J. Functional Programming 2 (4): 475-503, October 1992 © 1992 Cambridge University Press 475

Computing with lattices: An application of
type classes

MARK P.JONES
Programming Research Group, Oxford University, UK!

Abstract

This paper presents a simple framework for performing calculations with the elements of
(finite) lattices. A particular feature of this work is the use of type classes to enable the use of
overloaded function symbols within a strongly typed language. Previous applications of type
classes have been in areas that are of most interest to language implementors. This paper
suggests that type classes might also be useful as a general tool in the development of clear and
modular programs.

Capsule review

Type classes have been the subject of considerable debate among functional language designers
and implementors ever since they were proposed by Wadler and Blott in 1989, and they are
among the important distinguishing features of the recent Haskell language design. But do
programmers actually make use of them —not just as an unavoidable aspect of certain
primitives, but by the introduction of completely new classes at a higher level? If they do, what
advantage (if any) is obtained?

This paper presents an extended example of the use of type classes as a high level
programming tool. It begins with the definition of a new class — the class of lattices — and goes
on to develop a series of polymorphic routines for working with all kinds of finite lattices. The
latter part of the paper compares the resulting program with an earlier implementation in a
language without type classes, identifying some clear benefits of using type classes for this
application.

1 Introduction

There are many applications for lattices in computer science, particularly in the static
analysis of programs where the most common example in the context of functional
programming is that of strictness analysis. This paper describes a functional program
which provides a simple framework for performing calculations with the elements of
finite lattices in such applications. A particular feature of this work is the use of type
classes, introduced by Wadler and Blott (1989) to enable the use of overloaded
function symbols within a strongly typed language, and adopted as part of the

! Author’s current address: Department of Computer Science, Yale University, PO Box 2158 Yale Staton,
New Haven, CT 06520-2158, USA (email: jones-mark@cs.yale.edu.)

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

476 M. P. Jones

standard for the programming language Haskell (Hudak et al., 1991). The result is a
highly modular program which (in the author’s opinion) is easier to read, and hence
understand, than an earlier version written without the use of type classes.

We begin with a discussion of some of the weaknesses of standard Hindley/Milner
typing, and describe how these problems are addressed by the use of type classes
(section 2). Section 3 introduces our basic framework for computing with lattices, and
illustrates how this can be used to describe a range of different lattices and a general
purpose implementation of the least fixed point operator.

The problem of working with lattices of functions is discussed in section 4, where
we describe a compact representation for monotonic functions based on the use of
Sfrontiers. In section 5 we extend the framework to describe a class of navigable lattices
which provide additional operators for working with frontier values. We describe a
number of interesting applications of these operators, including a simple algorithm to
enumerate the elements of a finite navigable lattice.

Section 6 illustrates how the use of type classes supports a modular style of
programming by showing how additional lattices can be added to our framework
without requiring any changes to the original program. Section 7 outlines an earlier
implementation of the framework described in this paper, and highlights some of the
benefits of using type classes instead of standard Hindley/Milner typing. Finally,
motivated by these programs, section 8 describes two features which would be useful
in a practical system supporting type classes.

2 An introduction to type classes
2.1 Difficulties with Hindley[Milner typing

Many functional programming languages provide some form of polymorphic

equality operator:
==)::a-a— Bool

which can be used to compare the elements of a wide variety of types including
integers, characters and algebraic datatypes such as lists and tuples. It follows that the

==) operator cannot be defined explicitly in a language based on standard
Hindley/Milner typing, since there is no common instance of each of these separate
types. The equality operator must therefore be incorporated into the language as a
‘primitive’ function. This has a number of disadvantages:

e The implementation of (==) provided by the system will (almost certainly) test
for equality of representation rather than equality of represented values. When this
is not appropriate, the programmer must define a new function to implement the
required comparison. This results in complexity and confusion, introducing a
number of distinct names for a single concept; testing for equality.

e The implementation of a language may be complicated by the need to support
polymorphic primitives such as (==); the coding of the primitives will be
complex and may require additional runtime tags on data structures.

e The type system is unable to detect illegal uses of (==); for example, an attempt
to compare values of type (a— b) is not usually detected until runtime.

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 477

e The definition of (==) is completely hidden. An explicit definition is often useful
in the development and derivation of programs, and in proofs based on equational
reasoning.

In specific cases, some of these problems can be eliminated by ad hoc methods; one
of the main reasons for the introduction of type classes is to provide a general
mechanism for resolving these kinds of problem.

2.2 Type classes and instances

Broadly speaking, a type class is a family of types (whose members are called instances
of the class) for which a collection of functions (the member functions of the class) are
defined. A type class is introduced by a declaration of the form :

class ClassName a where signature,

where a is a type variable representing an arbitrary instance of the class called
ClassName, and signature specifies the names and types (usually involving the type
variable a) of each of the member functions. It is sometimes useful to define a class
with no member functions, in which case the signature part of the declaration
(together with the preceding where keyword) should be omitted (see, for example, the
definition of the class Tuple in section 3.4.1).

In the case of the equality operator described above, we define a class Eq containing
all those types on which the (==) function may be used with the declaration:

class Eq a where
(==)::a—a— Bool.

The instances of each type class are defined in a similar manner, and we illustrate this
with some simple examples:

e Primitive types For reasons of efficiency, most language implementations provide
special representations for some primitive types. Suppose, for example, that
integers are represented by elements of the type Int, and that the equality of
integers is described by a primitive monomorphic function:

primEglnt:: Int — Int > Bool.

This can be included as part of the definition of the polymorphic equality operator
(==) using the instance declaration:

instance Eq Int where
(==) = primEqint.
e Algebraic datatypes Many languages provide some means of defining and
manipulating objects of non-primitive types. An example of this is the type [a]
(representing lists of elements of type a), which behaves as if defined as an algebraic

datatype:
data [a] =[] | a:[a].

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

478 M. P. Jones

Given a definition of (==) for elements of type a, there is a natural way to define
(==) for elements of type [a]. This is captured by the instance declaration:

instance Eq a = Eq [a] where

[==1] = True
[1==(y:ys) = False
(x:xs) ==1] = False

(x:x5) == (y:ys) = x == y Axs == ys.

The clause Eq a=> Eq [a] in the first line of this declaration indicates that [a] can
only be an instance of Egq if a is itself an instance of Eq. The right hand side of the
last line uses two distinct forms of the (==) operator; the first is used to compare
elements of type a, while the second is used to compare elements of type [a].
Function symbols such as (==) are said to be overloaded because they can have
different interpretations for different argument types.

As a further example, the following instance declaration indicates how the
equality of two pairs may be defined in terms of the equality of the individual
components in each pair:

instance Eq a, Eq b => Eq (a, b) where
(x,) == () = (x == uny == 1).

The three instance declarations above are sufficient to define each of the types Int,
[Int], (Int, Int), [(Int,Int)], (Int,[Int]), etc., as instances of Eg. Further instance
declarations can be used to extend Eq to other types.

