
Domain-Free Pure Type Systems

Gilles Barthe1 & Morten Heine S!2Srensen2

1 Centrum voor Wiskunde en Informatica (CWI)
PO Box 94079, 1090 GB Amsterdam, The Netherlands, gillesOcwi.nl

2 Department of Computer Science University of Copenhagen (DIKU)
Universitetsparken 1, DK-2100 Copenhagen 0, Denmark, ramboOdiku.dk

Abstract. Pure type systems feature domain-specified A-abstractions
AX: A.M. We present a variant of pure type systems, which we call
domain-free pure type systems, with domain-free A-abstractions Ax.M.
We study the basic properties of domain-free pure type systems and
establish their formal relationship with pure type systems.

1 Introduction

Typed versions of the >..-calculus were introduced independently by Church [6)
and Curry [7). In Church's system abstractions have domains, i.e. are of the
form >..x:A.t, whereas in Curry's system abstractions have no domain, i.e. are of
the form >..x.t. Over the years, many type systems have appeared, the majority
of which use domain-specified abstractions. Barendregt and others give an ab­
stract, unifying view of type systems with domain-specified abstractions in terms
of the notion of pure type system-see e.g. [2, 3, 8, 9]. In this paper, we consider
for every pure type system a domain-free version in which abstractions have no
domain. We call such systems domain-free pure type systems.3 The main techni­
cal contribution of the paper-expressed in Theorem 26-states, under suitable
hypotheses, a connection between a pure type system and its corresponding
domain-free pure type system. Domain-free pure type systems and Theorem 26
have proved useful for defining continuation-passing style translations for pure
type systems [4], for proving strong normalisation from weak normalisation of
pure type systems [15), and for studying classical pure type systems [5].

Contents of the paper. In Section 2 we introduce abstract type systems. These
are used in Section 3 to present the notion of pure type system and domain-free
pure type system. In Section 4 we develop some basic properties of domain-free
pure type systems, and in Section 5 we relate pure type systems to domain-free
pure type systems. In Section 6 we compare domain-free pure type systems with
the type assignment systems of [1]. In Section 7 we discuss type checking issues.
We conclude in Section 8.

3 These systems were informally suggested in [10].

10

2 Abstract type systems

In this section we introduce the notion of an abstract type system, which provides
a convenient framework for the presentation and comparison of different notions
of type system.

Definitionl. An abstract type system (ATS) is a triple (V, T, f-) where

1. V is a set of variables;
2. T is a set of terms with V ~ T;
3. C = (V x T)* is the set of contexts.4 The empty context is denoted by ();

The domain of a context I' is dom(I') = {x J 3t s.t. x: t EI'}.
4. J = C x T x T is the set of judgements;
5. f- ~ J is the derivability relation;

satisfying the following closure property

((I', x: B, I''), M, A) E f- => ((I', x: B), x, B) E f-

In the sequel, we write I' f- M : A for (I', M, A) E f- and f- M A for
((), M,A) EI-.

The derivability relation may be used to define legal terms.

Definition2. Let (V,T,1-) be an ATS.

1. A judgement (I', M, A) is legal if I' I- M: A.
2. A context I' is legal if I' f- M: A for some Mand A.
3. A term M is legal if I' f- M : A or I' I- A : M for some I' and A.

Morphisms of ATSs provide an important tool to compare type systems. Here
we let an ATS-morphism be a map between the underlying sets of terms which
preserves derivability.

Definition3. Let (V,T,1-) and (V',T',f-') be ATSs. A map h: T-+ T' is nat­
urally lifted to maps he : C-+ C' on contexts and h:r : J-+ J' on judgements:

he(())=()

hc(r, x:A) = hc(I'), h(x) :h(A)

h:r(r,M,A) = (he(r),h(M),h(A))

The map h : T-+ T' is an ATS-morphism if

1. for every x E V, h(x) E V';
2. for every j E J, j EI- implies h:r(j) E f-'.

4 s· denotes the set of finite lists over s.

