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Abstract

Fault propagation analysis is a process used to determine the consequences of faults residing
in a computer system. A typical computer system consists of diverse components (e.g., elec-
tronic and software components), thus, the faults contained in these components tend to pos-
sess diverse characteristics. How to describe and model such diverse faults, and further
determine fault propagation through different components are challenging problems to be
addressed in the fault propagation analysis. This paper proposes an ontology-based approach,
which is an integrated method allowing for the generation, injection, and propagation through
inference of diverse faults at an early stage of the design of a computer system. The results
generated by the proposed framework can verify system robustness and identify safety and
reliability risks with limited design level information. In this paper, we propose an ontological
framework and its application to analyze an example safety-critical computer system. The
analysis result shows that the proposed framework is capable of inferring fault propagation
paths through software and hardware components and is effective in predicting the impact
of faults.

Introduction

Computer systems generally consist of multiple hardware and software components with
diverse functionalities. With the increasing number of task requirements of safety-critical sys-
tems, computer systems are widely used in safety-critical domains. The faults residing in com-
puter systems have posed increasing threats to reliability and safety (Weichhart et al., 2016;
Isaksson et al., 2018; Jiang et al., 2018). And yet, challenges exist in assessing and migrating
the risks of faults:

1) Fault properties are diverse and distinct in different domains (Avizienis et al., 2001). A typ-
ical computing system consists of hardware platforms (HW) and multiple user software
applications (SW) running on various operating systems (OS). The faults of the hardware
platform are related to the environmental stress and the component degradation with time
of service. On the other hand, software does not degrade physically, and the faults of the
operating system and user programs are related to human errors, requirements, program
structure, logic, and inputs (Park et al., 2012).

2) The triggering conditions for faults are complex. System faults can be activated by multiple
conditions such as the properties of components, components’ inner structures, working
environments, and timing aspects. For example, buffer overflow (Foster et al., 2005),
data race (O’Callahan and Choi, 2003), and other types of software faults (Durães and
Madeira, 2006) may be created in an immature multitasking program and activated at a
specific point in time with particular input data and hardware configurations.

3) The fault propagation paths are sophisticated, especially when the effects of the faults pro-
pagate across HW and SW domains (Shu et al., 2016). This problem commonly exists in
computer system architectures where user programs are usually assigned dynamically to
unpredictable memory spaces or other physical resources.

In summary, faults in a computer system may occur under complex conditions (e.g., spe-
cific inputs and states) and pass through HW and SW components to cause functional failures
of the entire system. The impacts of these potential faults on system reliability and safety are
usually not fully considered and consequently lead to unexpected outages of services delivered
by such systems.

An integrated approach is needed to describe the diverse features of the various faults of
computer systems. Fault analysis at the design stage can effectively predict possible system fail-
ures before implementation. Fault analysis provides useful information to the system designer
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for establishing a fault tolerance mechanism and increasing the
reliability and robustness of the system (Gao et al., 2008; Mutha
et al., 2013; Yang et al., 2013). However, the following challenges
prevent existing methods from use at the early design stage:

1) Many of the current fault analysis methods are specific to a
fault type or system type (Yang et al., 2015; Diao et al.,
2018; Dibowski et al., 2017). To achieve a wide coverage of
faults encountered in computer systems, various analysis
methods need to be performed, which is time-consuming for
system analysis.

2) The diversities of data and models cause difficulties in manag-
ing and reusing historical data. Each domain-specific analysis
method uses its own approach to model and organize the
knowledge of systems and faults. More general approaches are
required when analyzing faults related to multiple domains.

3) Lack of automation requires significant manual effort. Also,
fault generation and injection are usually based on expert
experience and as such involve subjective evaluation and
lack a systematic evaluation of systems.

These challenges are addressed in this paper by proposing an
Integrated System Failure Analysis using an ONtological frame-
work (IS-FAON) to model, generate, and analyze faults in compu-
ter systems including their activation, propagation, as well as their
effects on functionality. Without details on the implementation of
the system under analysis (SUA), the proposed framework allows
system designers to observe system responses under nominal and
faulty states at an early design stage and to effectively evaluate the
robustness of the system under development before its implemen-
tation. In detail, the contributions of the present research are as
follows:

• Proposed an integrated ontology framework that is capable of
describing the features of both software and hardware faults
in computer systems. The proposed ontology framework con-
tains theories and prototype tools for predicting potential
effects of faults at the design stage.

• Developed a series of domain-specific ontologies for represent-
ing the faults and their corresponding impacts in the fields of
computer architecture, operating system, and user applications
that enables handling diversity in data and model in a single
framework. These ontologies can effectively reuse the existing
knowledge of computer systems for fault analysis at the design
stage when the target system has not been implemented.

• Defined a set of fault generation rules that can be applied to the
models of the SUA to generate various types of faults and to
automatically inject the generated faults into the SUA. The
fault generation rules can maximumly cover the potential faults
based on the known information of the target system. As such,
effects of one or more faults (expected or unexpected by an
expert) may be simulated and analyzed systematically.

• Designed an inference-based fault propagation analysis method
based on logic inference that performs qualitative fault analysis
based on the proposed ontological concepts. The proposed
method can automatically predict the impacts of the potential
faults. As such, a wide variety of individual faults or a combina-
tion of faults may be analyzed so that system designers and
developers can improve the robustness of the target system.

• Conducted a case study on a safety-critical computer system to
examine the correctness and effectiveness of the proposed
approach. Although limited uncertainties exist in the analysis

result, the proposed fault analysis framework can effectively
and correctly predict the effects of faults without detailed sys-
tem implementation.

The paper is organized as follows: Section “Related work”
reviews existing research devoted to fault propagation analysis
and ontology. Section “Ontological framework for fault propaga-
tion analysis” introduces the ontological framework for fault pro-
pagation analysis. The ontology framework includes ontologies
for system modeling, fault generation and injection, fault infer-
ence and analysis. The ontologies for system modeling are descri-
bed in the section “System modeling.” The fault ontologies for
fault generation are described in the section “Fault ontology
and fault generation.” Section “Fault injection” focuses on inject-
ing faults into the system models established in the section
“System modeling.” Section “Fault propagation inference” focuses
on the methodology related to fault inference and analysis using
the system model, and faults. A case study to illustrate the applica-
tion of the proposed ontological framework is described in the sec-
tion “Case Study.” Furthermore, Section “Discussion” discusses the
results of the case study, and finally Section “Conclusion” provides
the conclusion and introduces future research.

Related work

Faults are caused by multiple factors across both HW and SW
components and interactions between them. Faults derived from
single components will possibly propagate through multiple
types of components and may impact multiple tasks (Weichhart
et al., 2016; Isaksson et al., 2018; Jiang et al., 2018). Because of
the diversity and complexity of faults in computer systems and
the lack of information on a target system at the early design
stage, researchers have attempted to solve the fault propagation
and effect analysis problem without precise system models.

In the existing fault analysis approaches, Fault Tree Analysis
(FTA; Lauer et al., 2011) and Failure Modes and Effects
Analysis (FMEA; Hecht and Baum, 2019) reuse modeling infor-
mation of HW and SW components and trace the propagation
paths of internal faults. The Fault Propagation and
Transformation Calculus (FPTC; Wallace, 2005) uses architecture
graphs to model the structure of HW and SW components and
uses predefined symbols to model the component behaviors. It
infers the system responses caused by single faults derived from
software components in a single-task real-time system. The
Functional Failure Identification and Propagation (FFIP;
Papakonstantinou and Sierla, 2012) copes with faults that propa-
gate over subsystems and cross the domain boundaries between
electronics and mechanics. The improved signed directed graph
(SDG) model (Yang et al., 2013) describes the system variables
and their cause–effect relations in a continuous process. It allows
to obtain the fault propagation paths using the method of graph
search. The Small World Network (SWN) model (Gao et al.,
2008) focuses essentially on the topological structure properties
of the computer system network with several principles that are
capable of assessing the safety characteristics of the network
nodes. It uses the weight of the link between the nodes to define
the fault propagation intensity considering the network statistical
information. Subsequently, the critical nodes and the fault propa-
gation paths with high risk are obtained through qualitative fault
propagation analysis. Interface Automata (IA; Zhao et al., 2016)
gives a formal and abstract description of the interactions between
components and the environment. It extends interaction models
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on the system interface level with failure modes and provides
automated support for failure analysis. Integrated System Failure
Analysis (ISFA; Mutha et al., 2013) uses views of functions and
components to simulate the propagation of single or multiple
faults in single process systems across software and hardware
(mechanical) domains.

Table 1 compares the methods mentioned above with the one
proposed in this paper in terms of the ability of each method to
handle concurrent faults, perform multiple processes, reusability
of models, handling of SW and HW behaviors, automation of
analysis, and capability of fault injection and fault generation.
The method proposed in this paper can generate new types of
faults and infer the effects of faults for a SUA at the early design
stage, which is an important contribution of this method.

To effectively collect and manage the knowledge of faults,
ontological theories have been widely applied to various industrial
systems, such as to diagnosis systems (Liu et al., 2019) for rotating
machinery (Chen et al., 2015) and chemical processes (Natarajan
and Srinivasan, 2010), to the fault management of aircrafts (Zhou
et al., 2009) and smart home services (Etzioni et al., 2010), as well
as to the fault propagation analysis of building automation sys-
tems (Dibowski et al., 2017) and wireless sensor networks
(Benazzouz et al., 2014). These studies applied the ontological
theories to different specific types of systems and created concepts
and notations for modeling faults in their target systems. In this
paper, we employ the ontological theories to express and analyze
faults in HW and SW for computer systems. The proposed the-
ories and tools are dedicated to model and infer the creation
and propagation of faults and soundly infer the consequences
caused by these faults. By taking advantage of ontologies, this
paper provides fundamental concepts to solve the knowledge
description and integration issues involved in fault analysis. In
practice, we employed the Web Ontology Language (OWL;
Allen and Unicode Consortium, 2007) as the modeling language
for establishing the proposed ontologies and used the Semantic
Web Rule Language (SWRL; Horrocks et al., 2004) as a supple-
ment for implementing related rules and constraints. We selected

Protégé (Musen, 2015) as the editor for creating and debugging
the proposed ontologies.

Ontological framework for fault propagation analysis

“An ontology is an explicit specification of a conceptualization”
(Gruber et al., 2012). As an effective way for information standar-
dization and sharing, ontologies have become increasingly valu-
able in the fields of computer science for their utility in
enabling thorough and well-defined discourse as well as for build-
ing logical models of systems. In the proposed ontological frame-
work, we employed ontologies to standardize knowledge related to
fault propagation analysis and utilize the information associated
with the SUA at the early design stage to maximumly cover var-
ious types of faults and to effectively infer their effects on the
SUA. This section introduces concepts of fault propagation and
fault analysis as used herein, while detailed ontologies are defined
and discussed in detail in the sections “System modeling” and
“Fault ontology and fault generation.”

Fault propagation

Figure 1 illustrates a fault propagation path through an SUA high-
lighted by bold lines originating from a fault and leading up to a
failure. In the figure, components are the essential HW or SW
objects that constitute a computer system (located at the bottom).
Each component implements one or more functions. Normally, a
component will interact with other components during system
operation. These interactions are modeled by flows, which repre-
sent the travel of objects through components or functions. The
traveling objects can be materials, energy, or signals. The relations
between the input and output flows of a component are behaviors
of such a component. A component’s behaviors are related to its
states. The set of components, related flows, and their states is
defined as a system configuration (Avizienis et al., 2004a).

