
JFP 12 (2): 133–158, March 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S0956796801004233 Printed in the United Kingdom

133

Type-checking multi-parameter type classes

DOMINIC DUGGAN

Department of Computer Science, Stevens Institute of Technology,

Castle Point on the Hudson, Hoboken, NJ 07030, USA

JOHN OPHEL

Department of Computer Science and Computer Engineering, La Trobe University,

Bundoora, Victoria 3083, Australia

Abstract

Type classes are a novel combination of parametric polymorphism and constrained types.

Although most implementations restrict type classes to be single-parameter, the generalization

to multi-parameter type classes has gained increasing attention. A problem with multi-

parameter type classes is the increased possibilities they introduce for ambiguity in inferred

types, impacting their usefulness in many practical situations. A new type-checking strategy,

domain-driven unifying resolution, is identified as an approach to solve these problems. Domain-

driven unifying resolution is simple, efficient, and practically useful. However, even with severe

restrictions on instance definitions, it is not possible to guarantee that type-checking with

unifying resolution terminates. This is in contrast with the naive generalization of single

parameter resolution strategies. Domain-driven unifying resolution is guaranteed to terminate

if the type class constraints are satisfiable; however satisfiability is undecidable even with severe

restrictions on instance definitions. These results shed some light on ambiguity problems with

multi-parameter type classes.

Capsule Review

Haskell’s type classes have proven to be a useful and powerful extension to conventional

parametric polymorphism, providing a disciplined form of ad hoc polymorphism, or over-

loading. One problem in their use, however, is the possibility of type ambiguity, i.e. the type

inference algorithm is not complete. This problem is particularly acute when multi-parameter

type classes are introduced, which is a popular extension currently supported by several

Haskell implementations. This paper proposes a new algorithm that resolves overloading and

avoids ambiguous types under certain well-defined, although undecidable, conditions.

1 Introduction

Parametric overloading refers to a form of constrained genericity, based on the

combination of parametric polymorphism and overloading (Kaes, 1988). Parametric

polymorphism allows a function to abstract over the types of some of its arguments,

with the actual type arguments implicitly supplied at the call sites for the function.

Parametric overloading generalizes this by allowing a function to abstract over the

overloaded operations used in its definition (at least, those occurrences which depend

on undetermined types), with the actual implementations implicitly constructed at

the call site. For example, if the double function is defined by:

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

134 D. Duggan and J. Ophel

double x = x + x

then the type of double reflects that its use depends on there being an implemen-

tation of addition available for any arguments to which double is applied. This

mechanism is realized in the Haskell language through the use of type classes (Hall

et al., 1996). A type class consists of a declaration of the operations which inhabit

the class, and a collection of instance declarations which provide implementations of

that class for various types. Uses of overloaded operations give rise to overloading

(class) constraints in polymorphic types. For example:

class Plus α where (+) :: α→ α→ α

instance Plus Int where (+) = integerPlus

instance Plus α ⇒ Plus (Vector α) where x + y = ...

Polymorphic types have the form ∀α.C ⇒ τ, where C is a context of class

constraints restricting the possible instantiations of the type variables. For example,

the type of double is ∀α.Plus α ⇒ α → α. We refer to the expression Plus α in

this type as a type constraint, and we refer to Plus in this expression as the type

predicate of the constraint.

Type-checking for Haskell type classes is difficult in general. Wadler & Blott (1989)

presented a very general type system; the actual Haskell type system incorporates

a restricted version of this, in which only single-parameter type classes are allowed

(class declarations can only declare classes of the form C(α)). Even for this restricted

case, Volpano & Smith (1991) showed that type-checking is undecidable without

further restrictions. For the case of the single-parameter Haskell restrictions, several

algorithms have been developed (Nipkow & Snelting, 1991; Chen et al., 1992;

Nipkow & Prehofer, 1993).

The situation for type-checking with multi-parameter type classes is less clear.