The flexibility of being able to give explicit definitions for the equality operation on
different types soon becomes a burden when a large number of instances are involved.
In this situation, it is useful for the system to be able to generate ‘default’ instance
declarations for commonly used type classes. In the terminology of Haskell, these are
known as derived instances. For the class Eg, there is a natural way to define an
equality operation on the elements of an arbitrary algebraic datatype, so long as all
of the subcomponents of the objects of that type are in the class Eq — the definitions
of equality on lists and pairs given above can both be obtained in this way. Further
details are given in the Haskell report, including a description of how derived
instances for Eq (and a number of additional ‘standard’ classes) are obtained. As we
illustrate in section 3, Haskell also allows the programmer to include default
definitions for individual member functions as part of each class declaration. For the
purposes of this paper, we assume that any instance of Eq which is not explicitly
defined will be generated automatically as a derived instance whenever this is possible.

2.3 Polymorphic type checking

The extended form of polymorphism provided by the use of type classes cannot be
completely described in terms of universal quantification, as in Damas and Milner
(1982). Instead, we use a notion of qualified types with type expressions of the form

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 479

C =1, where t is a standard type expression and C is a set of predicates constraining
the values taken by the type variables in ¢ to be instances of particular classes. For
example, the type of (==) is specified by:

(==)::Eqa=a—a—>Bool.

The same notation is used to give the types of functions whose definition depends
either directly or indirectly on the member functions of a particular class. For
example:

(elem) :: Eq a=>a-[a]— Bool

x elem ys=any (x ==) ys

(<) :: Eq a=[a)—[a] - Bool

rcs =all (elems)r.

Expressions of the form x ==y can be type-checked by ensuring that the
subexpressions x and y have the same type (as a conventional type checker would),
and that this type is an instance of the class Eq. If we avoid defining an instance of
Eq for types of the form (a— b) then any attempt to compare two functions will be
detected and reported as an error during type checking.

2.4 Superclasses

In languages supporting a range of types representing numeric data (including
perhaps integers, floating point, rational and complex numbers), it is convenient to
use overloaded function symbols for the standard arithmetic functions so that (+)
can be used to denote the appropriate addition functions on each of the numeric
types. This can be described quite easily by defining a type class Num:

class Num a where

(+):a»a—a

zero:..a.
Consider the function defined by isZerox = (x == zero) which can be used to
determine if an element of any numeric type (i.e. any instance of Num) is zero. Note
that the type of isZero is (Num a, Eq a) = a-> Bool so that the type represented by a
must be an instance of both Num and Egq. In practice, it is usually reasonable to
assume that all instances of Num are instances of Eq.! This can be specified in the

definition of the class:
class Eq a = Num a where

(+)::a»a—a

zero:.a.

The expression Eq a = Num a should be read as * Eq is a superclass of Num’. With this
definition of Num, the type of isZero simplifies to Num a = a— Bool. Simple static

! However, such a decision would not be appropriate if we wanted to include some form of exact
arithmetic — for example, computable real numbers (Vuillemin, 1988) — as an instance of Num.

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

480 M. P. Jones

checks must be used to ensure that every instance declaration for the class Num has
a corresponding declaration for the class Eg.

2.5 Applications
To date, the principal uses of type classes have been:

e To enable frequently used polymorphic operators to be defined explicitly, without
relying on implementations of these functions as ‘primitives’ of the language.
Typical examples of this include the equality operator (==), discussed above, and
the read and show functions used to provide a systematic treatment of parsing and
printing of values in Haskell.

e To support the use of overloaded arithmetic operators on a range of numeric types;
for example, using (+) to denote both addition of integers and addition of floating
point numbers.

Such issues are likely to be of most interest to the language implementor. The
following work suggests, by means of a particular example, that type classes might
also be useful as a general tool in the development of clear and modular programs.

3 Computing with lattices

3.1 A type class for lattices
A lattice is represented by a type a with a partial order (=) represented by a function:

(Z)::a— a— Bool,
with least (bottom) and greatest (top) elements:
1,T:a,

and binary operators which determine the greatest lower bound (meet) and least
upper bound (join) of a pair of elements:

(n),(U)::a»a—a.

Using the notation of type classes, we say that such types are instances of the class
Lattice which might initially be defined using:
class Lattice a where
(=) ::a—>a— Bool
4,7]
(n),(U)::a»a—a.
Given that any partial order is anti-symmetric, it is reasonable to assume that Eq is

a superclass of Lattice with the equality operator (==) and the partial order (=)
related by the law:

(x==ypy)=(xCSyAy=x).

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 481

The relationship between the lattice operators (), (U) and the partial order (&) is
described by the laws;

xEy=xUy)==y
xCy=(xnNy==x

These observations suggest the use of a simplified definition for the class Lattice:

class Eq a = Lattice a where
1, T a
(n),(W)::a»a—a.

Either of the laws above can be used to define (£) as an auxiliary function. For
example:
(&) :: Lattice a= a—a— Bool

xZy=(xUy ==y

Program development is simplified by reducing the number of member functions in
a class:

o Fewer function definitions are required in each instance declaration.

e Proof obligations are reduced or simplified in cases where each new instance
declaration requires the proof of laws constraining the values of the member
functions (see section 8.2).

On the other hand, the use of a general definition rather than an instance-specific
definition for functions such as (=) may carry a runtime cost. In Haskell, this
problem is solved by allowing class declarations to include default definitions for
member functions. We will therefore use the following definition of the class Lattice
in place of the previous definitions for the class and for the function (=):

class £q a = Lattice a where

1, T a
(n),(u)::a—=a—»>a
(=) :: a—>a— Bool
xsy =(xUy)==y.

This enables individual instance declarations to provide efficient instance-specific
versions of the (=) function, with the original general definition being used when no
other implementation is given.

3.2 The two point lattice of boolean values

The simplest lattice that we will consider is the two point lattice of boolean values
with False € True and implemented by the algebraic datatype:

data Bool = False| True.

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

482 M. P. Jones

The lattice operations on Bool are just the standard boolean operations:

instance Lattice Bool where

L = False
T =True
(N)=(A)
(u)=(Vv).

It is important to distinguish the semantics of the type Bool from the lattice structure
described by this instance declaration. The former is usually described by the elements
of a three point flat domain (i.e. a complete partial order, not a lattice) in which the
elements False and True are incomparable. The latter is a (totally ordered) two point
lattice. Calculations involving the semantic bottom element cannot be used in
effective computations, and we will only consider proper elements in the definition of
instances of Lattice. In particular, the bottom element of a lattice is not represented
by the bottom element in the corresponding semantic domain:

False True True
L False
Semantics of Bool Structure of Lattice Bool

3.3 The least fixed point operator

Suppose that L is a finite lattice and that f:: L L is a monotonic function (so that
xEy=fxEfy). A fixed point of fis an element x in L such that fx=x. Itis a
standard result that the set of fixed points of f forms a sublattice of L. In particular,
/ has a least fixed point, denoted fix f, which may be calculated as the limit of the
ascending Kleene chain:

leflefflefle...cefflc...

