “about something” (Fodor, 1995). In philosophy of
mind it is generally assumed that there are two archetypical,
logically distinct intentional states: beliefs about “what the
properties of a certain reality are,” and desires about “what
the properties of a certain reality ought to be.” Although it is
analytically convenient to distinguish different types of inten-
tional states, intentionality is generally perceived as a holistic
or emergent property of the mind that is derived by a network
of causally related intentional states; that is, a network of be-
liefs, desires or intentions.! It is worth noting that although
intentionality is often approached as a unique characteristic
property of the mind, mental states are not always intentional.
Mental states such as pain, general anxiety, or elation are not
intentional or semantically evaluable because they are not di-
rected to an object or state of affairs in the world.

Based on these terms, the core premise of this study is that
design activity arises in response to the appearance of con-
flicting or incomplete intentional states, which more specifi-
cally express inconsistencies between beliefs held about the
past, current, and future states of the world, and desires re-
garding the state of the world. In response to this situation,
the ability to design requires both the mental capacity to
formulate intentional states about a desired reality and the
mental capacity to formulate intentional objects that resolve
inconsistencies or conflicts between intentional states (e.g.,
conflicting beliefs and desires). However, in order to expli-
cate this general premise it is important to introduce a com-
mon theoretical background on intentionality.

3. THE STRUCTURE OF INTENTIONALITY:
A CATEGORY THEORETIC APPROACH

As briefly discussed, beliefs, desires, hopes, or intentions are
different types of intentionality with the common property

! Note that the term intentionality (the capacity to hold intentional states)
should not be confused with the term intention, which is only one type of in-
tentional state (i.e., the intention to do something).
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that they are all directed to something. For instance, the belief
that “it is raining” or the desire “to stay dry” refer to a specific
state of affairs in the world. It is often suggested that intention-
ality is determined by two components (Searle, 1983): the rep-
resentational content or intentional object that describes the
properties of an object or state of affairs in the world (e.g.,
“it is raining” or “stay dry”), and the attitude or psychological
mode that determines the type of intentional state (e.g., belief,
desire, or intention). This structure is often denoted as F(s),
where F is the attitude and s is the representational content. Al-
ternatively, Fodor (1975, 1987) defines the attitude of an inten-
tional state as a binary relation F between an organism O and
its mental states/mental representations s; that is F'(O, s). In this
notation, s is a token, a syntactical physical entity, associated
with an intentional object (e.g., “it is raining”).

According to Searle (1983), an attitude F (e.g., beliefs or
desires) expresses the underlying assumptions regarding the rel-
ative independence of the world from the mind. These assump-
tions determine a direction of fit. More specifically, an attitude
F expresses a direction of fit in the sense that any mismatch
between the representational content (e.g., “it is raining,” or
“stay dry”) and the world is resolved by either changing the
mind in relation to the world, or changing the world in relation
to the mind. Beliefs and desires are thus two archetypical in-
tentional states that express two opposite directions of fit. A
mind-to-world direction of fit assumes that an intentional object
represents an independently existing world and therefore any
mismatch between representation and the world must be fol-
lowed by an adaptation of the representational content. A belief
is either true or false in the sense that the correspondence be-
tween representational content and the world is evaluated
against an independently existing world. A world-to-mind direc-
tion of fit assumes that an intentional object exists independently
from the world and any mismatch between the representational
content and the world must be followed by an adaptation of the
world. A desire cannot be said to be true or false. A desire is sat-
isfied or fulfilled in the sense that the correspondence between
representational content and the world is realized when there
is a change in the world in relation to the mind. In both cases,
the representational content s of an intentional state determines
the conditions of satisfaction of a certain intentional state. Based
on these terms, intentional states are therefore defined as mental
states that have certain conditions of satisfaction s with a certain
direction of fit F in relation to an object or state of affairs in the
world.

The core notion of intentionality refers to the capacity of
the mind to hold representations of an existing or nonexisting
reality. From this perspective, mental states have a semantic
content. Moreover, intentional states are semantically evalu-
able: beliefs may be true or false, and desires may be satisfied
or unsatisfied. However, existing theories of intentionality
take different positions about the nature of mental representa-
tions, their semantic content, and their realization. Thus, in
the following we review various approaches on (a) how men-
tal representations can be understood and modeled, (b) what
is the semantic content of mental representations and how it
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can be evaluated, and (c) how is intentionality realized (par-
ticularly the physical realization of mental states). These are
outstanding questions also in domains like artificial intelli-
gence, cognitive science and linguistics, but the focus here
will be on philosophy of mind. In parallel to presenting the
various approaches, the paper will aim to introduce some cat-
egory theoretic notions and expressions that can capture basic
aspects of intentionality. This will establish the mathematical
language based on which the proposed hypothesis about de-
sign intentionality will be formally expressed.

3.1. Mental representations

How mental representations can be understood and modeled?
There are three very broad traditions regarding the way the rep-
resentational content s of an intentional state F' is understood
and ultimately modeled: as a linguistic (or symbolic), as a dy-
namical (or behavioral). and as a structural (or topological)
entity. Let us briefly consider these traditions before we
move on to a category theoretic (algebraic) formalization that
to some extent is able to offer a unifying way of considering
these different traditions.

3.1.1. Approaches regarding mental representations

The first approach starts with the hypothesis that mental
representations can be understood and modeled as symbolic
expressions that are generated by a mental language (Fodor,
1975; Pylyshyn, 1984). Symbolic expressions of mental
states are often referred to as propositional attitudes. Accord-
ing to this view, mental representations have a semantic con-
tent but also a syntax that constitutes the domain over which
mental processes are applied. The underlying model is that
the mind performs computations (i.e., logical operations)
over mental representations that transform one mental state
to another. These computations are defined as truth preserving
operations: that is, operations that transform propositional atti-
tudes (e.g., beliefs) that are true, into propositions that are also
true under certain conditions (i.e., interpretations). In this sense,
the mind is realized by a computational machine that evaluates
the truth value of symbolic expressions. In other words, accord-
ing to this approach, the semantic content of mental representa-
tions is specified by the relation between a language and the
machine that realizes or evaluates this language.

The second approach starts with the hypothesis that mental
representations can be understood and modeled as particular
states of a dynamical system (e.g., Van Gelder & Port, 1995).
According to this tradition the attractors or bifurcations that
characterize the dynamical behavior of an intentional system
can be perceived as core entities that exemplify the meaning
of mental representations. Mental processes are then modeled
by differential equations and mental representations are re-
duced to their dynamical properties. The very existence of
mental representations as a foundation of intentionality has
been challenged in many different contexts (e.g., Dennett,
1987; Freeman & Skarda, 1990). For instance, Dennett
(1987) argues that intentionality is a behavioral disposition,
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so an organism has intentionality because someone takes an
“intentional stance” that certain behavioral patterns are re-
lated to certain attitudes (e.g., beliefs or desires). In this sense,
attitudes may exist without representations (for a critique, see
Fodor, 1987).

Finally, the third approach starts with the hypothesis that
mental representations can be understood and modeled as
structures that are distinguished by their topological or geomet-
rical features. One possible interpretation of this tradition can
be found in Harnad (1987, 1990) or more explicitly in Géarden-
for (2004). Gérdenfor (2004) posits the hypothesis that mental
representations are regions within an n-dimensional Euclidian
space. The shapes, spatial, and topological relationships of
these regions are the main representational tools for expressing
properties and concepts. The view of mental representations as
topological or geometrical properties is more formally inter-
preted as a set of operations that preserve these properties in-
variant. These operations express the representational content
of an intentional state. To put it differently, the representational
content of a mental state is understood and modeled as a struc-
ture preserving operation that captures the invariant properties
of an existing or nonexisting reality.

3.1.2. Category theoretic account of mental
representations

For the purpose of this paper, the hypothesis that mental
representations are structure-preserving operations is more for-
mally interpreted within the context of category theory. Cate-
gory theory is a type of algebra that studies the behavior of
structure preserving transformations or operations between dif-
ferent species of mathematical structures (called categories).
One of the interesting features of category theory stems from
the fact that the notion of category is a metastructure that can
be used to express different types of mathematical structures:
symbolic, dynamical, or topological. Although the use of cat-
egory theory may imply the hypothesis that mental representa-
tions are structural properties of an intentional system, it also
seems plausible to interpret the more abstract notions of cate-
gory theoretic constructions as a unifying framework between
the different approaches/levels. A detailed exposition of cate-
gory theoretic concepts, methods and results can be found in
Goldblatt (1984), Barr and Wells (1985, 1990), Lambek and
Scott (1986), Lawrere and Schanuel (1997), and Mac Lane
(1998). One of the first applications of category theory in de-
sign and planning can be found in Ho (1982).

