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Constraint-handling techniques for generative product design
systems in the mass customization context

AXEL NORDIN, DAMIEN MOTTE, ANDREAS HOPF, ROBERT BJÄRNEMO, AND

CLAUS-CHRISTIAN ECKHARDT
Department of Design Sciences, Faculty of Engineering LTH, Lund University, Lund, Sweden

(RECEIVED June 15, 2012; ACCEPTED May 1, 2013)

Abstract

Generative product design systems used in the context of mass customization are required to generate diverse solutions
quickly and reliably without necessitating modification or tuning during use. When such systems are employed to allow
for the mass customization of product form, they must be able to handle mass production and engineering constraints
that can be time-consuming to evaluate and difficult to fulfill. These issues are related to how the constraints are handled
in the generative design system. This article evaluates two promising sequential constraint-handling techniques and the of-
ten used weighted sum technique with regard to convergence time, convergence rate, and diversity of the design solutions.
The application used for this purpose was a design system aimed at generating a table with an advanced form: a Voronoi
diagram based structure. The design problem was constrained in terms of production as well as stability, requiring a time-
consuming finite element evaluation. Regarding convergence time and rate, one of the sequential constraint-handling tech-
niques performed significantly better than the weighted sum technique. Nevertheless, the weighted sum technique pre-
sented respectable results and therefore remains a relevant technique. Regarding diversity, none of the techniques could
generate diverse solutions in a single search run. In contrast, the solutions from different searches were always diverse. So-
lution diversity is thus gained at the cost of more runs, but no evaluation of the diversity of the solutions is needed. This
result is important, because a diversity evaluation function would otherwise have to be developed for every new type of
design. Efficient handling of complex constraints is an important step toward mass customization of nontrivial product
forms.

Keywords: Complex Morphologies; Constraint-Handling Techniques; Evolutionary Computing; Generative Design;
Genetic Algorithms

1. INTRODUCTION

One can sense an evolution of the largely static relationship
between the consumer and the product. There is an increasing
desire to participate in the designing of products and the po-
tential experiences consumers will share with them. As put
forward by Friebe and Ramge (2008), the upsurge of inde-
pendent fashion labels, “crowdsourcing” initiatives, and co-
working spaces indicates consumer’s demand for empower-
ment. This need for cocreation, implemented already in the
textile (Lakhani & Kanji, 2009) and food industries (Kraft
Foods, 2006) but also in more advanced consumer goods
businesses like sportswear (Moser et al., 2006; Bouché,
2009), goes well beyond mere material and color choices:
the future “prosumer” (Toffler, 1971) desires control over

product form as well. This challenge poses major difficulties.
First, consumers are not always knowledgable enough to
evaluate how their design preferences may affect the func-
tionality and manufacturability of the product. Second, if
the desired product form is complex, such as in nature-in-
spired forms or shape grammars, even the manipulation of
the form can be too cumbersome for consumers not skilled
in three-dimensional modeling. The consumer must therefore
be supported in form manipulation in some way. Finally, if
mass customization is understood as the mass production of
customized goods (Kaplan & Haenlein, 2006; Trubridge,
2010, p. 169), the product form is often severely constrained
by the production system.

A possible solution to these difficulties is to implement a
generative design system (GDS) that generates product de-
signs that fulfill mass production and engineering constraints,
along with consumer requirements (such as size, contour, and
materials), while leaving the consumer in control of the final
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design selection. A GDS intended for product design is basi-
cally structured around a graphical user interface with which
the user can evaluate, select and influence the generation of
product forms. A GDS is often based on an interactive opti-
mization system or constraint satisfaction system that handles
user preferences and technical constraints. A GDS is fre-
quently used to handle complex forms usually intractable to
the user. Most GDSs have been intended for professional de-
signers, for example, to help the designer preserve the “form
identity” of a brand (Pugliese & Cagan, 2002; Chau et al.,
2004; McCormack et al., 2004), but they have not been spe-
cifically designed for use by consumers. Letting the consu-
mers control their own design adds a number of requirements
to the GDS.

First, such a GDS is to be used repeatedly; therefore, the
solutions must be generated quickly (how fast the system is
able to converge to viable solutions, i.e., convergence time,
is important) and in a reliable manner (how often the system
is able to converge to viable solutions, i.e., convergence
rate, is important), and the system must be applicable to a
wide range of problems without requiring extensive modifi-
cation of the algorithm by the consumer or a programmer.

Second, consumers must be able to choose from a set of so-
lutions, because the decision to choose one design solution
over another is often not based on pure performance metrics
but rather on criteria that are subjective and difficult to quan-
tify. At the same time, in order to give the consumer a mean-
ingful choice, the generated shapes need to fulfill all technical
constraints, which may be time-consuming to evaluate and
hard to satisfy. For an analysis related to structural problems,
for instance, finite element techniques may be required. It is
therefore necessary that the GDS ensure an adequate diversity
among the proposed solutions so that the waiting time and the
need to relaunch the generation process are minimized.

Diversity, convergence rate, and convergence time are in-
terrelated: they depend upon how the solutions are generated,
that is, how the constraints are handled and the viable solu-
tions are optimized. Of these two activities, the satisfaction
of constraints represents the main challenge. The time spent
on the optimization can be controlled by the user (optimiza-
tion can be stopped if deemed to be too time-consuming or
if one is satisfied with the result), but the constraint-handling
step cannot. Regarding diversity, the constraints can be very
hard to satisfy, and the space of feasible solutions in those
cases is sparse. Diversity is therefore unlikely to arise during
the subsequent optimization step if it has not during the con-
straint-handling step. Finally, the convergence rate also de-
pends on the constraint-handling step, because solutions are
viable only if they fulfill all constraints. Therefore, in the fol-
lowing discussion, these issues are considered only under the
constraint-handling aspect.

