J. Functional Programming 2 (4):505-513, October 1992 © 1992 Cambridge University Press 505

FUNCTIONAL PEARLS

A symmetric set of efficient list operations

ROB R. HOOGERWOORD

Department of Mathematics and Computing Science, Eindhoven University of Technology, PO Box 513,
5600 MB Eindhoven, The Netherlands

0 Introduction

In this paper we show that it is possible to implement a symmetric set of finite-list operations
efficiently; the set is symmetric in the sense that lists can be manipulated at either end. We
derive the definitions of these operations from their specifications by calculation. The
operations have O(1) time complexity, provided that we content ourselves with, so-called,
amortized efficiency, instead of worst-case efficiency.

The idea behind our design is simple and not new (Gries, 1981), but to be effective its
elaboration requires some care. The idea is to represent each list by a pair of lists: a pair [x,]
is used to represent the list x 4 rev-y. (Here, a dot denotes functional application.) Thus, each
list can be represented in many ways, and it is by judicious exploitation of this freedom that
we achieve our goal. We elaborate this in section 3.

1 Amortized complexity

Without pretending generality, we introduce the notion of amortized complexity in a
form suiting our purpose.

In this section ¥ is a set and f and ¢ are functions of types V- V and V- Nat,
respectively. For v, ve V, we interpret ¢-v as the cost, in some meaning of the word,
of evaluation of f*v. Now suppose that we are interested in a sequence of successive
applications of f; i.e. we define a sequence x as follows:

x,€ V(x,is assumed to be known), and

X =fx, 0<i

Computation of the first n+ 1 elements of x then costs (2i:0 <7 < n:t-x,). If the
value of this expression, as a function of n, is O(n), then we say that the amortized cost
of each of f’s applications (in sequence x) is O(1). Of course, this is so if z is O(1), but
this is not necessary: the requirement that (£i:0 < i< n:t-x)) is O(n) is weaker. The
introduction of amortized cost reflects our decision to be interested only in the
cumulative cost of a sequence of successive operations.

For the sake of simplicity, it would be nice if we could discuss the amortized cost
of f without introduction of sequence x. This can be done as follows. We introduce

https://doi.org/10.1017/50956796800000526 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000526

506 R. R. Hoogerwoord

a function s, of type V' — Nat, and we interpret s- v as the amortized cost of evaluation
of f-v. We try to couple s and ¢ in such a way that, for our sequence x, we have:

Ei0<i<ntx)<@Zi:0<i<n:s-x), foralln:0<gn. (*)

Consequently, if s is O(1) then the cumulative cost of computing the first n+1
elements of x is indeed O(n).

The following idea for a suitable coupling is — as far as we know — due to Tarjan
(1985). We design, or invent, a function ¢, of type V' — Nat, and define s as follows:

ssv=tv+c (frv)—cv, forallv,veV.

Under the additional assumption ¢ x, = 0, this s satisfies (x).

What does this mean in practice? To prove that a function f, with given cost
function ¢, has amortized cost O(1), it suffices to design a natural function ¢, the so-
called credit function, satisfying:

c-x,=0, and
tv+c-(frv)—cv is,asfunction ofv, O(1).

Here x, represents the initial argument — or the initial state— of the computation.
The above remains valid when f represents the elements of a whole class of

Jfunctions, each having its own cost function ¢. In this case, one and the same credit

function must satisfy the above requirement for each pair f; ¢ from this class.

2 Specifications

The problem to be solved is to implement an extended set of elementary list
operations in such a way that the amortized time complexity of each of these
operations is O(1). For this purpose, the set L, of lists will be represented by a set
V, say, such that the representation of lists by elements of ¥ is not unique. The
abstraction function mapping ¥V to L, is denoted by [-], i.e. [s] is the list
represented by s, for s, se V.

