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Abstract. Pure type systems feature domain-specified A-abstractions 
AX: A.M. We present a variant of pure type systems, which we call 
domain-free pure type systems, with domain-free A-abstractions Ax.M. 
We study the basic properties of domain-free pure type systems and 
establish their formal relationship with pure type systems. 

1 Introduction 

Typed versions of the >..-calculus were introduced independently by Church [6) 
and Curry [7). In Church's system abstractions have domains, i.e. are of the 
form >..x:A.t, whereas in Curry's system abstractions have no domain, i.e. are of 
the form >..x.t. Over the years, many type systems have appeared, the majority 
of which use domain-specified abstractions. Barendregt and others give an ab­
stract, unifying view of type systems with domain-specified abstractions in terms 
of the notion of pure type system-see e.g. [2, 3, 8, 9]. In this paper, we consider 
for every pure type system a domain-free version in which abstractions have no 
domain. We call such systems domain-free pure type systems.3 The main techni­
cal contribution of the paper-expressed in Theorem 26-states, under suitable 
hypotheses, a connection between a pure type system and its corresponding 
domain-free pure type system. Domain-free pure type systems and Theorem 26 
have proved useful for defining continuation-passing style translations for pure 
type systems [4], for proving strong normalisation from weak normalisation of 
pure type systems [15), and for studying classical pure type systems [5]. 

Contents of the paper. In Section 2 we introduce abstract type systems. These 
are used in Section 3 to present the notion of pure type system and domain-free 
pure type system. In Section 4 we develop some basic properties of domain-free 
pure type systems, and in Section 5 we relate pure type systems to domain-free 
pure type systems. In Section 6 we compare domain-free pure type systems with 
the type assignment systems of [1]. In Section 7 we discuss type checking issues. 
We conclude in Section 8. 

3 These systems were informally suggested in [10]. 
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2 Abstract type systems 

In this section we introduce the notion of an abstract type system, which provides 
a convenient framework for the presentation and comparison of different notions 
of type system. 

Definitionl. An abstract type system (ATS) is a triple (V, T, f-) where 

1. V is a set of variables; 
2. T is a set of terms with V ~ T; 
3. C = (V x T)* is the set of contexts.4 The empty context is denoted by (); 

The domain of a context I' is dom(I') = {x J 3t s.t. x: t EI'}. 
4. J = C x T x T is the set of judgements; 
5. f- ~ J is the derivability relation; 

satisfying the following closure property 

((I', x: B, I''), M, A) E f- => ((I', x: B), x, B) E f-

In the sequel, we write I' f- M : A for (I', M, A) E f- and f- M A for 
((), M,A) EI-. 

The derivability relation may be used to define legal terms. 

Definition2. Let (V,T,1-) be an ATS. 

1. A judgement (I', M, A) is legal if I' I- M: A. 
2. A context I' is legal if I' f- M: A for some Mand A. 
3. A term M is legal if I' f- M : A or I' I- A : M for some I' and A. 

Morphisms of ATSs provide an important tool to compare type systems. Here 
we let an ATS-morphism be a map between the underlying sets of terms which 
preserves derivability. 

Definition3. Let (V,T,1-) and (V',T',f-') be ATSs. A map h: T-+ T' is nat­
urally lifted to maps he : C-+ C' on contexts and h:r : J-+ J' on judgements: 

he(())=() 

hc(r, x:A) = hc(I'), h(x) :h(A) 

h:r(r,M,A) = (he(r),h(M),h(A)) 

The map h : T-+ T' is an ATS-morphism if 

1. for every x E V, h(x) E V'; 
2. for every j E J, j EI- implies h:r(j) E f-'. 

4 s· denotes the set of finite lists over s. 
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The map h : T -t T' is an ATS-refiection if moreover, for every j' EI-', there 
exists j EI- s.t. h:r(j) = j'. 

Examples of reflections, apart from the ones considered in this paper, can be 

found in [1, 3, 8]. Reflections are closed under composition but need not be 
injective and might not have an inverse. The following observation will be useful 
in Section 6. 

Lemma4. Let (Vi,Ti,1-1), (Vi,T2,1-2) and (V3,T3,l-3) be ATSs. Moreover let 

h : T1 -t T2, h' : T2 -t T3 and h" : T1 -t T3 be ATSs morphisms s.t. h' o h(M) = 
h" (M) for every legal M. If h11 is an ATS-refiection, then h' is an ATS-refiection. 