Enabling the efficient handling of such types of constraints
is a step toward showing that mass customization of product
forms is technically possible. In this paper, three different
techniques for handling technical constraints are therefore
evaluated in terms of convergence time, convergence rate,

and the diversity of the generated solutions using a real design
problem. The design problem is to find feasible solutions to a
table support structure based on a complex form (a so-called
Voronoi diagram) that is subject to technical constraints and
user evaluation.

Section 2 reviews related works on GDSs and on con-
straint-handling techniques (CHTs). The study of diversity,
convergence rate, and solution-generation time for a real de-
sign problem with selected CHTs is treated in Section 3.

Although this research addresses primarily the use of
GDSs in the mass customization context, some aspects of
it, especially that pertaining to the diversity issue, should
also be useful for GDSs where the user is a professional in-
dustrial designer.

2. GDSs AND CHTs

The first part of this section reviews related works on GDSs
and reports how constraints are handled in these systems.
The second part reviews CHTs and their relevance for consu-
mer-oriented GDSs.

2.1. Related works on GDSs

Few GDSs focus on product forms within the mass customi-
zation context. Current GDSs are mainly industrial applica-
tions in the form of online product configuration websites of-
fering many diverse forms of mass customization, a large
bandwidth of personalization options, navigation techniques,
and visual quality. A collection of these websites can be
found at MilkorSugar (http://www.milkorsugar.com/). One
example is the Kram/Weisshaar Breeding Tables Project,
which generates variations of a table design using a genetic
algorithm (GA) that modifies a set of parameters ruling the
support structure (Kram & Weisshaar, 2003). Despite the
steady upsurge in online product configuration, there is no
major market player that makes customization of the actual
product form and structure available to its customers. It
should also be noted that none of these configurators includes
evaluation of manufacturing or structural constraints.

Within industrial design research, generative design has
been investigated primarily for stylistic purposes. In the semi-
nal work of Knight (1980), a parametric shape grammar was
developed for the generation of Hepplewhite-style chair-
backs. Orsborn et al. (2006) employed a shape grammar to
define the boundaries between different automotive vehicle
typologies. Recent works have focused on branding-related
issues. With the help of shape grammars, new designs based
on the Buick (McCormack et al., 2004), Harley-Davidson
(Pugliese & Cagan, 2002), and Coca-Cola and Head &
Shoulders (Chau et al., 2004) brands were developed. Further
research is being undertaken to develop rules that link form
and brand: for example, Cluzel et al. (2012) for systems based
on GAs and Orsborn et al. (2008) for shape grammars. Within
the mass customization context, Johnson (2012) created a
graphical interface for customizing shelves while taking

A. Nordin et al.388

http://www.milkorsugar.com/
http://www.milkorsugar.com/


into account functional aspects such as compartment size,
and Piasecki and Hanna (2010) used a graphical interface
based on numerical sliders to control a shape, as well as a
GA to aid in the design of the shape, to investigate the influ-
ence of the amount of control on the user’s satisfaction with
the system.

Technical constraints and objectives have been studied
more extensively within engineering design. An early exam-
ple is Frazer’s application of a GA to the design of sailing
yachts, taking into account constraints such as stability, center
of buoyancy, and wetted surface area, as well as less well-de-
fined criteria such as aesthetics, by combining a computa-
tional evaluation with a subjective user-based evaluation
(Frazer, 1996). Agarwal and colleagues (Agarwal & Cagan,
1998; Agarwal et al., 1999) have associated the shape gram-
mar technique with parametric cost and applied it to the de-
sign of coffee makers (see Cagan, 2001, for a review on the
use of shape grammars in engineering design). Numerous ef-
forts have also been made to take into account the engineering
and production constraints early in the development process,
using knowledge-based engineering systems (see El-Sayed &
Chassapis, 2005; Sandberg & Larsson, 2006; Lin et al., 2009;
Johansson, 2011) or a combination of knowledge-based engi-
neering and optimization systems, as in Petersson et al.
(2012), where the lightweight gripper constraint satisfaction
and optimization system is based on the weighted sum tech-
nique. These works, even if they present interesting design
systems, are not primarily concerned with diversity and
choice.

Some works are crossing the boundaries between engineer-
ing and industrial design, taking into account functional or
technical constraints and aesthetics. Shea and Cagan (1999)
used a combination of shape grammar and simulated anneal-
ing for both functional and aesthetic purposes and applied it
to truss structures. The shape grammar technique was used to
generate new designs, and the simulated annealing technique
to direct the generation toward an optimum. The evaluation
was based on a weighted sum of constraint violations and ob-
jective values. The design objectives were functional (mini-
mize weight, enclosure space, and surface area), economic,
and aesthetic (minimize variations between lengths in order
to get uniformity, make the proportions respect the golden ra-
tio). Shea and Cagan’s model was reused by Lee and Tang
(2009), with a combination of shape grammar and GA, to de-
velop stylistically consistent forms and it was applied to the de-
signing of a camera. The designs generated took into account
the constraints linked to the spatial component configuration.
The constraints were handled by minimizing a weighted sum
of the constraint violations. A designer was in charge of the
aesthetic evaluation, following the interactive GA paradigm.
Ang et al. (2006) used shape grammars and GAs to develop
the Coca-Cola bottle example of Chau et al. (2004) and
added functional considerations (the volume of the bottle)
that were constrained to approach the classic Coca-Cola bottle
shape. EZCT Architecture & Design Research et al. (2004),
within the interactive GA paradigm, developed a set of chairs