The notion of category. As a mathematical entity, a cate-
gory is defined by a graph structure G (i.e., a set of objects
and arrows between objects) together with an operation that
allows every different path of arrows within the graph G to
be composed and as a result create new structures. More for-
mally, a category C is defined as a graph structure that con-
sists of a family of objects {a, b, c, . . .}, a family of arrows
{f. & h, ...} and two additional operations identity and com-
position. For each object a the identity operation assigns an
identity arrow /,: a — a and for each pair of arrows <g, f>
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that form a path a — b — ¢ the composition operation assigns
anew arrow g ° f: a — c that is called the composite. The com-
position of arrows must satisfy two general axioms. The first
(axiom of associativity) posits that the composition of arrows
is associative, namely, that 1 ° (g ° f) = (h ° g) ° fand the sec-
ond (axiom of identity) posits that for every arrow f:a — b, f°
I,=fand I, f=f.

Because of the underlying graph structure, the notion of
category has been extensively used to model structural prop-
erties of a system and their invariant characteristics. However,
the categorical structure can be also seen as an algebraic ex-
pression of a formal language or theory. A common interpre-
tation is to see the notion of a category as a formal theory or
formal language where a set of formulas are expressed by ob-
jects {a, b, c, ...}, deductions are expressed by arrows {f, g,
h, ...}, and rules of inference are expressed by compositions
of arrows (e.g., Goldblatt, 1984; Lambek & Scott, 1986). The
composition of arrows over an underlying graph structure is
essentially the category theoretic way to express and study
how the recursive application of rules of inference (i.e., com-
positions of arrows) generates new formal expressions and
structures. For instance, according to this interpretation, a cat-
egory C may be seen as an algebra of shapes or shape gram-
mar (Stiny, 2006) where shapes are the objects of the category
C and the shape rules are its arrows.

More generally, a category is an algebraic expression of a
mathematical structure: for example, a formal language, a dy-
namical system, or a topological structure. In this sense, cate-
gories are often used to describe types, or species, of structures
and processes. More specifically, it is a common practice to
consider the structure of categories as a “metastructure” whose
objects are mathematical structures (linguistic, dynamical, or
topological structures) and whose arrows are operations that
preserve certain structural qualities invariant.

Mental representations as functors. The arrows that pre-
serve certain structural properties invariant are called func-
tors, and they are defined as structure-preserving operations
between two categories. More specifically, a functor F:
B — W from a category B to a category W is a graph homo-
morphism that preserves the identity arrows and the composi-
tions of arrows. The definition suggests that the notion of a
functor has two aspects: first, the functor preserves properties
of the underlying graph structure of the category B invariant
in W, and second, the functor expresses how structures and
compositions of arrows in category B can be used in order
to model structural aspects of the category W.

Following this definition and observations, mental repre-
sentations can be formally expressed in relation to functors.
More specifically, a mental representation is a linguistic, dy-
namical, or geometrical property expressed in category B
(e.g., an organism’s brain) that remains invariant in a certain
world W. The functor F:B — W explicates the mathematical
meaning and conditions of the invariance of B in W. In this
setting, category B can be seen as a mental structure, whereas
category W can be seen either as an external perceived reality
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or as a possible reality that corresponds to another mental
structure. As a simple example, we can consider that the cat-
egory B models the structure of an intentional system that ex-
presses spatial relations. In Figure 1, category B has a graph
structure that expresses spatial relations between activities
or rooms. In the same figure, category W is the category of
shape configurations whose objects are rectangular shapes
and whose arrows are adjacency relations between shapes.
For the purpose of this paper, category W can be equally
thought as an inner (cognitive) representation of a shape or al-
ternatively as an external representation (e.g., a drawing). The
functor F:B — W is a mathematical notion that explicates the
meaning of the structural invariance between spatial or topo-
logical relations and shape configurations.

An important aspect of mental representations is that they
construct abstractions. This aspect of representation is re-
ferred to as universality. In complexity science, a universal
construction is the equivalent of an “order parameter” that en-
slaves the properties (structure and behaviors) of a family of
objects (e.g., Haken, 1983). Similarly in philosophy, a uni-
versal construction is a representation of properties that char-
acterize a family of objects. The represented property is said
to be a universal property and the objects are said to instanti-
ate (or participate in) the universal property. In set theory, a
universal property is captured by the notion of a set; a set is an
abstract entity constructed by a collection of objects that have
the represented property (they satisfy a membership relation).
In contrast to set theory, in category theory the representation
of abstract properties is given by concrete objects/structures.
Given a family of entities, a universal construction is an ar-
chetypical object/structure that exemplifies a property in a
universal way. In category theory the notion of universal con-
struction is probably best explained by Ellerman (1988) as a
concrete universal: a concrete universal is an archetypical
object that represents a property in such a way that all other
objects that hold this property resemble or participate in the
archetypical object. More formally, universality is identified
with the existence of a particular structure in category B. This
structure is constructed by a unique arrow u in the same way
that a set is constructed by a membership relation. The arrow
u optimally represents the properties b of a family of objects d
in W as follows:

DEFINITION (universality). Given a functor UW — B
and an object b in B, a universal arrow <r, u:b — U(_)>
is an arrow of the form u:b — U(_) with an object r in W
such that the following universal property is satisfied: for

.
°
-

Fig. 1. An illustration of a functor F between topological relations and shape
configurations. The notion of functor constitutes the basis of mental repre-
sentations.
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every din W and f:b — Ud in B there is a unique arrow g:r —
d such that the following diagram commutes:

u

U =— b r
g
U(e) l !
ud d
|

The statement that the above diagram “commutes” essen-
tially means that the equation f = U(_) ° u is solvable for a
unique g (i.e., f= U(g) ° u). The universal construction shaped
by the arrow u:b — U(r) is the “order parameter” for any
equation f= U(_) ° u, in the sense that it determines the prop-
erties of structures g:r — d that participate in it. It also means
that the arrow u is a “minimum representation” in the sense
that any other representation (i.e., any other arrow f in B)
can be uniquely constructed using the arrow u#. Moreover,
the object r is unique (or more precisely unique up to iso-
morphism) in the sense that any other object in W that has
this universal property is isomorphic to r.

In category theory, the notion of universality leads to the
idea of complementary representations (or complementary
functors), which is mathematically expressed by the notion
of adjunction between two categories. An example of ad-
junction is the relation between a computing machine and a
language. The concept of machine alludes to an effective pro-
cedure that is specified by a language or program fed into the
machine, whereas the concept of language alludes to a set
of instructions that specify the behavior of the machine.
The two constructions are complementary entities. It is a
well-known result that this complementary relation can be
formally expressed by the notion of adjunction (Goguen,
1973). A more concrete example can be given by looking
at the functors between spatial rules (or spatial relations)
and shape configurations (Fig. 2). Let us assume that B is
the category of topological relations and W is the category
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of shape configurations. The notion of adjunction suggests
the existence of two functors as follows. Let us take a par-
ticular graph structure G of topological relations in B and
create a set F(G) of all possible shape configurations that
satisfy the spatial relations expressed by G. This is achieved
by a functor F:B — W (termed free functor). Similarly, let
us take a particular shape configuration d in W and create
a graph structure U(d) that represents the underlying topo-
logical relations of d. This is achieved by a functor U:W
— B (termed underlying functor). The notion of adjunction
in Figure 2 implies that the category F(G) generates a shape
configuration d if and only if there is a graph homomor-
phism from G to U(d).

DEFINITION (complementary representations or ad-
joint functors). Given two functors F:B — W and U:W —
B, an adjunction between B and W is the tuple <F, U, ¢>
where ¢ is a natural bijection @:W(Fb, d) = B(b, Ud) for every
b in B and every d in W. |

This definition entails that the notion of complementary
representations or adjoint functors gives a universal arrow
for every b in B and every d in W. More specifically, given
two functors F:B — W and U:W — B:

e Forevery f:b — Ud in B there is a unique arrow g:Fb —
d in W such that f= U(g) ° uy, (i.e., for every b there is a
universal arrow uy)

Uy
UFb =——— b Fb
f
UN l ’
ud d

e Forevery g:Fb — d in W there is a unique arrow f:b —
Udin B such that g = ¢4 ° F(f) (i.e., for every d there is
a universal arrow g4).

I W
' F(G)

Graph homomorphism
of spatial relations

A

Y

Family of shape configurations
that satisfy G

Generation/Selection of a shape

’

U(d) &--- 989
\\ ,I \\
°® ®
Underlying spatial relations of
the selected configuration

Fig. 2. An illustration of the notion of adjunction. The F functor generates a family of shape configurations that satisfy the topological
relations in G. The U functor generates topological relations of shape configurations that can be deduced from G.
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ud d~—%— Fud

3.2. Semantic aspects of intentionality

The notion of intentionality and the notion of semantics are
inextricably related. As already discussed, the notion of inten-
tionality alludes to mental states that are directed to some ex-
isting or possible reality. Intentional states are therefore men-
tal representations that are characterized by their content, their
meaning. According to Searle (1983), semantic phenomena
must be understood in the context of intentionality and theory
of mind. For Fodor (1987), the relation between intentionality
and semantics is even more intrinsic: if semantics is an indis-
pensable component of a theory of language, then it should
also be an indispensable component of a theory of “inner” lan-
guage or “language of thought.” In this sense, a theory of mind
should eventually converge into a theory of language and ul-
timately semantics. This section aims to lay out some basic
issues regarding semantics as they relate to intentionality, in
preparation of a more formal treatment in the next section.