3 Pure type systems and domain-free pure type systems 

In this section we present pure type systems and domain-free pure type systems. 
This approach is inspired by [14]. 

Definition5. 

l. A specification is a triple (S,A, R) where 
(a) S is a set of sorts; 
(b) A~ S x Sis a set of axioms; 
( c) n ~ s x s x s is a set of rules. 

2. A specification ( S, A, n) is functional if for every s1, s2, s~, s3, s~ E S, 

(a) (s1, s2) EA, (s1, s~) EA :::} s2 = s~ 
(b) (s1,s2,s3)En, (s1,s2,s~)ER :::} s3=:s~ 

3. s ES is a top-sort if there is no s' ES s.t. (s, s') EA. The set of top-sorts 
is denoted by ST. 

In the rest of this section, we let S = ( S, A, n) denote a fixed specification 
and V denote a fixed countably infinite set of variables. 

Definition 6. 

l. The set T of PTS-pseudo-terms is given by the abstract syntax: 

T = v Is I TT 1 >-v: T.T Inv: T.T 

2. {:3-reduction -+(3 is defined as the compatible closure of the contraction 

(.Ax:A.M) N -+f3 M[x := N] 

where•[• :=•]is the standard substitution operator. 
3. f:J-equality =f3 is the reflexive, transitive, symmetric closure of -+(3. 

4. The PTS derivability relation I- is given by the rules of Table l. 

Every specification S induces an ATS ,\S with T as the set of terms and I- as 
the derivability relation. Such an ATS is called a pure type system, or a PTS. 



(axiom) 

(start) 

(weakening) 

(product) 

(application) 

(abstraction) 

(conversion) 

Definition 7. 
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I'l-A:s 

I',x: A I- x: A 

I'l-A:B I'l-C:s 
I',x: C I- A: B 

I' I- A : s1 I', x : A I- B : s2 

I' I- (llx:A.B): s3 

I' I- F : (II x: A. B) I' I- a : A 

I' I- Fa : B[x :=a] 

I',x:A I- b:B I' I- (IIx:A.B) :s 

I' I- >.x:A.b : II x: A. B 

I' f- A : B I' f- B' : s 

I' f- A: B' 

Table 1. PURE TYPE SYSTEMS 

if x ~ dom(I') 

if x ~ dom(I') 

if B =f3 B' 

1. The set £ of DFPTS-pseudo-terms is given by the abstract syntax: 

£ = v I s I ££ I >. v.c I nv : £.£ 

2. {!_-reduction -+t is defined as the compatible closure of the contraction 

(.Ax.M) N -+t M{x := N} 

where •{ • := •} is the obvious substitution operator. 
3. ,13-equality =f3 is the reflexive, transitive, symmetric closure of -+f3· 
4. The DFPTS derivability relation 1:- is given by the rules of Table 2. 

Every specification S induces an ATS ~S with £ as the set of terms and I- as 
the derivability relation. Such an ATS is called a domain-free pure type system, 
or a DFPTS. The two most significant DFPTSs that appear in the literature are 
Curry's version of the simply typed >.-calculus :1-+ and Martin-Lof's Logical 
Framework ~p. Further examples of DFPTSs are provided by the remaining 
specifications of the cube [2, 3], as defined below. 
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Definitions. Let S = {*, D} and A={(*: D)}. The cube-specifications are 

--+ == (S,A, {{*, *)}) 
2 == (S,A, {{*, *), (D, *)}) 
~ == (S,A,{(*,*),(D,D)}) 

P =(S,A,{(*,*),(*,o)}) 

w == (S,A,{(*,*),(D,*),(D,D)}) 

P2 = (S, A,{(*,*), (D, *), (*, D)}) 
P'=!.. = (8, A,{(*,*), (D, D), (*, D)}) 
Pw = (S, A,{(*,*), (D, *), (o, D), ( *• D)}) 

where (s1,s2) denotes (s1,s2,s2). The >.-cube consists of the eight PTSs >.S, 
where S is one of the cube-specifications. Similarly, the ~-cube consists the eight 
DFPTSs ~S, where Sis one of the cube-specifications. 