optimized for weight and stiffness. The designer could define
how loads would be applied to the structure before the opti-
mization but could not interact with the system during the op-
timization. Finally, Wenli (2008) developed a system that,
through adaptive mechanisms, allowed it to learn the design-
er’s intent faster; that system was implemented as a plug-in
for a computer-aided design system and applied to boat hull
design.

The handling of the constraints in the reviewed works is
summarized in Table 1. Of the CHTs reviewed in the previous
section, the weighted sum technique is always used if more
than one constraint or objective is present.

2.2. CHTs

CHTs represent a field of evolutionary computing that is in-
creasing at a fast pace. There are several techniques (for ex-
tended reviews, see Michalewicz et al., 1996; Coello Coello,
2002; Mezura-Montes, 2004; Yeniay, 2005). As mentioned
in the Introduction, GDSs for mass customization will be
used repeatedly. It is therefore necessary to have CHTs that
are sufficiently generic for addressing different design prob-
lems and that do not require the user to modify the algorithm
during use. Many of the common types of CHTs are therefore
not applicable, as discussed below.

The most common approach to handling constraints is to
use methods based on penalty functions. The concept behind
those methods is “to transform a constrained-optimization
problem into an unconstrained one by adding (or subtracting)
a certain value to/from the objective function based on the
amount of constraint violation present in a certain solution”
(Coello Coello, 2002). The penalty factors/values must be de-
termined by the user and is problem dependent (Mezura-
Montes & Coello Coello, 2006, p. 2). The weighted sum
can be seen as one specific penalty technique: the constraints
are incorporated into the objective function and the given
weights that penalize the fitness value. Another type of
CHT consists of trying to maintain feasibility of the solutions
(Michalewicz & Janikow, 1991; Schoenauer & Michalewicz,
1996); it requires a feasible starting point that may be compu-
tationally costly to find or that must be set by the user (Coello
Coello, 2002, p. 1259) and/or necessitates the use of prob-
lem-specific operators (Schoenauer & Michalewicz, 1996,
p. 245). Another method is based on the search for feasible
solutions. One possibility is “repairing” infeasible indi-
viduals (see details in Coello Coello, 2002, section 4), which
has been proved an efficient method if the individuals can be
easily transformed; this unfortunately is rarely the case in
real-world engineering problems. Hybrid methods also exist
that combine techniques from the different categories above
and/or with techniques from other domains, such as fuzzy lo-
gic (Van Le, 1996) or constraint satisfaction problems (Pare-
dis, 1994; see also Michalewicz & Schoenauer, 1996; and Coello
Coello, 2002). They require supplementary knowledge from
the user for their implementation; they have therefore not
been investigated further.
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The types of CHTs that seems to fit the above-mentioned
requirements are the lexicographic, or sequential, CHTs
(SCHTs) and the multiobjective optimization techniques.
Coming from the domain of multicriteria decision models
(e.g., see Bouyssou et al., 2006, pp. 188–191), the lexico-
graphic method consists in considering each constraint sepa-
rately, in a specific order. When the first constraint is fulfilled,
the next constraint is considered. When all constraints are ful-
filled, the objective function is optimized. Although these
methods do not require extensive tuning of parameters while
they are running, it is necessary to select in advance a se-
quencing of all constraints. However, this choice of sequence
needs to be done only once, before the GDS will be used. This
aspect is crucial, because the ordering of constraints signifi-
cantly influences the results in terms of running time and pre-
cision (Michalewicz & Schoenauer, 1996). How to choose an
optimal sequence has been described elsewhere (Motte et al.,
2011). The multiobjective optimization techniques are based
on transforming the constraints into objectives to fulfill.
This is also a promising technique for engineering optimiza-
tion problems (for reviews, see Coello Coello, 2002; Me-
zura-Montes, 2004; Mezura-Montes & Coello Coello, 2006),

In a preceding study (Motte et al., 2011), two SCHTs were
investigated against the classic weighted sum scheme using
the well-known 10-bar truss benchmark problem (Haug & Ar-
ora, 1979): the behavioral memory (BM) method (Schoenauer
& Xanthakis, 1993; Michalewicz et al., 1996) and the SCHT
(Lexcoht; Nordin et al., 2011). Regarding convergence time,
Lexcoht was more often superior to BM, and both were far su-

perior to the weighted sum technique. It is interesting that no
significant differences between different weighting schemes
were found: the unweighted sum scheme (UWS), a linearly
weighted scheme, and an exponentially weighted sum scheme
were tested. Finding a relevant weighting scheme therefore
does not seem crucial for an efficient use of the weighted
sum technique, making it a potentially interesting generic CHT.

SCHTs and the weighted sum technique are both therefore
candidates for consumer-oriented GDSs. Although less efficient
than Lexcoht in terms of convergence time, BM is interesting
because its structure (presented below) is based on a diversity
measure in order to allow for a greater diversity in solutions.