Nevertheless it is worth considering the addition of multi-parameter type classes to

Haskell, as evidenced by some of the applications that have been cited:

Linear Algebra (Cormack & Wright, 1990): linear algebra operations such as

matrix and vector multiplication and addition can be succinctly coded using

multi-parameter type classes, for example:

class Plus α β γ where (+) :: α→ β → γ

class Times α β γ where (*) :: α→ β → γ

instance Times Int Int Int where ...

instance Times Int Float Float where ...

instance (Times α β γ, Plus γ γ γ) ⇒
Times (Matrix α) (Matrix β) (Matrix γ) where ...

instance (Times α β γ, Plus γ γ γ) ⇒ Times (Vector α) (Vector β) γ where ...

instance Times α β γ ⇒ Times α (Matrix β) (Matrix γ) where ...

Collection Types (Jones, 2000): a class for collection types can be specified using

multi-parameter type classes:

class Collects α β where

empty :: α

member :: β → α → Bool

insert :: β → α → α

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 135

Instances can then be specified with types:

instance Eq α ⇒ Collects [α] α where ...

instance Eq α ⇒ Collects (α → Bool) α where ...

instance Collects BitSet Char where ...

instance (Hashable α, Collects α β) ⇒ Collects (Array Int β) α where ...

Record Field Selectors (Peyton-Jones et al., 1997): various approaches have been

suggested for encoding records using datatypes and type classes. Consider, for

example, the definition of a record type:

Employee = EMPLOYEE{name::String address::String age::Int}
This expands to the definition of the record representation as a datatype. Record

field selectors are defined as overloaded operations, that dispatch based on the

record type (Jones, 1992):

data Employee = EMPLOYEE String String Int

class Name α β where name :: α → β

instance Name Employee String where name(EMPLOYEE x y z) = x

class Address α β where address :: α → β

instance Address Employee String where address(EMPLOYEE x y z) = y

class Age α β where age :: α → β

instance Age Employee String where age(EMPLOYEE x y z) = z

Monad Transformers (Liang et al., 1995): monad transformers were proposed as a

way of structuring modular software systems. These rely on multi-parameter type

classes for their definition, for example:

class (Monad β, Monad (α β)) ⇒ MonadT α β where ...

instance (Monad β, Monad (StateT α β)) ⇒ MonadT (StateT α) β where ...

class Monad β ⇒ EnvMonad α β where ...

instance Monad β ⇒ EnvMonad α (EnvT α β) where ...

Peyton-Jones et al. (1997) provide various other examples of monadic definitions

that can be expressed succinctly using multi-parameter type classes. In contrast to

the other examples provided here, monadic definitions and monad transformers do

not give rise to the problems addressed by this article. We include the example

of monad transformers because it is an interesting illustration of the usefulness

of multi-parameter type classes. Although for simplicity and economy we do not

consider type constructor classes, our results generalize straightforwardly to this

extension.

The Gofer language pioneered an implementation of multi-parameter type classes

(Jones, 1991), although early experiments reported negative experience because of

the problems addressed in this article. More recently the GHC and HUGS Haskell

compilers have incorporated multi-parameter type classes as experimental extensions,

with the intention that these eventually be incorporated in the Haskell 2 language

design. Some descriptions of the rationale underlying these implementations are

provided by Peyton-Jones et al. (1997) and Peyton-Jones (1998).

The issue addressed by this article, that has hindered the usefulness of multi-

parameter type classes, is the increased potential they introduce for ambiguous

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

136 D. Duggan and J. Ophel

typing. ‘Ambiguity’ refers to the situation where there is a free type variable in

the overload constraints accumulated during type inference, with no occurrence of

that type variable in the inferred type, and therefore no possibility (apparently)

that that type variable can be resolved further. For example, with the operations

read :: Read α ⇒ String → α and show :: Show α ⇒ α → String, the ex-

pression show (read "123") is ambiguous: there is no way to determine how the

string is read and then written (for example, is it converted to Int, or read as a string

of digits?). This ambiguity is signalled by the type (Read α, Show α) ⇒ String.