In Figure 1, a fault (in the block with bold boundaries) is the
cause of an error. The error, which is the deviation of the state of

Table 1. Comparison of fault analysis methods for computer systems

Approaches
Concurrent
Faultsa

Multiple
Processesb

Model
Reusablec

SW and HW
Behaviorsd

Analysis
Automatione

Automated New
Fault Generationf

FTA (Lauer et al., 2011) No No Yes No Semi No

FMEA (Hecht and Baum, 2019) No No Yes No No No

FPTC (Wallace, 2005) No No No No Yes No

FFIP (Papakonstantinou and Sierla, 2012) Yes No No No No No

SDG (Yang et al., 2013) Yes No No Yes Yes No

SWN (Gao et al., 2008) Yes Yes No No Yes No

IA (Zhao et al., 2016) Yes Yes No Yes Yes No

ISFA (Mutha et al., 2013) Yes No No Yesg Yes No

IS-FAON Yes Yes Yes Yes Yes Yes

a If the method can analyze the faults that occurred concurrently.
b If the method can analyze the faults that occurred in the system with multiple processes.
c If the method can reuse the existing models established for other systems.
d If the method can model behaviors of software and hardware components.
e If the method can perform the fault analysis automatically.
f If the method provides abilities to generate new types of faults and inject faults into the target system model.
g Mechanical Hardware is supported only.
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the system under analysis, would probably, in turn, activate
another dormant fault and hence lead to another error.
Consequently, this process will possibly trigger a function’s failure
or degradation, which are the events that occur when the function
deviates from the nominal states.

Fault analysis framework

Fault analysis is a process to identify the potential faults that may
occur during the development and operation of the SUA, and to
infer the impacts of a fault on the SUA. Figure 2 illustrates the
main process of fault propagation analysis and the roles of the
proposed ontologies in the analysis process. The fault analysis
process starts with the system models based on component,
flow, and function ontologies (see Section “System modeling”).
Faults are modeled using fault ontologies. The framework pro-
vides the fault generation principles necessary to generate faults
(see Section “Fault ontology and fault generation”) based on the
component, flow, and function ontologies. The fault generation
methodology will effectively improve the coverage of different
types of faults. Then, the framework injects faults into the system
models (see Section “Fault injection”). Based on the fault-seeded
system models, the framework is capable of inferring the effects of
faults and generating fault propagation paths (see Section “Fault
Propagation Inference”).

System modeling

In ontology theories, classes and their hierarchical links represent
objects and their classifications, respectively. An ontology uses
properties (aka predicates in description logics) to represent the
attributes of an object or the relations between objects. Properties
can be categorized into data properties and object properties. Data
properties use numbers or descriptive strings to represent an
object’s attributes, such as the temperature of a computer processor.
Object properties build the link between two or more objects. For
example, the output of a memory unit (aka a component object) is
the pressure data (aka a signal flow object) read by a sensor (aka a
component object). Also, an ontology can define dependencies and
constraints between classes and properties to represent natural laws
or restrictions.

Ontologies for system modeling

Definition 1. Component Ontology is the foundation necessary to
model the components of a computer system under analysis and
defines how to model a new component of a computer system.
The key process of modeling components is to abstract the generic
attributes of concrete components by using the ontological con-
cepts. Figure 3 shows the hierarchy of the classes created in the
component ontology. We classified the components of a computer

Fig. 1. A classic fault propagation path.

Fig. 2. Fault propagation analysis methodology.
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system into “Hardware Component,” “Software Component,” and
“Operating System Component.”

Table 2 summarizes the properties related to the classes of com-
ponents. The properties “ComposedOf” and “Location” define the
relations between components. These relations decide on the occur-
rence of some types of faults. The properties “Inputs” and
“Outputs” participate in the fault inference process since the effects
of faults will propagate through the input and output flows of com-
ponents. The property “purpose” links components to the functions
they implement whose states will be inferred during fault inference.
“Qualities” are measurable properties representing the component’s
attributes in nominal and faulty states. Faults may be activated when
these measurable properties change. At last, the property “States”
organizes behaviors of components in different states. These behav-
iors are evidence used in inferring functional states during fault
inference, detailed in the section “States and behavioral rules.”

To clarify these concepts further, a multi-core processor is
used as an example component and is characterized using the
component ontology derived from these concepts, see Table 3.

Definition 2. The Flow Ontology defines the classes related to
the transition of objects between components and functions,
which are involved in the propagation of the effects of a fault.
The flow can track the transit of an object from its source position
to its final destination as it weaves through the various compo-
nents of the system. An example of flows would be the travel of
a mouse click signal from a fingertip, into the universal serial
bus (USB) port in the rear of the computer, into the system

bus, and finally reaching the processor. Figure 4 shows the hier-
archy of the flow ontology. It is worthy to note that new types
of flows can be added to the flow ontology if required.

Table 4 lists the properties defined in the flow ontology. In the
table, “Qualities” are the properties of a flow that will be specified
as data properties with constants or dynamic values. For example,
a Command Flow (CF) records the information that a processor
requires from a software program to operate. A CF has three
important qualities: (1) the “command type” represents what
actions the processor should perform, for example, reading data
from a memory unit; (2) the “target address” represents the
address of the memory unit or the I/O devices; and (3) the
“operation data” represents the data that corresponds to the “com-
mand.” Table 5 details the properties of the active command flow
as an example.

By using component and flow ontologies, we can model the
structure of the SUA and the attributes of system components
and flows. Some properties of components or flows can be miss-
ing when building the system model at the early design stage. For
instance, we can use the concepts of a multi-core processor with-
out defining its speed or other specification when designing a sys-
tem. Along with the evolution of system design and development,
the rough system model, built at the early design stage, will be
more and more concrete and detailed. With the increasing con-
creteness of the components and flows in the model, more precise
system behaviors can be emulated and analyzed, and more types
of faults can be covered and analyzed by the proposed method.

Fig. 3. Hierarchy of the component ontology.
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Definition 3. The Functional ontology describes functional
knowledge pertaining to the corresponding components or sys-
tems. In this paper, functions are classified based on the taxonomy
provided by the reference (Hirtz et al., 2002). Figure 5 shows the
hierarchy of the function ontology.

Table 6 summarizes the properties defined for the functional
ontology. It is worth noting that we use the same terms in the
component and function ontologies, such as the “ComposedOf”
and “States.” But these terms do not represent the same object.
For example, a state of a component cannot be a state of a func-
tion. Similarly, a function cannot be composed of subcompo-
nents. As an example class of the functional ontology, Table 7
shows the “Execute Command” function defined for a processor.

The function and flow ontologies allow system developers to
model functionalities of the SUA and establish the mapping rela-
tions between components and their functions. With the func-
tions and flows, the fault inference can predict the impact of
faults on components and system functions.

Individuals and system models

A system model is a combination of individuals which are instan-
tiated from the classes and properties defined by ontologies. For
example, a class “multi-core processor” can be defined using the
component ontology (see Section “Ontologies for system

modeling”) with the properties of generic inputs (e.g., I/O
buses), outputs, etc. When establishing a system model with
this type of processor, the abstract concept (i.e., the multi-core
processor class) will be instantiated as a component individual
(e.g., a processor named as “CPU_0”) in the system model. As
a result, a system model is a super set of individuals and their
properties which are instantiated from the classes defined by
the ontologies in this section.

According to the type of included individuals, a system model
is composed of component models and functional models. A com-
ponent model is a structural model with the individuals of compo-
nents and associated flow, representing system configurations.
Whereas a functional model contains the individuals of functions
and associated flows, representing the functions and their relations
the target system needs to implement. Table 8 shows the composi-
tion of different types of models. An individual of flow in a compo-
nent model may represent the same flow in the real world as the one
in a functional model. An example can be the “Flow 1” and “Flow
2” in Figure 1. This implies that the functions “Function1” and
“Function2” share the same relation as the one existing between
the component “Component1” and “Component2.” These relations
will be used when inferring the state of functions based on the
behaviors of components, or vice versa. Component models and
functional models can be integrated into synthetic models seam-
lessly through the dependencies introduced in the section
“Dependencies and restrictions.”

States and behavioral rules

A state describes the combination of triggering conditions and
behaviors of components, flows, functions, and faults. A transi-
tion of state describes the evolution of an object in terms of events
or time sequence. The hierarchy of states considered in the pro-
posed ontology is shown in Figure 6. For instance, the states of
a component can be categorized into nominal states or faulty
states; the states of a flow can be normal or abnormal; the states
of a function can be Operating, Degraded, Lost, or Unknown.
Figure 6 also classifies the states of a fault as dormant states, acti-
vated states, and terminated states. Since the host entity of a fault

Table 2. Properties defined in the component ontology

Property
Name Notations Property Type Description

ComposedOf ComposedOf
( ⋅ )

Object (related
to the
Component
Ontology)

ComposedOf specifies
the constitution relation
between components.
The set of composites
contains the
subcomponents that
constitute an integrated
component.

Location Location( ⋅ ) Object (related
to the
Component
Ontology)

Location represents the
position relative to other
components.

Inputs Inputs( ⋅ ) Object (related
to the Flow
Ontology)

Inputs represent the
flows received from
outside of a component.

Outputs Outputs( ⋅ ) Object (related
to the Flow
Ontology)

Outputs represent the
flows sent out from the
current component.

Purpose Purpose( ⋅ ) Object (related
to the Function
Ontology)

Purpose describes the
goal of a component,
which usually is its
function.

Qualities Qualities( ⋅ ) Data (decided
by specific
qualities)

Qualities are the
measurable properties
that express particular
characteristics of the
current component.

States States( ⋅ ) Object (related
to the State
Ontology)

States are objects
containing the
behaviors and triggering
conditions. See Section
“States and behavioral
rules” for details.

Table 3. An example multi-core processor (MCP) component defined using the
component ontology

Component: Multi_Core_Processor (MCP)

Properties Notations Property Values

Composedof ComposedOf
(MCP)

{Core, RegA, RegB…} (a set of Hardware
Components)

Location Location(MCP) {Connected to a Command Bus (a
Hardware Component), Running a
program (a Software Component)}

Inputs Inputs(MCP) {Command Flow, Memory Return Flow, IO
Return Flow,…} (a set of Flows)

Outputs Outputs(MCP) {Memory Bus Flow, IO Bus Flow,…} (a set
of Flows)

Purpose Purpose(MCP) {Execute Commands} (a set of Functions)

Qualities Qualities(MCP) {Clock Frequency, …} (a set of Data
Properties)

States States(MCP) {IdleState, ReadIOState, ReadMemState,
WriteIOState, WriteMemState, …} (a set of
States)
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is designated as a component, the host component will be in a
faulty state once the state of its associated fault becomes “acti-
vated.” See Section “Fault ontology” for details.

For different types of components, more specific states are
defined to express specific behaviors under such state. Table 9
lists the properties defined for states in the ontological concepts.
The content and format of these properties are detailed in the fol-
lowing definitions.

As an example, the nominal states of a processor (defined in
Table 3) can be specified as Read Memory State (i.e., transferring
data from a memory unit to its register), Add Memory State (i.e.,
performing addition on its register data and memory data and
storing the result in its register), etc., as shown in Figure 7. In
the middle of the figure, a state named “IdleState” is defined,
which is the default state. We ignore some states because of the

Fig. 4. Hierarchy of the flow ontology.

Table 4. Properties defined in the flow ontology

Property
Name Notations Property Type Description

Source Source( ⋅ ) Object (related to
the Component
Ontology)

Source is the component
which sends out the
current flow.