Therefore, it was decided to compare these three CHTs in
terms of diversity, convergence rate, and convergence time.
The weighted sum technique is implemented using the
UWS. The implementations of Lexcoht and BM are pre-
sented in the following sections.

2.2.1. Lexcoht

Lexcoht (Nordin et al., 2011) can be described for each
constraint by performing the following:

† Evaluate the constraint violation.
† If the constraint is satisfied: evaluate the next constraint.
† If the constraint is not satisfied: stop the evaluation and

score the individual according to

p ¼ mþ (1� a)
c

, (1)

Table 1. Comparison of the constraint handling of the reviewed works

Work KBS
Optimiz.
System CHT Type Constraints Objectives

Diversity
Meas.

Time-Consum.
Eval.

Knight, 1980 No — — NA NA No No
Orsborn et al., 2006 No — — NA NA No No
McCormack et al., 2004 No — — NA NA No No
Pugliese & Cagan, 2002 No — — NA NA No No
Cluzel et al., 2012 No GA — NA NA Yesa No
Orsborn et al., 2008 No — — NA NA No No
Agarwal & Cagan, 1998 No — — NA NA No No
Lin et al., 2009 Yes — — NA NA No No
Johansson, 2011 Yes — — NA NA No No
Sandberg & Larsson, 2006 Yes — — NA NA No No
El-Sayed & Chassapis, 2005 Yes ND ND 3 2 No Yes
Petersson et al., 2012 Yes SA WS 1 1 No Yes
Shea & Cagan, 1999 No SA WS 4 5 No Yes
Lee & Tang, 2009 No GA WS 1 3 No No
Ang et al., 2006 No GA — 1 0 No No
Chau et al., 2004 No — — NA NA No No
EZCT Architecture & Design

Research et al., 2004 No GA WS 1 1 No Yes
Wenli, 2008 No GA — 0 NA No No

Note: The number of constraints listed are those which are handled by the constraint-handling technique (CHT). Constraints handled by
knowledge base systems were not taken into account. In the case of interactive genetic algorithms (GAs), the objectives handled by users
were not included. NA, not applicable; ND, no data; SA, simulated annealing; WS, weighted sum.

aCluzel et al. (2012) develops a similarity measure to test the performance of their interactive GA, but it is not used in the generative design
system itself.
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where p is the individual’s score, m is the number of con-
straints the individual satisfied up until the last constraint
evaluated, a is the constraint violation of the last evaluated
constraint, and c is the total number of constraints. Constraint
violation a is normalized (e.g., a ¼ minimal allowed value/
observed value), which means that p also ranges from 0 to 1.

As a result of Eq. (1), an individual satisfying m constraints
is certain to get a higher score than an individual satisfying
m – k constraints, k [ [1, m]. The score p is then used as fit-
ness in the GA (see Section 3.2).

2.2.2. The BM technique

Schoenauer and Xanthakis (1993) describe another se-
quential approach: the BM technique. It is based on the
BM paradigm (de Garis, 1990), in which several techniques
have been implemented to increase the diversity of the popu-
lation to avoid premature convergence around certain con-
straints. The algorithm is summarized below.

A randomly initialized population is optimized in regard to
the first constraint. This continues until a certain percentage,
the flip-threshold w of the population, satisfies the constraint.
The population is then optimized in regard to the next con-
straint, until w percent satisfies the second constraint. Any in-
dividual not satisfying the prior constraints is given the score
zero. This process continues until all constraints have been
satisfied.

To maintain population diversity, a sharing scheme is used
as described in Holland (1975) and Goldberg and Richardson
(1987). This method reduces the fitness of individuals that are
similar to each other to promote diversity. The user-defined
parameter-sharing factor ssh is used to decide whether two
individuals are similar; it is also used to calculate the sharing
score shi, which is used to penalize individuals that are similar
(described below). The score p for each individual can be de-
scribed as p ¼ (Mt – Ci/shi), where Ci is the constraint viola-
tion and Mt is an arbitrarily large positive number equal to or
greater than the largest constraint violation.

Furthermore, a restricted mating scheme as described by Deb
and Goldberg (1989) is used which promotes mating of similar
individuals to create fitter offspring. The parameter ssh is also
used here to decide whether two individuals are similar.

This method thus requires the user to determine the flip-
threshold w and the sharing factor ssh. However, recom-
mendations for tuning the last two are given in Schoenauer
and Xanthakis (1993): “the order of magnitude of ssh can
be approximated from below using large w and increasing
ssh until the required percentage of feasible points cannot
be reached anymore. Slightly decreasing ssh should then al-
low to find good values for both ssh and w.”

3. THE STUDY

3.1. Objectives of the study

The first objective is to compare the ability of the three CHTs
to generate sufficient diversity among the proposed solutions.

The second objective is to compare their convergence times.
The third objective is to compare their relative convergence
rates. In this study, the comparison is based on the table gen-
eration problem, presented next.

3.2. The table generation problem

The design problem is to generate Voronoi diagram based ta-
ble structures based on that satisfy three production and struc-
tural constraints. AVoronoi diagram is a structure that is often
found in light and strong structures in nature (Pearce, 1978;
Beukers & van Hinte, 2005), such as the wing of a dragonfly
or the structure of bone marrow. The manufacturing processes
used are laser cutting and computer numerical control sheet-
metal bending. The geometry of the bending machine limits
the flange lengths of the cells to be manufactured to no shorter
than 30 mm, which we call constraint l, and the bending an-
gles a minimum of 358, which we call constraint a. The struc-
tural requirements limit the maximum vertical displacement
of any part of the table to 2.5 mm, which we call constraint f.