11

The map h : T -t T' is an ATS-refiection if moreover, for every j' EI-', there
exists j EI- s.t. h:r(j) = j'.

Examples of reflections, apart from the ones considered in this paper, can be

found in [1, 3, 8]. Reflections are closed under composition but need not be
injective and might not have an inverse. The following observation will be useful
in Section 6.

Lemma4. Let (Vi,Ti,1-1), (Vi,T2,1-2) and (V3,T3,l-3) be ATSs. Moreover let

h : T1 -t T2, h' : T2 -t T3 and h" : T1 -t T3 be ATSs morphisms s.t. h' o h(M) =
h" (M) for every legal M. If h11 is an ATS-refiection, then h' is an ATS-refiection.

3 Pure type systems and domain-free pure type systems

In this section we present pure type systems and domain-free pure type systems.
This approach is inspired by [14].

Definition5.

l. A specification is a triple (S,A, R) where
(a) S is a set of sorts;
(b) A~ S x Sis a set of axioms;
(c) n ~ s x s x s is a set of rules.

2. A specification (S, A, n) is functional if for every s1, s2, s~, s3, s~ E S,

(a) (s1, s2) EA, (s1, s~) EA :::} s2 = s~
(b) (s1,s2,s3)En, (s1,s2,s~)ER :::} s3=:s~

3. s ES is a top-sort if there is no s' ES s.t. (s, s') EA. The set of top-sorts
is denoted by ST.

In the rest of this section, we let S = (S, A, n) denote a fixed specification
and V denote a fixed countably infinite set of variables.

Definition 6.

l. The set T of PTS-pseudo-terms is given by the abstract syntax:

T = v Is I TT 1 >-v: T.T Inv: T.T

2. {:3-reduction -+(3 is defined as the compatible closure of the contraction

(.Ax:A.M) N -+f3 M[x := N]

where•[• :=•]is the standard substitution operator.
3. f:J-equality =f3 is the reflexive, transitive, symmetric closure of -+(3.

4. The PTS derivability relation I- is given by the rules of Table l.

Every specification S induces an ATS ,\S with T as the set of terms and I- as
the derivability relation. Such an ATS is called a pure type system, or a PTS.

(axiom)

(start)

(weakening)

(product)

(application)

(abstraction)

(conversion)

Definition 7.

12

I'l-A:s

I',x: A I- x: A

I'l-A:B I'l-C:s
I',x: C I- A: B

I' I- A : s1 I', x : A I- B : s2

I' I- (llx:A.B): s3

I' I- F : (II x: A. B) I' I- a : A

I' I- Fa : B[x :=a]

I',x:A I- b:B I' I- (IIx:A.B) :s

I' I- >.x:A.b : II x: A. B

I' f- A : B I' f- B' : s

I' f- A: B'

Table 1. PURE TYPE SYSTEMS

if x ~ dom(I')

if x ~ dom(I')

if B =f3 B'

1. The set £ of DFPTS-pseudo-terms is given by the abstract syntax:

£ = v I s I ££ I >. v.c I nv : £.£

2. {!_-reduction -+t is defined as the compatible closure of the contraction

(.Ax.M) N -+t M{x := N}

where •{ • := •} is the obvious substitution operator.
3. ,13-equality =f3 is the reflexive, transitive, symmetric closure of -+f3·
4. The DFPTS derivability relation 1:- is given by the rules of Table 2.

Every specification S induces an ATS ~S with £ as the set of terms and I- as
the derivability relation. Such an ATS is called a domain-free pure type system,
or a DFPTS. The two most significant DFPTSs that appear in the literature are
Curry's version of the simply typed >.-calculus :1-+ and Martin-Lof's Logical
Framework ~p. Further examples of DFPTSs are provided by the remaining
specifications of the cube [2, 3], as defined below.