Since L is finite, this chain is guaranteed to reach a fixed point after only finitely many
steps, and this limit will be fix f. Noticing that the list of elements in the chain is
produced by the expression iteratef 1, we can define the fixed point operator fix
using:

fix :: Latticea=(a—a)—a

fix f = first Repeat (iterate f 1)
where firstRepeat determines the first repeated element in an infinite list:

firstRepeat ;i Eqa=>[a]~>a
firstRepeat (x:xs) = if x == head xs then x else firstRepeat xs.

(Notice that the type system is powerful enough to detect that fix can only be applied

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 483

to a function from a lattice to itself. On the other hand, it cannot capture the
condition that these functions should also be monotonic.)

3.4 Products of lattices

In this section we show how to obtain instances of class Lattice for (finite) products
of lattices, whose members are tuples of elements.

3.4.1 The implementation of tuples

We begin by describing the representation of tuples, and in particular the
representation of pairs using the datatype:

data Pairab=aPrb

where Pr is an infix constructor function. Pairs will normally be written in the form
{(x,y) which is interpreted as Pair x y in a type expression, and as (x Pry) otherwise.

The pairing constructor could be used to represent arbitrary tuples; for example,
the triple (x, y,z) might be represented by the pair ((x,y),z). Unfortunately, this
representation is not sufficiently powerful to distinguish between tuples of different
sizes; for example, the expression (x, y,z) == (u,v) will not necessarily be treated as
a type error.

Alternative representations can be used to avoid this problem:

e One simple approach is to provide different datatypes for each different tuple size.
For example, 3-tuples and 4-tuples may be represented using the types:

data Tuple3 abc = Tuple3 abc
data Tupled abcd = Tupled abed

and we interpret an expression of the form (x, y, z) as Tuple3 x y z (in both type and
value expressions). This is (essentially) the approach used in Haskell, although the
tuple constructors such as Tuple3 cannot be used explicitly.

e A more unusual approach was suggested in an early draft of the Haskell report
(Hudak and Wadler, 1988), and provides an interesting application of type classes
in its own right. This representation uses a second pairing constructor:

data Ntuple ab=aTpb,

and we interpret (x,,X,, X, ...,X,) as Ntuple (...(Ntuple (Pair x,,x,) x;)...) X, in
type expressions, and as (x, Prx, Tpx,... Tpx,) otherwise, where Pr and Tp are
treated as left associative infix operators. For example, a triple is represented by an
element of type Ntuple (Pair ab) c which cannot be unified with the type Pair de of
an arbitrary pair, and hence the expression (x, y, z) = (4,v) will cause a type error
as expected.

18 FPR 2

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

484 M. P. Jones

Using this representation we see that the left argument of the Tp constructor
should always be a tuple. We can enforce this condition by defining a type class
Tuple with instances for the type constructors Pair and Ntuple as follows:

class Tuple a
instance Tuple (Pair ab)

instance Tuple a => Tuple (Ntuple ab),
and modifying the original definition of Ntuple to:
data Tuple a= Ntuple ab = aTpb.

The predicate Tuple a on the left hand side restricts the choice of types which can
be assigned to the type variable a to instances of Tuple. In particular, the Tp
operator is treated as having type Tuple a=>a—>b— Ntuple ab. This ensures that
the expression (1 Tp2) is not well-typed, since Inf is not an instance of Tuple.

The second representation is most convenient for the work here as it enables us to
represent all tuples using only two constructed types. As a consequence, overloaded
functions that can be used with tuples of arbitrary size can be defined using just two
instance declarations, rather than the ‘infinite family’ that would be required to
support arbitrarily large tuples using the first representation.

3.4.2 The lattice structure of products

The lattice structure of a product of lattices is defined by applying the lattice
operators on each component of the product separately. The product of two lattices
is described by the declaration:
instance (Lattice a, Lattice b) => Lattice (a, b) where
4 =(l,1)
T =(T,T)
)N @v)=(xNuyno)
() U @v)=(xLUuyUv).
A similar instance declaration for the Ntuple constructor enables us to describe the
lattice structure on arbitrary finite products of lattices:
instance (Tuple a, Lattice a, Lattice b) = Lattice (Ntuple a b) where
L =1Tpl
T =TTpT
(xTpy) N wTpv)=(xNwTp(y Nv)
(xTpy) U Tpv) = (x U w)Tp(y U v).

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 485

This gives the required componentwise definition for arbitrary tuples as illustrated by
the following calculation:

(x,y,2) U (w,0,w) = ((x,») Tp2) U ((u,0) Tpw)
=((x,y) U (0,0)) Tp(z U w)
=xUu,yuov)Tp(zUw)
=(xUuyUuvzUw).

3.5 Dual lattices

The dual of a lattice @ has the same points as a but with the ordering reversed; thus
x € y in the dual lattice if and only if y = x in the original lattice. In the current
framework, the dual of a lattice can be described using the datatype:

data Dual a = Dual a.

(Note that the symbol Dual is used in two distinct ways in this definition; on the left
it is the name of a type constructor, on the right it is the name of a (value) constructor
function used as a tag so that values of type Dual a can be distinguished from those
of type a.) This representation is not ideal, since we would expect the dual of the dual
of a lattice to be the original lattice, whereas the types a and Dual (Dual a) are clearly
not equal. However, the two types are at least isomorphic, assuming that we restrict
our attention to proper values (i.e. ignoring any value involving the semantic bottom
value), as suggested in section 3.2.

The lattice structure of the dual of a lattice a is obtained by swapping the top and
bottom elements and the join and meet operators in a as described by the instance
declarations:

instance Lattice a = Lattice (Dual a) where

1 = Dual T

T = Dual 1

Dual x U Dual y = Dual (x 1 y)

Dual x N Dual y = Dual (x U y)
instance Eq a = Eq (Dual a) where

(Dual x == Dual y) = (x == y).

An alternative formulation of dual lattices is described in section 8.1.

3.6 Powerset lattices

The powerset (X)) of an arbitrary (fixed) set X is the set of all subsets of X and forms
a lattice with respect to subset inclusion. The top element in this lattice is the set X
(of which every other set in 2(X) is a subset) and the bottom element is the empty
set (since it is a subset of every other set). The meet and join functions are just the

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

486 M. P. Jones

familiar intersection and union operators. Combining these facts, we might hope to
describe the lattice structure of the powerset with an instance declaration of the form:

instance Lattice (#(X)) where

1 =g
T =X
(m=(n)
(u)=(v).