We use lists and their associated functions for two purposes, namely to specify the
new list operations and to implement them. The functions to be implemented are:

b (‘leftcons’y and —(‘right cons’)
Ihd (‘left head’) and rhd(‘right head’)
1t (“left tail’) and rt(‘right tail’).

Using [-] we specify these functions as follows; for any a and for s, se V:

lats] = [a] + [s]
[s—a] = [s] +[d]
lhd-s =hd-[s], [s1=%I[]
rhd-s = hd-(rev-[s]), [s] +1]
[tl- s =1t-[s), [s]=*I]
[rel-s] =rev-(tl-(rev-[s])), [s] #[])

https://doi.org/10.1017/50956796800000526 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000526

Functional Pearls: A symmetric set of efficient list operations 507

Remark. From these specifications, the types of these functions can be derived easily.

a

We also need a representation of the empty list, i.e. we must choose a value [],,
[l,€V, satisfying:
ﬂ[]v]] = []

Functions (a+) and (— a), for every a, and functions /z/ and rt/ have type V> V.
They will be implemented in such a way that their amortized time complexity is O(1).
Functions /hd and rhd do not fit into this pattern: they are functions from ¥V to
elements. This is no problem: we shall see to it that /4d and rhd have O(1) (worst-case)
time complexity.

3 Representation

Our new lists are represented by pairs of old lists, i.e. we choose V' =L, xL,. For
function [-] we choose:

[be,ylI=x rev-y.
This representation leaves us no choice for the definition of [}, : the only solution

of the equation x,y: [] = x#Hrev-yis[], []; hence:

() = [0, 01

We now derive a definition for lhd:

lhd[x,y]

= {specification of /hd}
hd-[[x, y]1

= {definition of | -]}
hd-(xHrev-y)

= {definitionsof and hd}
ifx+{]>hd x
Ix =[]>hd (rev-y)
fi.

Evaluation of hd-(rev-y) takes O(3y) time; hence, the definition thus obtained
does not have O(1) time complexity. It does, however, have O(1) time complexity in
the special case x £ []V #y < 1, or equivalently, 1 < #xV #y < 1. Therefore, we
restrict set ¥ to the pairs [x, y] that satisfy 1 < #xv #y < 1. For y, #y <1, we
have rev-y = y; thus, we obtain the following definition for /hd:

lhd-[x,y] = ifx + []>hd- x
0 x=[]>hdy
fi

By symmetry, we restrict set V to those pairs [x, y] satisfying 1 < #yVv #x<1as

https://doi.org/10.1017/50956796800000526 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000526

508 R. R. Hoogerwoord

well. Together, these two restrictions define set V as a subset of L, x L. The relation
defining this subset, also called the representation invariant, is Q, with:

O (I<s#xvH#ys<sDAAS#HFyvHEx<l)
The definition for rid then becomes (notice the symmetry):

rhd-[y,x]=ifx +[]>hd x
Ix=[]>hdy
fi.

4. Left and right cons

The derivation of definitions for — and — is straightforward if we temporarily forget
the proof obligation with respect to Q. We perform these derivations in parallel:

laF[x, 311
= {specification of -}

[a]+[[x, y1]
= {definition of []}

[[y,x]—a]
= {specification of —}

[[y,x]1+[a]
= {definition of [-]}

[a] Hx++rev-y yHrev-x+[a]

= {listcalculus} = {listcalculus}
(a:x) H-rev-y yHrev-(a:x)
= {definition of [-]} = {definition of [- [}

lla:x, ¥l [ly,a:x]1.
Thus, we conclude that the specifications of - and — are satisfied by:

at=[x,y] =[a:x,y]
[y, x]lFa=[y,a:x).
The expression [a:x, y] will only satisfy Q if 1 < 4y. For the special case y =[], we

redo the above derivation:

fat[x, (111
= {asbefore, with[]for y}
[a] H x +Hrev-[]
= {rev-[]=[],[]istheidentity of H}
[a] Hx
= {[x,[]]satisfies Q,hence#x < 1, hence x = rev-x}
[a] Hrev-x
= {definition of [-]}
[[[a], x]}.