(axiom) 

(start) 
I',x: Al-x: A 

if x <f. dom(I') 

(weakening) 
I'l-A:B I'l-C:s 

I',x: Cl-A: B 
if x <f. dom(I') 

(product) 
I' I- A : s1 I', x : A I- B : s2 

I'l-(lix:A. B): s3 

(application) 
I'I- F: (lix:A. B) I'l-a: A 

I'l-F a: B{x :=a} 

(abstraction) 
I',x:Al-b:B I'l-(lix:A.B) :s 

I' I- >.x .b : 1I x: A. B 

(conversion) 
r I- A : B r I- B' : s 

I'l-A: B' 
if B =t B' 

Table 2. DOMAIN-FREE PURE TYPE SYSTEMS 

Definition9. Let (R, T) be (/3, 7) or ({!_, .C). 

1. --*'R is the reflexive transitive closure of--+ R; 
2. MENFR <:::>there is no NET s.t. M --+RN; 
3. M ESNR <:::> there is no infinite sequence Mo --+R M1 --+R M2 --+R .• . ; 
4. ME WNR <:::> there is N E NFR s.t. M -+R N. 
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Elements of NFR, SNR, WNR are R-normal forms, R-strongly normalizing, and 
R-weakly normalizing, respectively. 

Definition 10. A specification S has normalizing (resp .. strongly normalizing) 
PTS-types if M E WNµ (resp. M E SNµ) for every legal Judgement I' f-- M : s 
withsES. 

4 Properties of domain-free pure type systems 

In this section we state some basic facts about DFPTSs. We follow the structure 
of [3, Section' 5.2]. The proofs are simply inducti~ns, similar t.o those for the 
corresponding results for PTSs and are therefore omitted for brevity. Throughout 
the section, S denotes a fixed specification ( S, A, R). 

Propositionll (Church-Rosser). -+[!_is confluent on C. 

Proof. By the technique of Tait and Martin-Lof. D 

Lemma 12 (Substitution). Assume I', x : A, Ll I- B : C and I' I- a : A. Then 
also I',Ll{x := a}l-A{x :=a}: B{x :=a}. 

Lemma 13 (Thinning). If I' I- A : B and Ll 2 I' is legal then Ll I- A : B. 

Lemma 14 (Generation). 

1. I'i:-s: C::} 3(s,s') EA .C =µ s'; 
2. I' i- x : C ::} 3s ES, D EC. C-=p D, x : D EI', I' r D : s; 
B. I'f--)..x.b: C::}3s ES, A,B EC. C ~/3 IIx:A.B, I', x: Al--b : B, I'l--II x:A.B: s; 
4- I'l-IIx:A.B: C::} 3(s1,s2,s3) E-'Tl. C=13 s3,I'l--A: s1,I',x: Al:-B: s2; 
5. I'l:-Fa: C::} 3x E V,A,B EC. C =!!.. B{x ~= a},I'l:-F: IIx:A.B,H-a: A. 

Lemma 15 (Correctness of types). If I' I- A : B then either B E ST or 
3sES.I'l-B:s. 

Theorem 16 (Subject Reduction). If I'r A : B and A -+!!..A' then I'i-A' : B. 

One important difference between PTSs and DFPTSs is that even in the simply 
typed case, the domain-free system does not satisfy Uniqueness of Types. 

Lemma 17 (Failure of Uniqueness of Types). In ~-+, there exists a term 
M and a context I' s.t. I' I- M : C and I' I- M : C' with C =/=!!_ C'. 

Proof. Take I' ::: A:*, B: * and M ::: >.x.x. Then I' I- M : A -+ A and 
I' I- M: B-+ B. o 
The failure of Uniqueness of Types is not catastrophic per se but is often accom-­
p anied b~ the ~oss of Decidability of Type Checking-see Section 7. Interestingly, 
the Classification Property still holds under some mild condition. 
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Definition 18. S is classifiable if it is functional and for all s 1 , s3 , s, s' E S, 

l. I'l-A:s /\ I' I- A' : s' /\ A = !!.. A' => s =: s' 

2. (s,si) EA /\ (s', s1) E .A => s = s' 
3. (s1, s, s3) ER, /\. (s1, s', s3) En => s =: s' 

For example, the cube-specifications are classifiable. 
The Classification Lemma is proved for a variant of DFPTSs with sorted 

variables. See [8) for a variant of PTSs based on sorted variables. 