Sink Sink( ⋅ ) Object (related to
the Component
Ontology)

Sink is the component
which receives the current
flow.

Carrier Carrier( ⋅ ) Object (related to
the Component
Ontology)

Carrier is the components
which the current flow
goes through.

Qualities Qualities( ⋅ ) Data (decided by
specific qualities)

Qualities are the properties
that express particular
characteristics of the
current flow.

States States( ⋅ ) Object (related to
the State
Ontology)

States are objects
containing the behaviors
and triggering conditions.
See Section “States and
behavioral rules” for
details.

Table 5. An example command flow defined using the flow ontology

Flow: Command_Flow(CF)

Properties Notations Property Value

Source Source(CF) {Program} (a software component)

Sink Sink(CF) {Processor} (a hardware component)

Carrier Carrier(CF) {Command Bus} (a hardware component)

Qualities Qualities
(CF)

{CommandType (an enumerate of commands),
TargetAddress (a positive integer),
OperationData (a Hex value)}

States States(CF) {Normal, Abnormal} (a set of States)
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Fig. 5. Hierarchy of the functional ontology.

Table 6. Properties defined in the functional ontology

Property
Name Notations Property Type Description

ComposedOf ComposedOf( ⋅ ) Object (related to the Function Ontology) ComposedOf defines the subfunctions of the current function.

Host Entity HostEntity( ⋅ ) Object (related to the Component Ontology) Host Entity is the component that implements such function.

Inputs Inputs( ⋅ ) Object (related to the Flow Ontology) Inputs represent the flows received.

Outputs Outputs( ⋅ ) Object (related to the Flow Ontology) Outputs represent the flows sent out.

Purpose Purpose( ⋅ ) Data (related to the requirement documents) Purposes usually is mapped to a statement in system requirements. This
property is used when tracing the impact of a fault to system requirement
documents.

Qualities Qualities( ⋅ ) Data (decided by specific qualities) Qualities are the measurable properties that express particular
characteristics of the current function.

States States( ⋅ ) Object (related to the State Ontology) States provides all possible states of the current function associated with
triggering conditions. See Section “States and behavioral rules” for details.

Table 7. An example of execute command function defined using the function ontology

Function: ExecuteCommandFunction (EC)

Properties Notations Property Value

ComposedOf ComposedOf(EC) {} (not considered)

Host Entity Host Entity(EC) {Processor} (a Hardware Component)

Inputs Inputs(EC) {Command Flow} (a set of Flows)

Outputs Outputs(EC) {Memory Bus Flow, I/O Bus Flow} (a set of Flows)

Qualities Qualities(EC) {Execution_Time (ms, us), …} (a set of Data Properties)

Purpose Purpose(EC) {Requirement Statement x.x } (a statement in the system requirement document)

States States(EC) {Operating, Degraded, Lost} (a set of States)
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limitation of space. The activated state will change dynamically
during fault inference. The inference uses behaviors as evidence
to infer the activated state. The triggering conditions and behav-
iors of each state, appearing in Figure 7, will be explained in the
following content.

Definition 4. Behavioral Variables (BVs) denote the qualities
involved in a behavior. The expression of a BV usually contains
three sections, as shown in the following formula. Assume that
the cuent state is S and the host entity of S is H =HostEntity
(S), then a BV can be expressed by:

[H].[Inputs(H)|Outputs(H)].[Qualities(Inputs(H)|Outputs(H))].

In the formula, the symbol [H ] denotes the name of the host
entity H; the second section [Inputs(H )|Outputs(H )] represents
the inputs or outputs of the host entity. For example, we know
that the inputs and outputs of a component are associated with
the component’s behaviors. Therefore, a BV of a component
can be defined by using its inputs and outputs which are repre-
sented by flows. According to the definitions of these properties,
this section includes the name of the flow which is an input or an
output of a component. The third section [Qualities(Input(H )|
Output(H ))] is the name of the qualities of the flow defined in

the second section. The following formula defines an example
of a BV.

MCP.CommandFlow.CommandType.

In the formula, the symbol MCP is the name of a multi-core
processor defined in Table 3. The symbol CommandFlow defines
the input of MCP which is a flow defined in Table 5. Then, the
symbol CommandType is one of the qualities of CommandFlow.

Definition 5. Behavioral Rules (BRs) are expressions used to
describe the relations between BVs. In practice, these expressions
are logic expressions containing an equal symbol and/or several
operators and BVs. In a behavioral expression, a variable usually
appears in the following format. A BR is composed of Boolean
expressions (EXP) connected by logical operators (LO). A
Boolean expression is composed of terms (TRM) connected by
comparison operators (CMP). Furthermore, a term is composed
of BVs that are connected by algebraic operators (OP) or bit
operators (BO).

BR := [EXP] = [EXP][LO][EXP],

EXP := [TRM][CMP][TRM],

TRM := [BV][OP][BV],

LO := [AND|OR|NOT],

CMP := [. | , | = =| ≤ | ≥ |! =],

Table 8. Model composition

Model type Composed of

System model {Component Models, Functional Models}

Functional model {Individuals of Function, Individuals of Flow}

Component model {Individuals of Component, Individuals of Flow}

Fig. 6. Hierarchy of the state ontology.
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OP := [+| − | × | 4 |BO],

BO := [BIT AND|BIT OR|XOR].

An example of BR is shown below. This example BR belongs to
the “ReadMemoryState” of the multi-core processor class (MCP)
defined in Table 3. The “Memory Bus Flow” is one of the outputs
of the MCP and the “Command Flow” is one of the inputs of the
MCP. Generally, the “Command Flow” is the flow that is sent
from a software component to manipulate the action of a proces-
sor. The “Memory Bus Flow” is the flow that the processor sends
to a memory bus to execute reading or writing operations. From
Table 5, we can see that the “Command Type,” the “Target
Address,” and the “Operation Data” are the qualities of a
“Command Flow.” The “Memory Bus Flow,” whose definition

is not explicitly provided, has the same qualities as the
“Command Flow.”

MCP.MemoryBusFlow.CommandType

= CMD READMEM AND MCP.MemoryBusFlow.

TargetAddress

= MCP.CommandFlow.TargetAddress AND

MCP.MemoryBusFlow.OperationData

= MPC.CommandFlow.OperationData.

According to the expression, the “Command Type” of the
“Memory Bus Flow,” which is an output of the component
“MCP,” is equal to a command “CMD_READMEM,” which is
a predefined constant. Also, the “Target Address” of the
“Memory Bus Flow” is equal to the “Target Address” of the

Table 9. Properties defined for states

Property Name Notations Property Type Description

Triggering
Condition

TriggeringCondition( ⋅ ) Data (Strings representing
Triggering Conditions)

Triggering Condition represents the condition for entering such state.

Host Entity HostEntity( ⋅ ) Object (related to the Component/
Flow/Function Ontology)

Host Entity is the object that possesses such state.

Behaviors Behaviors( ⋅ ) Data (Strings representing
behavioral rules)

Behaviors contain the actions that the host entity takes to generate outputs in
relation to its inputs and states. See the definition of behavioral rules for detail.

Fig. 7. Partial nominal states of a processor.
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“Command Flow.” The “Operation Data” of the “Memory Bus
Flow” is equal to the “Operation Data” of the “Command
Flow.” During the early phase of system design, no detailed imple-
mentation of functions, components, and flows, or mathematical
models representing their behaviors will be available.

Definition 6. Behavioral Rules with Time (BRTs) are time-
labeled expressions representing the relations between BRs. The
time dimension is added to enable fault inference and study the evo-
lution of the system over time. In BRTs, the time-labeled BVs will be
used, which add a time label tn to the end of the BV expressions.
The variable n denotes the current time step. For instance, the
example BR with time labels can be defined below.

MCP.MemoryBusFlow.CommandType.t2

= CMD READMEM AND MCP.MemoryBusFlow.

TargetAddress.t2

= MCP.CommandFlow.TargetAddress.t1 AND

MCP.MemoryBusFlow.OperationData.t1

= MPC.CommandFlow.OperationData.t1.

According to the expression, the “Command Type” of the
“Memory Bus Flow” at time step 2 is equal to a type of command
“CMD_READMEM.” The “Target Address” of the “Memory Bus
Flow” at time step 2 is equal to the “Target Address” of the
“Command Flow” at time step 1. The “Operation Data” of the
“Memory Bus Flow” at time step 2 is equal to the “Operation
Data” of the “Command Flow” at time step 1.

The expression above denotes the relation between two flows at a
concrete time step (e.g., t1 and t2). However, we usually use BRTs to
define the relation at a general level (not for a concrete time step). In
that case, we define a time variation expression to represent the time
relations. We use the expression {[ ±N ]} for denoting the time rela-
tion. The expression {[0]} or {[ ⋅ ]} represents the current time step.
The expression with a positive number, such as {[ + 1]}, means the
time step after the current step with the number of steps. An expres-
sion with a negative number represents the time step that occurs
before the current step with the number of steps. Hence, the exam-
ple BR can be further defined as below.

MCP.MemoryBusFlow.CommandType.{[+1]}

= CMD READMEM AND MCP.MemoryBusFlow.

TargetAddress.{[+1]}

= MCP.CommandFlow.TargetAddress.{[.]} AND

MCP.MemoryBusFlow.OperationData.{[+1]}

= MPC.CommandFlow.OperationData.{[.]}.

Definition 7. Triggering Conditions (TCs) are predicates that
map the states and the BVs to a space of true or false. The result
of these conditions is used in “if-then” rules to trigger a state tran-
sition. Similar to BRTs, the predicates of TCs are logic statements
with operators and BVs, except that the TCs generally have a con-
sequent state if the predicate is identified as True. The following
formula defines an example of the TCs.

IF MCP.CommandFlow.CommandType.{[.]}

= =CMD READMEM AND MCP.State.{[.]}

= =MCP.State.IdleState THEN MCP.State.{[+1]}

= =MCP.State.ReadMemState.

According to the formula above, if the “Command Type” of the
“Command Flow” is equal to a constant “CMD_ READMEM,” and
the current state of “MCP” is “Idle,” then the state of “MCP” in the
next time step will be the state “ReadMemState.”

Dependencies and restrictions

Dependencies and restrictions exist between the attributes of the
proposed ontologies. These dependencies reflect the relations
between the ontological concepts. The restrictions defined here
allow the framework to automatically detect incorrectness in the
model by using ontology solvers. Such automatic check can be
important in complex systems to ensure that components are
interconnected to achieve the desired system functionalities.
Dependency and restriction rules and the corresponding explana-
tions are listed in Table 11 by using the notations defined in
Table 10.

Table 11 interprets the constraints applied to the ontological
concepts and the dependencies between them. Compliance to
these relations guarantees the integrity of the system models. In
addition, these rules will play a critical role in fault propagations
which will be detailed in the section “Fault propagation inference.”

Modeling example

In this section, we use a simplified module of a computer system
with SW and HW components as an example to illustrate the
model construction using the ontological concepts. The function
of the example subsystem is to provide a demand value to a con-
trol system. In this example, we created three individuals of com-
ponent, four individuals of flow, and three individuals of function,
as shown in Figure 8.

The specified values of the properties related to these indi-
viduals are detailed in Table 12. Individuals define concrete
objects existing in the SUA, which are different from classes
that are abstract concepts with constraints and rules. These indi-
viduals are subject to the predefined constraints and rules.