3.2.1. Approaches regarding semantics

It is generally agreed that semantics allude to the capacity
of an entity, whether a symbolic expression, dynamical, or
structural entity in the mind, to hold and manipulate meaning.
This is a view that is commonly held in philosophy of mind,
linguistics, and logic. However, the identification of the
“thing” that we call meaning (i.e., the ontology of meaning),
but also the specification of the relation between expression
and meaning (the specification of semantic relations) is a no-
toriously contentious problem.

The predominant view is to perceive semantics as a refer-
ential relation. According to this view, semantic relations al-
lude to the capacity of an expression, including a natural sign,
a linguistic sign, or a mental state, to refer to an object or state
of affairs in the world. There are two interrelated strategies for
understanding meaning (Davis & Gillon, 2004). One strategy
is to associate the term meaning with the specification of the
properties of the objects or state of affairs in the world to
which meaning is attributed. This specification is variously
referred to as “sense,” “intension,” “‘connotation,” “‘universal
property,” or “representational content.” Another strategy is

9 < 2
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to associate the term meaning with the very object(s) or state
of affair(s) in the world that is attributed to an expression. The
set of objects that satisfy the specification is variously referred
to as “extension,” “denotation,” or “reference.” The specifi-
cation of the properties of an object (i.e., the representation
content) determines the truth conditions or conditions of sat-
isfaction that evaluate the relation between a reference and an
expression (Fig. 3). Thus, an expression refers to an object or
state of affairs in the world because that object or state of af-
fairs in the world has properties that satisfy the expressed
truth conditions or conditions of satisfaction. Historically,
this tradition has its origins in the work of Frege (e.g., Beaney,
1997) and in the work of Tarski (1956) on model theory.

In philosophy of mind and language these terms are dis-
cussed in relation to certain existential and ontological ques-
tions. For example, where is the locus of the conditions of
satisfaction of an object? Are these conditions expressions
of a mental state, or of an external world? Moreover, is the ref-
erence an entity that is located in the mind or in the external
world?

In response to these questions, a conceptualist starts with
the hypothesis that meaning is a mental structure. The view
that a mental entity is associated with meaning implies that
the reference of an expression is located in the brain (e.g.,
Jackendoff, 1976, 1990; Girdenfors, 2004) or that the condi-
tions of satisfaction are expressions of a mental state (e.g.,
Searle, 1983). In contrast, a realist rejects the idea that mean-
ing is determined by a mental entity and defines the notion of
meaning in relation to an object that is outside the mental state
of an agent (e.g., Putnam, 1975). Within this tradition one ap-
proach is to postulate that the reference of an expression is de-
termined by certain conditions located in the interactions and
structure of the environment of a cognitive agent (Barwise &
Perry, 1983). This approach gave rise to the notion of ecolog-
ical realism where the “meaning arises out of recurring rela-
tions between situations.”

The referential approach to semantics, either realist or con-
ceptual, is not the only way to define semantic relations. The
fact that an expression means something, or refers to some-
thing, can be perceived as having to do with a purpose or
the function of representing something (Dretske, 1995;
Millikan, 2004). According to this approach, meaning is a
functional entity (for a review, see Harder, 1996). Hence,
the functionalist or teleological view starts with the assump-
tion that the formation of meaning is not derived from the re-
presentational content or from a reference in the external

The ‘sense’, ‘concept’ or ‘representational
content’ that determines the truth conditions

‘Reference’, ‘object’ or state ’,'
of affairs in the world A

v Asign, linguistic expression or

______ + mental structure

Fig. 3. The semantic triangle. Different theories take different views on the relation and existence of these three basic terms.
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world, but from the function of representing a certain object
or state of affairs in the world. More specifically, the meaning
of an expression is determined by the intention to produce
certain effects and by the purpose and principles of commu-
nication (e.g., Grice, 1957). An expression is “false” or “not
satisfied” because of its failure to represent or convey a par-
ticular meaning.

For the purpose of this study, it is assumed that the function-
alist view of meaning does not necessarily reject the existence
of referential relations. Semantic relations can be ultimately
perceived as referential relations that are selected for their func-
tion (Millikan, 2004, p. 67). Therefore, the focus will remain on
the referential structure of meaning. Moreover, because the ob-
jective of this section is to explicate the logical structure of se-
mantic relations the locus of meaning will be treated both as a
mental (subjective) and as an external (objective) entity.

3.2.2. Category theoretic account of the semantic
content of intentionality

The formal specification of semantic relations has been part
of mathematical logic and in particular model theory (Barwise,
1977). Model theory is concerned with the relation between a
set of logical statements expressed in a language L and the
mathematical structures that satisfy the postulated statements.
The set of logical statements form a theory and the algebraic
structures that satisfy the statements of the theory are called
models. A theory is consistent if it has at least one model. As-
suming the existence of a model, a theory is a set of truth con-
ditions for that model. The distinction between theories and
models is therefore the model theoretic way to explicate the for-
mation of semantic relations as the interplay between “the spec-
ification of the properties of a family of objects” and “the set of
objects that satisfy the properties of a specification.” Note that
the terms theory and model are used in a different way than how
they are used in science. For an application of model theory to
design theory, see Mitchell (1990).

Another tradition to formal semantics is originated in Krip-
ke’s semantics and modal logic (Kripke, 1963; Goldblatt, 2006).
Modal logic is concerned with formal expressions that assert
the mode of truth: for instance, that something is “possibly”
or “necessary” true in a given context. Semantics are defined
in relation to a relational structure that captures interconnec-
tions between possible worlds within which an expression is
true or false. In this context, a model alludes to relational or
algebraic structure that represents the interconnectivity be-
tween possible worlds. Other similar forms of formal seman-
tics have been defined by Hintikka (1961) and also Barwise
and Perry (1983).

An alternative way to explicate the formation of semantic
relations can be found in category theory. Instead of employ-
ing symbolic expressions in order to specify semantic content
(i.e., the truth conditions or conditions of satisfaction for a
certain mental state), category theory uses diagrams of ob-
jects, arrows, and compositions of arrows. These diagrams
are formally termed sketches. Sketches are therefore the cate-
gory theoretic way of expressing the conditions of satisfaction

T. Zamenopoulos

for a certain intentional state: for instance, sketches may ex-
press aspects of a desired artefact such as proximity of rooms
in a building layout or strategic knowledge on the appropriate
interaction between different design tasks.> One of the advan-
tages of the mathematical notion of sketch is that “of being
independent of any particular presentation” (Wells, 1994,
p. 7). It thus makes it possible to capture the semantic content
of intentional states at different levels of analysis: as dynami-
cal, symbolic, or topological structures. The paper will use
examples that emphasize the link with symbolic level repre-
sentations, but the mathematical treatment applies generally
to different types of structures.

A sketch generates a mathematical category in the same way
that recursive rules or formal grammars generate a language.
Based on this analogy, a category can be seen as an algebraic
way to express the notion of a formal language. In category the-
ory, the semantic evaluation of sketches is mathematically
specified using the notion of functor between categories. A
more detailed account of the correspondence between category
theoretic formalizations and other traditions in formal seman-
tics can found in Barr and Wells (1985, 1990). For examples
and literature on how sketches can capture dynamical pro-
cesses, symbolic processes or topological transformations see
also Lawrere and Schanuel (1997). Let us explore the formal
characteristics of sketches in more detail.

The notion of sketch. A sketch generates a category by
specifying some core syntactical aspects of the category the-
oretic structure. The core aspects of a category theoretical
structure include the following: first, a graph structure that de-
picts structural properties of a category; second, diagrams that
specify possible compositions or constraints in the composi-
tions of arrows; and third, diagrams that specify universal
properties. More formally, a sketch s = <G, Dy, C, Cos>
is a graph G with a set of diagrams (graph homomorphisms)
Dy that determine constraints on the composition of arrows
over Gg; as well as a set C, of cones and a set Cog of co-cones.
A cone, as well as its dual concept of co-cone, is a special
type of diagram (graph homomorphism) in Gy that defines
the universal properties of the generated category. For in-
stance, a cone may be a diagram that depicts how new objects
may be created from the composition (product) of two other
objects within a given category. Cones and co-cones are dual
concepts: namely, they are diagrams with arrows in opposite
directions. For the purpose of this paper, a formal definition
of cones (and co-cones) is not necessary but it can be found
in any textbook in category theory. For full details about the
definition of sketches as a collection of graphs, graph homo-
morphisms and cones/co-cones the interested reader can look
at Barr and Wells (1985, 1990).