The design problem is described in depth in Nordin et al.
(2011). A GDS based on this design problem would allow
the consumer to determine the contour of the tabletop (see
Fig. 1), to choose the height of the table, and to select the ta-
ble’s structure material. The GDS would then generate design
proposals for the consumer to choose from. In this setup, the
contour is chosen to be a square one. Note that prototypes
have been built based on the computer-generated proposals
and presented at several design fairs (see Fig. 2). This appli-
cation can also be considered as a “real” design problem.

3.3. Implementation of the whole GDS

The table structure is represented as joined-beam elements,
which are analyzed using the finite element method, using
a finite element package called CALFEM developed at
Lund University (Austrell et al., 2004). This package allows
for defining a number of degrees of freedom for the cells,
their positions and interconnections, as well as applicable
loads and boundary conditions.

The GA used is the standard Matlab implementation. The
scaling method used to assign probabilities for selection to
the individuals is a simple ranking scheme where the indi-
viduals are ordered after their fitness; this approach avoids
giving individuals with high fitness an unfair advantage in se-
lection, which can result in premature convergence on local
optima. The selection method chooses parents based on the
individuals’ scaled fitness, in this setup Matlab’s built-in se-
lection method stochastic uniform has been chosen. The sto-
chastic uniform method represents the population as a line,
with each individual representing a line segment whose
length is proportional to the individual’s scaled fitness. The
method then walks down the line in fixed-length steps, add-
ing the individual whose line segment it lands onto the
pool of parents. The top two individuals are guaranteed to
survive to the next generation in order to not lose the best so-
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lutions. The fraction of the children created by crossover, ra-
ther than mutation, is set to 0.8. The GA is run with a popu-
lation of 50 individuals, during a maximum of 500 genera-
tions. The run is stopped when the maximum number of
generations is reached or an individual satisfying all con-
straints has been found. Each original population was gener-
ated by randomly generating 70 Voronoi points for each of
the individuals in the population.

Sharing score: Diversity measure of BM. The measure for
diversity is based on the calculation of the sharing score for
the BM method. The diversity of an individual in a population
is calculated by comparing its genome, in this case the coor-
dinates of its Voronoi points, to all the other genomes of the
rest of the individuals in the population. This is achieved by
the following pseudocode:

For each individual i in the population:
For each individual j in the population:

For each point a in individual i’s genome:
Find the point b in individual j’s genome that has

the smallest Euclidian distance da to point a
The sum of all the distances di;j ¼

P70
a¼1 da is indi-

vidual i’s diversity to individual j.

3.4. Experimental setup and procedure

Because there are only three constraints, all six possible se-
quences are investigated for the Lexcoht and BM techniques.
In this paper, each sequence is named after the order in which
the constraints are evaluated (laf, lfa, alf, afl, fla, and fal, re-
spectively). The sequencing has no effect on the UWS, be-
cause all constraints are evaluated simultaneously. The inves-
tigation of the three CHTs therefore amounts to 13
“treatments” to investigate. The parameters for the BM tech-
niques were set according to the recommendations from
Schoenauer and Xanthakis (1993), with w ¼ 0.6 and ssh

¼ 0.05 for all sequences. Lexcoht did not have any parame-
ters requiring tuning.

The developed GDS is expected to be used repeatedly. Re-
garding convergence time, it is therefore appropriate to con-
sider the frequency with which one wants the best technique
to be faster than the others. In this test, it was decided that the
best technique should generate faster solutions at least twice
as often as the second best technique. In other words, 25%
of the time the convergence time of the second-best technique
should be below the median of the first technique (obviously,
50% of the time the convergence time of the first technique is
below its median, i.e., twice as often as the second one). If
the computing times of the techniques are normally distrib-
uted with the same standard deviation, then the mean is con-
founded with the median. In that case, the second-best mean
should be at least 0.68 SD away from the best mean
[N(–0.68;0,1) ¼ 0.25]. The desired effect size is therefore
d ¼ (dm/s) ¼ 0.68. In Motte et al. (2011) the distributions
were positively skewed; the chosen effect size is therefore

Fig. 1. (Color online) Three user-defined table contours.

Fig. 2. (Color online) An image of the generated table (Nordin et al., 2011).
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quite conservative. With 13 treatments to compare against
each other using the Tukey test, and with d ¼ 0.68, the mini-
mum number of runs for each treatment is 48 (Nicewander &
Price, 1997). To control for nonconvergence (estimated
originally at 10%), the chosen number of runs was set at
60. Finally, a repeated-measure design was used, allowing
for studying whether the original populations had an effect
on diversity for the different techniques.

The performed simulation presented low convergence rates
for the BM techniques (40%–66%). This was unexpected, be-
cause the BM technique had always converged in the pre-
vious study (Motte et al., 2011) and had high convergence
rates in an unpublished prestudy. As the previous simulation
was based on a repeated-measures design, it was not possible
to exploit it for convergence rate and convergence time, be-
cause of the large number of missing data. Therefore, the ori-
ginal simulation based on repeated-measures design was used
only for investigating diversity, and a new simulation was
performed under the same conditions, with independent sam-
ples for the convergence time and the convergence rate. The
number of runs in each treatment was set at 150 in order to
ensure a sufficient power.

