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Abstract

A growing trend in requirements elicitation is the use of machine learning (ML) techniques to
automate the cumbersome requirement handling process. This literature review summarizes
and analyzes studies that incorporate ML and natural language processing (NLP) into demand
elicitation. We answer the following research questions: (1) What requirement elicitation
activities are supported by ML? (2) What data sources are used to build ML-based require-
ment solutions? (3) What technologies, algorithms, and tools are used to build ML-based
requirement elicitation? (4) How to construct an ML-based requirements elicitation method?
(5) What are the available tools to support ML-based requirements elicitation methodology?
Keywords derived from these research questions led to 975 records initially retrieved from 7
scientific search engines. Finally, 86 articles were selected for inclusion in the review. As the
primary research finding, we identified 15 ML-based requirement elicitation tasks and classi-
fied them into four categories. Twelve different data sources for building a data-driven model
are identified and classified in this literature review. In addition, we categorized the techniques
for constructing ML-based requirement elicitation methods into five parts, which are Data
Cleansing and Preprocessing, Textual Feature Extraction, Learning, Evaluation, and Tools.
More specifically, 3 categories of preprocessing methods, 3 different feature extraction strate-
gies, 12 different families of learning methods, 2 different evaluation strategies, and various
off-the-shelf publicly available tools were identified. Furthermore, we discussed the limitations
of the current studies and proposed eight potential directions for future research.

Requirement elicitation is one of the important processes of product development. Several
conventional requirement elicitation techniques, such as interviews, meetings, and brainstorm-
ing, are used to collect precise and individualized requirements. However, due to the ever-
growing demands of end-users and the rapid pace of product iterations, the use of only tradi-
tional methods to elicit requirements would be quite insufficient.

The fourth industrial revolution is triggering a pervasive digital transformation in many
fields of human activities. Particularly, engineering is being transformed into “Digital
Engineering” (Zimmerman, 2017; US DoD, 2018). In digital engineering, digital data and
models will be shared in the engineering life cycle (US DoD, 2018); engineering artifacts
and processes will be digitalized with standardized digital representation, unique identifier,
and the augmented metadata about their attributes, including provenance, thus making
those digital artifacts machine-processible, uniquely identifiable, traceable, and accountable
(Huang et al., 2020). The digital engineering transformation brings both opportunities and
challenges for requirements elicitation.

The evolution of digital transformation has led to improved productivity, quality, and cus-
tomer satisfaction through agile and robust big data collection, analysis, learning, and decision-
making processes. Success stories, advancing technologies, and growing customer demands are
why digitalization has become necessary for various fields. For example, in recent years, there
has been a growing number of studies involving a digital transformation in requirement engi-
neering, such as identifying requirements from documents (Wang et al., 2019), automatically
classifying the requirements (Casamayor et al., 2012), and prioritizing the requirements (Maiti
and Mitropoulos, 2017). By applying advanced technologies and shifting the existing process
to a new digitized paradigm, it may be possible to solve the problem.

Traditionally, expert experience or intuition has been used to direct requirement elicitation
activities. Each decision is based on a combination of implicit and explicit domain expertise
(Maalej and Thurimella, 2013). Developing a computer model that mimics expert reasoning
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with knowledge is expensive to construct and maintain. A data-
driven strategy, unlike knowledge-based systems, does not require
codifying the rules and knowledge for decision-making. The term
data-driven refers to a decision-making strategy based on data
analytics, interpretation, and prediction rather than pure intuition
(Provost and Fawcett, 2013). Over the past 15 years, several stud-
ies have been published on the application of machine learning
(ML) to requirements engineering, followed by reviews that sum-
marize these studies (Meth et al, 2013; Wong et al., 2017; Lim
et al., 2021). Different from those existing studies, this literature
review includes 86 studies from 2007 to the present, and cate-
gorizes the included works from 7 perspectives, including tasks,
data collection, data cleansing and preprocessing, textual feature
extraction, learning, evaluation, and the open-source tools.

The rest of this paper is structured as follows. In Section
“Related works”, literature reviews related to the proposed review
are summarized; and Section “Review methodology”, the scope
and methodology of the literature review, as well as search strate-
gies, criteria for inclusion and exclusion, and the data extraction
template, are presented. Section “Results” shows the primary
results of the literature review. Section “Findings” summarizes
the major findings from the review by analyzing the included
works and categorizing them into various categories from seven
different research concerns. In Section “Open issues and future
works”, the current role of ML in requirement elicitation and
its limitations are discussed. In addition, the open issues and
potential future works in this field are discussed. In Section
“Limitation of this review”, we discuss the potential threat to
validity of the review and the measures we took to address
these limitations. Finally, Section “Conclusion” concludes the

paper.

To our knowledge, eight existing review articles, as shown in
Table 1, are relevant to our study. Meth et al. (2013) conducted
a review mainly focused on the automated approach applied for
requirements elicitation, mainly focusing on the degree of the
automation of proposed approaches. Binkhonain and Zhao
(2019) introduced ML algorithms in the requirements elicitation
domain by dividing the 24 related articles into 3 sections: NLP
techniques, ML algorithms, and evaluation. Perez-Verdejo et al.
(2020) applied topic models and visualization techniques to ana-
lyze ML-based requirement classification articles. Wong et al.
(2017) identified various software requirements elicitation
methods, including manual, rule-based, and ML-based
approaches. Shabestari et al. (2019) proposed a systematic litera-
ture review that covers early product development phases, includ-
ing various activities such as requirements elicitation, requirement
identification, and requirement categorization. Similarly,
Sampada et al. (2020) focus on the early requirement phases
but are more concerned with requirements elicitation and docu-
mentation. Ahmad et al. (2020) reviewed a collection of articles
for identifying requirements for Q&A platforms.

Among the existing studies, one existing work proposed by
Lim et al. (2021) is the closest to our research, which was con-
ducted almost concurrently with ours. Both works aim to intro-
duce the current state of the works in data-driven requirements
elicitation; however, the focuses of the two works are different.
Lim et al. (2021) focus more on data sources, data types, learning
techniques, and degree of automation. In comparison, the present
review focuses more on technical details, such as text features. Our
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work aims to provide a comprehensive overview of current work
and include a more detailed investigation into the types of
requirement elicitation tasks, existing methods, algorithms, and
tools. This review could provide a more practical guide to require-
ments elicitation researchers, and engineers to leverage the exist-
ing techniques in their projects.

The review adheres to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) reporting
structure, aiming to answer the five research questions below:

RQ1. What requirement elicitation activities are supported by
ML?

RQ2. What data sources are used to build ML-based requirement
solutions?

RQ3. What technologies and algorithms are used to build
ML-based requirement elicitation?

RQ4. What are the available tools to support ML-based require-
ments elicitation methodology?

RQ5. How to construct an ML-based requirements elicitation
method?