13

Definitions. Let S = {*, D} and A={(*: D)}. The cube-specifications are

--+ == (S,A, {{*, *)})
2 == (S,A, {{*, *), (D, *)})
~ == (S,A,{(*,*),(D,D)})

P =(S,A,{(*,*),(*,o)})

w == (S,A,{(*,*),(D,*),(D,D)})

P2 = (S, A,{(*,*), (D, *), (*, D)})
P'=!.. = (8, A,{(*,*), (D, D), (*, D)})
Pw = (S, A,{(*,*), (D, *), (o, D), (*• D)})

where (s1,s2) denotes (s1,s2,s2). The >.-cube consists of the eight PTSs >.S,
where S is one of the cube-specifications. Similarly, the ~-cube consists the eight
DFPTSs ~S, where Sis one of the cube-specifications.

(axiom)

(start)
I',x: Al-x: A

if x <f. dom(I')

(weakening)
I'l-A:B I'l-C:s

I',x: Cl-A: B
if x <f. dom(I')

(product)
I' I- A : s1 I', x : A I- B : s2

I'l-(lix:A. B): s3

(application)
I'I- F: (lix:A. B) I'l-a: A

I'l-F a: B{x :=a}

(abstraction)
I',x:Al-b:B I'l-(lix:A.B) :s

I' I- >.x .b : 1I x: A. B

(conversion)
r I- A : B r I- B' : s

I'l-A: B'
if B =t B'

Table 2. DOMAIN-FREE PURE TYPE SYSTEMS

Definition9. Let (R, T) be (/3, 7) or ({!_, .C).

1. --*'R is the reflexive transitive closure of--+ R;
2. MENFR <:::>there is no NET s.t. M --+RN;
3. M ESNR <:::> there is no infinite sequence Mo --+R M1 --+R M2 --+R .• . ;
4. ME WNR <:::> there is N E NFR s.t. M -+R N.

14

Elements of NFR, SNR, WNR are R-normal forms, R-strongly normalizing, and
R-weakly normalizing, respectively.

Definition 10. A specification S has normalizing (resp .. strongly normalizing)
PTS-types if M E WNµ (resp. M E SNµ) for every legal Judgement I' f-- M : s
withsES.

4 Properties of domain-free pure type systems

In this section we state some basic facts about DFPTSs. We follow the structure
of [3, Section' 5.2]. The proofs are simply inducti~ns, similar t.o those for the
corresponding results for PTSs and are therefore omitted for brevity. Throughout
the section, S denotes a fixed specification (S, A, R).

Propositionll (Church-Rosser). -+[!_is confluent on C.

Proof. By the technique of Tait and Martin-Lof. D

Lemma 12 (Substitution). Assume I', x : A, Ll I- B : C and I' I- a : A. Then
also I',Ll{x := a}l-A{x :=a}: B{x :=a}.

Lemma 13 (Thinning). If I' I- A : B and Ll 2 I' is legal then Ll I- A : B.

Lemma 14 (Generation).

1. I'i:-s: C::} 3(s,s') EA .C =µ s';
2. I' i- x : C ::} 3s ES, D EC. C-=p D, x : D EI', I' r D : s;
B. I'f--)..x.b: C::}3s ES, A,B EC. C ~/3 IIx:A.B, I', x: Al--b : B, I'l--II x:A.B: s;
4- I'l-IIx:A.B: C::} 3(s1,s2,s3) E-'Tl. C=13 s3,I'l--A: s1,I',x: Al:-B: s2;
5. I'l:-Fa: C::} 3x E V,A,B EC. C =!!.. B{x ~= a},I'l:-F: IIx:A.B,H-a: A.

Lemma 15 (Correctness of types). If I' I- A : B then either B E ST or
3sES.I'l-B:s.

Theorem 16 (Subject Reduction). If I'r A : B and A -+!!..A' then I'i-A' : B.

One important difference between PTSs and DFPTSs is that even in the simply
typed case, the domain-free system does not satisfy Uniqueness of Types.

Lemma 17 (Failure of Uniqueness of Types). In ~-+, there exists a term
M and a context I' s.t. I' I- M : C and I' I- M : C' with C =/=!!_ C'.