When we have the system model with components, flows, and
functions, the next step is to generate and inject faults based on
the ontological concepts related to faults.

Fault ontology and fault generation

The proposed ontology framework provides fault ontologies to
manage the known faults discovered in historical accidents or
events and infer new types of faults that have not been discovered.

Table 10. Notations for dependency rules

Notations Description

CP A class of component

FL A class of flow

FC A class of function

FA A class of fault (see Section “Fault ontology”)

X, Y, Z Free variables that could be a class of function, component, or
flow

Isa( ⋅ ) The type of a class usually is the parent class of the current
class
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The new fault inference is implemented by applying the fault gen-
eration principles introduced in the section to the properties
defined by the component ontologies. This section details the
concepts and properties related to fault ontologies and fault
generation.

Fault ontology

Fault ontology allows the ontological framework to represent and
generate various sorts of faults that may be introduced at design,
development, and operation phases. In the perspective of system
engineering (Avižienis et al., 2004b), an error is “the state of the
system that deviates from the correct service state.” A fault is
defined as: “An adjudged or hypothesized cause of an error.”
System failure is “an event that occurs when the delivered service
deviates from correct service.” A fault can arise from any phase of
the life cycle of a product and can lead to erroneous states that
may culminate into failures.

In prior research, faults have been classified through
various perspectives, such as dependability (Avižienis et al.,
2004a, 2004b), scientific workflow (Lackovic et al., 2010), and
service-oriented architecture (Brüning et al., 2007; Hummer,
2012). In this paper, we synthesize the existing taxonomies for
faults and establish the hierarchy of fault ontology shown in
Figure 9. It is worth noting that the child nodes of the “fault”
node in Figure 9 may not be defined in terms of the same per-
spective. For example, we defined the nodes of “software fault,”
“hardware fault,” “development fault,” and “operational fault”
as the children of the “fault” node, but the software and hardware
faults are distinguished by domain, whereas the development
and operational faults are classified by the phase during
which the fault was introduced. A specific fault class will be linked
to the corresponding node when building fault ontologies.
For example, a “bit flip fault” of a processor register can be des-
ignated as a child node of the hardware fault and the operational
fault.

Table 11. Dependencies and restrictions in ontological concepts

No. Essential Rules Description

BR01. Y [ ComposedOf (X) � X = Y , (Isa(X) = Component and Isa(Y ) = Component) or

(Isa(X) = Component and Isa(Y ) = Flow) or

(Isa(X) = Function and Isa(Y ) = Flow) or

(Isa(X) = Function and Isa(Y ) = Function);

A component may contain several components and flows.
A function may contain several subfunctions and flows.

BR02. Isa (X) [ {Component, Function} � Isa(Inputs(X))

= Flow and Isa(Outputs(X)) = Flow;

The inputs and outputs of a component or a function
should be flows.

BR03. Isa(Source(FL)) ∈ {Component, Function}, Isa(Sink(FL))∈ {Component, Function}; The source and sink of a flow should be functions or
components.

BR09. ∀CP, Isa(Purpose(CP)) = Function; The purpose of a component should be a function.

BR04. ∀FL, Isa(Carrier(FL)) = Component; The carrier of a flow should be a component.

BR05. ∀CP, ∀FC, FC [ Purpose(CP) � Inputs(CP) = Inputs(FC) and Outputs(CP) = Outputs(FC); A component will have the same inputs and outputs with
the function that is the purpose of such component or
flow.

BR06. X = Source(FL)→ FL∈ Outputs(X ); The source of a flow is the object whose outputs should
contain the flow.

BR07. X = Sink(FL)→ FL∈ Inputs(X ); The sink of a flow is the object whose inputs should
contain the flow.

Fig. 8. System model of the example system.
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Table 12. Property values of components and functions in the example system

Individuals Classes Properties and Values

Provide_Demand (RDF) TransferDataFunction
(is a Function)

ComposedOf(RDF)={…}
HostEntity(RDF)={RDP}
Inputs(RDF)={ReadDemand_CommandReturnFlow}
Outputs(RDF)={ReadDemand_CommandFlow}
Purpose(RDF)={“Req.XX.XX”}a

Qualities(RDF)={…}
States(RDF)={RDFOperatingState, RDFLostState, RDFUnknownState}

Execute_Command (ECF) TransferDataFunction
(is a Function)

ComposedOf(ECF)={…}
HostEntity(ECF)={CPU_0}
Inputs(ECF)={ ReadDemand_CommandFlow, ReadDemand_IOReturnFlow }
Outputs(ECF)={ReadDemand_CommandReturnFlow, ReadDemand_IOBusFlow}
Purpose(ECF)={“Req.XX.XX”}a

Qualities(ECF)={…}
States(ECF)={ECFOperatingState, ECFLostState, ECFUnknownState}

Store_Demand (SDF) StoreDataFunction
(is a Function)

ComposedOf(SDF)={…}
HostEntity(SDF)={DUD}
Inputs(SDF)={ReadDemand_CommandReturnFlow}
Outputs(SDF)={ReadDemand_CommandFlow}
Purpose(SDF)={“Req.XX.XX”}a

Qualities(SDF)={}
States(SDF)={SDFOperatingState, SDFLostState, SDFUnknownState}

ReadDemand_Program
(RDP)

Program
(is an SW Component)

ComposedOf(RDP)={…}
Location(RDP)={Running_on(CPU_0)}
Inputs(RDP)={ReadDemand_CommandReturnFlow}
Outputs(RDP)={ReadDemand_CommandFlow}
Purpose(RDP)={RDV}
Qualities(RDProgram)={}
States(RDProgram)={RDPRunningState, RDPIdleState}

CPU_0 MCP
(is an HW Component)

ComposedOf(CPU_0)={…}
Location(CPU_0)={…}
Inputs(CPU_0)={ReadDemand_CommandFlow, ReadDemand_IOReturnFlow}
Outputs(CPU_0)={ReadDemand_CommandReturnFlow, ReadDemand_IOBusFlow}
Purpose(CPU_0)={ECF}
Qualities(CPU_0)={…}
States(CPU_0)={CPU0IdleState, CPU0ReadMemState, CPU0WriteMemState, CPU0ReadIOState,
CPU0WriteIOState, CPU0AddMemState, …}

DiskUnit_Demand (DUD) DiskUnit
(is an HW Component)

ComposedOf(DUD)={…}
Location(DUD)={…}
Inputs(DUD)={ReadDemand_IOBusFlow}
Outputs(DUD)={ReadDemand_IOReturnFlow}
Purpose(DUD)={SDF}
Qualities(DUD)={…}
States(DUD)={DUDIdleState, DUDReadState, DUDWriteState}

a The requirement of the function is not shown in this example.

Fig. 9. Hierarchy of fault ontology.
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Due to the complexity of fault causes and effects, several prop-
erties are defined to represent the factors involved in fault genera-
tion and propagation. Table 13 outlines the properties considered
in the proposed method.

Table 14 illustrates the mapping relation between the existing
fault taxonomies and the ontological concepts proposed by this
research. We use (Avižienis et al., 2004b) as a representative
research for comparison, where faults can be classified according
to eight perspectives.

Restrictions on fault ontologies

By reusing the notations in Table 10, Table 15 shows the restric-
tions in the proposed fault ontologies. These restrictions are con-
sistent with the existing research and fault taxonomies.

Adding known faults to fault ontologies

When a fault is observed in accidents or event reports, the
observed fault can be recorded by the proposed fault ontology.
The process of adding known faults to the fault ontologies con-
sists of the following steps, which are displayed in Figure 10.
The process is usually completed manually.

(1) Define the name of the fault object based on the event report
or repository describing the fault. Figure 10 demonstrates this
process by using an example fault, the bit flip fault of a regis-
ter in a computer processor. In the example, a compact name
“RegisterBitFlipFault” is defined to describe the characteris-
tics of the fault.

(2) Define the properties of the added fault based on the proper-
ties provided by the fault ontology. As shown in the example,
the host entity of the fault should be a processor, the phase of
introduction should be defined as operation, etc.

(3) Add the new fault to the fault ontologies, linking the new
fault to the ones in the fault ontologies. According to expert
knowledge, a “RegisterBitFlipFault” is a hardware fault and an
operational fault, as shown in Figure 10.

Fault generation principles

Besides adding known faults to the fault ontologies, this paper
develops a set of principles to generate new types of faults that
may not have been observed historically. Since a fault is an object
that may occur inside or outside a component, fault generation, in
this paper, is the process of applying the fault generation princi-
ples to the properties of component ontologies and generating

Table 13. Properties defined in the fault ontology

Property Name Notations Property Type Description and Possible Values

Host Entity HostEntity( ⋅ ) Object (related to the
Component Ontology)

Host Entity is the component where the current fault is located.

Origin Origin( ⋅ ) Data (Strings used by
the fault injection
algorithm)

Fault Origin identifies the cause of the fault, which can assist in the identification of whether the
current fault can be applied to the SUA. Generally, a fault can be introduced due to human errors
or natural conditions, such as technologies, materials, or facilities used to create the product, as
well as the physical environment interacting with the product during system operation. The
existence of such factors allows the proposed framework to generate appropriate faults based
on a knowledge base.

Phase of
Introduction

POI( ⋅ ) Data (Strings used by
the simulation
engine)

Phase of Introduction is the phase when a fault was introduced into the system. It can be
“development” or “operation.”

Occurrence Occurrence( ⋅ ) Data (Strings used by
the simulation
engine)

Occurrence defines the time characteristics of a fault. Faults can be categorized into transient faults,
periodic faults, and permanent faults. Transient faults occur unpredictably at random moments
within the components of a system. Periodic faults occur repeatedly with the same time intervals.
Permanent faults are the faults that usually occur one time and lead to permanent errors. This type
of fault will change the states or behaviors of a component immediately and thus are apt to be
detected relatively easily.

Triggering
Condition

TCond(.) Data (Strings of
triggering condition
expressions)

Triggering Condition denotes the ways to activate a fault. The faults, whether introduced at the
requirement, design, or development phase, can be activated during system testing,
manufacturing, or operation. The triggering condition encompasses three important ingredients:
(1) the specific configuration(s) that the system can be in for the fault to be triggered; (2) the
operation(s), i.e., the series of behaviors that the system can perform for the fault to be triggered;
and/or (3) which dependencies and other events must occur for the fault to be triggered.

Impact Direction IDir(.) Data (Strings used by
the simulation
engine)

Impact Direction is categorized into upstream, downstream, and self. This property determines
the impacted property of the host entity. Faults with “upstream” impact direction will change the
inputs of their host entities; “downstream” impact direction faults will change the outputs of
their host entities. An impact direction of “self” means that faults will change the behaviors of
their host entities’ sub-entities.

Effects Effects( ⋅ ) Object (related to
State Ontology)

Effect of a fault is that the host entity is in an erroneous state. Abnormal behaviors of the host
entity will be defined for the erroneous state. For fault inference, the information provided by the
properties “Effect” and “Triggering Condition” will be combined with the property “state” of the
host entity to mimic the activation and propagation of such fault.