The review scope is defined in Table 2 according to Cooper’s
taxonomy for literature review, including focus, goal perspective,
coverage, organization, and audience (Cooper, 1988; Cooper
et al., 2019). First, in this work, the emphasis is on practical solu-
tions that can be applied; therefore, the theoretical works are not
our focus. Second, this study aims to synthesize and integrate
existing studies to identify the specific requirement elicitation
tasks supported by ML; thus, criticism of the field or related
works is not a goal of this article. Third, this paper does not
take an espousal perspective to advocate for or against ML-based
requirements elicitation. Instead, it demonstrates how the existing
work would convert requirements elicitation challenges into ML
problems. Fourth, the coverage of the literature is a non-
exhaustive set of research articles that are retrieved by search
queries and filtered by inclusion and exclusion criteria. Fifth,
the work applies a methodological organization that group and
organize similar methodologies or tools together, presenting a
modular organization to the target audience. Finally, the targeted
audiences are mainly requirements analysts, engineers, and
scholars.

Seven bibliographic databases, including Scopus, Web of Science,
Google Scholar, IEEE Xplore, Springer Link, ACM digital library,
and ASME digital library are adopted to guarantee the coverage of
the review. Three search strategies are applied: (1) the query
expanding strategy is used to add synonyms, inflectional, and
derivational morphological forms to the original term; (2) a wild-
card character is used to capture multiple forms of a keyword by
replacing one or more characters with a star symbol (*) or ques-
tion marks (?); and (3) a query scoping strategy is applied when
the search term is too general to retrieve a related result, such
as adding terms “system engineering” or “requirement engineer-
ing” in addition to the search string.
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Table 1. Related works

Reference  Included  The latest Main focus
works work
reviewed
The state of theartin Methetal. 36 2010 The automated approach in requirements
automated (2013) elicitation; degree of automation; knowledge
requirements reuse; evaluation; and the relationship between
elicitation the included works.
A systematic Wong et 42 2014 Level of automation; knowledge reuse; the
literature review al. (2017) importance of human factors; collaborative
about software approach; and types of projects.
requirements
elicitation
A review of ML Binkhonain 24 2017 ML algorithms for non-function requirements
algorithms for and Zhao identification/classification.
identification and (2019)
classification of non-
functional
requirements
A survey on the Shabestari 40 2018 ML in requirements, modeling, and concept
applications of MLin  etal. design.
the early phases of (2019)
product
development
A systematic Ahmad et 12 2018 The ML and NLP techniques were applied for the
literature review on al. (2020) required identification task on stack overflow
using ML algorithms data.

for software
requirements

identification on

stack overflow

A review on Sampada 13 2019 Introduced the application of NLP techniques
advanced techniques etal. and ML algorithms in requirements elicitation
of requirements (2020) and specification activities.

elicitation and

specification in

software

development stages

A systematic Perez- 13 2019 The ML algorithms are used in requirement
literature review on Verdejo et classification tasks.

ML for automated al. (2020)

requirements

classification

Data-driven Lim et al. 68 2020 Data; ML techniques; evaluation methods;
requirements (2021) degree of automation in requirements
elicitation: a elicitation.

systematic literature

review

Based on the above consideration, the search strings are  differences may exist. For example, the Web of Science engine
defined as follows: supports additional Boolean operators, such as the “NEAR”
operator that provides additional restrictions on the “AND”
(“Requirement” OR “Demand” OR “Need”) AND (“Elicit” OR “Collect”  operator by considering a fixed-size context window.
OR “Gather” OR “Detect” OR “Identify” OR “Classify”) AND (“ML”
OR “Machine Learning” OR “Deep Learning” OR “Text Mining” OR
“Data Mining” OR “NLP” OR “Natural Language Processing” OR
“Neural»Network” OR “Automated” OR “Data-driven” OR “Decision Inclusion exclusion criteria and paper screening
Support”).
The next step of the literature review is selecting studies by screen-
Due to search functions being different across the seven aca-  ing the title, abstract, and full text of the works found in the pre-
demic search engines, in the actual search pattern certain  vious steps. We applied the inclusion/exclusion criteria in Table 3.
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Characteristic

Categories

Focus Research findings
Research methods
Practices of applications
Goal Integration
Identification of the central issue
Criticism

Perspective

Neutral representation
Espousal of position
Exhaustive with selective citation
Exhaustive
Representative
Central or pivotal
Methodological
Conceptual

Historical

Specialized scholars
General scholars

Coverage

Organization

Audience

Practitioners or policymakers
General public

The focus of this work

X B <=8 X el 2 B X B 2 B 2 Bl 2 Bl X el 2 Bl

Table 3. Inclusion/exclusion criteria

Inclusion

The work is a survey paper or literature review.

The work should either capture requirements in an
automated way from text data or support the
requirement elicitation process with an automated
approach trained from big data.

The work is an editorial, conference abstract, or
an introductory popular science article.

The article presents the details of the datasets and
data processing.

The work only generally describes the problem
and the solution without providing an
experiment result or convincing evidence.

The article explains in detail the ML algorithm that
they employed, such as the learning algorithms they
used and the validation strategy they employed.

The full text of the article should be accessible.

If there are multiple similar works from the
same authors, only one of the earliest works
would be retained.

" The work is written in a non-English language.

The article is written in English.

Data extraction table

Research information was collected from each included article with
a data extraction form. Basic information about the study (author,
title, year of publication, etc.) and content related to research inter-
ests (data source, preprocess, feature extraction, etc.) was collected.
This includes 14 data elements described in Table 4. The required
data fields are designed as open questions, which require reviewers
to collect, summarize, and categorize data from the collect works.
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Based on the search strategies applied on the 7 included scien-
tific search engines, 975 papers were retrieved. Upon initial
screening and the title screening, 915 works were forwarded to
the title-abstract screening. A subset of 774 was irrelevant and
thus discarded. As a result, 129 papers are retained for the full-text
screening. In accordance with the inclusion-exclusion criteria, 43
articles were excluded, and finally, 86 articles were selected. The
complete process of study selection is shown in Figure 1.
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Table 4. Elements of data extraction table

# Data Description

1 Author(s) Author(s) of the included work in the literature review.

2 Title Title of the included work in the literature review.

3 Country The country of the corresponding author is the primary country, and the rest
_ of the countries follow the order of the author list.

4 Year The published year of the work.

5 Citation count The number of citations of included work. (From Google Scholar, until
_ 2021-10-20)

6 Venue The publication type of the work includes conference, journal, book
_ chapter, and workshop.

7 Venue title The name of the journal or conference contains the article.
'8 Requirements elicitation Identify which requirements elicitation subtask is supported by the paper.
_ task(s)

9 Data source The data source is used for training or validation purposes.
10 Preprocess The specific data preprocessing techniques from the selected paper.
' 11 Feature extraction The specific features applied by the selected work in the literature review.
12 Learning algorithm The learning algorithm was adopted by the included study in the literature

review.

13 Evaluation method The evolution method was introduced by the selected papers in the literature
| review.

14  Tools List the tools mentioned by the authors in the paper as aids to their work.

Results

Tendencies of the publications

The overall trend for the 86 articles is shown in Figure 2, and an
increasing trend can be observed. The reviewed studies came from
30 different countries, and 17 of them were conducted in more
than one country. The average number of publications in each
country is 3.8, with seven countries having more publications

China (n =14, 12.5%), Germany (n =13, 11.6%), Canada (n =38,
7.1%), Singapore (n=5, 4.5%), South Korea (n=5, 4.5%), and
the United Kingdom (n =5, 4.5%).