Since there is no unique ‘most general’ translation of a program with ambiguity,

type-checking fails when it arises.

In section 2, we demonstrate with practical examples how multi-parameter type

classes can give rise to the increased potential for ambiguity, impacting the useful-

ness of multi-parameter type classes for some compelling examples. In section 3 we

provide a type system for multi-parameter type classes, and we consider a restriction

on multi-parameter type classes, the overlapping restriction, that is necessary in its

own right. With this restriction, we are able in section 4 to provide an overload

resolution strategy, domain-driven unifying resolution, that solves the ambiguity prob-

lems with multi-parameter type classes (for the applications we are interested in).

Domain-driven unifying resolution is verified to be correct, and is guaranteed to

terminate if the program is well-typed.

The overlapping restriction (in its weak form) states that in a class declaration:

class C α1 ... αm β1 ... βn where ...

the instantiations of the type parameters α1, . . . , αm should uniquely determine the

instantiations of the type parameters β1, . . . , βn, for some m and n declared by the

programmer. For example, for the Times class given earlier, set m = 2 and n = 1;

then the first two type parameters to the Times type predicate (representing the

domain types of the multiplication operator) determine the third type parameter

(representing the range type of the operator). This example is similar to the C++

and Java restrictions on overloading function names. The overlapping restriction

allows the programmer the flexibility to choose the amount of determination, and

this information is in turn used by the overload resolution algorithm to resolve

ambiguity problems.

This approach can be said to subsume other approaches, particularly the approach

of parametric type classes (Chen et al., 1992). The latter requires class declarations

to have the form:

class C α β1 ... βn where ...

where the collection type α determines the element types β1, . . . , βn. Parametric type

classes are an extended version of single-parameter type classes; all instance types

are parametric in the type parameters β1, . . . , βn, and are indexed by the single type

parameter α. One contrast between this and the overlapping restriction for multi-

parameter type classes is given by the fact that overload resolution is guaranteed to

terminate for the former, whereas it may fail to terminate for the latter. This is so

even for a multi-parameter type class that superficially resembles a parametric type

class. We elaborate on this in the next section.

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 137

It should be emphasized that our results do not make the closed world assumption

that all instance types are known. Domain-driven unifying overload resolution does

not over-aggressively resolve against the known instances, without considering the

possibility that further instances might be added. The overlapping restriction (which

is necessary in any case for coherence) ensures that if it is possible to resolve a

constraint against an instance because of unifying domain types, then it will not be

possible later to define another instance that might have alternatively been used in

resolution.

It should also be emphasized that the overlapping restriction does not rule out

interesting instance types. As explained in section 7, the restriction allows the

programmer to choose her own trade-off between the amount of restriction on

the forms of instance types, and the level of unifying resolution used during type

inference. The more restricted are the instance types, the greater the degree of

unifying resolution that is possible.

The linear algebra example raises an interesting point about overlapping instances:

instance (Times α β γ, Plus γ γ γ) ⇒
Times (Matrix α) (Matrix β) (Matrix γ) where ...

instance Times α β γ ⇒ Times α (Matrix β) (Matrix γ) where ...

Our overlapping restriction prevents the expression of these instance types, because

the first instance type is a substitutive instance of the second instance type. In our

type system, we resolve this ambiguity by adding negative context constraints to the

type system:

instance (Times α β γ, Plus γ γ γ) ⇒
Times (Matrix α) (Matrix β) (Matrix γ) where ...

instance (Times α β γ, α 6= (Matrix δ)) ⇒
Times α (Matrix β) (Matrix γ) where ...

The negative context constraint α 6= (Matrix δ) ensures that α cannot be instan-

tiated to a type with Matrix as its outermost type constructor.