States States( ⋅ ) Object (related to
Fault State Ontology)

States of a fault can be predefined as dormant, activated, or terminated. The meaning of the
above states can be taken literally. Dormant faults are faults residing in a system or component
that have not been activated; activated faults are faults that continually or periodically affect the
working states of components or systems. The state of a fault may change to a terminated state
when the fault is isolated or fixed.
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new faults that may affect the behaviors of HW and SW compo-
nents. The fault generation principles can establish faulty states
for components based on the properties defined by their ontolo-
gies. These faulty states with behavioral rules (BRs) will partici-
pate in the fault propagation inference to generate the fault
propagation paths throughout the SUAs. Since the BRs are
expressions containing properties and BVs, these principles can
modify these elements in the BRs to deviate the behaviors of
the target object from their normal states. The fault generation
method expands the fault analysis scenarios beyond existing
observed faults. This enables a system designer to discover
unknown/unforeseen situations, or designing a system to be
more robust and reliable. The fault generation principles are
detailed as below by using the notations in Tables 10 and 16.

Category 1. Missing Property Principles define the rules to gen-
erate faults where a statement of a component’s behavior defined
by the ontological concepts is missing. For example, a routine

pertaining to a software program is forgotten by the system
designer. To generate this type of fault, the effect of such a fault
complies with the following rules: (1) if the target behavior is
an expression of behavior, the expression will be removed; (2) if
the target behavior is a BV, all the expressions related to that
BV will be removed. Table 17 displays the fault generation prin-
ciple for missing property faults.

Category 2. Additional Property Principles define the rules to
generate faults where an extra behavior of a component is injected
into a state of that component. Several rules can be applied
when adding new behaviors to a component. For example, a
new disturbing BV can be added to a component and can be
inserted into all the BRTs with an operator (e.g., addition).
Table 18 reflects the general triggering conditions and effects
related to different types of faults. The selection of the new
entities added to the system depends on the configuration of
the system.

Table 14. Mapping relation between the proposed fault taxonomy and the existing fault taxonomies

Existing Perspectives of Fault Classification Contents Fault Ontology Concepts Contents

Phase of Creation or Occurrence • Development Faults
• Operational Faults

Phase of Introduction • Development Faults
• Operational Faults

Objective • Malicious
• Non-Malicious

Fault Origin • Physical Faults
• Human-Made Faults

o Non-Deliberate Faults
• Accidental Faults
• Incompetence Faults

o Deliberate Faults
• Non-Malicious Faults
• Malicious Faults

Intent • Deliberate Faults
• Non-Deliberate Faults

Phenomenological Cause • Natural Faults
• Human-Made Faults

Capability • Accidental Faults
• Incompetence Faults

System boundaries • Internal Faults
• External Faults

Host Entity The faulty component (inside or outside a system)

Dimension • Hardware
• Software

Domain • Hardware
• Software

Persistence • Permanent
• Transient

Occurrence • Permanent
• Periodic
• Transient

Effects • Faulty States of Host Entities

States • Dormant
• Activated
• Terminated

Table 15. Restrictions in fault ontologies

No. Constraints Fault Generation Principles

FR01. Host Entity(FA) [ {Component}; The host entity of a fault can only be a component.

FR02. Fault Origin(FA) [ {Nature, Human}; Fault origin can be nature, human, or any subtype of these two mentioned
in the fault origin taxonomy.

FR03. Phase of Introduction(FA) [ {Development, Operation}; A fault can be introduced into a system during the development phase (e.g.,
a software defect) or during the operational phase (e.g., a pipe leakage).

FR04. Phase of Introduction(FA) = Development � Fault Origin(FA) = Human; All faults occurring during the development phase are caused by human
errors.

FR05. Occurrence(FA)∈ {Transient, Periodic, Permanent} A fault’s occurrence category can be transient, periodic, or permanent.

FR06. Impact Direction(FA) # {Upstream, Downstream, Self } The impact direction of a fault can be upstream, downstream, or both.

FR07. States(FA) ⊆ {Dormant, Activated, Terminated} A fault’s state can be dormant, activated, or terminated.
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Category 3. Incorrect Property Principles define the rules to
generate faults where an existing BRT in the nominal state of a
component is modified. The modification can be a change of
an operator (e.g., change a “+” to a “−”). This process is like
applying a mutation operator to BRs which are analogous to soft-
ware source code. Table 19 displays the fault generation principles
for incorrect property faults. Selecting which entities to replace
depends on the configuration of the system, and, currently,
human interaction is required to make this selection.

Table 20 summarizes the faults obtained when applying the
fault generation principles to a software routine. In the table,
generic descriptions are given to summarize the generated faults.

Fault generation process

The process of fault generation is interpreted by Figure 11 which
uses the multi-core processor component as an example. It is
worth noting that the fault analysis framework can automatically
implement the fault generation process. The process encompasses
the following steps.

(1) Iterate and select components in the component ontologies.
As shown in Figure 11, the component “Multi_Core_
Processor” is selected, which is a “Processor.”

Fig. 10. The process of adding a known fault to the fault ontologies.

Table 16. Notations for representing fault generation principles

Notations Description

Xo, Yo, Zo Free variables that could be an original class of function, component, or flow selected for fault injection

Xf, Yf, Zf Free variables that could be the corresponding class of Xo, Yo, Zo with generated faults

Qo A data property of Xo, Yo, Zo
For example, Qo∈ Qualities(CP), Qo represents a quality property of a component

Qf The corresponding property of Qo under faulty states

So A state class related to Xo, Yo, Zo
For example, So∈ States(CP), So represents a state of a component

Sf The corresponding faulty state of So

KB The knowledge base with all the classes of components, flows, and functions

brs( ⋅ ) A set of BRs related to an object or a property
For example, brs(Qo) represents the BRs containing the data property Qo

Valuet( ⋅ ) The value of an object or a property at time t
For example, Valuet(Qo) represents the value of the property Qo at time t
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(2) Iterate and select properties of the component under consid-
eration. In the figure, one of the “inputs” properties,
“Command Flow,” is selected.

(3) Apply the fault generation principles to the selected proper-
ties. In this example, the missing inputs rules defined in
Table 17 is applied to the “Command Flow” and correspond-
ingly a new fault object “Processor Missing Input Command
Flow Fault” is added to the fault ontology.

(4) Define the properties of the new fault object. The fault anal-
ysis framework can automatically define a portion of the new

fault’s properties, such as the host entity and the effects of the
fault. For example, the effects of the generated “Processor
Missing Input Command Flow Fault” contain the impacted
state “Read Memory State” which includes an abnormal behavior
“MemoryBusFlow.TargetAddress.{[.]} =NULL.” This behavior
rule derives from the original rule “MemoryBusFlow.Target
Address.{[.]} = CommandFlow.TargetAddress.{[−1]}.” Since the
input “Command Flow” is selected as the missing property in
this example, all the variables related to this input are assigned
an invalid value “NULL.”

Table 17. Fault generation principle for missing property faults

No.
Applicable
Properties Fault Generation Principles Description

MP01. ComposedOf ∀X [ ComposedOf (CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)> brs(X) � Behaviors(Sf );

A composition of the faulty component will be
removed. Also, all the behaviors of the removed
composition will be removed.

MP02. Location ∀X [ Location(CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)> brs(Inputs(X))

� Behaviors(Sf )> brs(Outputs(X)) � Behaviors(Sf );

A location relation of the faulty component will be
removed. Also, all the related inputs and outputs will
be removed.

MP03. Inputs ∀X [ Inputs(CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)> brs(Inputs(X)) � Behaviors(Sf );

One or more input ports of the faulty component will
be removed.

MP04. Outputs ∀X [ Outputs(CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)> brs(Outputs(X)) � Behaviors(Sf );

One or more output ports of the faulty component will
be removed.

MP05. Purpose ∀X [ Purpose(CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)> brs(X) � Behaviors(Sf );

The purpose of the faulty component will be removed.

MP06. Qualities ∀Qo [ Qualities(CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)> brs(Qo) � Behaviors(Sf ) ;

The behaviors related to the missing qualities will be
removed.

MP07. States ∀So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)> Behaviors(So) � Behaviors(Sf );

One or more behaviors of the faulty component will be
removed.

Table 18. Fault generation principle for additional property faults

No.
Applicable
Properties Fault Generation Principles Description

AP01. ComposedOf ∀CP [ KB � ∃FA, CP = HostEntity(FA)> Sf
[ Effect(FA)> (∃X, X � ComposedOf (CP)> brs(X) [ Behaviors(Sf ));

The behaviors of a new composite will be added into
the state of the faulty component.

AP02. Location ∀CP [ KB � ∃FA, CP = HostEntity(FA)> Sf
[ Effect(FA)> (∃X � Location(CP)> brs(Inputs(X))

[ Behaviors(Sf )> brs(Outputs(X)) [ Behaviors(Sf ));

The behaviors of a new location relation will be added
into the state of the faulty component.

AP03. Inputs ∀CP [ KB � ∃FA, CP = HostEntity(FA)> Sf
[ Effect(FA)> (∃X � Inputs(CP) > brs(X) [ Behaviors(Sf ));

The behaviors related to a new input will be added to
the faulty component.

AP04. Outputs ∀CP [ KB � ∃FA, CP = HostEntity(FA)> Sf
[ Effect(FA)> (∃X � Outputs(CP) > brs(X) [ Behaviors(Sf ));

The behaviors related to a new output will be added to
the faulty component.

AP05. Purpose ∀CP [ KB � ∃FA, CP = HostEntity(FA)> Sf
[ Effect(FA)> (∃X � Purpose(CP) > brs(X) [ Behaviors(Sf ));

The behaviors related to a new function will be added to
the faulty component.

AP06 Qualities ∀CP [ KB � ∃FA, CP = HostEntity(FA)> Sf
[ Effect(FA)> (∃Qf , Qf � Qualities(CPo) > brs(Qf ) [ Behaviors(Sf ));

The behaviors related to an additional quality will be
added to the faulty component.

AP07. States ∀CP [ KB � ∃FA, CP = HostEntity(FA)> Sf
[ Effect(FA)> ∃Sf , Sf � States(CP) > Behaviors(Sf ) � Behaviors(CP);

A new state will be added to the faulty component. The
behaviors in the new state is different from the ones in
the original component.
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The generated faults will be introduced into the SUA in the
fault injection process and their impacts on the SUA will be
inferred during fault propagation analysis.

Fault injection

Faults are injected into the system model before fault propagation
inference. Fault injection is the process that decides on the fault
types and locations at which faults will occur in SUAs and injects
the abnormal behaviors of these components in faulty states into
the SUAs. Based on the properties of the fault ontologies intro-
duced in this section, the fault injection process can automatically
select potential faults of SUAs and inject them to the possible
occurrence locations. As shown in Figure 12, the fault injection
process consists of the following steps: (1) fault selection, select
appropriate types of faults from the fault ontologies based on
the information related to components in the SUA; (2) individual
creation, create an instance of the selected type of fault and specify

the properties related to the individual; and (3) state replacement,
replace the states of the host entity in terms of the states defined
by the effect property of the fault individual. The replaced state
with the abnormal behavior will be involved in the fault propaga-
tion inference which establishes a fault propagation path. The fol-
lowing subsections explain these steps.

Fault selection

Fault selection is the process to select appropriate types of faults
from the fault ontology. In the fault ontology, the host entity is
the property that assists in the identification of whether the current
fault can be applied to the SUA. As an example shown in Figure 12,
the first task of fault selection (task 1.1) is to iterate on the system
model and select components for fault injection. The component
individual “CPU_0,” which is an instance of a processor (identified
in task 1.2), is selected. Then, task 1.3 searches the fault ontologies
for the faults that will occur in a processor. In this case, the

Table 19. Fault generation principle for incorrect property faults

No.
Applicable
Properties Fault Generation Principles Description

IP01. ComposedOf ∀X [ ComposedOf (CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)> brs(X)

� Behaviors(FA)> (∃Y , Isa(X) = Isa(Y )> Y

� ComposedOf (CP)> brs(Y ) [ Behaviors(Sf ));

The behaviors of an existing component will be replaced
by the ones of some other components with different
types.