Thirty-nine of the studies are conference papers (n =39,
45.3%) and 31 are journal papers (n=31, 36.0%). In addition,
eight workshop papers (n =8, 9.3%) and eight book sections (n
=8, 9.3%) are included, respectively. The included conference
papers are collected in 23 unique conference proceedings, with

than the average, which are the United States (n=28, 25.0%),

16 works appearing in the

Identification of studies via databases

=
£
; ; Records removed before screening:
o
E R%caot;%safjsnz?fg?fg;m —  Duplicate records removed (n=49)
= ] Other reasons (n=11)
=
—
Ty A J
Records screened Records excluded with title-abstract
(n=915) screening (n=774)
s !
S Records sought for :
@ =
e retrieval (n=141) — Reports not retrieved (n=12)
2 I
Records assessed for Records excluded with full-text screening
eligibility (n=129) {(n=43)
3 A 4
g Studies included in
— review (n= 86)
=

Fig. 1. PRISMA flowchart.
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Fig. 2. The number of included papers by year.

International Conference on Requirements Engineering. The
majority of the journal publications in this collection are from
the Journal of Mechanical Design, Information and Software
Technology, and Requirement Engineering.

The data source for ML-based requirement elicitation

The requirement specification (RS) is a textual document that system-
atically stores system definition and system requirements (Bourque
and Fairley, 2014). In the reviewed articles, 17 works applied available
requirement specifications to build ML-based solutions to support
requirement elicitation. The majority (n=12) of the requirements
specifications in the selected studies are written in English, and
two of the requirement specification are bilingual (Ko et al,
2007; Lyutov et al., 2019), three are written in the non-English
language (Falessi et al., 2010; Ott, 2013; Gulle et al., 2020).

A total of 27 works are based on already existing corpora,
mainly DePaul’s NFR corpus (Cleland-Huang et al., 2007),
SecReq dataset (Knauss ef al., 2011), and PURE dataset (Ferrari
et al., 2017). The DePaul’'s NFR corpus and SecReq dataset are
labeled datasets for specified tasks and the PURE corpus is unla-
beled that contains multiple raw requirement documents.

About half of the included works applied available data from
user-generated content (UGC) to aid requirement elicitation.
The UGC includes textual data from e-commerce websites (n =
16), mobile app marketplace (n=13), microblogs and social
media (n=5), organizational internal forum (Lange, 2008),
GitHub repository (Nyamawe et al., 2019), and crowdsourcing
platforms (Jones and Kim, 2015).

Requirement data preprocessing

On average, most papers described at least one preprocessing
methodology. The preprocessing techniques referred to in the
reviewed articles including stop words removal (n = 50), case fold-
ing (n = 31), stemming (n = 26), lemmatization (n = 16), punctua-
tion and special character removal (n = 14), URL removal (n = 5),
non-English word removing (#n = 3), emoticon handling (n = 3),
slang translation (n =3), abbreviation replacement (n=3), typo
correction (n =2), and acronym replacement (n=1).

Requirement representations and features

The most frequently applied textual feature in the included works
is the Bag-of-Word language model (n = 49), which is an effective
and efficient method to convert text into the numerical format.
Apart from the BOW model, various grammatical features are
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introduced by the selected papers, including POS n-gram
(Kurtanovic and Maalej, 2017b), the frequencies of POS (Noun/
Verb/Adj/Adv/Modal) (Hussain et al., 2008; Liu et al, 2013;
Kurtanovic and Maalej, 2017a), the frequency of keywords
(Halim and Siahaan, 2019), and the number of syntax sub-tree
(Kurtanovic and Maalej, 20174, 2017b; Dalpiaz et al., 2019).

Some statistics of sentences are applied to represent text, such
as the number of characters (Abualhaija et al., 2019), the number
of words (Kurtanovic and Maalej, 2017b), the number of sen-
tences (Qi et al, 2016), the number of paragraphs (Parra et al.,
2015), and the number of words per sentence (Ormandjieva
et al., 2007).

Metadata of UGC data is applied by several works to make
requirement representation more informative. A few articles
have utilized metadata to provide supplementary information
on requirement representations, such as the average star ratings
(Maalej et al., 2016) and the total number of reviews (Martens
and Maalej, 2019). In addition, platforms contain metadata
about users, such as the total number of reviews/ratings of the
user performed (Martens and Maalej, 2019) and the platform
level of the user (Qi et al., 2016), are also included in the feature
construction.

Domain knowledge is one of the supportive information to
represent requirements. The domain knowledge is reflected by
domain-specific terms, for example, the number of design terms
(Parra et al., 2015) and the number of keywords from the domain
(Hussain et al., 2008; Stanik et al., 2019).

Among included works, a large proportion of recent works
have used word embedding techniques to represent requirements.
Word2vec (Mikolov et al, 2013), FastText (Joulin et al, 2017),
and BERT (Devlin et al, 2019) are the most widely applied
embedding models across the included works (n =14, 16%).

Several other features, such as the verb tense (Stanik et al.,
2019), the elapsed days (Liu et al, 2013), the temporal tags
(Abad et al, 2017), the number of subjective/objective sentences
in a user review (Liu et al., 2013), the number of ambiguous
expressions in requirements (Ormandjieva et al, 2007; Parra
et al., 2015), the number of the sentence referring product char-
acteristics (Liu et al., 2013; Qi et al., 2016), smoothed probability
measure (SPM) and unsmoothed probability measure (UPM)
(Hussain et al., 2008), and named entities (Abad et al., 2017),
are also observed from the reviewed articles.

Machine learning techniques

Most of the selected works (n = 67) applied classification algorithms
for classifying textual documents. Naive Bayes (n=33), Support
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Vector Machine (SVM) (n =29), Decision Tree (DT) (n =22), and
neural networks (n=26) are the most widely applied algorithms
among the studies. In addition, several specific neural network frame-
works are mentioned in the included papers, which are Convolutional
Neural Networks (CNNs) (n =12), Feedforward Neural Networks
(FNNs) (n=9), and Recurrent Neural Networks (RNNs) (n=05).
Besides, the reviewed articles present a variety of other supervised
machine learning algorithms including logistic regression (n = 14),
K-nearest neighbors (n = 8), and random forest (n = 5).

In the included studies, two types of unsupervised algorithms
were applied: text clustering techniques (# =4) and topic models
(n=13). Clustering algorithms such as Hierarchical
Agglomerative Clustering (Mahmoud, 2015; Al-Subaihin et al.,
2016), K-medoids (Barbosa et al., 2015), and X-means (Suryadi
and Kim, 2019) were utilized in the selected papers. Topic models
are applied to extract main topics from the textual documents,
including the Latent Dirichlet Allocation (LDA) algorithm (Blei
et al., 2003) (n=6), aspect and sentiment unification model (Jo
and Oh, 2011) (n=3), Bi-term Topic Model (Yan et al., 2013)
(n=3), and Tag Sentiment Aspect (Tang et al, 2019) (n=1).