While the meaning of this definition should be fairly obvious, it cannot be used in a
valid Haskell program, since the set X is used both as a type (in the first line of the
declaration) and as a value (in the definition of T).
One way to provide a concrete implementation of the powerset lattice is to use a
representation based on set expressions such as that given by the datatype:
data Powerset a = EmptySet
| Union (Powerset a)(Powerset a)
| Member a
| Intersect (Powerset a)(Powerset a)
| WholeSet.
A set expression of the form Member x represents the singleton set {x} and the
meaning of the remaining constructors should be clear (if not already) from the
instance declaration:
instance Lattice (Powerset a) where
1 = EmptySet
T = WholeSet
join = Union
meet = Intersect.
The following definition shows how the membership function, written as an infix
operator (€), can be described by interpreting each different kind of set expression in
the obvious way:
(e) :: Eq a=> a-> Powerset a— Bool
x€ EmptySet = False
xeUnionlr =xelvxer
X€EMembery =x==y
xe€ Intersect Ir = xelA xer
xe WholeSet = True.
One of the biggest problems with this representation is the task of finding an
appropriate definition of the equality function between two sets which deals correctly
with set expressions involving WholeSet, but it is beyond the scope of this paper to

discuss the issue any further here. An alternative approach, suitable for representing
the powersets of a certain class of lattices, will be described in section 5.4, in which

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 487

the lattice operations are interpreted directly rather than being treated as the
constructors for a language of expressions.

4 Lattices of functions

A number of interesting lattices occur in the form of function spaces. It is particularly
important to be able to manipulate the elements of these lattices in applications such
as strictness analysis, where computable functions are approximated by functions on
finite lattices.

4.1 The lattice structure of a function space

We begin by considering a very general case: If L is a lattice and X is an arbitrary non-
empty set, then the set of functions from X to L forms a lattice whose structure is
determined by pointwise application of the lattice operations on L. We might attempt
to describe this by the instance declaration:

instance Lattice b= Lattice (a— b) where

1x =1

Tx =T

Ungx=sxngx

(fugx=fxUgx
However, Eq is a superclass of Lattice so every instance of Lattice must also have an
instance in Egq. Since there is no sensible way to define an equality operator for
functions of type (a—b), it is not possible to define an instance for Eq (¢ b) and
hence the preceding instance declaration is unacceptable.

This problem can be solved by working with a concrete representation for
functions rather than the functions themselves. For example, if a is a finite type with
distinct elements x,,...,x, and b is an instance of Lattice then the lattice of functions
of type a— b is isomorphic to the n-fold product of b under the correspondence which
identifies each function f with the n-tuple (fx,,...,fx,). This technique can be used
to represent lattices of functions, but is only practical when » is small.

4.2 An introduction to frontiers

In most work with lattices, it is sufficient to restrict our attention to functions which
are monotonic. Note that if a and b are instances of Lattice, then the set of monotonic
functions of type (a—b) is a sublattice of the function space (a->b). For the most
part, we consider the special case of monotonic functions of type (a - Bool) mapping
the elements of a lattice a to the two point lattice of boolean values (representations
for other kinds of function space are described briefly in section 4.2.6).

4.2.1 Representing functions by sets of points

Any function f of type (a— Bool) is uniquely determined by the set of points
U = f~YTrue} in the lattice a which it maps to True; given any point x in a, either

x€ U (in which case f'x = True) or x¢ U (in which case fx = False). Of course, there
19 FRR2

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

488 M. P. Jones

is nothing here that requires the use of the boolean value True, and we could
equally well represent the function f by the set of points L = f~'{False} which it
maps to False. Note that L = C(U) and U = C(L), where C(X) is the complement of
X in the lattice a — in other words, the elements of a which are not members of X:

True

False

4.2.2 Upper sets and minimum frontiers

Using sets to represent functions as above is still only practical when working with
small lattices. In the rest of this section we show how the restriction to monotonic
functions can be used to obtain a more compact representation for these sets of
points, and hence for the corresponding functions.

The key observation is that if x and y are distinct points in a such that xe U and
x = y, then ye U; by monotonicity of f we know that fx = fy, but fx = True and
hence fy must also be True. Subsets of a lattice with this property are called upper sets
and the set of all upper sets in the lattice a is denoted %(a). Note that the empty set
and the set of all elements in a are both upper sets, and that the intersection and union
of any two upper sets is again an upper set. Hence %(a) is a lattice (and a sublattice
of P(a)). In fact, %(a) is isomorphic to the lattice of monotonic functions of type
(a— Bool) under the correspondence which maps each function f to the upper set
S Y{True}; it is straightforward to show that this is a bijection, and the result follows
by establishing the identities:

(f U g {True} = f{True} U g *{True}
(f N g {True} = f{True} N g {True}

and from the fact that L~*{True} = {}, the bottom element of #(a), while T *{True}
is the set of all points in a, the top element in #(a). Thus upper sets provide a
representation for monotonic functions and calculations in that lattice can be
described by equivalent calculations in the lattice of upper sets.

The advantage of representing a monotonic function by an upper set is that we do
not usually need to store all of the elements of the set. So long as we restrict our
attention to finite lattices, it is sufficient to keep just the minimal elements of an upper
set U, denoted min(U) —i.e. those elements xe U such that ye U and y = x implies
that x = y. Sets of this kind can be thought of as representing the dividing line
between the two subsets /~'{True} and f~*{False} of the lattice a and are often referred

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 489

to as frontiers, using terminology introduced by Clack and Peyton Jones (1985).
Frontier sets can also be characterized directly as the subsets of a lattice whose
elements are pairwise incomparable, and we write & (a) for the set of all frontiers in
a lattice a.

With this notation the min operator is a bijection:

min::U(a) ~ F (a)
and the corresponding inverse is the upward closure operator:
M F(a)—%a)

where 1 F={y|xeF,x € y} is the smallest upper set containing F. Together, these
operators enable us to use frontiers to represent upper sets, and hence to represent
monotonic functions. In the next section we show how to define a lattice structure on
& (a) which makes min and (1) into lattice isomorphisms, in which case we describe
the elements of % (a) as minimum frontiers. The correspondence between the lattice of
monotonic functions and the lattice of minimum frontiers enables us to describe
calculations in the former by equivalent calculations in the latter.

As a concrete illustration of the use of frontiers, the following diagram shows the
lattice of monotonic functions of type (Bool, Bool)— Bool together with the
corresponding lattice of minimum frontiers:

AMx, y).True {(False, False)}
|
AMx, »)xVvy {(True, False), (False, True)}
AMx, y).x AMx, y).y {(True, False)} {(False, True)}
AMx, v).x Ay {(True, True)}
|
Mx, y).False {}

(As an aside, we should mention that both mir and (1) can be applied to arbitrary
subsets of the lattice a using the definitions given above. It would therefore be possible
to treat these operators as having types 2(a) -~ % (a) and ?(a) > %(a) respectively,
but neither operator is a bijection using these more general types.)