IP02. Location ∀X [ Location(CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)

> (∃Y , Y � Location(CP) > brs(Inputs(Y )) [ Behaviors(Sf )

> brs(Outputs(Y )) [ Behaviors(Sf )

> brs(Inputs(X)) � Behaviors(Sf )> brs(Outputs(X)) � Behaviors(Sf ));

The behaviors of the existing location relations of the
faulty component will be replaced by the ones related to
some other location relations.

IP03. Inputs ∀X [ Inputs(CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)

> (∃Y , Y � Inputs(CP) > brs(Y ) [ Behaviors(Sf )

> brs(X) � Behaviors(Sf )> (Isa(X) = Isa(Y )< (Isa(X)

= Isa(Y )> ∃t, Valuet(Qualities(X)) = Valuet (Qualities(Y )))));

The behaviors of an existing input will be replaced by
the ones related to another input with a different type
or a different value of a quality.

IP04. Outputs ∀X [ Outputs(CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)

> (∃Y , Y � Outputs(CP)

> brs(Y ) [ Behaviors(Sf )> brs(X) � Behaviors(Sf )

> (Isa(X) = Isa(Y)< (Isa(X) = Isa(Y )> ∃t, Valuet(Qualities(X))
= Valuet (Qualities(Y )))));

The behaviors of an existing output will be replaced by
the ones related to another output with a different type
or a different value of a quality.

IP05. Qualities ∀Qo [ Qualities(CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)

> (∃Qf , Qf � Qualities(CP)

> brs(Qf ) [ Behaviors(Sf ) > ((Isa(Qf ) = Isa(Qo))< (Isa(Qf )

= Isa(Qo)> ∃t, Valuet (Qf ) = Valuet(Qo))));

The behaviors related to a quality of the faulty
component deviate from the original ones.

IP06. Purpose ∀X [ Purpose(CP), So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)

> (∃Y , Y � Purpose(CP) > brs(Y )

[ Behaviors(Sf )> brs(X) � Behaviors(Sf ));

The behaviors related to the purpose of the faulty
component will be replaced by the ones related to
another purpose.

IP07. States ∀So [ States(CP) � ∃FA, CP
= HostEntity(FA)> Sf [ Effect(FA)> Behaviors(So)

= Behaviors(Sf );

One or more behaviors of a state of the faulty
component will be replaced by different ones.
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“RegisterBitFlipFault” (RBF) is located by the fault injection algo-
rithm since the host entity of the RBF is a processor.

Individual creation

Once the object of the fault has been identified, the fault analysis
framework creates an individual of such type of fault (task 2.1)
and specifies the properties related to the fault class (task 2.2).
In Figure 12, a fault individual “RBF_CPU_0” is created which
effects include the “Read Memory State” with abnormal behaviors.

State modification

In this step, the original states of the target component will be
replaced by the states defined in the “Effects” property of the cre-
ated fault individual. By doing this, a new system model is gener-
ated which contains the components with faulty states. During the
fault propagation inference, these injected faulty states will be acti-
vated and the corresponding behavioral rules will be executed. In
the example shown in Figure 12, the target component of the fault

individual “RBF_CPU_0” is located by referring to its host entity
(CPU_0) in task 3.1 and then by replacing the original states of
the original component individual “CPU_0” by the effects of
the fault individual. In detail, the original state “Read Memory
State” of the component “CPU_0” contains the normal behavior
rule “MCP.RegA.Value.{[+1]} =MemoryReturnFlow.Operation
Data.{[+1]}” (shown in the system model block at the top).
After the fault injection process, the original state “Read
Memory State” is replaced by a faulty “Read Memory State”
derived from the effects of the fault individual “RBF_CPU_0.”
In the faulty state, the normal behavior mentioned above is
replaced by an abnormal behavior “MCP.RegA.Value.{[+1]} =
Memory ReturnFlow.OperationData.{[+1]} XOR 0 × 00000001”
(shown in the system model block at the bottom).

Restrictions in fault injection

The fault analysis framework defines dependencies and restric-
tions for fault injection using the fault ontologies. To clearly

Table 20. Fault generation for a software routine

Fault Type Fault Description Fault Injection Implementation

Missing ComposedOf The designer forgets to define a data structure in the
routine.

The behaviors related to the faulty data structure will be removed.

Missing Inputs The designer forgets to define one or more input
parameters.

The behaviors related to the input parameters will be invalid.

Missing Outputs The designer forgets to define one or more output
parameters.

The behaviors related to the output parameters will be invalid.

Missing Locations The designer forgets to call this routine (Dynamic
Location).
The developer forgets to write this routine to the file (Static
Location).

The call of this routine will be removed from the original program.
The code of this routine will be removed from the original file.

Missing Qualities The designer did not regulate the routine execution time. A long delay will be added to the original routine.

Missing States The designer forgets to consider a possible state. The missing state with its triggering condition will be removed.

Missing Purposes Not Applicable Not Applicable

Additional
ComposedOf

The designer defines an extra variable in the routine. An extra variable “dummy_var” will be added to the routine.

Additional Inputs The designer defines an extra input parameter to the
routine.

An extra input “dummy_input” will be added to the routine.

Additional Outputs The designer defines an extra output parameter to the
routine.

An extra output “dummy_output” of the type “signal” will be added to
the routine.

Additional Locations The routine is abnormally called twice. This routine will be unexpectedly called at another point in the program.

Additional Qualities A new erroneous quality is defined. A dummy data structure will be added to the routine for the extra
memory occupation.

Additional States The designer defines an extra state. An extra state “dummy_state” with triggering conditions will be added to
the routine.

Additional Purposes The designer creates malicious codes in the routine. An extra function will be added to the purpose of this routine.

Incorrect
ComposedOf

The type of the data belonging to the routine is wrong. An original data structure will be replaced.

Incorrect Inputs The type or value of input parameters is wrong. An original input variable will be changed.

Incorrect Outputs The type or value of output parameters is wrong. The original output variable will be changed.

Incorrect Locations The routine is called at a wrong place. The calling position of this routine will be changed.

Incorrect Qualities The execution time exceeds the design value. A delay will be added to this routine.

Incorrect States The state is not correctly defined. The behaviors and triggering conditions of the states will be changed.

Incorrect Purposes The designer misunderstands the requirement. The purpose of this routine links to another function.
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represent the dependencies and restrictions related to the intro-
duced ontological concepts, we extend the notations defined in
Table 10 to the ones in Table 21.

In the table, we use the suffix o to represent the entities in the
original system and use the suffix f to denote the entities in the
system with the injected faults. Table 22 contains the general
dependencies and restrictions applicable to the fault injection.

Fault propagation inference

Fault propagation inference is the process of emulating the behav-
iors of components, flows, and functions chronologically and
deducing their states to visualize the effects of a fault.

Inference workflow

The process of fault inference is shown in Figure 13. At the begin-
ning, the system models with the injected faults (see Section

“Fault injection”) are read and parsed by the analysis framework.
Then, the states of all components, flows, and functions will be set
to their default states and the time step counter is set to 0. Then,
the behaviors under the default states will be executed (i.e., be
used as assertions, aka evidence) to determine any changes in
the states caused due to fault propagation. Details of the state
inference is discussed in the section “State inference.” After
that, the inference process enters a loop for each time step, start-
ing from time step 1 (I = 0 + 1). For each time step of the fault
inference, the BRs of components, flows, and functions will be
inserted into the evidence pool, aka a set of assertions or
assumptions.

State inference

To infer the states of components, flows, and functions at every
time step, the BRs in the evidence pool are used as proofs.
During the inference, the behavioral rules with time are used as

Fig. 11. The process of fault generation (using the multi-core processor component as an example).
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assertions that are inserted into an evidence pool, which is the set
of all assertions that describe the “objective facts” of the SUA. For
example, we assume that at the beginning of a simulation, the
default state of a processor is “IdleState.” According to the states
of a processor defined, the behaviors “MemoryBusFlow.
CommandType.t0 = NULL AND …” will be inserted into the

evidence pool, which means that the “Command Type” of the
“Memory Bus Flow” is invalid at time step 0.

Based on the assertions contained in the evidence pool, the
states of components, flows, and functions can be inferred by
identifying whether the triggering conditions (TCs) of states are
True or False through Satisfiability Modulo Theories (SMT;

Fig. 12. Fault injection process (using the “RegisterBitFlipFault” as an example).
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Bjorner and De Moura, 2011). For example, if we define the states
of the function “Provide Demand” as shown in Figure 14, to infer
its state, we need to determine whether the TC “RDP.State.{[.]}
== RDP.State.RDPRunningState AND
ReadDemand_CommandReturnFlow.OperationData ==
DEMAND_VALUE” is True or the TC “RDP.State.{[.]} ==
RDP.State.RDPRunningState AND
ReadDemand_CommandReturnFlow.OperationData ! =
DEMAND_VALUE” is True.

According to SMT, the status of a statement can be (1) Valid,
which means that the statement is definitely True; (2) Invalid,
which means that the statement is definitely False; and (3)
Satisfiable, which means that the statement can be True, depend-
ing on further assertions.

When a TC is identified as a true TC, this confirms that the
corresponding state should be activated. On the other hand,
when a TC is identified as a false TC, this verifies that the corre-
sponding state is inactive. However, if a TC is identified as a

satisfiable statement, then further inferences are required. For
example, if another TC is verified as Valid, then its state will be
activated. However, if all the other TCs among the current object
are identified as Invalid, then the satisfiable TC will be used as a
true TC and its state will be activated. The possible situations and
corresponding results are listed in Table 23. When the system
branches, one satisfiable state will be activated in every branch
and the inference continues.

Using the system shown in Figure 8 as an example, Table 24
shows the states of selected components, flows, and functions at
each time step and the assertions inserted into the evidence
pool based on their BRs. Assume that at the beginning of the
fault propagation inference (time step 0), the states of all the com-
ponents are idle. We can infer that the state of the function
“Provide Demand” (PDF) is unknown, which is the default
state. Then, the software program RDP is activated and its state
changes to “RDPRunningState.” In this case, the behaviors
under the state “RDPRunningState” of the component “RDP”
are executed (i.e., inserted into the evidence pool). As a result,

Table 21. New symbols used for representing fault injection restrictions

Symbols Description

CPIo The original individual of component selected for fault injection

CPIf The individual of component with the injected fault

CPI An individual of component (nominal or faulty) in the system
under analysis

FLI An individual of flow in the system under analysis

FCI An individual of function in the system under analysis

SYSo The original system includes the individuals of original
components, flows, and functions

SYSf The system includes the individuals of components, flows, and
functions with the injected faults Fig. 13. Workflow of fault propagation inference.

Table 22. Dependencies and restrictions for fault injection

No. Dependencies and Restrictions Descriptions

IR01. ∀X, X [ Composedof (CPIo), X � Composedof (CPIf ) � ∀t, Valuet(Qualities(X))
= NULL, Valuet(Outputs(X)) = NULL;

The qualities and outputs of an object which is no longer a
composition of another object will be invalid.

IR02. ∀X, X [ Location(CPIo), X � Location(CPIf ) � ∀t, Valuet (Inputs(X))
= NULL, Valuet (Outputs(X)) = NULL;

When an object no longer has a location relation to another
object, the related inputs and outputs will be invalid.