The evaluation metrics are employed differently in supervised and
unsupervised approaches due to the mechanical differences
between their learning methods. Manually annotated data corpus
for supervised ML algorithms is applied for training and valida-
tion purposes. Hence, comparing machine predictions with actual
values on a labeled dataset is a simple, straightforward way to
evaluate a learning algorithm. For regression models, metrics
Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) are common error functions to reflect the accuracy of
regression methods (Chai and Draxler, 2014). Common metrics
for classification tasks are precision, recall, accuracy, f-score,
and area-under-curve (AUC) (Chai and Draxler, 2014). The pre-
cision (n = 58), recall (n = 56), and F1 score (n =49) are the most
applied metrics to evaluate a supervised classifier by the included
works. Due to the differences in data and research questions, it is
difficult to compare the included works.

To evaluate the performance of the unsupervised methods, the
Silhouette score was used by the included studies (n=4) to assess
clustering outcomes (Barbosa et al, 20155 Mahmoud, 2015;
Al-Subaihin et al., 2016; Abad et al., 2017). Furthermore, five papers
applied perplexity to analyze the goodness of unsupervised categori-
zation (Massey et al., 2013; Chen et al, 2014; Wang et al.,, 2018b;
Zhou et al., 2020; Joung and Kim, 2021). Similar to the supervised
method, some works manually built a golden standard to evaluate
unsupervised methods with precision, recall, and F1 score (Carreno
and Winbladh, 2013; Chen et al.,, 2014; Guzman and Maalej, 2014;
Abad et al, 2017). In addition, several reviewed articles examine
the performance with manual inspection (Massey et al, 2013;
Al-Subaihin et al.,, 2016; Guzman et al., 2017; Gulle et al., 2020).

Most of the included works are built upon existing open-access
tools and libraries. Scikit-learn' and Waikato Environment for
Knowledge Analysis® (Weka) are the two most popular ML tools
mentioned in the included articles (Hall et al., 2009; Pedregosa

'https://scikit-learn.org/stable/index.html.
2https://www.cs.waikato.ac.nz/ml/weka/.
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et al., 2011). Seventeen works applied Scikit-learn to build differ-
ent kinds of algorithms such as Naive Bayes, Support Vector
Machine, and Random Forest. Another popular tool in the
reviewed articles is the Weka, with 19 articles reporting that
they applied Weka for building their solutions. Both Scikit-learn
and Weka provide ready-to-use learning algorithms and have
numerous tricks for preprocessing and feature extraction. For
example, Wang et al. (2018a) used the StringToWordVector pack-
age from Weka to produce TF-IDF word vectors. In contrast,
Dekhtyar and Fong (2017) applied TfidfVectorizer from the
Scikit-learn library for the same purpose.

For natural language processing (NLP), the most popular tool is
the Natural Language Toolkit (NLTK),” a Python library designed
specifically for human language processing (Loper and Bird, 2002).
The NLTK library is applied in selected papers for numerous prepro-
cessing and feature extraction tasks, such as tokenization (Rahman
et al., 2019), sentiment analysis (Noei et al, 2021), part-of-speech
tagging (Halim and Siahaan, 2019), lemmatization (Guzman and
Maalej, 2014), and stemming (Jha and Mahmoud, 2019). For POS
and dependency parsing tasks, tools from the Stanford NLP group
are mentioned, such as Stanford parser, CoreNLP, and POS tagger.
TensorFlow and its high-level wrapper Keras are the most often
used neural network libraries in the listed studies.

The purposed work is a literature review paper, which collect,
review, analysis, synthesis, and report existing works based on
PRISMA methodology, which aim to provide audience a summa-
rized knowledge in ML-based requirement eliciation. The findings
from the literature review will be discussed in this section. The sec-
tion is organized according to the order of our research questions.
In addition, the articles included in this review are categorized
according to the different perspectives on the research questions.
The summarization of our categorization is illustrated in Figure 3.

After analyzing the selected 86 papers in-depth, 15 different
ML-based requirement elicitation tasks are identified (as shown
in Figure 4). The identified tasks can be categorized into four
main categories, which are Preparation, Collection, Inspection,
and Negotiation.

Preparation refers to a set of activities that engineers must under-
take before the elicitation of requirements to ensure that the process
is supported by sufficient knowledge. A total of five articles are pro-
posed to extract knowledge about the design from textual docu-
ments. For example, Liu et al. (2007) proposed an SVM-based
design knowledge acquisition framework that can collect research
articles according to organizational design knowledge taxonomy.

In addition, extracting user preferences, requests, and com-
plaints from massive UGC is also considered a Preparation task.
The ML-based text mining algorithms would be used to extract
useful information from UGC, providing engineers with insights
and knowledge about the target product. For example, Maalej
et al. (2016) proposed a supervised method to automatically clas-
sify user app reviews into four predefined categories: user experi-
ence, bug report, feature quest, and ratings.

Liu et al. (2013) present a regression model which enables
engineers to estimate the usefulness of customer reviews. UGC

*https://www.nltk.org/.
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Fig. 4. ML-based requirement elicitation tasks.
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helpfulness analysis helps determine whether users’ feedback is
constructive. However, evaluating usefulness is a subjective activ-
ity that often entails a viewpoint. In a data-driven approach, the
annotators represent the viewpoint. This review identifies two
perspectives including designer-perspective (Liu et al., 2013; Qi
et al., 2016) and consumer-perspective (Chen et al., 2016).

Stakeholder preference (or tendency, rationale) is another
activity categorized as Preparation. Since UGC is the cumulative
contribution of users over some time, it incorporates their prefer-
ences and emotions about the product, product functions, and
product features. For example, combining the LDA and sentiment
analysis techniques can help engineers to explain which features
of the product are loved by users (Guzman and Maalej, 2014;
Zhou et al., 2020), and which are the most dissatisfied product
characteristics (Fu et al., 2013).

The second group of tasks is Collection, which includes tasks
related to directly extracting requirements or identifying specific
types of requirements from a given collection of documents. In
selected articles, all ML-based solutions in this category are super-
vised methods. The first type of collection task is requirement
identification, which refers to the activity to determine whether
a given sentence or paragraph is a user requirement. For example,
Kengphanphanit and Muenchaisri (2020) proposed a require-
ment identification framework named ARESM, which can distin-
guish whether a given text is a requirement or non-requirement.

Requirement classification is another task in the Collection cat-
egory. The objective of this task is to categorize the given require-
ments based on a certain concern. For example, Hussain et al.
(2008) proposed a decision tree algorithm that can classify natural
language requirements into functional requirements (FRs) and
non-functional requirements (NFRs). The NFRs/FRs classifica-
tion task takes NFRs or FRs as input and classifies them further
into fine-grained subcategories. Cleland-Huang et al. (2007) pro-
posed a TF-IDF-based classification algorithm that is capable of
classifying textual requirements into predefined NFR subcate-
gories. For this purpose, Cleland-Huang et al. (2007) established
a manually labeled dataset for NFR classification.