2 Sketches are treated here as mental structures. Borrowing Goel’s (1995)
book title, sketches are for this paper “sketches of thought.” Even though we
can easily draw some analogies between the category theoretic notion of
sketch with the sketches (drawings) that designers use in their practice, any
reference to sketches in this paper is strictly to the formal mathematic entity.
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For each sketch determined by s = <Gg, Ds, Cg, Cos> it language is expressed by the category Ths, whereas the notion
is possible to construct a category that has as an underlying of model is expressed by the special type of arrow m:s — Ud.

graph the graph Gg; as commutative diagrams the set Dg; . . .
. . How sketches express the semantic content of intentional-
and as universal properties the types of cones and co-cones

defined by C,, Co,. The category generated by a sketch ity. These category theoretic concepts can be now used to ex-
s — <G. D ’C Co,> is denoted by Th(s) or Ths, and is plicate how an intentional state leads to the formation of se-
- S» S» S» S ’

mantic relations. To do this we make reference to Searle’s
terms. For Searle (1983), the formation of semantics involves
two layers of intentionality: one that corresponds to a “sincerity
condition” and one to “meaning intentions.” First, there is an
intentional state to be expressed by an object (e.g., the desire
to stay dry may be expressed by a drawing or sentence); sec-
ond, there is an intention to express that intentional state.
Meaning is therefore acquired because of the intention of the
mind to associate an intentional state with a nonmental or phys-
ical expression. This association is realized because the inten-
tion to express an intentional state holds the same conditions of
satisfaction as the expressed intentional state. In category the-
oretic terms Searle’s ideas can be expressed as follows.

First, there is an intentional state expressed in an intentional
mind B. This intentional state is explicated by the model m:s —
Ud and has certain conditions of satisfaction s. This state essen-
tially corresponds to the first layer of Searle’s intentionality
(Searle, 1983, pp. 160-179). Second, there is an intentional
state (in particular, an intention) that is realized by the functor
F:B — W between two categories B and W. Here, B corre-
sponds to a subjective reality and W to a language that expresses

ns an objective (possible or observed) reality. The functor F expli-

UThs = Ths cates the intention to express something in a language W given

- i certain conditions of satisfaction expressed by the sketch s in

u(i) B. This essentially corresponds to the second layer of Searle’s

intentionality (Searle, 1983). A representation of the semantic
properties of intentional states is given in Figure 4.

referred to as a theory or language generated by the sketch
s. The generated theory Ths is a category of entities that sat-
isfy the properties (structure, constraints, and abstractions)
specified by a sketch. Equally, each category d has an under-
lying sketch, denoted by Ud = <G;, Dy, Cs, Cos>, that spec-
ifies these properties. For a sketch s and for a theory of a
sketch Ths there is a functor i:Ths — d that preserves the
aforementioned properties of the theory, and as a result gen-
erates a possible instantiation of the theory in d. This functor
is defined as an interpretation of the theory Ths. In the same
way, amodel of a sketch s is defined as a sketch morphism m:s
— Ud from a sketch s to the underlying sketch Ud of the cat-
egory d. A sketch morphism is a graph homomorphism that
takes the set of diagrams Ds, cones C and co-cones Cog to
a set of diagrams, cones and co-cones in Ud.

Based on this notation, semantic relations are defined in re-
lation to the following universal property: for every sketch s
and every model of a sketch m:s — Ud there is unique functor
i:Ths — d for which the following diagram commutes (i.e.,
the two alternative paths of arrows are equal so, m = U(i) ;):

ud

This property states that there is a natural bijection between
models of a sketch m:s — Ud and interpretations of a theory
i:Ths — d (i.e., an adjunction between a theory functor Th
and the underlying functor U), which is denoted by Mod(s, This last subsection on intentionality is concerned with the
UCd) = Int(Ths, d). way intentional states as mental entities are related to a

In sum, the category theoretic concept of sketch offers anal-  physical reality (e.g., the brain). Up to this point, the term
ternative way to formalize semantics: the notion of theory or  intentionality has been discussed as a special mental capacity:

3.3. Realizations of intentionality

4 ) ~ Intention F K N

! . S ‘ﬁ Theor N
,/ Representational content: \ ; y \
/Conditions of satisfaction Y /

' Instantiation/
' Attitude m
1

v

1}

. 1
Interpretation 1
'

i

!

1
!
'
1
1
) ! '

\ ’ ]
\ ’ \

I/ A} ’
. Model , Qe Reference /

Assign ~ e

Fig. 4. A schematic representation of the semantic properties of intentional states. The category theoretic notion of sketch s is the repre-
sentational content (or conditions of satisfaction) of an intentional state. The category generated by a sketch is the inner or outer language (a
theory) used in order to express a specific intentional state m.
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a capacity that is inextricably related with the formation of se-
mantic relations. However, what is the locus, body, or universe
of intentionality? In other words, how is intentionality real-
ized? Is the brain the only physical realization of an intentional
mind? Do social entities have intentionality? In order to re-
spond to such questions, the “problem” of intentionality
must be placed in relation to the “mind—body problem.”

The mind-body problem concerns the relationship be-
tween mental states or processes and physical events. In con-
temporary philosophy and science, it is commonly held that
mental phenomena are somehow linked to physical phenom-
ena, although the exact nature of this relation is not clear.
There are four main approaches regarding this relation (e.g.,
Harman, 1989; Chalmers, 2002).

One approach, behaviorism, associates mental states and pro-
cesses with the behavioral dispositions or behavioral tendencies
generated by the underlying physical processes of an organism.
According to this view, the mind is a special aspect of the behav-
ior of a physical system (e.g., Ryle, 1949; Dennett, 1987).

The second approach, identity theory, associates mental states
and processes with physical states and processes. More specifi-
cally, identity theory claims that mental states are essentially
physical states of the brain of an organism (e.g., Place, 1956;
Smart, 1959).

The third approach, functionalist theory, attributes mental
states or processes to physical states or processes whose be-
havioral dispositions are distinguished for their functional
role. A predominant interpretation of this approach postulates
that mental states are functions of a computational machine
(e.g., Putnam, 1973). The view of mental states as functional
entities of a computational machine helped explain how the
same mental states might take multiple physical realizations.
Thus, for instance, animals and humans may both have a sim-
ilar intentional state, but different neurological structures.

Fourth, and finally, a number of alternative studies on the re-
lation between mind and body have brought to the fore the
emergentist hypothesis that mental states are higher order/
emergent properties of lower level (typically physical) states
and process (e.g., McLaughlin, 1992, 1997; Horgan, 1993).
According to this approach, intentional states are emergent
qualities that cannot be deduced from the principles of the
components found at a lower level of abstraction. This relation
(between higher order emergent properties and lower level
states and processes) is specified in different ways: as onto-
logical, logical, or epistemological relation (see Zamenopou-
los, 2008). The emergentist view of the mind has been closely
linked to the concept of “supervenience,” first introduced in
the context of philosophy of mind by Davidson (1970). Ac-
cording to this view, the mind supervenes the physical states
or processes of a brain: that is, although, the same mental states
may have a different physical realization, identical physical
states or processes specify identical mental phenomena.

The functionalist and the emergentist approaches in theory
of mind both brought to the fore the hypothesis that inten-
tional states can have many different realizations (e.g., Kim,
1992). According to this hypothesis, intentionality can be
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said to be embodied in certain organizational structures and
processes that are not necessarily realized in the physical
structure of a brain. The hypothesis suggests the possibility
to understand and study the notion of intentionality as a phe-
nomenon that may arise across different levels: biological,
cognitive, or social (Atlan, 1974, 1998). For the purpose of
this study, the term intentionality or intentional state will be
used for any organism or system that has the capacity to hold
representations of an objective (existing or nonexisting/possi-
ble) reality. In this sense, this distinction between representa-
tion and the representing object marks the distinction between
a subjective and an objective reality. The ontoloical status of
these realities is not specified, but the logical properties of
this coupling will be the main focus of the next sections.

4. THE ORGANIZATIONAL COMPLEXITY
OF INTENTIONALITY

In Section 2, the phenomenon of design was approached as a
mental capacity that arises in relation to a particular intentional
state: when there are inconsistencies between beliefs held about
the past, current, and future states of the world, and desires re-
garding the state of the world. Following this idea, Section 3 in-
troduced some well-known category theoretic tools in order to
capture the meaning and structure of intentionality. In particu-
lar, the notion of adjunction was introduced in order to explicate
the semantic content and evaluation of intentional states. How-
ever, the introduced treatment precludes the expression of in-
complete representations or the expression of conflicting inten-
tional states. For this reason in this section the paper introduces
some new mathematical entities in order to capture qualitative
variations in the representational properties of intentional states,
allowing the formal expression of inconsistencies.

These variations are essentially expressions of the organiza-
tional complexity of intentional states. As mentioned in the in-
troduction, complexity science aims to understand the organi-
zational processes and structures that underlie the creation of
higher level functions or structures. In the context of this paper,
the focus is placed on the organizational processes and struc-
tures that underlie the formation of intentional states. More spe-
cifically, the objective is to distinguish different qualities of
mental representations independently from the actual content
and attitude of intentional states. For that purpose, it is neces-
sary to introduce a semantic/intentional theory of organiza-
tional complexity: a mathematical framework for expressing
semantic aspects of complexity. A more detailed account of
the proposed mathematical framework can be found in Zame-
nopoulos (2008) and Zamenopoulos and Alexiou (2007a).