https://doi.org/10.1017/50956796800000526 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000526

Functional Pearls: A symmetric set of efficient list operations 509

Expression [[a], x] satisfies Q. Thus, we obtain the following definition for + and,
similarly, for —:
at[x,y] =ify +[)>[a:x,)]
0y =1{l->I[la],]
fi,
. xlHa=ify +[]>[y,a:x]
by =[->[xlal
fi.
The (normal) time complexity of these definitions is O(1). In order that their
amortized time complexity is O(1) as well, the credit function ¢ must be chosen such

that its value increases by a bounded amount under these operations; that is,
c-(at[x,y])—c[x,y] must be bounded from above by a constant.

5 Left and right tail

We now derive definitions for /t/ and rtl. These derivations do not yield efficient
definitions, but they do provide information on how the credit function can be chosen
such that these definitions have O(1) amortized time complexity.

For [tl-x, y], with precondition [[x, y]] = [], we derive:

Uil 1x, 1)
= {specification of /t/}

t-[[x,]
= {definitionof [-]}
t-(x+Hrev-y).

Further manipulation of this formula requires distinction of the cases x % [] and

x =[]

For the case x =[] we have:

t-(x+Hrev-y)

{x=1(I
tl-(rev-y)

{QATx Y11+ [IAx = []=#y = 1, hence t-(rev-y) =[]}
(]

= {specificationof[],}

(i
= {definition of [},}

Lol .

Hence, for the case x =[] we must choose —no freedom — ¢/ [x, y] = [[],[]].

https://doi.org/10.1017/50956796800000526 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000526

510 R. R. Hoogerwoord

For the case x # [] we derive:

t(x revy)
= {x % [], definitions of - and ¢/}
tl'x+Hrev-y
= {definition of [-]}
[[el-x, ¥11-
So, for the case x + [], we may choose [t/-[x,y] = [t/ -x,y], provided that this

expression satisfies Q, i.e. we must prove Q= Q(x,y < t'x,y), where < denotes
substitution. Assuming Q we derive:

O(x,y<1tlx,y)
= {definition of O}
A< #E)VvHEYSDAAS #FyVv#U X))
= {definitions of /and #}
C<#xvHy<DAAS #yVH#x<2)
= {Q=1< #yv#x<2}
2< #xv #y<l
<« {predicate calculus}
2< #x.
So, for the special case that x has at least two elements, the above definition for /#/
is correct. The remaining case is that x is a singleton list:
t-x+Hrevy
= {#x=1}
[J+rev-y
= {[]istheidentity of +}

rev-y

{introduce uandvsuchthaty = u+v (notel,see below)}
rev-(u+v)
= {listcalculus}
rev-v-Hrev-u

{definition of [-]}

[[rev-v,u]].

So, for the case #x = 1 we may choose /t/-[x, y] = [rev-v,u), where u-Hv = y.

Note 1: The decision to split y into parts u and v is inspired by the desire to transform
rev-y into a pair of values. By not further specifying » and v we retain the freedom
to choose the most efficient representation.

d

https://doi.org/10.1017/50956796800000526 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000526

Functional Pearls: A symmetric set of efficient list operations 511

Evaluation of [rev - v, u] takes O(3 y) time, independently of how u and » have been
chosen. To obtain O(1) amortized time complexity, the credit function ¢ must satisfy:
t-y+c-[rev-v,ul—c[x,y] < K,
where ¢-y denotes the time needed to evaluate [rev-v,u] and for some constant K.
Because ¢y is O(#y) we may safely assume that -y < 4#y+1; then we have:

t'y+cfrev-v,ul—c [x,y] £ K

= {calculus}
clx,y]—c-lrevvul 2t y—K

< {t-y < #y+],transitivity of <}
clx,yl—clrev-v,ul =2 #y+1—K.