The last type of task identified in the Collection is security
requirement identification. Riaz et al. (2014) trained a K-NN
classifier that can automatically detect six predefined security
requirement types from natural text documents. Two articles
introduce binary classifiers for identifying security requirements
from written requirements (Li, 2018; Kobilica et al., 2020).
Jindal et al. (2016) trained a decision tree to further categorize

Data sources for ML-based
Requirement Elicitation

security requirements into four specific categories, which are
authentication-authorization, —access control, cryptograph-
encryption, and data integrity.

The Inspection and Negotiation could happen at any stage dur-
ing a requirement engineering process. Inspection refers to the
ML-based methods applied to inspect and assure the quality
and validity of the requirements. The Inspection category includes
equivalent requirement detection (Falessi et al., 2010), require-
ment quality support (Ormandjieva et al, 2007; Parra et al.,
2015), and requirement dependency analysis (Deshpande et al.,
2019), and fake review detection (Martens and Maalej, 2019).
The Negotiation category includes activities to support resolving
requirement-related conflicts, and there are three types of tasks
were identified under this category. An SVM classifier was used
by Khelifa et al. (2018) to automatically classify users’ change
requests into functional change and technical change, thereby
assisting project managers to negotiate requirements and make
appropriate decisions. In a recent paper, Lyutov et al. (2019) pre-
sented a supervised learning-enabled workflow that facilitates the
automatic transmission of customer requirements to the corre-
sponding department to facilitate the process of requirement
negotiation. Moreover, an ML-based software refactoring recom-
mendation method is proposed to assist decision-makers in
deciding which major update should be applied according to cus-
tomers’ requests (Nyamawe et al., 2019).

What data sources are used to build ML-based requirement
elicitation solutions?

Based on an in-depth analysis of included studies, we found that
current studies heavily rely on three types of data sources: Textual
Documents, UGC, and Existing Requirement Datasets (Fig. 5). The
category Textual Documents includes product requirement specif-
ication (RS) from actual projects (n=9), RS from open-access
online resources (n=38), user stories (Barbosa et al, 2015;
Rodeghero et al., 2017), policy documents (Massey et al., 2013),
and research publications (Liu et al., 2007).

DePaul’s NFRs corpus is the most extensively used Existing
Requirement Datasets, which was originally introduced by
Cleland-Huang et al. (2006). The dataset is manually labeled by
graduate students from DePaul University into 10 NFR subcate-
gories and one functional requirements category including
Availability, Look and Feel, Legal, Maintainability, Operational,
Performance, Scalability, Security, Usability, and FRs. In total,
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Fig. 5. The data source for building ML-based require-
ment elicitation solutions.
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the dataset contains 358 FRs and 326 NFRs from 15 different RS.
Follow-up studies applied the DePaul NFR dataset to build binary
classifiers to distinguish between FR and NFR (Hussain et al.,
2008; Canedo and Mendes, 2020), or multi-class classifiers to
assign requirements to finer categories (Abad et al, 2017;
Rahman et al., 2019).

SecReq is another publicly available requirement dataset,
which was created to assist in the early stages of security require-
ment elicitation (Houmb et al., 2010). The dataset contains three
projects, which are Electronic Purse, Customer Premises Network,
and Global Platform Specification. Three projects contain 511
requirements that are tagged as security-related requirements
(sec) and non-security-related requirements (non-sec). Three
works trained and tested their data-driven requirement elicitation
methods with SecReq corpus (Dekhtyar and Fong, 2017; Li, 2018;
Kobilica et al., 2020).

The PURE dataset has 79 requirement specifications including
about 35,000 sentences with an average length of 15 words
(Ferrari et al., 2017). Unlike the previously described two datasets,
the PURE is not labeled; rather, the authors made it open for a
variety of applications. Deshpande et al. (2019) studied require-
ment dependencies with the PURE corpus, and EzzatiKarami
and Madhavji (2021) merged both DePaul NFR and PRUE data-
sets for constructing a bigger training set for their study.

User-generated data (UGC) is another important source for
data-driven requirements elicitation. Research shows that the
needs of system users are hidden in rich UGC, such as user feed-
back, social networks, online software markets review, and

Cheligeer Cheligeer et al.

product discussion forums (Maalej et al, 2015, 2016; Lu and
Liang, 2017; Perini, 2018). UGC contains any form of data gener-
ated by users, like numerical ratings, textual product reviews, and
videos. In total, half of the included studies (n = 43) applied UGC
to build their ML-based solutions. The UGC source includes
mobile application platform user reviews (Apple App Store and
Google Play Store), e-commerce user reviews (Amazon and
other online retailers), social media (Twitter and Facebook), and
crowdsourcing platforms.

What technologies, algorithms, and tools are used to build
ML-based requirement elicitation?

This subsection answers RQ3 and RQ4. Our study identified the
technical approaches and algorithms used by the included studies
and divided them into three categories: Textual Data Cleansing
and Preprocessing, Textual Features Extraction, and Machine
Learning (ML) (Fig. 6). The ML models are evaluated by two
strategies, which are Manual evaluation and Metrics-based evalu-
ation. In addition, we categorized many open-source tools iden-
tified from the reviewed articles into two categories: ML tools
and NLP tools.

Textual data cleansing and preprocessing

Twenty different techniques were identified from the included
papers specifically for cleaning and preparing data, which we cate-
gorized under the Textual Data Cleansing and Preprocessing cat-
egory. In addition, due to the functional features of these
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techniques, we further grouped these techniques into three parts:
tokenization, text chunking, and text normalization.

Tokenization is a procedure to break a given sequence of text
down into smaller parts, such as breaking a document into sen-
tences (sentence tokenization) or breaking a sentence into indi-
vidual words (word tokenization). Text filtering is a group of
preprocessing methods, which aim to eliminate redundant, erro-
neous, non-representative, inconsistent, and ineligible data from
a text document. In the reviewed articles techniques include stop-
words removal, rare word filtering, non-English word removing,
URL removing, special character handling, empty value handling,
punctuation removal, emoticon handling, non-informative/irrele-
vant word removing, and inconsistent information removal are
considered under this classification. Text normalization aims to
transform a text sequence into a standard form to reduce its ran-
domness. Stemming and lemmatization are the most common
text normalization methods. In a document, a word has various
forms, and some of these forms can be converted to one another
by adding or removing the prefix or suffix (Manning et al., 2008).
Stemming is a crude heuristic procedure that removes the tails
from words to get word stems, which are the fundamental word
units, such as for word requirements, the word stem is required
(Manning et al., 2008). In comparison, lemmatization yields a
basic dictionary form of a word. For example, the lemmatization
of requirements will yield requirements. Case folding is another
popular text normalization approach that changes all letters in a
word into lower cases (Manning et al., 2008). In addition, slang
translations, abbreviation translations, typo corrections, and acro-
nym substitutes are considered text normalization procedures
since they convert text into a more generic form.

Textual Features Extraction includes a set of techniques to convert
natural text into numbers. We found three major textual data rep-
resentation strategies from the reviewed articles: Bag-of-word,
Rule-based, and Embedding features. The Bag-of-word considers
a sequence of text as a set (or multi-set) of the word regardless
of word order and grammar (Manning and Schiitze, 1999).
Various BOW representation strategies can be found in the
included works, such as using simple raw counts for words, a
bag of bigram or trigram (Kurtanovic and Maalej, 2017a), and
BOW with TF-IDF weighting (Li et al., 2018).