Our results shed some light on the implications of attempting to solve the prob-

lems with ambiguity with multi-parameter type classes. In section 4 we show that

overload resolution may fail to terminate for a program that is not typable, even

with strong restrictions on the forms of (multi-parameter) overload instance types.

Furthermore, although typability ensures termination, in section 5 we show that

typability is undecidable. These results suggest that an attempt to solve the ambigu-

ity problems with multi-parameter type classes may have to deal with a potentially

non-terminating overload resolution algorithm, for example by using a depth bound

during overload resolution. Section 6 considers related work, while section 7 provides

our conclusions.

2 Difficulties with simple overload resolution

In ML it is not possible to add an integer to a real; the integer must be cast by the

user to a real so that real addition can be inferred and used. With multi-parameter

type classes, mixed-mode arithmetic can be defined by the definition of suitable

instances of +. This is achieved by the following definitions:

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

138 D. Duggan and J. Ophel

class Plus α β γ where (+) :: α → β → γ

instance Plus Int Int Int where ...

instance Plus Int Float Float where ...

instance Plus Float Int Float where ...

instance Plus Float Float Float where ...

Then for example we can have the expression:

3 + 4.5 + 4.8 + 4 :: Float

The GHC and HUGS implementations of Haskell support multi-parameter tem-

plates. With the overload resolution strategies implemented in these compilers,

generalizing the Haskell single-parameter overload resolution strategy, the con-

straints in the above example cannot be resolved. Using the overload resolution

strategies in these implementations, and implementing mixed-mode arithmetic with

multi-parameter templates, the type of the above expression is computed as:

(Plus Int Float α, Plus α Float β, Plus β Int Float) ⇒ Float

At the top level, this leads to a compile-time type error due to unresolved overloading.

The Haskell language uses matching overload resolution. Consider for example:

class Eq α where (==) :: α → α → Bool

instance (Eq α, Eq β) ⇒ Eq(α,β) where (==) = ...

f x y = ((x,y) == (x,y))

f is given the type Eq(α,β) ⇒ (α,β) → Bool. Haskell overload resolution resolves

this constraint with the instance for pairs, giving the type (Eq α, Eq β) ⇒ (α,β)

→ Bool. Overload resolution is matching in the sense that overload constraints are

only matched against the available instance types; no free variables in the overload

constraints are instantiated as a result of overload resolution.

It is important to emphasize that even if the user casts the final result type

in a mixed-mode expression, matching resolution may not be able to resolve any

constraints. For the above example, it is necessary in GHC and HUGS for the user

to supply the result type of all intermediate expressions:

(((((3 + 4.5) :: Float) + 4.8) :: Float) + 4) :: Float

Alternative approaches to implementing mixed-mode arithmetic have been

proposed. The Haskell language specification requires that numeric literals be

overloaded, with overload resolution determining whether a numeric literal is, for

example, an integer or a float. This approach does not generalize because (a) it

does not do anything to help in the case where non-literal values are being used,

and (b) it is unrealistic to expect the language to provide special syntax and special

treatment for arbitrary literals of any type.

Another alternative solution is to add subtyping to the language, and make Int

a subtype of Float. Then there is no need for mixed-mode arithmetic. This is

one possible interpretation of how the GHC and HUGS compilers implement the

Haskell specification. These compilers implicitly coerce literals between numeric

types. Every numeric literal has an implicit coercion fromInteger of type Int →
α applied to it. Overload resolution resolves such a coercion to the desired result

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 139

type. Although a solution in this situation, it should be obvious that this is just an

instance of a more general problem with multi-parameter type classes. Consider for

example the definition of matrix multiplication (from the previous section).

instance (Times α β γ, Plus γ γ γ) ⇒
Times (Matrix α) (Matrix β) (Matrix γ) where ...

Then multiplying a matrix of integers by itself introduces the constraint Times

(Matrix Int) (Matrix Int) α that is not resolved by matching overload resolu-

tion. In this case, the solution of declaring matrices a subtype of vectors does not

work so well: coercing a matrix to a vector may be much more expensive than

converting an integer to floating point.