IR03. ∀X, X [ Inputs(CPIo), X � Inputs(CPIf ) � ∀t, Valuet(X) = NULL; When an input is removed from an object, the values related to
that input will be invalid.

IR04. ∀X, X [ Outputs(CPIo), X � Outputs(CPIf ) � ∀t, Valuet(X) = NULL; When an output is removed from an object, the values related to
that output will be invalid.

IR05. ∀X, X [ Purpose(CPIo), X � Purpose(CPIf ) � ∀t, Valuet(Inputs(X))
= NULL, Valuet (Outputs(X)) = NULL;

When an object no longer has a purpose relation to another
object, the related inputs and outputs will be invalid.

IR06. ∀Q, Q [ Qualities(CPIo), Q � Qualities(CPIf ) � ∀t, Valuet(Q) = NULL; When a quality is removed from an object, the values related to
that quality will be invalid.

IR07. ∀CPIo [ SYSo, ∀FA, Isa(CPIo) = HostEntity(FA) � ∃FAI, CPIf , Isa(CPIf )

= Isa(CPIo), Isa(FAI) = FA, CPIf = HostEntity(FAI), States(CPIo)

= States(CPIf ), Effects(FAI) # States(CPIf );

When a fault class is selected and instantiated, the effect of the
fault individual will be included by the faulty individual of the
target component.

IR08. ∀FL, Source(FL) = ∅ � ∀t, Valuet(Inputs(FL)) = NULL, Valuet(Outputs(FL)) = NULL; When a source of a flow is removed, the inputs and outputs of the
flow will be invalid.
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the “Command Type” of “ReadDemand_CommandFlow” from
“RDP” changes from an invalid value (NULL) to
CMD_READIO, as shown in the table. According to Table 24,
the state of “CPU_0” is changed to “CPU0ReadIOState.” Then,
at time step 2, the behaviors under the state “ReadIOState” of
“CPU_0” are executed. These behaviors further activate the state
“DUDReadState” of “DUD.” At time step 3, the behaviors of
the state “DUDReadState” are executed. Based on the assertions
inserted into the evidence pool, we can infer that “RDP.State.t4
== RDP.State.RDPRunningState AND
ReadDemand_CommandReturnFlow.OperationData.t4 ==
DEMAND_VALUE” is True. As a result, the state of the function
“PDF” changes to “PDFOperatingState” at time step 4.

Flow merging and branching

In a system model, multiple individuals of components or func-
tions will possibly connect to the same individual of flow, for
example, two data receivers are attached to one data bus. In this
case, the final value of the flow’s qualities will be impacted by
all the connected individuals. How to calculate the final value
of the qualities (e.g., a flowrate) depends on the type of such
flow and the type of the quality. For example, if the flow is an elec-
tricity flow, when calculating the quality “current,” the final value
should be the sum of all the output “current” of all the connected
individuals. Hence, the rule “Sum” will be applied to the variable
“current” of the electricity flow. Table 25 summarizes some gen-
eral rules of flow merging. The selection of the rules for a specific
flow’s quality is usually based on physics or other related stan-
dards. In Tables 25 and 26, the notation FL represents an

individual of flow, the notation CF represents an individual of
component or function.

Correspondingly, multiple individuals of components or func-
tions may accept objects from one individual of flow. In this case,
the actual input of the connected component or function would
be a portion of the flow, such as an electricity flow. Table 26 sum-
marizes general rules for flow branching. The selection of the
rules for a specific flow’s quality is usually based on physics or
other related standards.

Case study

In this section, the correctness and effectiveness of the proposed
method are verified by using a water tank control system, a sim-
plified cyber physical system with a computer-based controller
and corresponding mechanical devices. In the case study, faults
that possibly occur during system design, development, and
operation are generated and their impacts on the functionality
of the system are analyzed. The experiments attempt to cover
all the types of faults that currently exist in the fault ontology.
As a result, the proposed framework simulates the propagation
and impacts of all the generated faults and generates a table con-
taining the states of the components and functions in the system
under analysis. The experiment is designed to verify the correct-
ness of the inference results. Most of the generated faults are
injected into an actual implementation of the system, and the
experiment will compare the data sampled from the actual system
to the inference results. The ratio of errors and the accuracy of
time sequences will be used as metrics to compare the results.
It should be noted that the fault propagation inference is at the
design level, that is, based on design level knowledge, and con-
trasted with an implementation which in contrast is fully fledged
with all low-level implementation details defined.

System introduction

The system under analysis is a computer-controlled feedwater sys-
tem which is a simplified version of the one that can be found in a
nuclear power plant. The structure of the computer system is dis-
played in Figure 15. The components and flows in the system are
grouped into three layers, including a hardware layer, an operat-
ing system layer, and a user application layer.

To implement the functionality of the case study system, sev-
eral mechanical system components and their corresponding
functions and flows are created. Figure 16 illustrates the mechan-
ical components involved in the SUA.

Fig. 14. States of function “provide demand.”

Table 23. Possible situations and results

Situations Results

One is valid, the others are invalid/
satisfiable

Activate the valid state.

More than one are valid Mistake in TCs, the inference
process halts.

All are invalid Mistake in TCs, the inference
process halts.

One is satisfiable, the others are invalid Activate the satisfiable state.

More than one are satisfiable, the
others are invalid

System branches.
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The primary functions of the SUA are summarized in
Table 27. They encompass storing water and supplying water.
The detailed conditions for identifying the states of each function
are also shown.

The two major functions are implemented by several software
programs. Figure 17 illustrates the relations between these

programs. In detail, the program “ReadDemand_Program” first
reads the set point of the water level and flowrate from an existing
data file. Then, the program “InletCtrl_Program” and
“OutletCtrl_Program” will sample the measures provided by the
pressure and flow sensors deployed in the physical system and
send the samples to the corresponding memory units. The routine

Table 24. Example of function state inference

Time
steps Objects States Assertions in the evidence pool

0 RDP RDPIdleState ReadDemand_CommandFlow.CommandType.t0=NULL AND ReadDemand_CommandFlow.TargetAddress.t0=NULL
AND …

CPU_0 CPU0IdleState ReadDemand_IOBusFlow.CommandType.t0=NULL AND ReadDemand_MemoryBusFlow.CommandType.t0=NULL
AND …

DUD DUDIdleState DUD.StoredData.t0=DEMAND_VALUE AND DUD.Address=DUD_DEMANDADDRESS…

PDF PDFUnknownState N/A

1 RDP RDPRunningState ReadDemand_CommandFlow.CommandType.t1=CMD_READIO AND
ReadDemand_CommandFlow.TargetAddress.t1=DUD_DEMANDADDRESS AND …

CPU_0 CPU0IdleState ReadDemand_IOBus_Flow.CommandType.t1=NULL AND ReadDemand_MemoryBus_Flow.CommandType.t1=NULL
AND …

DUD DUDIdleState DUD.StoredData.t1=DUD.StoredData.t0 AND …

PDF PDFUnknownState N/A

2 RDP RDPRunningState …

CPU_0 CPU0ReadIOState ReadDemand_IOBusFlow.CommandType.t2=ReadDemand_CommandFlow.CommandType.t1 AND
ReadDemand_IOBusFlow.TargetAddress.t2=ReadDemand_CommandFlow.TargetAddress.t1 AND
CPU_0.RegA.Value.t3=ReadDemand_IOReturnFlow.OperationData.t3 AND …

DUD DUDIdleState DUD.StoredData.t2=DUD.StoredData.t1 AND …

PDF PDFUnknownState N/A

3 RDP RDPRunningState …

CPU_0 CPU0ReadIOState …

DUD DUDReadState ReadDemand_IOReturnFlow.OperationData.t3=DUD.StoredData.t3 AND DUD.StoredData.t3=DUD.StoredData.t2 AND
…

PDF RDFUnknowState N/A

4 RDP RDPRunningState …

CPU_0 CPU0ReadIOState ReadDemand_CommandReturnFlow.OperationData.t4=CPU_0.RegA.Value.t4 AND
CPU_0.RegA.Value.t4=CPU_0.RegA.Value.t3 AND …

DUD DUDReadState …

PDF PDFOperatingState N/A

Table 25. General rules for flow merging

Name Rules Description Examples

SUM Valuet (Quality(FLI)) =
∑n

i=1 Valuet(Output(CPIi |FCIi)); The final value of a quality is the sum of
all the output values of the connected
components or functions.

Current of an electricity flow

AVG Valuet (Quality(FLI)) = 1
n

∑n
i=1 Valuet (Output(CPIi|FCIi)); The final value of a quality is the average

of all the outputs of the connected
components or functions.

Voltage of an electricity flow
combined from two electricity flow
with the same current.

CAT

Valuet (Quality(FLI)) = Concatenate
Valuet(Output(CPI1|FCI1)),
Valuet(Output(CPI2|FCI2)),

. . .

⎛
⎝

⎞
⎠;

The final value of a quality is the
concatenation of all the outputs of the
connected components or functions.

A buffer receiving data from multiple
providers.

SLT

Valuet (Quality(FLI)) = Select
Valuet(Output(CPI1|FCI1)),
Valuet (Output(CPI2|FCI2)),

. . .

⎛
⎝

⎞
⎠;

The final value of a quality is the value of
the component or functions that is
activated (the value is not NULL).

A Control Area Network (CAN) bus
with multiple microcontrollers
attached.
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Table 26. General rules for flow branching

Name Rules Description Example Flows

EQU Valuet(Input(CPIi|FCIi)) = Valuet(Quality(FLI)),
1 < i < N;

All connected components or functions will receive the
same value from the flow.

Network broadcasting

PMA Valuet (Input(CPIi|FCIi)) = ai × Valuet (Quality(FLI)),∑N
i=1 ai = 1, 1 , i , N;

Every connected component or function will receive a
parameter-controlled value from the flow.

Power of an energy flow,
Software defined networks

Fig. 15. Architecture of the case study system.

Fig. 16. Mechanical subsystem involved in the case study system.

Table 27. Functions associated to the case study system

Function States Conditions

Storing Water Operating (Demand*95%)<Water_Level<(Demand*105%)

Degraded (Demand*50%)<Water_Level<=(Demand*95%)

Lost Water_Level<=(Demand*50%)

Supplying Water Operating (Demand*95%)<Output_Flowrate<(Demand*105%)

Degraded (Demand*50%)<Output_Flowrate<=(Demand*95%)

Lost Output_Flowrate<=(Demand*50%)
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“Calculate_Level_Control” implements the control algorithm and
calculates the control signal for the level control valve (aka TBV).
Concurrently, the routine “Calculate_Outflow_Control” is in
charge of calculating the control signal for the outflow control
valve (aka ACV). Finally, the outcomes of “Calculate_Level_
Control” and “Calculate_Outflow_Control” are used by the
routines “Send_Level_Control” and “Send_Outflow_Control,”
which send the actual control signals to the corresponding
mechanical components through the serial ports. The system
will periodically execute the aforementioned control process to
maintain the water level and the output flowrate close to their
set points.

Model construction and fault injection

Based on the proposed ontologies, the system model with 90 indi-
viduals (i.e., instances of the ontological concepts) is built for the
case study system. Table 28 provides the detailed numbers of indi-
viduals in the case study system.

Various types of faults were injected into the system model,
including faults collected from existing research (as shown in
Table 29) and the faults generated by the proposed ontological

methodology (as shown in Table 30). The faults in Table 30 are
grouped by the fault generation principles applied to the system
components. In summary, 1467 faults were generated.