In addition to BOW features, studies included in this review also
applied rule-based handcraft features, such as POS n-gram
(Kurtanovic and Maalej, 2017b), the number of Noun/Verb/Adj/
Adv/Modal (Hussain et al., 2008; Liu et al., 2013; Kurtanovic and
Maalej, 2017a), frequency of POS of the keywords (Halim and
Siahaan, 2019), and the count of syntax sub-tree (Kurtanovic and
Maalej, 2017a, 2017b; Dalpiaz et al, 2019). In addition, textual
descriptive statistics are also applied to represent requirements,
including the number of characters (Abualhaija et al., 2019), word
count (Kurtanovic and Maalej, 2017b), sentence count (Qi et al,
2016), paragraphs count (Parra et al, 2015), and the number of
words per sentence (Ormandjieva et al., 2007). Furthermore, tem-
poral features including verb tense (Stanik et al, 2019), the number
of elapsed days (Liu et al., 2013), and temporal tags, such as time,
duration, and time set (Abad et al, 2017), were used to represent
the temporal information of the requirements. For UGC-based
research, some platforms provide metadata that can be extracted
to represent user comments. Metadata features include star ratings
(Maalej et al., 2016), review count (Martens and Maalej, 2019),
and the number of links (Parra et al., 2015).
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Moreover, some studies applied document quality features to
represent textual requirements, including the number of subjec-
tive/objective sentences in a review (Liu et al, 2013), the number
of ambiguous expressions in a requirement (Ormandjieva et al.,
2007; Parra et al., 2015), and the number of the sentence referring
product feature appeared in a user review (Liu et al, 2013; Qi
et al, 2016). Additionally, some articles introduce domain-
specific features, such as the number of design terms (Parra
et al., 2015) and the number of keywords from the input text
(Hussain et al., 2008; Stanik et al., 2019).

In recent years, word embedding has gained popularity in a
range of NLP applications. The selected articles used a range of
embedding techniques, including Word2vec (Mikolov et al,
2013), FastText (Joulin et al, 2017), Glove (Pennington et al,
2014), and BERT (Devlin et al, 2019) to represent words.
Three strategies associated with embedding features are identified
in the included studies: training the embedding from scratch
using a pre-trained embedding and fine-tuning the previously
trained language models.

In this review, the learning algorithms applied by the included
studies are categorized into two categories: supervised and unsu-
pervised learning. Under supervised learning categories, only
three studies applied regression models (Liu et al., 2013; Chen
et al., 2016; Qi et al.,, 2016). The regression methods can help
engineers to predict a numerical value to reflect the helpfulness
of a given user review. The rest of the methods in supervised learn-
ing are all classification algorithms. Topic modeling and clustering
techniques are two frequently applied Unsupervised Learning
methods and the LDA is the most widely applied unsupervised
method in the papers included.

The quality of models can be reflected in the evaluation metrics,
which are a set of formulas and units of measurement that reflect
how well the learning algorithm could perform (Hossin and
Sulaiman, 2015). For different types of learning tasks, the evaluation
methods are used differently. In the included studies, the Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE) are
employed for regression models. Both MAE and RMSE are nega-
tively oriented, which means the better the model, the lower the
errors. Precision, Recall, and F1 score are most frequently applied
for classification models. On the other hand, the unsupervised
method is evaluated by two strategies: internal and external evalu-
ation. The included works applied intra and inter-cluster similarity
(or distance), Silhouette score, and perplexity to assess the clustering
results for internal evaluation. In the case of external evaluation,
domain experts are asked to evaluate the models’ results manually.
Additionally, a truth set can be built to evaluate the clustering
results, similar to a supervised classifier.

The included studies widely mentioned two types of tools: ML
tools and NLP tools. The NLP tools such as NLTK and
CoreNLP are applied to preprocess and extract the features
from the textual data. The most widely mentioned ML tools are
Weka and Scikit-learn, which integrate multiple ML algorithms
and quickly build a data-driven solution. Keras is a popular
deep learning library among the included studies, which contains
the most popular neural network architectures with compact and
straightforward APIs.
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Table 5. Tools mentioned by included works

Category Sub-categories Tool name
ML tools ML WEKA, Scikit-learn, MATLAB, Classifier4] (Java)
Deep learning TensorFlow, Keras
Language/topic model tools ~ JLDADMM (Java), Stanford topic model toolbox
(Java), Spacy (Python), Genism (Python), tm text
mining package (R)
NLP tools Multi-purpose NLP tools NLTK (Python), LingPipe (Java), koRups package (R),

CoreNLP (Java), Stanford NLP toolkit (Java/Python),
WordNet, koRpus statistical readability package, IBM
Watson NLU

Sentiment analysis tools

SEMAFOR (Java), SentiStrength (Java),

VaderSentiment (Python), Textblob

Parsing tools

MaltParser (Java), Stanford POS tagger, Stanford

parser, Berkeley parser, Stanford temporal tagger

Single-purpose tools

Jazzy (spell-checker), Jieba (Chinese character

tokenizer)

Table 5 lists the tools mentioned in the reviewed articles,
arranged by their uses. In total, seven types of tools are extracted:
ML tools (conventional), deep learning tools, language, and topic
model tools, multi-purpose NLP tools, sentiment analysis tools,
parsing tools, and single-purpose tools.

How to construct an ML-based requirements elicitation
method?

According to the included studies, building an ML-based require-
ments elicitation method contains four major steps: study design,
data preparation, model construction, and model implementation.
The first step is to design the ML-based requirements elicitation
study by considering two fundamental elements: identifying the
requirements elicitation subtasks and available datasets. In this lit-
erature review, we identify four major tasks and three types of
data sources that support requirements elicitation from the
reviewed articles.

Different ML-based requirement elicitation tasks require dif-
ferent datasets and data annotation strategies. Hence, studies
should be designed differently accordingly. Both requirement
documents and UGC data were applied in the selected research.
Through the detailed review of the included papers, we identified
that the requirements are usually stored in plain text format, and
the corresponding tasks are mostly focusing on requirement text
classification. However, the UGC data contains additional meta-
data that describes the data in many aspects, such as ratings
and timestamps. With these additional data, researchers can
design studies such as the prediction of usefulness associated
with user reviews (Liu et al., 2013), and analysis of user prefer-
ences on a timely basis (Fu et al., 2013).

In addition, sentiment is another reason that causes differences in
requirement document analysis and UGC analysis. Documents
describing the requirements are usually written with neutral lan-
guage; therefore, analyzing the sentiment of each requirement may
not be as significant as analyzing the sentiment of UGC. As a result,
sentiment analysis does not appear in the requirement document
analysis tasks but is commonly used in UGC-based research.