We first briefly review some existing approaches to the de-
velopment of mathematical descriptions of organizational
complexity. One approach is to focus on ontological proper-
ties of organization, such as, for instance, the degrees of free-
dom and mutual information in the description of a system
(e.g., Nicolis & Prigogine, 1967; Atlan, 1974; Von Foerster,
1984). A second approach is to focus on the logical or com-
putational properties of organization, such as the computa-
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tional resources (the time or logical effort) needed in order to
describe/compute a system (e.g., Kolmogorov, 1965; Chaitin,
1966, 1997; Bennett, 1985), or the computability of a system
(e.g., Langton, 1990; Wolfram, 1994). A third approach is to
focus on the epistemological aspects of organization, such as,
for instance, the characterization of the number of indepen-
dent descriptions or models of a system (e.g., Rosen, 1991;
Cariani, 1991; Casti, 1992).

For the purpose of this study, the focus is placed on the se-
mantic aspects of organization. The proposition put forward
is that variations in the notion of sketch can be used in order to
describe the organizational complexity of a system. More pre-
cisely, the universal property of semantic relations (that is the
adjunction that arises in the semantic content of intentional
states) is employed as a tool for the characterization of orga-
nizational complexity. According to this perspective, an or-
dered organization is an organization that is described by a
well-formed theory; a random organization is an organization
that is characterized by the absence of a theory; and complex
organization is an organization that is described by a notion of
aweak theory. A weak theory can then be thought as the most
general class of theories, which allows us to consider well-
formed and random theories as special cases. On that basis,
the organizational complexity of an intentional state can be
thought to vary according to the type of sketches, theories,
and models involved: from well-ordered intentional states
that generate strong (or well-formed) theories, to complex in-
tentional states that generate weak theories.

For the purpose of defining the notion of weak theory it is
important to specify the notion of weak adjunction. More for-
mally, the concept of weak adjunction between two categor-
ies B and W requires the existence of two functors F and U
with the following properties.

DEerINITION (Weak adjunction). A weak adjunction be-
tween two categories B and W is defined by a tuple <F, U,
@, 0, T, Tw>, where F:B — W and U:W — B are functors;
the arrow Tp is a (natural ) transformation between any two ar-
rows (functors) m:s — Ud and m'":s — Ud of the set B(s, Ud);
the arrow Tw is a (natural) transformation between any two
arrows (functors) i:Fs — d and i":Fs — d of the set W(Fs,
d); and the arrows ¢ and 6 make the following diagram com-
mute naturally in s and d (i.e., ¢ - 0 = g and 6 - @ = Tw):

W(Fs, d) B(s, Ud)
‘ \ l \
0 ¢
B(s, Ud) —2—B(s, Ud)  W(Fs, d) —*—= W(Fs, d)

The two diagrams can be equally depicted as follows:

B(s, Ud]—e-* W(Fs, d)

l / irw

B(s, Ud) L} W(Fs, d)
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As usual, the condition of naturality for arrow ¢ (and sim-
ilarly for 6) means that the arrow ¢ preserves the categorical
structure as s and d vary. More formally, naturality suggests
that the following diagrams commute for every arrow h:s'
— sinBand k:d — d' in W:

W(Fs, d)—2—> B(s, Ud) W(Fs, d)—2 > B(s, Ud)
W(Fh,d]l B(h,Ud) l W(Fs,k)l B(s,Uk)i
P Py

W(Fs, d)————> B(s, Ud)
|

W(Fs', d———— B(s', Ud)

Based on this definition the following special cases can be de-
fined:

e If there is an object s in B or d in W with 7p = Ip(syq) Or
Tw = lw(rsq), Where 1 ua) and 1y (g q) are identity ar-
rows over B(s, Ud) and W(F's, d), respectively, then for
the objects s in B and d in W there is a universal arrow
Mns:s — UF's and e4:FUd — d, respectively.

e If for every object s in B or d in W the arrows 7 =
I(s,ud) OF Tw = lw(rsq), that is, when the arrows g
and Tw are identity arrows for every object in B or W,
then 6 and ¢ form a bijection that is natural in s and d
(hence, the tuple <F, U, ¢, 6> is an adjunction).

The above definition of weak adjunction is related with two
important ideas in category theoretic algebra. First, the concept
of weak adjunction implies that universal properties are applic-
able for some objects s in B or d in W, whereas the concept of
strong adjunction implies that universal properties are applic-
able for every object s in B and d in W. Second, the concept
of weak adjunction implies that the very meaning of universal
construction is also weakened, in the sense that the arrows i and
m are not required to be unique. The second aspect of weak ad-
junction has appeared in the literature in different forms (e.g.,
Maranda, 1964; Kainen, 1971; Mac Lane, 1998) but also in re-
lation to higher dimensional or 2-categories (e.g., Seely, 1979).
In this paper, the proposed definition of weak adjunction covers
both dimensions of “weakness,” but more importantly, it is for-
mulated in a way that will naturally lead to the subsequent
formal notions of weak theory and the complexity theoretic no-
tion of phase transition in the intentional state of a system.

More specifically, based on this construction, a weak theory
is defined as follows.

DEerInITION (Weak theory). A weak theory is a category
Ths that is constructed by a sketch s in B, and a functor Th
such that a weak adjunction <Th, U, ¢, 0, 1, Tw>> is de-
fined; that is, the relation ¢ and 6 between interpretations i
of theories Ths in W and models m of a sketch s in B are de-
termined by the following diagram:

B(s, Ud)—2—> W(Ths, d)

ral/ ltw

B(s, ud) ———> W(Ths, d)



74

Well-formed and random theories can be thought as special
cases of weak theories in the following sense:

e A well-formed theory is constructed when for every ob-
jectsin B or din W the arrows 7g = lp(s yg) and Tw =
Lw(rhs,a) that is, when the arrows 7p and Ty are identity
arrows for every object in B or W. In this case, the ar-
rows 0 and ¢ form a bijection that is natural in s and
d, and the tuple <Th, U, ¢, 6> is an adjunction.

e A random theory is constructed when there is no object s
in B ordin W such that tg = 1g(s ya) or Tw = lw(ns,a)- In
this case. the adjunction <Th, U, ¢, 6> is broken. W

The notion of weak theory can now be used to build a
mathematical construction that describes a qualitative change
(a phase transition) in the organizational complexity of the
mathematical structures that characterize an intentional state.
A phase transition is perceived as a transformation of the
properties and degree of complementarity between descrip-
tions (theories) and their interpretations (models).

DEerINITION (phase transition). Given the arrows Ty:s —
s" and T;:d — d’ shown below,

s L} s’ Thsn'—T‘)- Ths'

ml m’l i i i'l
ud % ud' d 4)* d

a phase transition is defined by the transformations 75 = B(Tj,
UT,):B(s, Ud) — B(s', Ud') and Tyy = W(ThTy, T,;):W(Ths, d)
— W(Ths', d') that make the following diagram commute:

Tw

W(Ths, djg ~~~ """ TTTTTT T T > W(Ths,d)
kﬂ\Bts. ud) —-—2--> g(s, ud) ”'Eﬂ
Tw P ltn l‘r,' ® w
Ts

IR (PR | sl g
B(s, Ud) > B(s', Ud')

W(Ths, d)‘_’__’_’__/j_ ________ T _________:?_\_‘:: W(Ths',d)

When the arrows 7’ and 7w’ in the above diagram are

identity arrows then the transition is a phase transition to

universality. Let us now bring together all the introduced

mathematical constructions in order to formalize an organiza-
tional level description of design intentionality.

5. ORGANIZATIONAL LEVEL DESCRIPTION
OF DESIGN INTENTIONALITY

As discussed in Section 2, the core hypothesis of this study is
that design activity arises in response to a situation where there
are conflicting, inconsistent, or unsatisfied intentional states
expressed in the brain, a social group or any other intentional
system. This situation is now more precisely approached as
an intentional state where desires about the world generate ex-
pressions of theories and/or models that do not follow the cor-
respondence between theories and models as this is established
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by one’s belief system. A design task requires forming an
interpretation of this situation (and therefore constructing a vi-
sion about the world) together with an instantiation able to ful-
fill this vision. This section aims to mathematically character-
ize the organizational structures and processes of an intentional
system that is capable to address such design tasks.

5.1. Core elements of design intentionality:
An example

Let us first explicate the core elements of design intentionality
using an example. The objective of this example is to provide
one plausible interpretation of the mathematical structures
and processes that characterize the formation of intentional
states during design tasks. Note that the example is used in or-
der to instantiate and clarify the main mathematical ideas ra-
ther than to demonstrate the scope of their applicability. As
explained in Section 3.2.2, there are other possible ways to
apply the notion of sketch that may focus on the underlying
dynamical processes or topological structures. In any case
the core elements and descriptions of the properties that un-
derlie design intentionality would remain the same.