4.2.3 The lattice of minimum frontiers

For the purposes of this paper we choose a representation for minimum frontiers as
values of type:
data Minf a = Minf|a],

using a list to specify the elements in the frontier set. Given an arbitrary list of points
19-2

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

490 M. P. Jones

in a lattice, we can find the set of minimal elements (represented by a minimum
frontier) using the following implementation of min:

min :: Lattice a=>[a]l > Minfa
min = Minf.minimals. nub
minimals :: Lattice a = [a] > [d]

minimals xs = filter (null. points Below) xs
where pointsBelow x = [y|y< x5,y E x,x £ y].
There is a unique lattice structure on the set of minimum frontiers such that min and
(1) are lattice isomorphisms between & (a) and % (a) - each of the lattice operations

on frontiers must be defined so that its image under (1) is the corresponding lattice
operation on upper sets:

e The smallest upper set is the empty set — the upward closure of the empty minimum
frontier L = Minf[].

o The largest upper set in a lattice a is the lattice itself, which has least element L,
and is therefore represented by the minimum frontier T = Minf [L].

e Suppose that x and y are minimum frontiers (representing the upper sets 4 x and
1y respectively). To ensure that (1) is a lattice isomorphism, the meet of x and y
must be defined so that 4 (x N) = (+ xs) N (4 ys). Notice that:

ze(txs)N(tys)<=(Axexs.x S 2)A(yeys.y =2)
<3JIxexs.dyeys.xUycsz

«zet{x U y|xexs,yeys}
so that a suitable definition for () is provided by:
Minf xs N Minfys = min[x U y|x<xs,y< ys].

o In a similar way, the join of two minimumn frontiers x and y must be defined so that
txUyp)=Uxs)Uu(tys). It follows from the definition of min that the (U)
function can be defined using:

Minf xs U Minf ys = min (xs + ys)
where the list (xsH- ys) represents the set of points in the union of xs and ys.
These observations motivate the following instance declaration:

instance Lattice a= Lattice (Minf a) where
1 = Minf []
T = Minf[l]
Minf xs N Minfys = min[x U y|x< xs,y<ys]
Minf xs U Minfts = min(xs+ ys).

As before, each instance of Lattice must also have an instance in the class Eg.

https://doi.org/10.1617/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 491

Remembering that minimum frontiers represent sets of elements and not simply lists,
we define:
instance Eq a = Eq(Minf a) where

Minf xs == Minfys = (xs € ys) A(ys S xs).

4.2.4 Lower sets and maximum frontiers

The representation of functions by minimum frontiers in the last two sections was
motivated by identifying functions with upper sets of the form f*{True}. We can also
obtain a dual representation motivated by identifying each function f with the set of
points f~'{False}, but otherwise following the same pattern as before.

Assuming that fis monotonic, any set of the form L = f~{False} has the property
that if ye L and x E y, then xe€ L, and we therefore refer to L as a lower set. The set
of all lower sets in a lattice a is denoted by .#(a) and is a sublattice of 2(a).

The correspondence which maps any function f to the lower set f~'{False} is a
bijection from the lattice of monotonic functions of type (a— Bool) to #(a), but it is
not quite a lattice isomorphism, since it reverses the ordering between elements:

fE g<g YFalse} = f~YFalse}.

As a result, joins and meets in the lattice of monotonic functions correspond to meets
and joins, respectively, in #(a):

(f U g {False} = f~*{False} n g”*{False}

(f N g) Y {False} = f~Y{False} U g"Y{False}.
It follows that the lattice of monotonic functions of type (a - Bool) is isomorphic to
the dual of £ (a). We have already shown that this lattice of functions is isomorphic
to %(a), and hence each of the lattices £ (a) and %(a) is isomorphic to the dual of the
other. In both cases, the isomorphism is the complement function C which maps
upper sets to lower sets, and vice versa.

Just as the upper sets in a finite lattice are uniquely determined by their minimal
elements, every lower set in a finite lattice is uniquely determined by its maximal
elements which can be obtained using the bijection:

max:: L(a)~ F(a)

where max (L) is the set of all elements xe L such that ye L and x = y implies that
x = y. The inverse function is the downward closure operator:

) F(@)— Z(a)

where |F = {y|xeF,y = x} is the smallest lower set containing F.

4.2.5 The lattice of maximum frontiers

As in section 4.2.3, there is a unique lattice structure on & (a) such that the max and
({) operators introduced above are lattice isomorphisms, and we refer to frontiers
used in this way as maximum frontiers. 1t follows from the duality between #(a) and

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

492 M. P. Jones

Z(a) that the lattice of maximum frontiers is isomorphic to the dual of the lattice of
minimum frontiers.
In our current framework, maximum frontiers will be represented by elements of
type:
data Maxf a = Maxf'[a].
The following implementation for max is the obvious dual of the definition of min in
section 4.2.3:

max :: Lattice a=>{a] > Maxf a
max = Maxf. maximals.nub
maximals :: Lattice a=>[a]—[a]

maximals xs = filter (null.pointsAbove) xs

where pointsdbove x = [y |y < xs,x E y,x % y].

In a similar way, the lattice of maximum frontjers can be described by dualizing the
definition of the lattice of minimum frontiers:

instance Lattice a = Lattice (Maxf a) where
L = Maxf[]
T = Maxf[T]
Maxf xs N Maxfys = max[x N y|x<xs,y < ys]
Maxf xs U Maxf ys = max (xs+t ys).
A simple definition makes Maxf a an instance of Egq:
instance Eq a = Eq (Maxf a) where
Maxf xs == Maxf ys = (xs € ys) A (¥s € xs).

4.2.6 Lattices of monotonic functions

Combining the results of the preceding sections we obtain a representation for
(monotonic) functions using either minimum or maximum frontiers described by the
bijections:

minApply :: Minf a->(a— Bool)

minApply (Minf xs)x = any (E x) xs
maxApply :: Maxf a— (a— Bool)
maxApply (Maxf xs) x = not (any (x &) xs).
The corresponding inverse functions can be specified using:
minFront :: (a— Bool) > Minf a
minFront f = min(fY{True})
maxFront :. (a— Bool)— Maxf a
maxFront f = max (f{False}).

Note that these equations cannot be used as executable definitions, since there is no

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 493

general method for calculating the inverse image f~'{x} of a point x under a function
/. However, a concrete implementation of minFront and maxFront which is derived
directly from these specifications will be given in section 5.4. The resulting
algorithm is rather inefficient, as it relies on the ability to enumerate the elements of
the source lattice for the function concerned. A number of researchers have suggested
more efficient algorithms which use the fact that these functions are monotonic to
speed up the calculation (Peyton Jones and Clack, 1987; Martin and Hankin 1987;
Hunt, 1989). Although beyond the scope of this paper, it is interesting to note that
each of the algorithms suggested in these papers can be described, and hence
compared, in a uniform manner using the tools provided here (Jones, 1989).

In practice, it is convenient to represent a function of type (a— Bool) by both its
minimum and maximum frontiers using a value of type:

data Fna = Fn(Minf a)(Maxf a).

This representation uses redundant information; the values of u and / in an
expression of the form Fnul should be related by the equations u = min (C(| /)) and
| = max (C(1 u)). The reason that we have chosen to keep both is that some functions
are easier to describe using minimum frontiers, while others which are easier to
describe using maximum frontiers (see the definitions of succs and preds for values of
type Fna given in section 5.1 for an example of this). Furthermore, several of
the algorithms mentioned above for obtaining the frontier representation of a func-
tion f::a- Bool actually produce values for both frontiers using a combined search,
and hence there is no additional cost in finding the corresponding element of type
Fna.