Proof. Take I' ::: A:*, B: * and M ::: >.x.x. Then I' I- M : A -+ A and
I' I- M: B-+ B. o
The failure of Uniqueness of Types is not catastrophic per se but is often accom-­
p anied b~ the ~oss of Decidability of Type Checking-see Section 7. Interestingly,
the Classification Property still holds under some mild condition.

15

Definition 18. S is classifiable if it is functional and for all s 1 , s3 , s, s' E S,

l. I'l-A:s /\ I' I- A' : s' /\ A = !!.. A' => s =: s'

2. (s,si) EA /\ (s', s1) E .A => s = s'
3. (s1, s, s3) ER, /\. (s1, s', s3) En => s =: s'

For example, the cube-specifications are classifiable.
The Classification Lemma is proved for a variant of DFPTSs with sorted

variables. See [8) for a variant of PTSs based on sorted variables.

Proposition 19. Assume that S is classifiable. For every sorts s ';/= s',

Term• n Terms' = 0
s ., 0 Type n Type =

where

Type• ={ME C I I' i- M: s for some context I'}

Terms= {ME c I I' I- M: A for some context rand A E Type'}

5 Reflection and applications

In this section we study the relation between PTSs and DFPTSs. Throughout
the section, S denotes a fixed specification.

Every PTS-pseudo-term induces a DFPTS-pseudo-term by erasing the do­
mains of abstractions. This erasing function is used by Geuvers [8] to study
PTSs with J311-conversion.

Definition20. The erasure map l·I : T -t C is defined as follows:

lxl =x

lsl:::: s

It ul = ltl Jui
I.Ax: A.tl = >..x.ltl

IJix: A.BI= IIx: JAl.JBI

Erasure preserves reduction, equality and typing:

Proposition 21.

1. If M -t13 N then IMl-7fi3 JNI;
2. If M =13 N then JMI =i\NI;
3. If I' f- M: A then II'l 1- IMI: IA!.

Proof. First prove by induction on M that

JM[x := N]I = IMJ{x := INI}

Then prove (1) using (*) by induction on the structure of M, (2) by induction on
the derivation of M =f3 N and (3) by induction on the derivation of I' 1- M : A,
using(*) and 2. D

Corollary22. 1-1 is an ATS-morphism from .AS to ~S.

The main result of this section is that, under suitable conditions, 1-1 is an ATS­
refiection. This generalizes [3, Proposition 3.2.15] where a similar result is proved
for simply typed .A-calculus--see also Section 6. Before proving themain result,
we start with three preliminary lemmas.

The first lemma is about the relation between -+(3 and ---*(!.:

Lemma 23 [8].

1. If IAI -*f3 F then there is B such that A -*f3 B and IBI = F;

2. If \Al =i"_s then A =f3 s.

The second lemma establishes the fundamental property of erasure.

Lemma24. Assume M,M' E NF,e, IMI = IM'I, I' 1-- M: A, and I' I- M': A'.

1. If A:= A' then M::: M'.
2. If A =: s, A' =: s' then M := M'.

The third lemma provides the necssary machinery to prove the main result.

Lemma 25. Let S be a specification with normalizing PTS-types.

1. If I' 1-- M:s,I' I- N:s', JMl=f3 INI, thenM=,eN.

2. If I'1, I'z are legal and JI'1I =f3 II'l then I'1 =f3 I'z.

3. If I' 1-- P: M, I' 1-- N: s', IMI =t IN!, then M =f3 N.

fheorem 26 (Main result). Let S be a functional specification with normal­
izing PTS-types. Then j.J is an ATS-reflection.

Proof. By induction on the structure of derivations, using the above lemmas. O

We conclude this section with some applications of Theorem 26. These applica­
tions are used in [4, 5, 15]. First we examine how normalization is reflected.

Definition27. Let (<P, T) be (.A, T) or(~,£). Assume X s:;; T. We write </;S I= X
if every legal </;S-term t belongs to X.