In this example the object of design activity and content of
design intentionality is restricted to building layouts. It will be
assumed that there is a need or desire for a building layout in
which different activities are organized into separate wings.
The task may also specify constraints reflected in the form
and function of the building, for instance, that certain activ-
ities should not be adjacent, whereas certain others should
be placed in closed proximity. The task may also express re-
quirements about the style and overall form of the building
layout, for example, the requirement that the overall config-
uration of the building forms an interesting jagged outline.

All these properties, requirements, or constraints are essen-
tial components of an intentional state (i.e., a desire) that may
take different and possibly conflicting or incompatible inter-
pretations. In other words, the organization of activities into
wings, the requirement for an “interesting” or “jagged” mor-
phology, but also the constraints regarding the proximity
between activities, may all take a number of different interpre-
tations and as a result represent conflicting intentional states.
Responding to a design task requires the ability to generate a
consistent interpretation of this situation and construct a vi-
sion about the meaning of all these terms. It is also requires
the ability to instantiate this vision in a specific building config-
uration that satisfies the formulated interpretations. Building on
this example, let us now revisit the main mathematical struc-
tures introduced in this paper and see how these mathematical
entities realize the core elements of design intentionality.

5.1.1. The notion of a sketch

A sketch s is a mathematical expression of the organizational
structure of an intentional system (e.g., brain or social group).
This structure captures the content and conditions of satisfaction
of intentionality. In the specific example, a sketch s may be
thought to capture the desired properties of a family of built con-
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figurations: that is, the desired type of activities, the wing forms
that compose the built configuration, as well as their spatial re-
lations. In more formal terms, the notion of sketch in this exam-
ple can be thought to capture a category of shape configurations
in the same way that a shape grammar captures a language of
desired designs. A sketch is specified by graphs, diagrams.
and cones in the same way that a shape grammar is specified
by shapes and shape rules, labels that constrain the application
of rules, and an initial shape. The notion of a sketch here will be
therefore explained as a mathematical formalism equivalent to
grammars. However, sketches can also operate at a higher level
of abstraction as a mathematical machinery for defining (shape)
grammars and their operation. Let us explore this relation as a
basis for exemplifying the notion of sketch.

A shape grammar is defined by a finite set V of shapes (i.e.,
a vocabulary of shapes), an initial shape I, and a finite set R of
rules ry, 72, . . ., 1, from VT, to V*, where VT is the set of all
possible shapes made up of the shapes in V and V* is the set
VT plus the empty shape. Shapes may also have labels L that
guide or constrain the application of rules.

As discussed before, shapes and spatial relations in the sets
V, VT, and V* can be specified by graphs. For instance, for
the purpose of this example let us consider a vocabulary con-
sisting of one rectangular shape. In Figure 5, the graph speci-
fies the two diagonal corners of the rectangle.

From a category theoretic perspective, the graph structure
G; of a sketch s is a mathematical structure that is used in or-
der to represent not only shapes and spatial relations but also
the set of shape rules R = {r;, 12, . . ., ,, } of a grammar. This
graph structure has n-arrows of the form r;, r5, ..., r,: V" —
V*. For the purpose of this example we will assume a shape
grammar that has only one rule of the form r;:a — b as Fig-
ure 6 suggests. In relation to this grammar, the graph G of the
sketch s is simply a graph with two nodes (shapes a and b) and
one arrow that constitutes the rule r;.

More generally regarding any grammar, the graph G of a
sketch s captures the idea that a shape rule is constructed
by two functions #:R — V' and R — V* such that for
each arrow (i.e.. rule) in R the function £ assigns a shape at
the head of the arrow, and the function ¢ assigns a shape at
the tail of the arrow. In this more abstract sense, the graph spe-
cifies the main types of entities R, V', and V* involved in the
definition of a shape rule and the basic form of the shape rule
(how the rule is constructed) as follows:

h t

Vil R—> v

A shape grammar may also include a set of labeled points
L. For instance, the end point (x;, y,) of the graph (x;, y;) —
(X2, y2) may be labeled with a symbol e as Figure 7 suggests.

ve< %
(X1.y1)

Fig. 5. A vocabulary of shapes V. It consists of a rectangle defined by a graph
(X1, y1) — (X2, y2) that specifies its two diagonal corners.
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Initial shape | |:]
Rule: ry I:‘ — |::|
Shape a Shape b
Fig. 6. A simple shape grammar with one rule.
Shape rules are then of the form r;, 12, . . ., r:(V, L)t —

(V,L)* where (V, L)* denotes the set of labeled shapes made
up of shapes in V and symbols in L, whereas (V, L)* also in-
cludes the empty labeled shape. The labeled points L that are
assigned over shapes in V', and V* (as shown in Fig. 8) break
the shape symmetries and as a result constrain the application
of shape rules.

The use of labeled points in a shape grammar corresponds
to the use of diagrams in a sketch. More generally, diagrams
for a labeled shape grammar are formed by functions f:V+ —
L and g:V* — L such that f'assigns labeled points on the left
hand shape of a rule in R and g assigns labeled points on the
right-hand shape of the rule in R as shown below:
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Similarly, there is a correspondence between the use of an in-
itial shape in a shape grammar and the use of cones in a sketch.
The initial shape is an element of the set of possible shapes V"
with the unique property that all other shapes in the constructed
language (or category) of shapes are derived from this shape.
An initial shape can be perceived as the minimum shape of
the language. Generally a cone determines operations such as
products or sums that create new structures out of more primi-
tive ones. In the specific example, a cone may specify an alge-
bra of shapes (e.g., an object a ° b that is the product of two
shapes a and b). A cone may also determine other universal
constructions such as characteristic functions that determine a
mechanism of choosing possible or desirable subshapes within

observed spatial relations. In the specific example we will use
only the initial shape as a cone of the sketch s.

Vt

5.1.2. The notion of a theory

In the same way that a shape grammar generates a language
of shapes, a sketch generates a theory or category Ths of shapes
that satisfy the conditions expressed in s. The core idea is that
the functor Th takes a sketch s and generates a category of

=)

(X1.y1)

Fig. 7. A labeled shape and the corresponding labeled graph (xi, yi)
— (X2, y2).
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Rute: r,  [78 —> 1

Fig. 8. A labeled shape rule.

shapes (language) Ths where each arrow in the category Ths is
a possible path of arrows (i.e., composition of rules) defined in
Gg under the constraints imposed by the diagrams (i.e., labeled
points) of the sketch s. Hence, the category Ths has as arrows
all possible applications of the rules in R and as objects all the
labeled shapes from the sets (V, L)™ and (V, L)* generated by
rules in R. In the specific example, the language or theory Ths
is essentially a category of shapes such as in Figure 9. The pic-
ture presents a particular derivation of shape configurations
within a category of shapes generated by s.

5.1.3. Interpretations and models

A language of shapes Ths may take different interpreta-
tions. Interpretations are expressed in a certain language
that describes these configurations in terms of purpose, func-
tion, form, or organizational characteristics (for a similar
treatment in the context of shape grammars, see Stiny,
1981). In shape grammars such descriptions are specified
by a function i:Ths; — D that maps configurations expressed
in the language/theory of shapes Thg generated by grammar
G to descriptions in another set D. Similarly, in category the-
oretic terms interpretations are specified by a functor i:Ths —
d that maps shape configurations in the category of shapes
Ths into descriptions of another language d, preserving the
structure of the shape language. For instance, we could envi-
sage descriptions of shape configurations in terms of form
types {I-shape; L-shape, U-shape, O-Shape, . . .}, type or
number of wings {a, b, ¢, d, ...}, number of courts, and a ma-
trix that specifies spatial relations between wings. Hence, a
sequence of descriptions of shape configurations (interpreta-
tions) can be formed that preserve the properties of the shape
language Ths as Figure 10 suggests.

Any description d of a particular building configuration
has an underlying sketch representation, denoted by Ud,
which specifies the shape rules that generate the described
configuration (i.e., underlying graph structure), but also the
relations and constraints imposed in the application of spatial
rules (i.e., diagrams). For instance the O-shape configuration
in Figure 10 has an underlying sketch with one rule (the rule
r; as expressed in Fig. 8) and one diagram, which specifies
that the building cofiguration is generated from rule r; applied

Fig. 9. An example of a language or theory Ths of shapes. Ths is a category
of shapes generated by the sketch s described in Figure 8. Note that the arrows
in this picture are not shape rules but applications of shape rule r;.

T. Zamenopoulos

three times. Thus, the underlying sketch of an O-shape con-
figuration has an arrow 77:(V, L)* — (V, L)* and a diagram
that equates the arrow 7 with the application of the rule r;
three times (i.e., 77 = r; < ry > /).