With the defined task and dataset, the next step is to construct
an ML pipeline, which relies heavily on the understanding of
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machine learning and NLP techniques. Data cleansing, data prepro-
cessing, feature extraction, model training, and model evaluation are
part of this phase. Though the model construction pipeline can be
independent of domain knowledge for unsupervised learning,
domain expertise is still necessary to validate and evaluate the mod-
els. Finally, the model implementation is an important final step to
build an ML-based requirements elicitation. Multiple aspects must
be considered, such as organizational culture, management, security,
development, and operation procedure.

Open issues and future works

It is important to note that eliciting requirements is not one single
activity, rather it comprises multiple sessions and operations that
work together as a whole. However, there is no very detailed def-
inition or uniform approach to this stage in academia and indus-
try. For example, Young (2004) suggested a twenty-eight-step
requirement gathering activities checklist including planning,
managing, collecting, reviewing, tracing, etc. Wiegers and Beatty
(2013) summarizes 21 best practices for requirements elicitation,
including defining scope, identifying stakeholders, reusing exist-
ing requirements, modeling the application environment, and
analyzing requirements feasibility. Using a single ML model can-
not accomplish so many different tasks. Therefore, ML techniques
are only able to accomplish partial tasks involved in requirement
elicitation. Furthermore, most of the included studies are all focus-
ing on resolving a particular task with ML, rather than designing a
complete system that supports requirement elicitation. In this
regard, most of the ML-based methods developed so far have a sup-
porting or complementary role to traditional methods. For example,
in an ML-aided requirement elicitation system, conventional
methods, such as interviews, questionnaires, and brainstorming,
are responsible for producing and collecting requirement-related
data. ML algorithms, however, are responsible for analyzing data
or supporting follow-up data-related activities.

In Section “What requirements elicitation activities are supported
by ML?”, we summarized 15 ML-based requirements elicitation sub-
tasks from included studies and categorize them into four groups.
Most works were classified as Preparation (n=37) and Collection
(n=41) tasks, and only eight articles were identified as Validation
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(n=5) and Negotiation (n = 3) tasks. One reason for this is that the
validation and negotiation are hard to articulate due to the high
complexity of the tasks. For example, tasks from Negotiations require
collaboration, discussion, and trade-offs between stakeholders from
many aspects. Therefore, most of the challenges related to these
tasks are related to background knowledge, communication, budgets,
or other limitations imposed by the real world. As a result, it is
difficult to model these tasks correctly.

It is still challenging to build an ML-based solution to fully
automate requirement elicitation. First, since requirement elicita-
tion is a comprehensive process composed of a variety of tasks
and goals, it is difficult to develop an end-to-end ML model to
fully automate the requirement elicitation process. Second, require-
ments could come from a large variety of sources, particularly in the
big data era. In terms of data type and format, the datasets included
in the study were highly heterogeneous. For example, sentiment
analysis may be useful when analyzing UGC data, but it is not valu-
able when analyzing neutral document data. Hence, using the
model specifically designed for UGC, such as ASUM (Jo and Oh,
2011), cannot perform as expected on document data, and vice
versa. Third, the ML-based requirement elicitation approach is auto-
matic but easily affected by errors and failure. Unlike rule-based sys-
tems that can be debugged and fixed locally in the coded knowledge
body, it is difficult to directly tune the ML model when dealing with
known errors. In addition, the interpretation of ML models is still
an open challenge in academia and industry. For example, deep
neural networks learn features automatically, which makes it more
challenging to analyze the reasons behind ML-based solutions.
Furthermore, only a few research considered the changing nature
of the requirements. Due to the dynamic nature of the requirements,
in practice, requirement elicitation requires engineers to identify and
modify requirements based on the unpredictable nature of user
needs (Xie et al, 2017). Besides, in terms of both content and
type of task, the current research is monotonous. The vast majority
of studies still focus on classification and clustering.

To tackle these challenges, the following future research direc-
tions are suggested by the authors. First, although there are growing
interests and works in building ML-based requirement elicitation
methods, there is still a vacancy for a systematic guide on how to
integrate the ML-based components into the requirement elicitation
framework. Multiple aspects of the integrated system should be con-
sidered, such as how humans and machines interact in requirements
elicitation, what is the input-output of the system and each subsys-
tem, and what specific tasks should be performed by machines
when expert involvement is required, among others. Hence, a sys-
tematic study and guidance of Al system design, engineering, imple-
mentation, and management are required.

Second, there is a lack of in-depth analysis of ML-based
requirement elicitation failure and errors. For example, research
papers and projects typically rely on statistical metrics for ML
model validation and evaluation. This type of evaluation can
tell us how good or bad a model is, but neglects to address the
question of what leads a model to perform unexpectedly. Future
studies should address this issue by introducing methods and
techniques to explore the factors that affect the performance of
ML-based requirement elicitation.

Third, the ML-based methods, especially deep learning models
are lacking transparency. Because deep neural networks derive
their features not from experience and knowledge, but from
data, which is more effective but less intuitive. Since requirement
elicitation is knowledge-intensive human-involved activity, the
engineers not only expect models to solve the problems but also
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to explain them. The significance of Explainable AI (XAI) is
increased along with the widespread adoption of deep learning
methods in recent years (Xu et al., 2019). In the future, research
in ML-based engineering of requirements will also need to lever-
age XAI techniques and methods to investigate the nature of
decision-related requirements.

Forth, a broad range of NLP tasks could be incorporated into
the requirements elicitation. Apart from text classification, many
other NLP techniques can be utilized to support requirements eli-
citation, such as neural summarization, text generation, neural
conversational bots, question asking, question answering, and
text to speech. Due to its wide range of tasks, requirements elici-
tation provides an excellent opportunity to practice cutting-edge
NLP methods. Future research works should try more to incorpo-
rate these methods into requirement elicitation. As an example,
neural text generation technologies such as Seq2Seq (Sutskever
et al., 2014), GAN (Goodfellow et al., 2014), and T5 Text-to-
Text transformers (Matena et al., 2019) have the potential to pro-
duce new mock requirements based on a particular context, which
may provide innovative data-driven ideas from a new perspective.

Fifth, aside from natural text, user needs also can be mined from
other data formats. E-commerce platforms, for instance, allow indi-
viduals to upload videos and pictures to share usage experiences,
complaints, and feedback. Although techniques such as neural
image description (Vinyals et al., 2015; Karpathy and Li, 2017)
and neural video description (Yao ef al., 2015) are not as mature
as text classification techniques, they are also of great research
value and can play a major role in requirement engineering as well.

Sixth, due to the data-intensive nature of ML methods, more
requirements related to high-quality text data should also be
introduced. However, some interest-related requirements are
requested to be kept confidential by the relevant stakeholders.
Hence, sharing high-quality requirement data with the require-
ment engineering community is challenging. Masking sensitive
data or substituting entities can be effective means of modifying
sensitive requirements, which can facilitate the sharing of infor-
mation within the requirement engineering community.
Another strategy to address insufficient training data is to develop
a language model specifically for requirements engineering.
Research shows that transfer learning techniques can overcome
the limitations of insufficient data (Howard and Ruder, 2018).
Future works could also consider building neural language models
that are specifically trained with requirement specifications.