6 The credit function

So as not to destroy the symmetry we require ¢ to be symmetric in x and y; so,
¢ [x,y] = ¢y, x], for all x and y. One of the simplest such functions is given by:

c[x,y] = #x+ #y.
By a simple calculation it can be shown that this definition is equivalent to:

¢ [x,y]1 = # [[x, ¥11.

This function is not useful, for two reasons. First, the length of the represented list
increases or decreases by just 1 under each of the list operations. So, amortized and
normal complexity coincide. Phrased differentially, the idea of amortized complexity
amounts to choosing a function ¢ that allows, every now and then, more substantial
decreases of its value. Second, the second definition shows that ¢ is invariant under
changes of representation; so, this ¢ gives no heuristic guidance when we exploit the
freedom to apply changes of representation.

A function ¢ that does satisfy these requirements is:

¢ [x,y] = |#x— 3yl

We leave the proof that the value of ¢ increases by at most 1 under the left and right
cons operations as an exercise to the reader.

We now use this ¢ to complete the design of the definitions for /t/ and rtl. In the
previous section we have derived that, for the special case #x =1, values v and v
must be chosen such that ¢-[x, y]—c-[rev-v,u] = #y+1—K, for some constant K.
We have:

¢ [x,y]

= {definition of ¢}
| #x — 4|

= {(#x=1)
|4y —1]

> {definition of | - |}
#y—1.

https://doi.org/10.1017/50956796800000526 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000526

512 R. R. Hoogerwoord

Furthermore, we must see to it that ¢-[rev-v,u] is not too large:

c-[rev-v,u]
= {definition of ¢}

[(rev-v) — #u|
= {#(rev'v) = #v}
|4 v— #ul.

By choosing the lengths of # and v as equal as possible we achieve ¢ [rev-v,u] € 1. So,
we have:

c[x,y]—clrev-v,u]l = #y—2.
Therefore, we choose u and v such that:
utHv=y A fu< #v < Fu+l.

The pair [rev-v, u] thus specified satisfies Q; this follows from a simple calculation.
From this specification it also follows that #u = # ydiv2. For any &, 0 < k < #,
the equation u,v:u+v = y A #u = k has exactly one solution which we denote by
y 1k, y| k. This solution can be computed, in O(k) time. Therefore, we define u and
vbyu=ytkand v=ylk, with k = #pdiv2.

Putting all the pieces together we obtain the following definitions for /z/ and its
symmetric counterpart r¢/:

l-[x,y] = if % x = 0~[[],[]]
| #x=1->[rev-(ylk),ytk] wherek = #ydiv2end
[#x=2->[t x,y]
fi.
rtl-[y,x] = if #x = 0~[[],[]]
| #x=1->[ytk,rev-(y| k)] wherek = #ydiv2end
0 #x22->[ytx]
fi.

8 Epilogue

A formalized notion of amortized complexity turns out to be of heuristic value for the
derivation of efficient programs. In our example, we have chosen function ¢ with no
more justification than an appeal to a few general criteria. Once ¢ has been chosen,
the definitions for /t/ and rt/ can be completed in a rather straightforward way.

In terms of the list representation used in this paper, reversal of a list is a trivial
operation: we have rev-[[x,y]] = [[y,x]], for all x and y. Hence, rev can be
implemented efficiently by a function Rev, defined by Rev-[x, y] = [y, x]. Thus, list
reversal becomes an O(1) operation.

https://doi.org/10.1017/50956796800000526 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000526

Functional Pearls: A symmetric set of efficient list operations 513

Acknowledgements

To Berry Schoenmakers for drawing my attention to the above definition of Rev, and
to David Gries for his comments on an earlier version of this paper.

References

Gries, D. 1981. The Science of Programming. Springer-Verlag.
Tarjan, R. E. 1985. Amortized computational complexity. SIAM J. on Algebraic and Discrete
Methods, 6: 306-318.

https://doi.org/10.1017/50956796800000526 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000526