A model of a sketch or model of an intentional state s is a
desired and/or possible specification of the properties of
building configurations. This is mathematically expressed
by a functor m:s — Ud, which maps the desired properties
(expressed in s) into a design description Ud. A complemen-
tary relation between models and interpretations implies that a
model m:s — Ud preserves the desired properties of the
sketch s into the underlying sketch of the proposed design de-
scription Ud. For instance, in Figure 11, the sketch s generates
a language of building configurations by applying the shape
rule r; for any number of times. A model of a building layout
may express the desire for a configuration that forms court-
yards. Building configurations with courtyards (i.e., O-shape
configurations) are generated by applying rule r; thrice (as
discussed above). The underlying sketch of this configuration
satisfies the model of an intentional state s because there is a
functor m:s — Ud that can preserve the structure of s in the
underlying sketch Ud of the proposed O-shape configuration.
A building configuration with a courtyard is then created by
the sketch s because there is a building configuration in the
language Ths and an interpretation i:Ths — d that satisfy
this model and make the diagram in Figure 11 commute.

5.1.4. The nature of models and their interpretations

Figure 11 is an illustration of the relation between sketches,
theories, models, and interpretations. It is worth noting that in
this study there is no commitment on the nature of semantic re-
lations. As explained, a sketch s and its models (i.e., m:s — Ud)
are mathematical expressions of the conditions of satisfaction of
an intentional state that are realized in an intentional system.
However, the category of shapes Ths and their interpretations
i:Ths — d are mathematical expressions of an existing or pos-
sible world W that may be realized either as a cognitive struc-
ture (conceptualist view) or as an external representation (realist
view). Because this paper does not make an explicit commit-
ment to any one of these two views, it will be more abstractly
said that the category B is a mathematical expression of the
subjective reality realized in the “brain” of an intentional organ-
ism, and category W is a mathematical expression of an
objective reality (observed or possible) realized in the brain
or alternatively in the task environment of an intentional organ-
ism. A similar discussion on the distinction between subjective
and objective reality can be found in Lawrere and Schanuel
(1997).

5.2. The design task

Looking back at Figure 11, it is possible to envisage a number
of possible conflicts or inconsistencies that may arise in the
intentional states of an organism. First, a sketch may contain
conflicting or incomplete information regarding an inten-
tional object. For instance, it is possible to envisage the exis-



Design intentionality

77

Interpretatlons

[I-shape; [L-shape; [U-shape; [O-shape;

<a>; |::> <a,b>; |:> <a,b,c>; |:> <a,b,c,d>;
No-court; No-court; No-court; Court;

a] a—>b] a=>b->c] a>b>c>d—>a]

Fig. 10. A language of shapes and their interpretations. Note how the sequence of descriptions of shape configurations corresponds to the

sequence of shape configurations.

tence of diagrams that represent conflicting spatial relations
regarding the room adjacency. Another possible situation is
to envisage the existence of an inconsistent language. An in-
consistent language of shapes Ths will generate shape config-
urations that have properties that conflict with the properties
of shape configurations Ud described by the desired models.
For instance, let us assume a language of shapes that gener-
ates Z-shape configurations while the sketch or intentional
state s remains the same (Fig. 12). In this case, the sketch
or intentional state s clearly has models that cannot specify
the properties of this type of configurations.

It is equally possible to envisage an incomplete language
of shapes or incomplete descriptions of building configura-
tions. An incomplete language of shapes Ths will be a
category of shapes that cannot generate certain desired con-
figurations. For instance, let us assume a situation where there
is a desire for Z-shape configurations expressed by the under-
lying sketch shown in Figure 13. In this case, any interpreta-

tion of shape configurations generated in Ths will not satisfy
the description of the desired building configurations.

In all of these scenarios it is assumed that the elements of
Figure 12 and Figure 13 are mathematical structures that are
constructed or realized within an intentional system (e.g., a
brain) somewhat independently from one another.

These examples illustrate the characteristic features of the
situation that motivates design, as discussed in Section 2.
More generally, in category theoretic terms, design intention-
ality appears when the developed theory Ths of desired ob-
jects/processes yields interpretations in W (i.e., i:Ths — d)
whose underlying properties Ud cannot be (uniquely) derived
by the sketch s (i.e., m:s — Ud). The need to design therefore
arises when the theory and model functors contain, so to
speak, ambiguity, noise, or errors; hence, there is no natural
bijection between B(s, Ud) and W(Ths, d).

In this situation, there is conflicting intentionality (e.g.,
conflicting beliefs and desires) that generates a two direc-

B hid
A sketch Th A language of shapes
Initial shape | —>
(VL -, >

Model Interpretations

Y Y

Initial shape | .(—U [O-shape;<a,b,c,d>;Court;a>b>c>d->a]
i (V,L) —(V,L) —>
ri’=rierer; .
Underlying sketch A design description

Fig. 11. An example of the adjunction between models of desired shape configurations and their interpretations.
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A sketch P A language of shapes

____1'{?1__
Initial shape | = > |:>| I |l:> —
ri:(V, LY —=(V, L) D—*q]

Model Interpretations
Y Y

Initial shape | u,’
muaLshape L — << ----/-- [Z-shape ;<a,b,c>;No-court;a>b->c]
r:(V, L)'=V, L) D—»I:D p
ri’=reerer
Underlying sketch A design description

Fig. 12. The language of Z-shape configurations in W has properties that cannot be described by the models of the sketch.

tional freedom of fit: from world-to-mind and from mind-to-
world (recall after Section 3.2.2). Namely, there is a mismatch
between subjective B(s, Ud) and objective reality W(Ths, d)
and both the subjective and the objective reality need to be
adapted to each other. In this sense, a sketch s expresses the
conditions of satisfaction of a desire that is fulfilled only
when there is theory of a possible reality that satisfies its mod-
els. In contrast, a sketch s also expresses the conditions of
satisfaction of a belief that becomes true (or false) only
when there is a model of a possible world that validates the

theory. To put it differently, design arises when the diagram
in Figure 14 does not commute.

The following definition specifies the core hypothesis re-
garding the mathematical structures that characterize a design
capable intentional system when faced with a design problem
or design task.

THEesis 1 (design intentionality and the design task).

Design intentionality arises in relation to an intentional state
s with a “two-directional freedom of fit” between a subjective
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Underlying sketch
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Interpretations
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[Z-shape ;<a,b,c>;No-court;a=>b->c]

A design description

Fig. 13. The language of shapes in W does not have the expressive power to generate configurations that would satisfy the underlying

sketch of Z-shape configurations.
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Objective reality

Theory: ™. (observed or possible)
Family of objects

generated by s

Interpretation

Object:
Instantiation or
interpretation of .~

a theory

Fig. 14. A design situation arises when there is no natural bijection between subjective B(s, Ud) and objective W(Ths, d) reality.

B(_, U_) and an objective reality W(Th_, _), whose models
(i.e., m:s — Ud) in B(s, U_) and interpretations (i.e., i:Ths
— d) in W(Th_, d) are not complementary. Namely, design
intentionality arises when there is a weak adjunction <
Th, U, ¢, 0, T8, Tw>> natural in s and d that makes the follow-
ing diagram commute:

B(s, Ud) —2—> W(Ths, d)

Ta"'al / l w=lw

B(s, Ud) — 5> W(Ths, d)

Given this intentional state, the problem of design or de-
sign task is to establish an adjunction B(s, Ud) =~ W(Ths,
d) by transforming both the subjective and the objective
reality. ]

5.3. The capacity to design

In response to this intentional state, the design task requires
the mental capacity to make the diagrams in Figures 12, 13,
and 14 commute. Namely, it requires the capacity to bring
the conditions of satisfaction s and the generated model m:s
— Ud of a desired reality into a complementary relation
(i.e., adjunction) with the generated language Ths of design
objects and their interpretations i:Ths — d. The main conse-
quence of the above hypothesis is that the mental capacity to
carry out design tasks (i.e., the capacity to make the diagrams
in Figures 12, 13, and 14 commute) requires a type of phase
transition in the organizational complexity of intentional
states as described in Section 4. Let us explain further this re-
sult first in an informal and then a formal way.

Going back to the building configuration task example, the
ability to design alludes to the capacity to generate an inter-
pretation or vision of a desired building layout together with
the capacity to generate a language of shape configurations
that will instantiate this interpretation or vision. Let us for in-
stance focus on the desired model and description for a “jagged
layout.” In this context, the ability to design requires the capac-

ity to transform the description of a “jagged layout” into a de-
scription for a Z-shape configuration, but also the capacity to
identify certain spatial relations between the wings of the build-
ing that generate a language of Z-shape configurations. These
transformations create a new interpretation of what is a jagged
layout configuration, but also a new language of how this vi-
sion can be instantiated. More specifically, in Figure 15 we
see that the desire for a jagged-shape configuration expressed
by the description dp (bottom right of the figure) is part of
an intentional state that expresses inconsistencies. The dashed
lines denote that an adjunction between B(s, Ud) and W(Ths,
d) cannot be formed given this description. A new interpreta-
tion of what is a jagged layout configuration dy, but also a
new sketch (rule) ryy and language of how this vision can be in-
stantiated (see thick arrows) are needed in order to realize a
transition to a universal state (an adjunction represented by
solid lines).