Seventh, since user-requirement elicitation is a human-centric
activity, analyzing user behavior may provide valuable insight into
understanding and eliciting requirements. As the study of repre-
sentation learning, such as user embedding, is being applied to
a variety of different domains, including recommendation and
healthcare systems (Miotto et al, 2016; Pan and Ding, 2019).
Analyzing user behavior can help to predict user preference and
explore potential requirements change.

Last, future work should address the issues caused by the dynamic
nature of user requirements. In practice, stakeholder requirements are
not always static; however, in the studies reviewed, ML algorithms
were used to read the static text to identify requirements. Further
research on ML-based methods should be focusing on changing
requirements and reducing their impact are urgently needed.

We used PRISMA as the research framework to identify the primary
research studies in this review. Unlike other popular methods, such
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as snowballing approach, in this study, we did not exhaustively iden-
tify further relevant studies by iterating through the reference lists.
This review chose to use minimum evidence to reflect the current
state of ML-based requirements elicitation rather than providing
an exhaustive result. Thus, some relevant studies may have been
omitted from this review. In addition, there is a paradox between
literature review and search query generation. Before a literature
review is completed, it is not easy to define a set of exact keywords
to represent the topic. Simultaneously, the absence of good search
queries and keywords could defy the effort to retrieve relevant
papers effectively. Hence, it is challenging to develop a perfect set
of search queries at the initial stage that covers all of the aspects
related to the field. To deal with these issues, we dynamically
adjusted the search queries for seven academic databases to reduce
bias and loss in the search results.

Numerous publications are excluded due to a lack of technical
details; this does not imply that those articles are unimportant to
this field. Various ideas and concepts may still be derived from
these works. Moreover, only one of the similar works by the same
author has been retained in the study; however, it is difficult to
define a clear boundary to decide which work to keep. As a precau-
tion to minimize the risks associated with inclusion-exclusion cri-
teria, the authors discussed and evaluated the articles through
meetings in cases wherever it was challenging to decide individually.

Additionally, human errors could not be avoided in the data
extraction phase due to its nature of subjectivity. As data extrac-
tion table in Table 4 illustrated, the reviewer needs to enter two
types of data manually. The first type of data is the descriptive
data, which can be accessed from the academic research databases
and the websites of journals. However, the second type of data
requires reviewers to assess and extract information based on per-
sonal understanding. Therefore, the data extraction process inevi-
tably contains a certain amount of bias and subjectivity. In
addition, since the requirement elicitation is an interdisciplinary
problem, many definitions are disputed. For example, the defini-
tion of the requirement and requirement elicitation are all defined
differently by various researchers. Besides, some information was
not explicitly stated in the reviewed articles, which led to difficul-
ties in corresponding information retrieval. To overcome this lim-
itation, the author team iterated and adjusted the data extraction
table before reaching a final agreement.

The review provides an overview of the current research on
ML-based requirements elicitation. First, we categorized the
included studies into four ML-based requirement elicitation
tasks: Preparation, Collection, Validation, and Negotiation.
Second, we examined the data sources and corpora used by the
included studies to develop the machine learning models for
requirements elicitation. As a result, we identified three types of
data sources for building ML solutions, which are Textual
Documents, UGC, and Existing Requirement Datasets. Third, in
this review, general ML pipelines are extracted from the included
studies: text cleansing and preprocessing, textual feature extrac-
tion, machine learning, and evaluation. Furthermore, we iden-
tified 19 tasks among the selected works and assigned them to
three types of text cleaning and preprocessing groups: filtering,
normalizing, and tokenizing. For the text feature extraction part,
we classified the included works into three groups according to
the technique used to extract the features. BOW language models
and handcrafted features are frequently found in reviewed
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publications, but in recent years, an increasing trend towards
using embedding features has been observed. In addition, we dis-
covered the most popular algorithms, such as Naive Bayes,
Support Vector Machines, Decision Trees, and Neural Networks
in this review. Precision, Recall, and F1 score are the most prev-
alent evaluation metrics applied to assess model performance.
Finally, we listed the most popular NLP tools, which are NLTK
and CoreNLP, and the most commonly applied machine learning
tools, Weka and Scikit-learn.

Apart from the main findings, one major observation is that
most research focuses on requirements categorization tasks.
There is a notable majority of papers in the collection that are
focused on supervised text classification, followed by topic mod-
eling and clustering techniques. Second, we noticed that the exist-
ing articles are more focused on using machine learning to solve
specific and fine-grained problems in requirements elicitation,
such as classifying NFRs and extracting main topics from massive
user reviews. It has, however, been relatively rare for research to
examine how to integrate machine learning-based requirements
acquisition methods into existing requirements elicitation work-
flows. Hence, the lack of expertise in designing, engineering,
implementing, and configuring ML-based requirement elicitation
systems calls for further research. Furthermore, most studies lack
concrete evidence that machine learning can assist designers and
engineers in reducing time and effort in requirement extraction.
Last, although supervised learning is prevalent in this field, we
have found only two publicly accessible labeled datasets from
the 86 reviewed papers: DePaul’s NFRs dataset (Cleland-Huang
et al., 2006) and SecReq (Knauss et al., 2011).

Thus far, ML-based solutions have been monolithic in eliciting
requirements; however, the publications in this field provide suf-
ficient evidence that ML can support requirements activities both
theoretically and practically. A number of labor-intensive, error-
prone activities from requirement engineering are waiting to be
supported by ML. Despite what has already been accomplished,
the best is yet to come.
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S27, S35, S43, S70

S4, S16, 823, S35, S85

S3, S18, 826, S30, S34, S38, 852
S6, S29, S38, S40, S47, S48
S25, 847
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Table AS5. The applied learning algorithms
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Supervised
learning

Unsupervised
learning

Algorithms
Naive Bayes

Support vector machine

Decision tree-based algorithms

Logistic regression
Convolutional neural networks

Feedforward neural networks
K-nearest neighbor

Random forest

Recurrent neural networks
Regression

Topic modeling methods

Clustering methods

Identified works

S1, S84, 87, S8, 89, S11, S13, S15, §19, S20,
S22, 823, S24, S31, 837, 841, S45, 856, S57,
S61, S62, S63, S65, S67, S69, S73, 875, S77,
S78, 879, S82, S83, S85

S1, S84, 87,811, S13, S14, S16, 820, S22, S23,
S28, S41, S44, S49, S§53, S56, S57, 861, S65,
S67, 871, 873, S74, S78, §79, S80, S82, S84,
S86

S1, S8, 89, S14, 8§23, 8§27, §39, §45, S50, S56,
S57, S60, S63, S65, S67, S70, S73, S78, S82,
S83, S84, S85

S1, S84, 812, 820, 822, S33, S56, S61, S63, 871,
S78, S82, S83, S84

S3. S6, S14, S25, 826, S32, S38, S40, S47, S48,
$55, 8§72

S1, 823, S34, S38, S43, S47, S51, S57, 859
S1, S8, S11, S14, 8§20, S61, S67, 873

S1, 823, S73, 878, S84

S3, S14, S18, S38, 547

§29, 835, S43

S5, 810, S17, 821, S30, S31, S36, S52, S58,
S64, S66, S68, S69, ST6

S2, 842, S59, 881
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