Proposition 19. Assume that S is classifiable. For every sorts s ';/= s', 

Term• n Terms' = 0 
s ., 0 Type n Type = 

where 

Type• ={ME C I I' i- M: s for some context I'} 

Terms= {ME c I I' I- M: A for some context rand A E Type'} 

5 Reflection and applications 

In this section we study the relation between PTSs and DFPTSs. Throughout 
the section, S denotes a fixed specification. 

Every PTS-pseudo-term induces a DFPTS-pseudo-term by erasing the do­
mains of abstractions. This erasing function is used by Geuvers [8] to study 
PTSs with J311-conversion. 

Definition20. The erasure map l·I : T -t C is defined as follows: 

lxl =x 

lsl:::: s 

It ul = ltl Jui 
I.Ax: A.tl = >..x.ltl 

IJix: A.BI= IIx: JAl.JBI 

Erasure preserves reduction, equality and typing: 

Proposition 21. 

1. If M -t13 N then IMl-7fi3 JNI; 
2. If M =13 N then JMI =i\NI; 
3. If I' f- M: A then II'l 1- IMI: IA!. 



Proof. First prove by induction on M that 

JM[x := N]I = IMJ{x := INI} 

Then prove (1) using ( *) by induction on the structure of M, (2) by induction on 
the derivation of M =f3 N and (3) by induction on the derivation of I' 1- M : A, 
using(*) and 2. D 

Corollary22. 1-1 is an ATS-morphism from .AS to ~S. 

The main result of this section is that, under suitable conditions, 1-1 is an ATS­
refiection. This generalizes [3, Proposition 3.2.15] where a similar result is proved 
for simply typed .A-calculus--see also Section 6. Before proving themain result, 
we start with three preliminary lemmas. 

The first lemma is about the relation between -+(3 and ---*(!.: 

Lemma 23 [8]. 

1. If IAI -*f3 F then there is B such that A -*f3 B and IBI = F; 

2. If \Al =i"_s then A =f3 s. 

The second lemma establishes the fundamental property of erasure. 

Lemma24. Assume M,M' E NF,e, IMI = IM'I, I' 1-- M: A, and I' I- M': A'. 

1. If A:= A' then M::: M'. 
2. If A =: s, A' =: s' then M := M'. 

The third lemma provides the necssary machinery to prove the main result. 

Lemma 25. Let S be a specification with normalizing PTS-types. 

1. If I' 1-- M:s,I' I- N:s', JMl=f3 INI, thenM=,eN. 

2. If I'1, I'z are legal and JI'1I =f3 II'l then I'1 =f3 I'z. 

3. If I' 1-- P: M, I' 1-- N: s', IMI =t IN!, then M =f3 N. 

fheorem 26 (Main result). Let S be a functional specification with normal­
izing PTS-types. Then j.J is an ATS-reflection. 

Proof. By induction on the structure of derivations, using the above lemmas. O 

We conclude this section with some applications of Theorem 26. These applica­
tions are used in [4, 5, 15]. First we examine how normalization is reflected. 

Definition27. Let (<P, T) be (.A, T) or(~,£). Assume X s:;; T. We write </;S I= X 
if every legal </;S-term t belongs to X. 

We have: 

Proposition 28. Let S be a functional specification. 
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1. >.S I= SNp implies ~S I= SNp. 
2. >.S I= WNp implies ~S I= WNp. 
9. If S has strongly normalizing PTS-types, then ~S I= SNp implies >.S I= SNp. 
4. If S has normalizing PTS-types, then ~S I= WN~ implies >.S I= WNp. 

Proof. {1): By Thm. 26 and Lem. 23. (2): By Thm. 26, Prop. 21{1), and by not­
ing that the erasure of a ,8-normal form is a ,8-normal form. (3) and (4): By 
Prop. 21(3) and some elementary reasoning on reductions. 0 

This result is useful in work on the Barendregt-Geuvers-Klop conjecture which 
states that for every specification S, AS I= WNp implies AS I= SNp-see [15, 4]. 
Moreover, it implies strong normalisation for the ~-cube: 

Proposition29. }i_S I= SNt for every cube-specification S. 

Proof By Proposition 28(1) and strong normalization of the .A-cube. 0 

As an application of Theorem 26, we can also infer consistency of a DFPTS 
from the corresponding PTS: 

Proposition30. For every cube-specification, there is no M E £ s.t. x : * 1-
M: x. 