The lattice structure of Fn a is easily described in terms of the lattice structures for
Minf a and (the dual of) Maxf a:

instance Lattice a = Lattice (Fna) where
1 =FnlT
T =FnT1l
Fnuln Fnw'l'=Fn@nu)(l U)
Fnuly Fnuwl’=Fn@u)N
So far we have considered only lattices of monotonic functions of type (a— Bool).
Other kinds of function space can often be described in terms of lattices of this form.
For example, using the familiar isomorphisms:
a—->(b,c)=(@>b,a—>c)
a+b-cx(ab)—>c
we can represent monotonic functions of type Bool— (Bool, Bool) and Bool— Bool —
Bool by values in the lattices (Fn Bool, Fn Bool) and Fn(Bool, Bool), respectively.
These techniques can be used to represent the lattice of monotonic functions for any
type (a— b) in which a is an arbitrary instance of Lattice and b is constructed from

the type Bool/ and an arbitrary combination of product and (monotonic) function
space constructors.

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

494 M. P. Jones

5 Navigable lattices
5.1 A subclass of lattices

Much of the work in Jones (1989) dealt with algorithms to determine the maximum
and minimum frontiers of a function. A typical algorithm begins with an
approximation to the frontier that it is required to find, which is then refined by
testing the value of the function at nearby points and adjusting the approximation
accordingly. This requires some means of ‘moving around’ a lattice to locate suitable
nearby points. In the following sections, we show how this can be described using the
functions succs and preds specified by:

suces x = min (C(| {x}))

preds x = max (C(1{x})).
These functions can be defined for any lattice, but in practice will not be needed for
some instances of Lattice. Rather than modifying the definition of Lattice to include
preds and succs as member functions, we introduce a new subclass of Lattice with the

definition:
class Lattice a = Navigable a where

suces ::a—> Minf a
preds::a— Maxf a.
This approach gives greater modularity and frees us from the need to define succs and
preds except in those instances where these functions will actually be required.
Some instances of the class Navigable are given in the following definitions. The
definition of the instance for (Fn a) is based on work by Hunt (1989). Further details
are given in Jones (1989):
instance Navigable Bool where
succs False = Minf[True]
succs True = Minf[]
preds False = Maxf|]
preds True = Maxf[False]

instance (Navigable a, Navigable b) = Navigable (a, b) where
suces (x,y) = Minf ([sx, L)|sx < sxs]+[(L,sy)|sy<sys])
where Minf sxs = succs x
Minf sys = succs y
preds(x,y) = Maxf ([(px, T)| px < pxs]4-[(T, py) | py < pys])
where Maxf pxs = preds x
Maxf pys = preds y

instance Navigable a = Navigable (Fn a) where
succs (Fnu(Maxf ps)) = Minf [Fn(Minfp]) (preds p)| p < ps]
preds (Fn(Minf ps)) = Maxf[Fn(succs p)(Maxf[p])|p< ps].

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 495

5.2 Implementations of complement

As a simple application of the member functions of Navigable, we can describe the
effect of the complement operator on upper sets (represented by minimum frontiers)
and lower sets (represented by maximum frontiers). For example, if X is an upper set

then:
CX)=Cc(U{t{xtIxeXx}) X is an upper set
= N{C(H {x)|xe X} de Morgan’s law
= {4 (max(C(+{x})))|xe X} ({).max is identity on lower sets
= {{ (preds x)| xe X} definition of preds
= (N {preds x| xe X}) lattice structure on maximum frontiers

so that if f is a minimum frontier representing X then the maximum frontier
representing C(X) is maxComb f where:

maxComp :: Navigable a = Minf a—~ Maxf a
maxComp = foldr(N) T . map preds.

A similar argument motivates the definition of minComp which can be used to
calculate the minimum frontier of the complement of a lower set represented by a
maximum frontier:

minComp :: Navigable a= Maxf a— Minf a
minComp = foldr(N)T . map succs.

5.3 An implementation of upward closure

The member functions of Navigable can also be used to implement a form of the
upward closure operator. This provides a simple illustration of the way in which the
member functions of Navigable can be used to search a lattice. For simplicity, we will
only consider the task of computing the upward closure of a minimum frontier,
although this restriction is easily relaxed by composing with min.

Suppose that fis a minimum frontier containing elements of some lattice a. If fis
empty then so is 1 f. Otherwise, we can pick some element ¢ in f and enumerate the
elements of 1 f by outputting ¢ and then enumerating the elements of:

OB =E0NHnC{) standard set theory
= (NN CUD ¢ minimal in 1 f
=N NGmin(CUL{R))) (1).min is identity on upper sets
= (1) n (4 (suces 1) definition of succs
=1(fN succs t) lattice structure on minimum frontiers.

This description can be translated directly into the following function definition:
) 1 Navigable a = Minf a— [a]

tMinf[)) =[]
P (Minf (t:15)) = t: 1 (Minf (t:ts) N suces 1).

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

496 M. P. Jones

5.4 Enumerating the elements of a lattice

The implementation of (1) in the previous section gives us an easy way to enumerate
the elements of an arbitrary navigable lattice; we simply calculate the upward closure
of the minimum frontier {1}:

elements :: Navigable a =>[a]

elements = 1[1).
Notice that the type of the expression elements does not specify which instance of
Navigable is to be used in place of the type variable a. In Haskell, this ambiguity can

be resolved by an expression of the form elements:: type where the required instance
is determined by the type expression type. For example:

e elements::[Bool] produces the list [False, True] of boolean values.

e elements::[(Bool, Bool)] produces a list of the four points in the lattice (Bool, Bool).

o elements::[Fn(Bool, Bool)] produces a list of six values representing the monotonic
functions from (Bool, Bool) to Bool.

Those familiar with Stoy (1977) may recall one section which defines a sequence of
lattices:
D, = Bool

D,,,=D,>D,.

Stoy claims that D, has 120,549 elements, and suggests that his reader writes a
program to verify this. Expanding the definition of D, gives:

D, = ((Bool - Bool)— (Bool -~ Bool))— ((Bool— Bool)— (Bool— Bool))
=~ ((Bool— Bool, Bool)— Bool, Bool — Bool, Bool) - Bool
=~ Fn(Fn(Fn Bool, Bool), Fn Bool, Bool)
so that a suitable program, using the tools developed in this paper is:

length(elements::[D,]) == 120549.

As another simple application of elements, the specifications for the functions
minFront and maxFront, given in section 4.2.6, can now be translated almost directly
into executable definitions:

minFront :: (a— Bool)— Minfa

minFront f = min[x|x <« elements, fx]

maxFront :: (a— Bool)— Maxf a

maxFront f = max [x| x < elements, not (fx)].
Note, however, that this implementation is very inefficient, and a more sophisticated

algorithm would be required in any practical application as described in section 4.2.6.
We can also use elements to provide a representation for the powerset of an

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 497

arbitrary navigable lattice, using lists of values to describe the elements of each subset
and the standard definition of set equality:

data Set a = Set [da]

instance Eq a = Eq (Set a) where
x==p=ExsHr(ysx.
The powerset lattice can then be described by the instance declaration:

instance Navigable a = Lattice (Set a) where
1 = Set[]

T = Set elements

Set xs Ul Set ys = Set (xs+ ys)

Set xs N Set ys = Set {x| x < xs, x elem ys].