The convergence times of the treatments were obtained
using the CPU time of one core of an Intel Xeon E5620
2.40 GHz processor. The total simulation time amounted to
22 days, 13 h (because three CPU cores were used simultane-
ously, the simulations took 254 h).

3.5. Results

3.5.1. Diversity

The diversity within a population (or “intrapopulation diver-
sity”) is calculated by the sum of all individuals’ diversities.

The intrapopulation diversity among all treatments was
1.24�1022 (SD ¼ 4.48�1022). The intrapopulation diver-
sity for each method and technique is reported in Table 2.

The alternatives offered by the methods did not present an
appreciable variety until the diversity reached a value of 8�
1022 (e.g., Fig. 3). The alternatives with a diversity between
8� 1022 and 9� 1022 are in a gray area (see Fig. 4), while
the alternatives above 9�1022 are clearly dissimilar (Fig. 5).
Unfortunately, only four pairs of different individuals for all
the methods and sequences had a diversity value between 8
�1022 and 9�1022 (two in population 27 of the BM laf se-
quence, two in population 30 of the same sequence, two in
population 27 of the BM lfa sequence, and two in population
27 of the UWS method). The different variants with a diversity
above 9�1022 were also few. For Lexcoht, one population in
each of the alf and lfa sequences presented 2 alternatives that
could be judged as diverse. For the BM method, one popula-
tion of the fal sequence presented 2 alternatives, 3 populations
of the fla sequence presented 2 (2 and 14 alternatives respec-
tively), 2 populations of the laf sequence presented 2 and 6 al-
ternatives, and 2 populations of the lfa sequence presented 2
and 7 alternatives. The UWS method did not have any variant

above 9�1022. These outcomes are summarized Table 3. The
probability of getting dissimilar individuals in one population
is therefore not only very low; the number of dissimilar alter-
natives per population is also generally low: most of the
time, the user is not expected to obtain more than 2 alternatives.
Moreover, most of the dissimilar alternatives originate from the
same original populations (populations 27, 30, 43; see Table 3).
The diversity seems to depend more on the good characteristic
of the original population than on the method itself. The BM
method did get most of the dissimilar groups, but not as
much as was expected. The sharing scheme of the BM method
probably does not create diversity among individuals but
seems to maintain it if it is present in the original population.

The intrapopulation diversity did not provide satisfying re-
sults. However, the diversity between populations (or “inter-
population diversity”) was much larger: 1.63� 1021 (SD ¼
6.85 � 1022). The minimal diversity value was 0.802 �

Fig. 3. (Color online) Two table support variants of population 23 for the
Lexcoht alf sequence, with diversity 2.96�1022.

Table 2. Intrapopulation diversity
measures (standard deviations)

Treatment Diversity (SD)

L-afl 3.69×1022 (1.43×1022)
L-alf 8.20×1023 (4.54×1023)
L-fal 6.42×1023 (4.45×1023)
L-fla 8.82×1023 (6.93×1023)
L-laf 1.04×1023 (1.32×1023)
L-lfa 2.04×1022 (6.19×1023)
BM-afl 1.54×1023 (2.88×1023)
BM-alf 5.99×1023 (4.56×1023)
BM-fal 1.77×1022 (6.00×1023)
BM-fla 6.35×1022 (1.38×1022)
BM-laf 4.36×1022 (1.73×1022)
BM-lfa 4.72×1022 (1.45×1022)
UWS 1.55×1022 (9.20×1023)

Note: L, Lexicoht; laf, lfa, alf, afl, fla, fal,
the order in which the constraints are evaluated;
BM, behavioral memory; UWS, unweighted sum
scheme.
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1022. For Lexcoht, there were only two populations of the alf
sequence that contained individuals with a diversity below 9�
1022 and two populations in the fla sequence that contained
individuals with a diversity below 9�1022. All the remaining
individuals were quite dissimilar. Running several simulations
with different original populations therefore ensures diversity.

Figure 6 illustrates the large difference between intra- and
interpopulation diversities. It is very important that there is no
need, at least in this particular example, to even measure di-
versity, because virtually all interpopulation individuals are
dissimilar. The computing time becomes a function of the
number of alternatives one wants to present to the user; how-
ever, the time taken to ensure interpopulation diversity by any
future method is likely to consume additional time. More-
over, these additional simulations can run completely in par-
allel and, with the generalization of multicore servers, the run-
ning time would be virtually the same and depend only on the
availability of computing resources.

3.5.2. Convergence time

The smallest convergence rate observed in the second simu-
lation was 28%, which amounted to 42 successful runs. This is

less than the required minimum number of runs for each treat-
ment (48; see Section 3.4), which implies a loss of power but
also a decrease in type I error, which means that the multiple-
comparison test is rather conservative. It was therefore decided
to go on with the obtained data. The exploratory data analysis
revealed that the distributions of the convergence time for each
combination were markedly positively skewed, as is illustrated
in Figure 7. The standard deviations were found proportional
to the means; thus a logarithmic transformation was applied to
the data (Howell, 2007, pp. 3192321). The log-transformed
populations were mostly normally distributed; the Jarque–
Bera test for normality (Jarque & Bera, 1987) failed to show
a significant deviation from a normal distribution for most
of the combinations (five treatments had pJB , 0.01). With
the largest variance ratio being 1:4, the heteroscedasticity
was within the limit on heterogeneity of variance (i.e., less
than or equal to a factor of 4) for which the analysis of variance
is still robust (Wilcox, 1987; Howell, 2007, p. 317).