However, what are the organizational structures and pro-
cesses that drive these mental transformations during a design
task? The transformation of a sketch 7:s — sy (or more nar-
rowly in this example the transformation of shape rules Tx: r;
— ry), as well as the transformation of design descriptions
T4:d — dy, are components of a transition that leads into a
new relation between desired models, language of shapes,
and interpretations. The core idea is that the adjunction corre-
sponds to an organizational state that works as an attractor for
these transformations. Thus, these transformations are de-
fined in relation to a universal state (the codomains of the ar-
rows are part of an adjunction) although the transformations
are not universal arrows. In effect, these transformations
can be understood as anticipatory representations of a transi-
tion to complementary relations between desired models and
interpretations. The notion of anticipatory representation sim-
ply refers to the fact that both transformations express mental
actions in preparation of a new language of shapes and a new
model of the desired building that would make the diagram
commute. Moreover, both transformations express mental ac-
tions that lead to significant changes in the organizational
complexity of the intentional state (from a weakly universal
to a universal state).
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Fig. 15. Anexample of a phase transition. In the absence of an adjunction, a new interpretation of what is a jagged layout configuration dy,
but also a new sketch (rule) ry and language of how this vision can be instantiated (see thick arrows) are needed in order to realize a transi-

tion to a universal state (solid arrows).

Let us explain the meaning and peculiarity of this phase
transition, but also why this is a consequence of the very nature
of design task. According to the proposed thesis on the nature
of design tasks, design requires a transition from a situation that
is characterized by a weak theory to a situation that is charac-
terized by a universal construction. One important peculiarity
of this transition is that it leads to universality. However, al-
though this transition leads to a universal construction, there
is no universal transition to universality. This is the very signif-
icance of the concept of phase transition. If the transformation
T,:s — sy (from a sketch s participating in a weak adjunction to
a sketch sy participating in an well-defined adjunction) could
be constructed through a universal arrow, then the theory
Ths would be a universal theory. However, this would contra-
dict the main premise behind the definition of the design task
that demands the existence of a weak theory. In this sense, de-
sign necessitates the capacity of generating theories and mod-
els of a sketch in preparation of their adjunction, that is, before
such correspondence is constructed. It is in this sense that the
mental process of design is characterized as a phase transition
to universality, a phase transition that requires the capacity to
hold anticipatory representations of universal constructions
(for more details on the mathematical conditions that explain
the construction of anticipatory representations during design
tasks, see Zamenopoulos & Alexiou, 2007b).

We now provide a more formal presentation of these ideas.
The mental activity of design is a phase transition to univer-
sality and as a result requires the existence of transformations:

Tg = B(T, UT,):B(s, Ud) — B(sy, Udy) and

Tw = W(ThT,, T;):W(Ths, d) — W(Thsy, dy)

such that the following diagrams commute:

ThT,
Ths ———> Ths,

1 T

T

d‘d)‘du

T
s —F 3 g,

ml
urt.

ud ——=L—Ud,

W(Ths,d)g ~~~~~~~TTTTTTTToTTTTT T T % W(Thsydy)

“"5“‘“— B(s,Ud) —=—2-—> B{so,Udur”“e"ﬂ

To Tc 15[;,&1]1 Twiths,d)
‘.“’_3_,,..- B(s,Ud) ——I’———*B(su.Udu)\.E;“
W(Ths,d) = _ _ o __ T o > W(Thsydy)

Given an intentional state s, the capacity to carry out design
tasks alludes to the existence of transformations Ts:s — Sy in
a subjective reality B(_, U_) and transformations 7,:d — dy
in an objective reality W(Th_, _) that are components of a
phase transition to universality T = <Tpg, Ty >. The transfor-
mation 7:s — s, is a component of the transformation B(7,
UT,;) = Tp:B(s, Ud) — B(sy, Udy), and similarly the transfor-
mation 7,;:d — dy is a component of the transformation
W(ThTy, Tq) = Tp:W(Ths, d) — W(Thsy, dy). It is informative
to think that the transformation 7y:s — s, has a mind to world
direction of fit, in the sense that any mismatch between a subjec-
tive B(_, U_) and objective reality W(Th_, _) is addressed by
changing the properties of the sketch. Similarly, the transforma-
tion 7,;:d — dy has a world to mind direction of fit because any
mismatch between the subjective and objective reality is ad-
dressed by changing the properties of the object.

In category theoretic literature, the notion of adjunction
B(s, Ud) = W(Ths, d) can be alternatively presented as a re-
lation between two functors W(Ths, d):B°°’xW — Set and
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B(s, Ud):B°’xW — Set that are naturally isomorphic. In this
context, the theory Ths is said to be a representing object for
the functor B(s, Ud). Similarly, the underlying sketch Ud of
an entity d is said to be a representing object for the functor
W(Ths, d). However, what can be said for the functors
W(Ths, d) and B(s, Ud) that are not naturally isomorphic,
that is when B(s, Ud) =2 W(Ths, d)? In this case, the notion
of an anticipatory representation is defined. The theory Ths
generated by a sketch s is called an anticipatory representa-
tion of models in B(sy, Udy) if and only if the sketch s has
models m and interpretations i that are components of a phase
transition to universality 7 = <Tp, Ty>. The underlying
sketch Ud is then called an anticipatory representation of in-
terpretations in W(Thsy, dy). Based on this definition, the
capacity to carry out design tasks is now identified as the ca-
pacity to hold anticipatory representations/interpretations of
universality.

Thesis 2 (the capacity to design). The capacity to design
is the capacity of an intentional state s to hold models 7y:s —
sy and generate interpretations ThT,:Ths — Thsy that are
components of a phase transition to universality. The capac-
ity to design is therefore the capacity of a sketch s to generate
theories Ths and sketches Ud of an object d that are anticipa-
tory representations of a universal construction B(sy, Udy) =2
W(ThSU, dU) |

Note that the models m and theories Ths that are derived
from an intentional state s are specified in relation to a phase
transition to universality. Such anticipatory representations
are clearly distinct from representations where models and
theories are specified in relation to a universal construction.
The adjunction B(sy, Udy) = W(Thsy, dy) characterizes
an intentional state s in the sense that every model of s and
interpretation of theories Ths are constrained by the specified
phase transition to universality. However, the reverse is not
true. The models of the sketch s are not universal representa-
tions of W(Thsy, dy). In this sense the adjunction B(sy, Udy)
= W(Thsy, dy) can be perceived as an “emergent” state of s.

T T,
s ———> sy Ths———> Ths,

UTd Td
Ud ————>Udy d —>dy

6. SUMMARY AND CONCLUSIONS

This paper presented a mathematical theory that aimed to as-
sociate our understanding of design activity to a theory of
mind and intentionality. The paper focused on the property
of the mind to hold intentional states (that is, the capacity
to represent or reflect existing and nonexisting realities) and
on the way that these mental states are constructed during de-
sign tasks. The core objective was the development of a
mathematical framework that would explicate a complexity
theoretic hypothesis about the organizational structures and
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processes that govern the formation of intentional states
during design tasks. The paper elaborated a mathematical
framework regarding the organizational complexity of inten-
tionality, which was then used in order to propose an organi-
zational level description of design intentionality. This frame-
work was based on the introduction and development of the
category theoretic notion of weak theory.

There are two potential contributions of the proposed
treatment. The first is related with the need (or ambition) of de-
veloping explanatory theories about the capacity to carry out
design tasks. Such theories should be able to uniquely distin-
guish design (from nondesign phenomena) on the basis of cer-
tain underlying principles. Such principles may be identified at
different levels of abstraction (e.g., at the level of neurological
activity, information processing, knowledge level or social
level). Although the present paper does not propose a “mecha-
nism” to explain the capacity to carry out design tasks, it does
propose a framework within which certain conditions (or
mechanisms) may be identified. Overall, the main value of
this study alludes to the rigorous formulation of the type or cat-
egory of mathematical structures that underlie a design-capable
intentional system (e.g., a brain). For example, the proposed
mathematical framework can be used in the analysis of brain
imaging data derived from functional magnetic resonance
imaging methods for the purpose of identifying characteristic
patterns in the structure as well as the effective and functional
connectivity between brain areas during design tasks. As dis-
cussed in the introduction, although we can empirically collect
data about the neurological structures and processes that partake
in the completion of design tasks, we have no formal way of
linking these structures and processes to the formation of men-
tal intentional states. The potential of using the mathematical
framework for exactly this purpose is explained in more detail
in Zamenopoulos and Alexiou (2011).

The second contribution is related to the need of develop-
ing theories in design that are informed by and are transfer-
able to other domains. Although this is not an uncommon
objective in design research in general, the proposed frame-
work explicitly places the problem of design within the realm
of complexity research and vice versa. The constitution of de-
sign as a universal capacity of complexity is a double contri-
bution to complexity research as well as to design research,
and makes it possible to transfer results between the two
fields. In this sense, it is hoped that the proposed mathemat-
ical framework offers a plausible interpretation on how
characteristic structures and processes of complex (neurolog-
ical, social, or ecological) systems may be linked to higher
level cognitive functions such as designing (Zamenopoulos
and Alexiou, 2005b).
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