6 Adding new instances

The use of type classes makes it easy to extend the framework described in the
previous sections to include other kinds of lattice. Suppose, for example, that we want
to work with lifted lattices:

Bottom
The lifted version, Lift a, of a lattice a contains a copy of a with an additional element,
Bottom, below all the members of a. The elements of the lifted lattice are represented
by elements of type:
data Lift a = Bottom|Up a
The definition of the lattice operations on a lifted lattice is standard and is described
by the instance declaration:

instance Lattice a = Lattice (Lift a) where

4 = Bottom
T =UpT
Bottom N y = Bottom

Up x N Bottom = Bottom
UpxnNUpy =Up(xny)
Bottom U y =y

Up x U Bottom = Up x
UpxuUpy =Up(xUY).

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

498 M. P. Jones

A further declaration makes Lift a an instance of Navigable; its definition is a simple
consequence of the specification of preds and succs, and the lattice structure of Lift a:

instance Navigable a = Navigable (Lift a) where

succs Bottom =[Up 1]

succs (Up x) = [Up y|y < succs x]
preds Bottom =]

preds (Up x)| x == = [Bottom]

| otherwise = [Up y |y < preds x].

It is easy to extend the framework still further with additional instance declarations;
simple examples include separated and coalesced sums, flat domains, and a number
of less standard lattice constructions. A remarkable degree of modularity has been
achieved in that each of these extensions can be defined and used completely
independently of any of the others. The complete program is easier to understand
because each instance declaration may be understood separately in its own right; the
only link with other instance declarations is the original class declaration.

7 Comparison with previous implementation

This section describes an earlier implementation of the ideas presented in this paper,
highlighting a number of deficiencies caused by the use of a standard Hindley/Milner
type system. Each of these problems has been eliminated from the version described
in this paper by the use of type classes. Although the original implementation used
Orwell (Wadler and Miller, 1988), the code fragments given in this section have been
rewritten using the notation of Haskell, without the use of type classes.

7.1 Representing the elements of a lattice

An important requirement of the original implementation was that the lattice
operators be defined by single functions:
() :: Element - Element - Bool
(n),(U):: Element ~ Element — Element
for some type Element. To be able to use these operators with a range of lattices,
including lattices of tuples and functions, the use of a Hindley/Milner type system
requires that Element be a type containing a common instance of a representation of
each of these types. This was achieved by defining Element as a algebraic datatype:
data Element = O|I| Tup[Element]| Fn Minf Maxf
type Frontier = [Element]
type Minf = Frontier
type Maxf = Frontier

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 499

where the objects of type Element are interpreted as follows:

o The elements O and I represent the points of a two point lattice with O € I, and
correspond to the boolean values False and True in the present implementation.

o An element of the form Tup xs represents the tuple of elements in the list xs. Lists
are used to avoid the need for separate constructor functions for pairs, triples,
quadruples, etc.

e Asin the current program, functions are represented by a pair of frontiers each of
which is represented by a simple list of elements.

The names of the types [Element], Frontier, Minf and Maxf were used in type
declarations to indicate the intended use of particular function arguments and return
values. There is no way to ensure that all of the values in a frontier come from the
same lattice with this representation; for example, [O, Tup[O1]] is a well-typed
expression of type [Element], but is meaningless as an element of type Frontier. To
avoid further complication of the definition, there is no representation for individual
frontiers as objects of Element. This also means that the functions preds and succs can
be defined on each object of Element without needing to implement these functions on
frontiers. This corresponds to the use of two classes, Lattice and Navigable, in the
present implementation to describe the separation between the definition of a lattice
structure on the elements of some type and the implementation of the functions succs
and preds on that lattice structure.

7.2 Implementing the lattice operations

Each of the lattice operations was implemented using pattern matching on objects of
type Element. For example, the () operation was defined by:

(w) :: Element - Element — Element
oux =X

Iyx =7

(Tup xs) U (Tup ys) = Tup (zipWith(U) xs ys)

(FnlLIO) U (Frrflrf0) = Fn(f1 U™ rf1)(If0 N ™ 1f0).

The restriction that x and y be elements of the same lattice in an expression of the
form x |J y cannot be enforced by the type checker; each of the expressions O U Tup
[0,I] and Tup[O,11 U O is well-typed. Notice that the first expression produces a
well-defined value, while the second causes a run-time error because there is no
matching case in the definition of (U).

As the type Element does not include a representation for frontiers, the lattice
structure of minimum and maximum frontiers cannot be described using the standard
lattice operators such as (U). This forced us to define additional operators, such as
(u™*") and (U ™**) to implement lattice operations on frontiers.

The implementation of some functions, in particular L and T, required the use of
an additional type:

data Lattice = Two| Prod|[Lattice]| Func Lattice

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

500 M. P. Jones

whose elements can be used to name each of the lattices whose members are
represented by objects of Element:

e Two is a name for the two point lattice containing O and I.

e Prodls is a name for the product of the lattices listed by Us.

e Funclis a name for the lattice of monotonic functions from the lattice named by
{ to the lattice named Two.

For example, the bottom element of each Lattice can be obtained using the function:
1 :: Lattice - Element
1 Two =0
1 (Prodls)= Tup[L !|l<Is]
L (Funcl) = Fn[][T /]

In this way, the elements of Lattice can be thought of as naming the lattices on which
a number of functions are defined, i.e. they correspond to names for the instances of
a type class.

7.3 Weaknesses due to Hindley/Milner typing

The previous sections have described a number of weaknesses in the original
implementation, including:

e The use of “artificial’ type definitions to represent the elements of types which have
already been defined by the system. For example, the use of the constructors O and
I to represent boolean values, and of expressions of the form Tup xs to represent
tuples.

o The inability to detect some kinds of ‘type error’. In some cases these errors will
not be detected, whilst others will cause runtime errors.

e The use of a number of distinct names (for example (U), (U ™") and (U ™**)) for
a single concept.

e The need to define types such as Lattice whose elements represent types (or more
accurately in the present example, subtypes of Element).

e The layout of the program is confusing; the definitions of the lattice operations on
the elements of each individual Lattice are distributed throughout the program.

e The program is difficult to extend; each additional Latrice constructor (for
example, lifting) requires a modification of the definition of Element and a change
to each of the definitions of the main lattice operations, which grow increasingly
long and unwieldy.

The source of each of these problems can be traced to the constraints imposed on a
programmer by the use of a Hindley/Milner type system. Thanks to the use of type
classes, none of these problems occurs in the present implementation.

8 Future work

One of the objectives in this paper has been to describe a framework for computing
with the elements of finite lattices. The biggest difficulty with this particular
application is the problem of finding a concrete representation for functions. We have

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 501

described a compact representation for a reasonably large class of monotonic
functions based on the use of frontiers, but it would certainly be desirable to extend
this to include other kinds of function space.