We have:

Proposition 28. Let S be a functional specification.

17

1. >.S I= SNp implies ~S I= SNp.
2. >.S I= WNp implies ~S I= WNp.
9. If S has strongly normalizing PTS-types, then ~S I= SNp implies >.S I= SNp.
4. If S has normalizing PTS-types, then ~S I= WN~ implies >.S I= WNp.

Proof. {1): By Thm. 26 and Lem. 23. (2): By Thm. 26, Prop. 21{1), and by not­
ing that the erasure of a ,8-normal form is a ,8-normal form. (3) and (4): By
Prop. 21(3) and some elementary reasoning on reductions. 0

This result is useful in work on the Barendregt-Geuvers-Klop conjecture which
states that for every specification S, AS I= WNp implies AS I= SNp-see [15, 4].
Moreover, it implies strong normalisation for the ~-cube:

Proposition29. }i_S I= SNt for every cube-specification S.

Proof By Proposition 28(1) and strong normalization of the .A-cube. 0

As an application of Theorem 26, we can also infer consistency of a DFPTS
from the corresponding PTS:

Proposition30. For every cube-specification, there is no M E £ s.t. x : * 1-
M: x.

Proof. By Theorem 26 and consistency of the A-cube. 0

6 Comparison with type assignment systems

There are two ways to perceive Curry's version of simply typed >.-calculus:

1. terms in Curry's system are those of the untyped >.-calculus;
2. terms in Curry's system are those of Church's system with domain-free ab­

stractions.

View (2) leads to the notion of domain-free pure type system studied in this paper
whereas view (1) leads to the notion of type assignment system, or TAS. In recent
work [1], van Bakel, Liquori, Ranchi della Roncha and Urzyczyn define for each
cube-specification S a TAS Xs. These systems, the X-cube, include simple types
X-+ introduced by Curry [7], second-order types X2 introduced by Leivant [12]
and higher-order types Xw introduced by Giannini and Ronchi della Rocca [11].

An important aspect of the X-cube is the separation of the set U of pseudo­
terms into three different syntactic categories: terms, constructors and kinds.
Terms use domain-free abstractions whereas constructors use domain-specified
abstractions. As a consequence, the erasure map5 E is an ATS-reflection from
>.S to Xs only for the specifications which do not combine polymorphism and

5 E is defined as a map on legal PTS-terms but can of course be extended to a map
on PTS-pseudo-terms, e.g. by taking E(M) = * if M is not legal.

18

dependent types, i.e. -t, 2, w, P, ~and P~. For the remaining specifications P2

and Pw, Eis simply an ATS-morphism.
Note that ,\S and Xs are identical for S =-t but diverge for the other cube­

specifications. Indeed, consider the ,\2-term ,\a:*.,\x:a.x of type Va:*.a -ta. The
corresponding term in X2 is E(M) =: ,\x.x whereas the corresponding domain­

free term in ~2 is IMI = Aa . .Ax.x.
We now turn to the relation between TASs and DFPTSs. Define the erasure

map E1 : U -t £ which removes the domains of constructor abstractions.

Proposition31. !JS is a cube-specification without polymorphism (i.e. S is -t,

P, ~or P0, then E' is an ATS-reftection from Xs to ~S.

Proof. Prove by induction on the structure of derivations that E 1 is an ATS­

morphism and that !Ml= E'(E M) for every legal PTS-term M. Conclude by

Theorem 26 and Lemma 4. 0

Note that E1 is not an ATS-morphism from X2 to ~2: consider the term M given
above -a similar remark applies tow, P2 and Pw. However, one may define an
erasure map F : £ -t U which removes type abstractions and type applications. 6

Proposition32. F is an ATS-refiection.

Proof. Prove by induction on the structure of derivations that F is an ATS­

morphism and that E(M) = F(!MI) for every legal PTS-term M. Conclude
from the fact that Eis an ATS-reflection from ,\2 to X2 and Lemma 4. O

7 Type checking

The type checking problem (TC) for a specification S consists in deciding whether
a given DFPTS-judgement (I', M, A) is legal. In this section we briefly discuss
some results related to type checking.