As another example, consider the definition of a record type from the previous

section, and the definition of the name field selector:

data Employee = EMPLOYEE String String Int

class Name α β where name :: α → β

instance Name Employee String where name(EMPLOYEE x y z) = x

Then define the following variables:

joeInfo = EMPLOYEE "Joe" "New York" 35

janeInfo = EMPLOYEE "Jane" "Paris" 24

Type-checking the expression

name joeInfo == name janeInfo

gives rise to the overload constraints and inferred type:

(Eq α, Name Employee α) ⇒ Bool

The latter constraint comes from the use of the name overloaded operation, applied

to an argument of type Employee and returning a result of undetermined type α.

Although the only instance of name defined for Employee arguments returns a result

of type String, there is no contextual information in the above expression to reveal

that the result has type String. The second constraint comes from the application

of equality to the results of the applications of name.

The problem is that this expression leads to a compile-time error due to ambiguity.

As with the earlier example, the only solution to this problem is to give type

annotations for the intermediate expressions:

((name joeInfo) :: String) == (name janeInfo)

It should be noted that there are alternative ways of representing records using

single-parameter type classes, that do not have this ambiguity problem. We repeat

this example because it is cited by Peyton-Jones et al. (1997), a popular reference on

multi-parameter type classes, as an illustration of ambiguity with multi-parameter

type classes.

Finally, the example of a collection class is also cited by Haskell language designers

as an example of ambiguity due to multi-parameter type classes (Jones, 2000). For

example, the expression (empty::[Int]) gives rise to the ambiguous constraint

(Collects [Int] α). Even if the empty operator is removed from the class, there

are still problems:

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

140 D. Duggan and J. Ophel

f x y = insert x . insert y

g = f True ’a’

This gives g the type

(Collects α Bool, Collects α Char) ⇒ α → α

The problem is that g incorrectly attempts to insert a boolean and a character

into the same collection, but this type error is masked by unresolved overloading

constraints.

These problems can be solved by using type constructor classes, instead of multi-

parameter type classes (Jones, 1993). However this is at the cost that we can

only define the first instance for the collections class given in the previous section.

Another alternative approach is to use parametric type classes (Chen et al., 1992).

As explained at the end of this section, this example is really an example of a

single-parameter parametric type class, which not surprisingly can be expressed

using multi-parameter type classes.

Haskell incorporates a built-in default resolution mechanism (to overcome prob-

lems with the overloading of literals), and it might be considered that this approach

can be generalized to solve the problems with matching resolution. Such a strategy

could consist of ordering the available instances, and unifying an overload constraint

with the instance types in that order until a unifying instance was found. For single-

parameter type classes, there are already problems if programmer-defined defaults

are allowed. Suppose for example Plus and Times are defined as single-parameter

type classes, with a programmer-defined default instance of type Int for Plus and

of type Float for Times. Then the constraint set

Plus α, Times α

can either be resolved by instantiating α to Int (resolving the first constraint against

the default) or by instantiating α to Float (resolving the second constraint against

the default). The resolution of the overloaded operations depends on the order of

execution of the type-checker, so in effect the type-checker is the true specification

of the type system.

For multi-parameter type classes the situation is even worse: even if there is only a

single type class, with a single default for that type class, the resolution of constraints

may depend upon the order in which the constraints are considered. For example:

class Foo α β where foo :: α → β

instance Foo Int Char

instance Foo Char Int

with the constraints

Foo α β, Foo β α.

If the first instance is selected as the default for resolving the first constraint, β is

instantiated to Char, so the second constraint is resolved against the second instance.

Suppose, on the other hand, the second constraint is resolved against the default

instance, then the first constraint is resolved against the second instance.