A second objective has been to explore the use of type classes. In particular, we
have shown how this leads to a modular program which avoids some of the problems
that occur using a similar program in a language based on the standard
Hindley/Milner type system. The remaining sections describe two small extensions to
the system of type classes provided in languages such as Haskell which could
potentially increase the usefulness of type classes in program development. Both of
these ideas were originally suggested in Wadler and Blott (1989), and the examples
given here provide further motivation for supporting these features in practical
implementations.

8.1 Classes with multiple parameters

A number of researchers have suggested generalizations to the system of type classes
in Haskell which allow classes with multiple parameters. A typical application would
be to describe duality in lattices, where the dual of a given lattice has the same
elements (possibly with a different representation), but the opposite partial order.
Another way to describe this is with a complement function which is an order
isomorphism between each lattice and its dual. With this in mind, a suitable class
definition might be:

class (Lattice a, Lattice b, Dual b a) = Dual a b where
comp::a—b.
Some simple instances of Dual are given by the declarations:
instance Dual Bool Bool where
comp = not
instance (Dual ac, Dual bd) = Dual (a, b) (¢, d) where
comp (x,y) = (comp x,comp y)
instance Navigable a = Dual (Minf a) (Maxf a) where
comp = maxComp
instance Navigable a = Dual (Maxf a) (Minf a) where
comp = minComp.
There are no strong theoretical problems which make the treatment of multiple
parameter type classes particularly difficult. Whilst useful as a means of describing
relationships between types, our experience to date (see Jones, 1991, for example)
suggests that practical applications of such classes may be rather limited. To give an
indication of the kind of problems which can occur, the principal type of the
expression comp.comp (which we might (fairly reasonably) hope would denote an
identity function of type Lattice a=>a— a) is:
(Dual ab, Dual bc) = a—c.

Apart from the fact that the domain and range types are not the same, this typing is
ambiguous (in the sense that the type variable b appears in a predicate but not in the

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

502 M. P. Jones

main body of the type) and it can then be shown that the expression comp. comp does
not have a well-defined semantics.

8.2 The use of program laws

Whilst the treatment of computable equality (==) as a built-in primitive has a
number of disadvantages (listed in section 2.1), it also has the significant advantage
of ensuring that the function has a well-defined behaviour for all argument types. This
can be exploited in program development and transformation (assuming of course
that the implementation of the primitive is correct).

By contrast, in a system of type classes it is not possible to place any semantic
restriction on the definitions given in any particular instance other than ensuring that
they yield values of the correct types. Furthermore, in the development of a large
program, the instance declarations used to construct the definition of a single
overloaded operator may be distributed across a number of separate program
modules. This makes it very difficult for a programmer to know what properties can
be assumed about overloaded functions, and prevents the use of simple equational
reasoning, often cited as one of the most important benefits of using functional
languages.

One approach to this problem is to adopt a programming methodology in which:

e Each class declaration is accompanied by a number of algebraic laws constraining
the values of its member functions.

e Each instance declaration is accompanied by a proof of the laws in the particular
instance being defined.

Such laws can of course be written in the form of comments, but it might be preferable
to extend the syntax of the language with a concrete syntax for laws:

e Programmers would be encouraged to state laws formally using a uniform syntax,
rather than a variety of ad hoc annotations.

e The type checker can be used to ensure that the laws given are type correct, and
hence detect some meaningless or erroneous laws.

e It is unlikely that the proofs for each law could be constructed automatically for
each instance declaration. On the other hand, machine readable laws in a given
program might well be used in conjunction with an automated proof checker, or
with the machine assisted tools for program derivation and proof.

The following example illustrates one possible syntax for writing laws about the (1)
operator in the class Lattice, introducing a name and listing the free variables for each
law:

Meetldem x =xNx=x

MeetSymm xy=xNy=yIx

Unfortunately, the task of choosing appropriate laws in a non-strict programming
language is not quite as straightforward as might be hoped. For example, the
MeetSymm law given above is not valid for the instance declarations given in this

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

Computing with lattices 503

paper unless we restrict the values taken by its free variables x and y to be proper
values. This is just as much of a problem when type classes are not involved, and is
simply a reflection of the fact that the properties of familiar mathematical functions
are not always shared by their computable counterparts; for example, a law of the
form (x == x) = True which might be used to assert that (==) is reflexive will not
be valid for either the primitive or type class implementations of computable equality.

Acknowledgements

I would like to thank Phil Wadler, Colin Runciman and an anonymous referee for
their comments on an earlier version of this paper which, I hope, have enabled me to
improve the presentation in this version. This work was carried out while the author
was a member of the Programming Research Group, Oxford University Computing
Laboratory, UK with financial support from the Science and Engineering Research
Council of Great Britain.

References

Clack, C. and Peyton Jones, S. 1985. Strictness analysis —a practical approach. Proc.
Functional Programming Languages and Computer Architecture, Volume 201 of Lecture
Notes in Computer Science, Springer-Verlag.

Damas, L. and Milner, R. 1982. Principal type schemes for functional programs. Proc. 8th
ACM Symposium on Principles of Programming Languages, ACM Press.

Hudak, P., Peyton Jones, S. and Wadler, P. (editors). 1991. Report on the programming
language Haskell, a non-strict purely functional language (Version 1.1). Technical Report
YALEU/DCS/RR777, Yale University.

Hudak, P. and Wadler, P. (editors). 1988. Report of the functional programming language
Haskell: draft proposed standard. Technical report YALEU/DCS/RR-666, Yale Uni-
versity.

Hunt, S. 1989. Frontiers and open sets in abstract interpretation. Proc. Functional Programming
Languages and Computer Architecture, ACM Press.

Jones, M. 1989. Frontiers and strictness analysis. University of Oxford, unpublished report.

Jones, M. 1991. Overloading in Gofer. Chapter 14 in An Introduction to Gofer, user
documentation distributed with Gofer version 2.21.

Martin, C. and Hankin, C. 1987. Finding fixed points in finite lattices. Proc. Functional
Programming Languages and Computer Architecture, Volume 274 of Lecture Notes in
Computer Science, Springer-Verlag.

Peyton Jones. S. and Clack, C. 1987. Finding fixpoints in abstract interpretation. In S.
Abramsky and C. Hankin (editors), Abstract Interpretation of Declarative languages, Ellis
Horwood.

Stoy, J. 1977. Denotational Semantics: The Scott—Strachey approach to programming language
theory. MIT Press.

Vuillemin, J. 1988. Exact real computer arithmetic with continued fractions. Proc. ACM
Symposium on Lisp and Functional Programming, ACM Press.

Wadler, P. and Blott, S. 1989. How to make ad-hoc polymorphism less ad-hoc. Proc. 16th
ACM Symposium on Principles of Programming Languages, ACM Press.

Wadler, P. and Miller, Q. 1988. Introduction to Orwell 5.00. Programming Reseach Group,
University of Oxford.

https://doi.org/10.1017/50956796800000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000514