Table 31 calculates the overlap between the individuals of the
existing faults and the ones of the generated faults. Since one fault
class may have multiple individuals in the case study system, the
number of fault individuals is usually greater than the number of
fault classes. The table shows that a large number of generated
faults are not covered by existing faults described in the literature.

Analysis results and comparisons

As one example of the results of analysis, Tables 32 and 33
describe the results obtained for the test scenario associated
with the fault “Incorrect_Outputs” applied to the disk unit
“MemUnit_Outflow_Setpoint” (i.e., the output of the disk unit
storing the set point of the flowrate is NOT_A_NUMBER).
Components are grouped by domain: “Application,” “OS,” “PC
Hardware,” and “Mechanical System.” In this case, an illegal set
point value was read from the control file. However, since there
is a defect in the “ReadDemand_Program” application such that
the validity of the data is not fully verified, the illegal value was

Fig. 17. Activity diagram of the case system.
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consequently sent to the software “InletCtrl_Program” and caused
the control algorithm to halt and send out an invalid control sig-
nal (NULL). The NULL signal fully closed the valve “ACV” (the
default state of the valve) and finally caused a system failure. The
failures (the lost state) of components’ and systems’ functions are
highlighted in the table.

We used the actual, that is, physical/real world implementa-
tion, of the water control system to verify our framework. As an
example, we manually modified the set-point file and added

illegal data to the disk to mimic the faults in reading the disk dur-
ing system operation. In the experiment, it is observed that the
inflow setpoint is “corrupted” in the control processor at
“Calculate_Level_Control” to a zero value at 300 s, shown in
Figure 18. Due to the illegal value of the set point of the output
flow, the “ACV” was fully closed at 300 s. This is a permanent
fault. Then, the closed “ACV” led to a dramatic increase of the
water level and hence led to the failure of the system function
“Store_Water.” This result is consistent with the prediction of
our framework.

Table 34 provides statistics that allow comparison between
fault inference and real system behavior under fault. Because of

Table 29. Fault classes in the fault ontology (existing faults documented in the literature)

Host
Components Fault Classes

Processor Address Error, Data Error, Control Error, Bit flips in registers (Duba and Iyer, 1988; Mehdizadeh et al., 2008), stuck-at logic error (Carter et al.,
2005)

Memory Stuck-at Fault, Address Decode Fault, Stuck-open Fault (van de Goor and Al-Ars, 2000)

Bus Delay, Crosstalk, Transient (Metra et al., 2000), Instruction Fault, Data bit is Stuck at 1 or 0 (Narraway and Venkatesan, 1986)

Disk Stuck-at Error, Read Timeout (Talagala and Patterson, 1999)

OS Deadlock, Floating Point Error, Stack Overflow, Memory Leakage (Chou et al., 2001)

User Program Invalid Program Flow, Incorrect Opcode Address, Unused Memory, Invalid Read Address, Invalid Opcode, Invalid Write Address,
Non-Existent Memory (Mahmood and Mccluskey, 1988)

Note: The behaviors of components in bold faults can be covered by the fault generation principle introduced in this paper.

Table 30. Statistics related to fault generation for the case study system (aka new faults)

Fault Categories Physical PC Hardware Operating System Application Total

Missing Composed of 5 10 5 8 28

Additional Composed of 5 95 5 16 121

Missing Inputs 7 53 5 7 72

Additional Inputs 57 163 60 80 360

Missing Outputs 8 20 8 21 57

Additional Outputs 79 267 166 64 576

Incorrect Qualities 14 0 0 10 24

Incorrect Locations 40 67 6 47 160

Missing States 5 45 7 12 69

Total 220 720 262 265 1467

Table 28. Number of individuals in the system model

Ontologies Domains/Types Number

Component HW Mechanical 5

Computer Hardware 11

SW Operating System 3

User Application 5

Flow Material 12

Energy 2

Data 32

Function 20

Total 90

Table 31. Statistics related to individuals of the existing faults and the
generated faults

PC
hardware OS Application Total

Number of existing faults covered
by fault generation principles

14 3 16 33

Number of existing faults that
cannot be covered by fault
generation principles

31 20 12 63

Number of generated faults not
covered by existing faults

706 259 249 1214
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Table 32. Component states for the example scenario

Time Steps

Application OS PC Hardware Mechanical

RP SO CC SD SC OP OT PP TP C0 C1 C2 DL ML MS SL SA AC TK

0 I I I I I I I I I I I I I I I I I N N

1 R I I I R R R I I RI I I R I I I I N N

2 R I I I R R R I I WM I I I W I I I N N

… … … … … … … … … … … … … … … … … … … …

5 I R I I R I I R R I RI RI I I I R I N N

6 I R I I R I I R R I WM WM I I W I I N N

7 I I R I R I I R R I RM RM I I R I I N N

8 I I R I R I I R R I MP MP I I I I I N N

9 I I R I R I I R R I WM WM I W I I I N N

10 I I I R R I I R R I RM RM I R I I I N N

11 I I I R R I I R R I WO WO I I I I W C N

12 R I I I R R R I I RI I I R I I I I N N

… … … … … … … … … … … … … … … … … … … …

37 R I I I R R R I I RI I I R I I I I N F

38 R I I I R R R I I WM I I I W I I I N F

Note: I: Idle State, N: Nominal State, R: Reading/Running State, W: Writing State, RI: ReadIOState, WM: WriteMemState, WO: WriteIOState, RM: ReadMemState, MP: MultiplyMemState, C: Changing State, F: Full State.
Components: C0: CPU_0, C1: CPU_1, C2: CPU_2, DL: DiskUnit_Level_Setpoint, ML: MemUnit_Level_Setpoint, MS: MemUnit_Level_Sample, SL: Outflow_SerialDev, SA: ACV_SerialDev, SC: OS_Scheduler, OP: ReadDemand_Process, OT:
ReadDemand_Thread, AC: ACV, TK: Tank, RP: ReadDemand_Program, SO: Sample_Outflow, CC: Calculate_Outflow_Control, SD: Send_Outflow_Control.
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technical limitations, only a portion of fault types can be applied
to the real hardware and software. For example, an extreme high
voltage signal may damage the physical equipment (e.g., the
pumps and valves). As a result, 450 test scenarios can be faithfully
implemented in the real system. The results derived from the pro-
posed framework successfully predict all of 450 real system test
scenarios.

After inspection of the results from the fault inference and the
real system, we found that all results from the real system agree
with the predictions of the fault inference. Since the inference is
a qualitative simulation with inference but the results from the
real system yield a large data set, inspecting the results consists
of the following activities: (1) check the intermediate and final
states of functions and components (e.g., failed or not) and (2)

check the time order of the important events that occurred during
the system operation (e.g., functional failures, state transitions).

Discussion

As shown by the above analysis, faults that can occur in computer
systems were simulated and their effects on functional failures
were analyzed. The analysis emulates the behavior of every com-
ponent involved in the fault propagation. The results of this anal-
ysis visualize the fault propagation paths and explicitly show the
causality between faults and functional failures. These causal rela-
tionships are useful for researching fault prediction and can assist
in the design of fault tolerance and fault recovery mechanisms.

Table 33. Functional states for the example scenario

Note: O: Operating State, D: Degraded State, L: Lost State, U: Unknown State.
Functions: RS: read set point, SL: sample level, PC: PID control, WC: write control value, FS: schedule processes, RR: run read set point software, ER: execute read set point software, RC: run
control software, EC: execute control software, RL: record level set point, CL: cache level set point, CS: cache level sample, GL: sample level, GA: control ACV, CO: control outlet water flow, WA:
store water in tank, PW: provide water, SW: store water.
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A case study using the proposed method used a model with 24
components and 46 flows to verify 20 functions and subfunctions
of the system at the early design stage. The framework generated
1467 faults based on the ontological concepts. All of the faults
were analyzed and 98% of faults’ impacts were clearly predicted
(missing were the scenarios with “uncertain” outcomes). The
result proves that the proposed method can effectively generate
faults and their propagation paths at the design level, which is
useful for improving the robustness of the system.

Since the specification of the system was not well defined at the
early design stage, uncertainties existed in the system design. The
uncertainty could be an unclear type of component, a free flow
quality without constraints, or an undefined subfunction
parameter. These aspects will probably lead to uncertainties in

the final results. For example, without any specification of a com-
ponent in the feedwater system, the function (supplying water) of
the system cannot be inferred because the fault inference engine
cannot confirm if the output flowrate of water is within the design
range. However, this uncertainty can be reduced when we specify
the maximum flowrate of the pipes and valves composing the sys-
tem. Along with the development process, the concreteness of the
system will finally remove the uncertainties in the results once it is
built and deployed.

The fault propagation inference takes reasonable time to pro-
duce the outcomes, about 5 min to analyze one fault scenario.
Theoretically, 1467 scenarios require 122 h, about 5 days.
However, we can analyze the scenarios simultaneously since
they are independent. By running the inference on a

Fig. 18. Signals sampled from the real system.

Table 34. Comparison of results between fault inference and real system

Result from Fault Host Entity O D L U Total

Inference Mechanical 52 17 158 8 230

Computer Hardware 271 2 446 11 730

Operating System 92 0 146 4 242

User Application 78 0 168 6 274

Total 493 19 926 29 1467

Real System Mechanical 47 7 122 – 176

Computer Hardware 18 0 60 – 78

Operating System 2 0 10 – 12

User Application 54 0 130 – 184

Total 121 7 322 – 450

Note: O: Number of Operating Scenarios, D: Number of Degraded Scenarios, L: Number of Lost Scenarios, U: Number of Uncertain Scenarios, Total: Total Number of Scenarios.
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High-Performance Computer (HPC) with 50 cores, calculating
the results only requires 2.4 h. The performance of the calculation
is significantly improved.

Conclusion

This research provides a novel method (IS-FAON) for analyzing
fault propagation and its effects. Starting from the ontologies of
components, functions, flows, and faults, this paper constructed
a scientific foundation for describing and tracking faults in a com-
puter system across multiple domains throughout design and
development. In order to construct the system and fault models,
a series of fundamental concepts were introduced in the form
of ontologies and their dependencies. An investigation was then
performed into the faults, including their type, cause, life cycle
aspects, and effect. Principles and rules were created to generate
various faults based on system configurations. After the modeling
process, a fault inference engine was proposed to execute actions
and simulate the process of fault generation and propagation. As a
result, fault paths that impact components and functions were
obtained.

Gathering fault propagation paths at an early design phase sig-
nificantly help to predict and improve the reliability and safety of
a system. First, the paths provide intuitive evidence for fault detec-
tion and diagnosis. Second, fault prevention mechanisms and
redundancy policies can be applied to the most frequently tra-
versed nodes in order to efficiently implement fault masking
and isolation. Also, the fault propagation paths are helpful for
generating test cases for system verification since they provide
useful information on triggering faults that are possibly hiding
in the system under analysis.

Future work will be focused on how to improve the proposed
method. First, the ontologies of components, flows, and functions
for computer systems will be enriched. Domain-specific hardware
and software components for various engineering domains (e.g.,
aerospace, nuclear, medical, etc.) and more specific sources of
faults (e.g., electromagnetic, vibration) will be considered and
added to the repositories. Also, tools for automating model con-
struction will be studied and developed. Due to the sophistication
of models specially built for complex systems, these tools should
be capable of automatically reading components and flows exist-
ing in the target system. In addition, further optimization (e.g.,
concurrent computation) will be applied to the inference process
to accelerate the fault propagation analysis.
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