A one-way analysis of variance revealed that there were
significant differences among the means of the 13 treatments
[F (12, 1286) ¼ 17.98, p , 0.001]. A Tukey test at a ¼ 0.05
was subsequently performed upon the 13 treatments. Figure 8
presents the log-transformed means for each method and
sequence.

The Lexcoht method with the alf sequence was significantly
better than the UWS method. It was not significantly better
than the best BM method result, with the laf sequence, which
itself was not significantly better than the UWS method.

The Lexcoht method with the alf sequence was signifi-
cantly better than the worst Lexcoht sequence fla. The BM
method with the best sequence (laf) was also significantly
better than the worst BM sequence ( fal). This confirms that
the choice of the right sequence is important.

Fig. 4. (Color online) Two table support variants of population 27 for the
unweighted sum scheme technique, with diversity 8.76�1022.

Table 3. Groups of alternatives with
a diversity value above 8� 1022

Treatment 0.08–0.09 .0.09

L-afl — 37:2
L-alf — —
L-fal — —
L-fla — —
L-laf — —
L-lfa — 44:2
BM-afl — —
BM-alf — —
BM-fal — 8:2
BM-fla — 17:2, 30:14, 55:2
BM-laf 27:2, 30:2 30:6, 43:2
BM-lfa 27:2 30:7, 43:2
UWS 27:2 —

Note: The first value is the population from which
the groups originate, and the second value is the
number of dissimilar groups. L, Lexicoht; laf, lfa,
alf, afl, fla, fal, the order in which the constraints
are evaluated; BM, behavioral memory; UWS,
unweighted sum scheme.

Fig. 5. (Color online) Two table support variants of population 37 of the afl
sequence of Lexcoht, with diversity 1.87�1021.
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3.5.3. Convergence rate

The convergence rates of the different treatments are pre-
sented Table 4. A chi-square test for proportions produced
x2 (12) ¼ 464.02, which is significant at p , 0.001. A pair-
wise comparison following the Tukey–Kramer procedure for
proportions (Hochberg & Tamhane, 1987, p. 275) was subse-
quently performed. The convergence rates of Lexcoht with
sequences afl and fal were significantly larger than the other
treatments. The complete results are presented Table 4 and
Figure 9. Almost all Lexcoht treatments have a significantly
higher convergence rate than the BM treatments. The BM
treatments with a computing time similar to the best Lexcoht
results as well as UWS are therefore performing significantly
worse in terms of convergence rate.

3.6. Discussion

In this paper, a number of different techniques for handling
technical constraints have been evaluated in terms of conver-
gence time, convergence rate, and the diversity of the gener-
ated solutions using a real product design problem. The aim
has been to investigate generative product design systems
used in the context of mass customization, which are required
to quickly and reliably generate diverse solutions without re-
quiring modification or tuning during use. When such sys-

tems are designed to allow for the customization of product
form, they must be able to handle production and engineering
constraints that can be time-consuming to evaluate and diffi-
cult to fulfill. These issues are related to how the constraints
are handled in the GDS, and because of this, two promising
SCHTs and the often used weighted sum technique have
been investigated.

Concerning diversity, the investigation revealed that the in-
trapopulation diversity was not high enough to be used for
presenting several alternatives to the user. In contrast, the in-
terpopulation diversity was always high. Diversity is thus
gained at the cost of more runs, but in that case there is no
need to check for diversity (as all interpopulation solutions
are sufficiently different). This result is also important be-
cause, if generalized, it would imply that it is not even neces-
sary to define a diversity measure, whatever the type of com-
plex form. It could also be shown that the specific mating
scheme that is built in in the BM method did not ensure
enough intrapopulation diversity.

The treatments that were most frequently the fastest were,
for Lexcoht, the alf sequence and, for BM, the laf sequence.
Lexcoht with the best sequence outperformed UWS by a fac-
tor of two. Although this confirms that the SCHTs are prom-
ising for the kind of problem presented here, it does not com-
pletely rule out the UWS, which performed well for the
investigated design problem and requires no tuning or

Fig. 6. A histogram of the intra- and interpopulation diversities. The interpopulation diversity is almost always superior to the intrapopu-
lation diversity.
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sequence selection. In the case of SCHTs the different se-
quences need to be tested first, but the gain is substantial if
the GDS is used frequently. It is important to recall that the
convergence time distributions are highly positively skewed,
so a good CHT not only allows for a quicker convergence on
average but also avoids very lengthy runs. The parameters for

the BM techniques that were set according to the recom-
mendations from Schoenauer and Xanthakis (1993) yielded
good results.

Fig. 7. (Color online) A representation of the sorted convergence times of the 13 treatments.

Fig. 8. A representation of the log-transformed means and their comparison
intervals (95%) for the constraint-handling techniques.

Table 4. Number of successful runs (out of 150), rate
of convergence, and 95% Clopper–Pearson CI

95% CI

Treatment N
Converg.