Proof. By Theorem 26 and consistency of the A-cube. 0 

6 Comparison with type assignment systems 

There are two ways to perceive Curry's version of simply typed >.-calculus: 

1. terms in Curry's system are those of the untyped >.-calculus; 
2. terms in Curry's system are those of Church's system with domain-free ab­

stractions. 

View (2) leads to the notion of domain-free pure type system studied in this paper 
whereas view (1) leads to the notion of type assignment system, or TAS. In recent 
work [1], van Bakel, Liquori, Ranchi della Roncha and Urzyczyn define for each 
cube-specification S a TAS Xs. These systems, the X-cube, include simple types 
X-+ introduced by Curry [7], second-order types X2 introduced by Leivant [12] 
and higher-order types Xw introduced by Giannini and Ronchi della Rocca [11]. 

An important aspect of the X-cube is the separation of the set U of pseudo­
terms into three different syntactic categories: terms, constructors and kinds. 
Terms use domain-free abstractions whereas constructors use domain-specified 
abstractions. As a consequence, the erasure map5 E is an ATS-reflection from 
>.S to Xs only for the specifications which do not combine polymorphism and 

5 E is defined as a map on legal PTS-terms but can of course be extended to a map 
on PTS-pseudo-terms, e.g. by taking E(M) = * if M is not legal. 
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dependent types, i.e. -t, 2, w, P, ~and P~. For the remaining specifications P2 

and Pw, Eis simply an ATS-morphism. 
Note that ,\S and Xs are identical for S =-t but diverge for the other cube­

specifications. Indeed, consider the ,\2-term ,\a:*.,\x:a.x of type Va:*.a -ta. The 
corresponding term in X2 is E(M) =: ,\x.x whereas the corresponding domain­

free term in ~2 is IMI = Aa . .Ax.x. 
We now turn to the relation between TASs and DFPTSs. Define the erasure 

map E1 : U -t £ which removes the domains of constructor abstractions. 

Proposition31. !JS is a cube-specification without polymorphism (i.e. S is -t, 

P, ~or P0, then E' is an ATS-reftection from Xs to ~S. 

Proof. Prove by induction on the structure of derivations that E 1 is an ATS­

morphism and that !Ml= E'(E M) for every legal PTS-term M. Conclude by 

Theorem 26 and Lemma 4. 0 

Note that E1 is not an ATS-morphism from X2 to ~2: consider the term M given 
above -a similar remark applies tow, P2 and Pw. However, one may define an 
erasure map F : £ -t U which removes type abstractions and type applications. 6 

Proposition32. F is an ATS-refiection. 

Proof. Prove by induction on the structure of derivations that F is an ATS­

morphism and that E(M) = F(!MI) for every legal PTS-term M. Conclude 
from the fact that Eis an ATS-reflection from ,\2 to X2 and Lemma 4. O 

7 Type checking 

The type checking problem (TC) for a specification S consists in deciding whether 
a given DFPTS-judgement (I', M, A) is legal. In this section we briefly discuss 
some results related to type checking. 

Proposition33. Given an arbitrary specification S, it is decidable whether a 
DFPTS-judgement in (!_-normal is derivable. 

~eople :work_ing on ~he ALF system claim that this limited form of decidability 
1s sufficient m practice because of the presence of definitions-see e.g. [13]. 

Proposition 34. TC is decidable for~ -t but undecidable for ~p. 

It would be interesting to know whether TC is decidable for ~2 and ~w. 

6 It requires that we work with sorted variables, as suggested at the end of Section 4. 
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8 Conclusion 

We have introduced the notion of a domain-free pure type system, developed 
its basic properties and established its exact relationship with the notion of 
pure type system. Thus far,DFPTSs have proved useful in several applications 
[4, 5, 15]. Moreover, -variants of-DFPTSs are used in the implementation 
of proof-assistant systems based on type theory [13]. It is also possible that 
DFPTSs will play a role in the design of programming languages; for example, 
one may envisage a dependently typed extension of ML based on ~p. Finally, 
we would like to point out that DFPTSs sometimes provide a more natural basis 
than PTSs for extended type systems. For example, the extension of pure type 
systems with classical operators [5] yields better results when the abstractions 
are domain-free. 
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