Proposition33. Given an arbitrary specification S, it is decidable whether a
DFPTS-judgement in (!_-normal is derivable.

~eople :work_ing on ~he ALF system claim that this limited form of decidability
1s sufficient m practice because of the presence of definitions-see e.g. [13].

Proposition 34. TC is decidable for~ -t but undecidable for ~p.

It would be interesting to know whether TC is decidable for ~2 and ~w.

6 It requires that we work with sorted variables, as suggested at the end of Section 4.

19

8 Conclusion

We have introduced the notion of a domain-free pure type system, developed
its basic properties and established its exact relationship with the notion of
pure type system. Thus far,DFPTSs have proved useful in several applications
[4, 5, 15]. Moreover, -variants of-DFPTSs are used in the implementation
of proof-assistant systems based on type theory [13]. It is also possible that
DFPTSs will play a role in the design of programming languages; for example,
one may envisage a dependently typed extension of ML based on ~p. Finally,
we would like to point out that DFPTSs sometimes provide a more natural basis
than PTSs for extended type systems. For example, the extension of pure type
systems with classical operators [5] yields better results when the abstractions
are domain-free.

References

1. S. van Bakel, L. Liquori, S. Ronchi della Roncha, and P. Urzyczyn. Comparing
cubes. In A. Nerode and Y.N. Matiyasevich, editors, Proceedings of LFCS'94,
volume 813 of Lecture Notes in Computer Science, pages 353-365. Springer-Verlag,
1994. An extended version is to appear in Annals of Pure and Applied Logic.

2. H. Barendregt. Introduction to Generalised Type Systems. J. Functional Pro­
gramming, 1(2):125-154, April 1991.

3. H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, pages 117-309.
Oxford Science Publications, 1992. Volume 2.

4. G. Barthe, J. Ratcliff, and M.H. SizJrensen. CPS-translation and applications: the
cube and beyond. In 0. Danvy, editor, Proc. of the 2nd ACM SIGPLAN Workshop
on Continuations, number NS-96-13 in BRICS Notes, pages 4:1-31, 1996.

5. G. Barthe, J. Ratcliff, and M.H. S!ISrensen. Classical pure type systems. In Pro­
ceedings of MFPS'97, Electronic Notes in Theoretical Computer Science, 1997.

6. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

7. H. Curry. Functionality in combinatory logic. Proceedings of the National Academy
of Science USA, 20:584-590, 1934.

8. H. Geuvers. Logics and type systems. PhD thesis, University of Nijmegen, 1993.
9. H. Geuvers and M.-J. Nederhof. A modular proof of strong normalisation for the

Calculus of Constructions. Journal of Functional Programming, 1:155-189, 1991.
10. H. Geuvers and B. Werner. On the Church-Rosser property for expressive type sys­

tems and its consequence for their metatheoretic study. In Proceedings of LICS'94,
pages 320-329. IEEE Computer Society Press, 1994.

11. P. Giannini and S. Ronchi Della Rocca. Characterization of typings in polymor­
phic type discipline. In Proceedings of LICS'88, pages 61-70. IEEE Computer
Society Press, 1988.

12. D. Leivant. Polymorphic type inference. In Proceedings of POPL'89, pages 88-98.
ACM Press, 1983.

13. L. Magnusson. The implementation of ALF: a proof editor based on Martin-Lo/ 's
monomorphic type theory with explicit substitution. PhD thesis, Department of
Computer Science, Chalmers University, 1994.

20

14. P. Severi. Normalisation in lambda calculus and its relation to type inference. PhD
thesis, Department of Computer Science, Technical University of Eindhoven, 1996.

15. M.H. S!6rensen. Strong normalization from weak normalization in typed A-calculi.
Information and Computation, 133(1):35-71, 1997.