Rate
Lower
Bound

Upper
Bound

L-afl 150 1.00 0.98 1.00
L-alf 123 0.82 0.75 0.88
L-fal 149 0.99 0.96 1.00
L-fla 129 0.86 0.79 0.91
L-laf 103 0.69 0.61 0.76
L-lfa 111 0.74 0.66 0.81
BM-afl 88 0.59 0.50 0.67
BM-alf 42 0.28 0.21 0.36
BM-fal 78 0.52 0.44 0.60
BM-fla 57 0.38 0.30 0.46
BM-laf 73 0.49 0.40 0.57
BM-lfa 61 0.41 0.33 0.49
UWS 132 0.88 0.82 0.93

Note: CI, confidence interval; L, Lexicoht; laf, lfa, alf, afl, fla, fal, the
order in which the constraints are evaluated; BM, behavioral memory;
UWS, unweighted sum scheme.
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The treatments that had the best convergence rates were
Lexcoht with the afl and fal sequence. The convergence rates
were poor for the BM method in this setup but were excellent
in Motte et al. (2011) at 100%. Note that convergence rate and
time are not correlated (compare Figs. 8 and 9). Therefore, the
choice of an adequate sequence must take into account con-
vergence rate and time, as well as computing resources (the
calculations can be made in parallel with multicore or cluster
setups).

One should nevertheless remember that in order to use
SCHTs, a good constraint sequence has to be found. This is
a time-consuming task that requires a careful experimental
design. As mentioned earlier, the presented comparison
took around 10 days. This comparison is interesting only if
the GDS is to be used frequently; otherwise the weighted
sum is the best default technique.

4. CONCLUSION

The perspective of enabling consumers to use potentially
complex forms, coupled to functional, engineering, and pro-
duction constraints, is appealing. Several obstacles to such an
approach have been dealt with in this article. Although much
research has been done in the area of GDSs, few take into ac-
count constraints that are time-consuming to evaluate and dif-
ficult to fulfill, such as structural stability and manufacturabil-
ity, a necessity for many products based on mass production
systems. The ones that achieve that are focused on finding the
best solution in regard to the objectives, rather than user pref-
erences, and are not targeted at consumers. In order to give
the consumer meaningful choice among the generated solu-
tions, they must all fulfill the constraints and should be gen-
erated quickly and reliably to avoid frustration. These issues
are all related to how the constraints are handled, and our
aim has been to investigate how CHTs in a GDS intended
to be used in the context of mass customization of product
form should handle difficult constraints. In terms of CHTs,
virtually all GDS applications dealing with more than one
constraint or objective are applying the weighted sum tech-
nique. We have therefore evaluated three promising CHTs,
two SCHTs and the UWS. The results show that the Lexcoht
SCHT outperformed the UWS in terms of both convergence
time and rate and that diversity can be guaranteed by launch-

ing many design generations in parallel. Enabling the effi-
cient handling of such types of constraints is a step toward
showing that form mass customization is technically possible,
and beyond that a step toward total mass customization. Algo-
rithmic form generation, coupled to an interactive compelling
online experience as well as purchase, logistics, and produc-
tion back-end, allows for various entrepreneurial opportuni-
ties for companies and consumers alike, as well as for the de-
signers.

The scope of application of new digital means of interac-
tion, designing, and fabrication is fully scalable and in that
sense constitutes a unique enabler that, if consistently imple-
mented, could potentially cut across a very large number of
industries, ranging from small manufacturers to large produc-
ers of consumer products. The research presented in this pa-
per addresses primarily the use of GDSs in the mass customi-
zation context, but some aspects of it, especially the diversity
issue, should also be useful in a GDS intended for profes-
sional industrial designers.
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d’Albi, France. Dr. Motte is currently working on alternative
engineering design and product development methodologies.

Andreas Hopf is a Design Consultant and Senior Lecturer in
the School of Industrial Design at Lund University. He re-
ceived a BA in industrial design from Art Center College of
Design (Europe), Switzerland. At Lund University he runs
seminars in industrial design and computer-aided design in
two-dimensional/three-dimensional and rapid prototyping,
supervises diploma projects, and participates in the develop-
ment of new bachelor’s and master’s programs.

Robert Bjärnemo is a Professor of machine design at Lund
University. He obtained his MS and PhD from the same uni-
versity. Dr. Bjärnemo’s research interests are in engineering
design methodology and product development methodology,
especially integrated product development, as well as predic-
tive design analysis.

Claus-Christian Eckhardt has been a Professor of industrial
design at Lund University since 2001. He worked as an Inte-
rior Designer for Silvestrin Design and was in charge of de-
signing consumer electronics and communication products
at Blaupunkt, where he was also responsible for the design
of the Bosch Telecom product series and Bosch mobile
phones. Mr. Eckhardt later became Chief Designer and
Head of Global Product Design with Bosch and then Head
of Design at Tenovis and Avaya. He has also worked as a De-
sign Consultant since 2000. Claus-Christian is the recipient of
several national and international awards and honors. His re-
search areas are in design management and design implemen-
tation.

Constraint handling in product design systems 399

http://www.davidtrubridge.com/coral/
http://www.davidtrubridge.com/coral/
http://www.davidtrubridge.com/coral/

	Constraint-handling techniques for generative product design systems in the mass customization context
	Abstract
	INTRODUCTION
	GDSs AND CHTs
	Related works on GDSs
	CHTs
	Lexcoht
	The BM technique


	THE STUDY
	Objectives of the study
	The table generation problem
	Implementation of the whole GDS
	Sharing score: Diversity measure of BM

	Experimental setup and procedure
	Results
	Diversity
	3.5.2. Convergence time
	3.5.3. Convergence rate

	Discussion

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES