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 141

In this paper, we propose an overload resolution strategy which we refer to

as domain-driven unifying overload resolution. This resolution strategy addresses the

issues discussed in this section regarding overload resolution and multi-parameter

type classes. Recalling the type with unresolved constraints from the start of this

section:

(Plus Int Float α, Plus α Float β, Plus β Int Float) ⇒ Float

With unifying overload resolution, it can be recognized that there is a single instance

satisfying the first type constraint, with type Plus Int Float Float. Overload

resolution therefore instantiates α to Float. The second type constraint is now Plus

Float Float β, for which again there is only a single satisfying instance. Therefore,

overload resolution instantiates β to Float. Overload resolution is unifying in the

sense that overload constraints are not matched against instance types, they are

unified with instance types, and in the result free type variables in the overload

constraints can be instantiated.

The problematic expression (empty::[Int]) for the collections class leads to the

constraint (Collects [Int] α). If the overlapping restriction is used to specify

that the first argument to the type predicate specifies the second, then this predicate

can be resolved against the first instance type for Collects, instantiating α to Int.

The problematic definition g, which hides a type error with the type (Collects

α Bool, Collects α Char) ⇒ α → α, is avoided again due to the overlapping

restriction. Since both type predicates have the same first type argument, and the

first type argument determines the second type argument, the overload resolution

algorithm attempts to unify these type predicates, leading to a unification failure.

In our type system, the instance declarations for the Collects class must be

modified:

instance Eq α ⇒ Collects [α] α where ...

instance (Eq α, Boolean β) ⇒ Collects (α → β) α where ...

instance Collects BitSet Char where ...

instance (Hashable α, Collects α β, Integer γ) ⇒
Collects (Array γ β) α where ...

In the second and fourth instance types, Boolean and Integer are classes that play

the rôle of characteristic predicates in the type system for the corresponding types:

class Boolean α where toBool :: α → Bool fromBool :: Bool → α

instance Boolean Bool where toBool x = x fromBool y = y

class Integer α where ...

instance Integer Int where ...

This treatment is necessary because, unlike GHC and HUGS, we only allow type

arguments of depth zero or one in the arguments to the type predicate in an instance

declaration. The reason for this is given in section 6.

There is the apparent danger here of ambiguous types, for example, the expres-

sion (toBool (fromBool true)) has the apparently ambiguous type (Boolean α)

⇒ Bool. With the overlapping restriction, it is possible to specify that the first

zero arguments to a type predicate determine all of the other type arguments (as

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

142 D. Duggan and J. Ophel

explained more fully in section 7). This means in effect that there can only be one

instance declaration for such a class, and any type constraint for that class can be

resolved against that single instance. This ‘trick’ can be applied to the Integer and

Boolean type classes above to ensure that they do not give rise to ambiguous types.

We can perform this modification one more time, on the third instance type:

class Character α where ...

instance Character Char where ...

instance Character α ⇒ Collects BitSet α where ...

At this point we have four instance types for Collects, indexed by the first type

argument and parametric in the second type argument. These all constitute instances

of a parametric type class (Chen et al., 1992), where parametric type classes in turn

are extended single-parameter type classes. We refer to parametric type classes as

single-parameter because the instances are indexed by a single type.

It is no surprise that parametric type classes form a subset of multi-parameter

type classes, and unifying overload resolution can be seen as a generalization of

the resolution strategy for parametric type classes. Parametric type class resolution

has a step similar to Step (2) of unifying overload resolution (Definition 4.1), that

catches type errors earlier by combining type class constraints; the type of g above

is an example of this. On the other hand, overload resolution for parametric type

classes uses matching overload resolution to match the index type argument of a

parametric type predicate against a ‘set of types’ expression, parameterized by the

element types, describing the set of instances available for that type predicate (Chen

et al., 1992). The element type parameters are instantiated as part of this matching

process. A matching step decomposes a collection type, constrained by a type class,

to a collection of constrained element types. The constraints for an element type

include both type class constraints and constraints relating it to type parameters; in

the latter case, the element type is unified with a type parameter that constrains it.

In contrast, unifying overload resolution unifies all of the type arguments of a type

predicate against the corresponding type arguments in a resolvable instance type,

once such an instance has been uniquely identified. There are several subtleties in

the sufficiency condition for identifying such an instance.

For the special single-parameter case of parametric type classes, unifying overload

resolution is known to terminate. As mentioned in section 1, for the more interesting

case where an instance may be indexed by several types, it is easy to show that

unifying resolution does not terminate. This is so even for the case of a binary type

class (C α β) where the first type argument α determines the second type argument

β, i.e. for a multi-parameter type class that superficially resembles a parametric type

class. An example is provided in section 4.

3 Type system and type checking

3.1 Syntax of types

Types in our type system are described by the following abstract syntax:

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 143

Mono Types τ ::= α | t(τ1, . . . , τn)

Instance Type ρ ::= ∀αn.{κ1, . . . , κm} ⇒ c(τ1, . . . , τk)

Context Constraint κ ::= c(τ1, . . . , τk) | α 6= t(α1, . . . , αn)

Constraint Set C ::= {} | {c(τ1, . . . , τk)} | C1 ∪ C2

Poly Types σ ::= ∀αn.C ⇒ τ

The type expressions t(τ1, . . . , τn) include the arrow type (τ1 → τ2), so → is an infix

type constructor. We assume for simplicity that each class has exactly one overloaded

operator, and an overloaded operator is defined in exactly one class. We assume

given an environment A0 of class definitions of the form (c ::ko (x : ∀αm.τ)) and class

instance types ρ, one of the former for each overloaded symbol. In a class definition,

c is the name of the class, with single operator x, and k 6 m as explained in the next

subsection.

There is a subtle but important distinction between instance types and polytypes:

the context for the former includes both class constraints c(τ) and negative con-

straints α 6= t(τ), whereas the context of a polytype only includes class constraints.

Negative constraints are only used to distinguish overlapping instance types, and

a class constraint is not resolved against an instance type (during type-checking)

unless the negative constraints for that instance type are satisfied by the substitution

unifying the instance type with the class constraint. Therefore, negative constraints

never appear in polymorphic types.

TV (. . .) denotes the free type variables of an expression (monotype, instance type,

context constraint, constraint set, polytype):

TV (α) = {α}
TV (t(τ1, . . . , τn)) = TV (τ1) ∪ · · · ∪ TV (τn)

TV (∀αn.C ⇒ τ) = TV (C) ∪ TV (τ)− {αn}
TV ({}) = {}

TV (C1 ∪ C2) = TV (C1) ∪ TV (C2)

TV ({c(τ1, . . . , τk)}) = TV (τ1) ∪ · · · ∪ TV (τk)

TV (∀αn.{κm} ⇒ c(τk)) =
⋃{TV (κm)} ∪⋃{TV (τk)} − {αn}

TV (c(τ1, . . . , τk)) = TV (τ1) ∪ · · · ∪ TV (τk)

TV (α 6= t(α1, . . . , αn)) = {α}
The following restriction on instance types is a generalization of the Haskell

restrictions (for single-parameter type classes) that allows the examples provided in

section 1.

Definition 3.1 (Instance Restriction)

An instance definition must satisfy the following: the instance type has the form

(c1(β1), c2(β2), . . . , ck(βk), γ1 6= t1(δ1), . . . , γm 6= tm(δm))⇒ c(τn)

where:

1. {β1} ∪ {β2} ∪ · · · ∪ {βk} ∪ {γ1, . . . , γm} ⊆ TV (c(τn)).

2. For each i = 1, . . . , n, τi is either of the form t(α) or α.

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

144 D. Duggan and J. Ophel

The motivation for negative context constraints α 6= t(β1, . . . , βk) is given in

section 1, and repeated in the next subsection.

A type environment is a pair (A,C), where A = A0 ∪ A′ and A′ is a set of pairs

of the form (x : σ), corresponding to types for non-overloaded symbols. C is a set

of constraints c(τ) on implicit operator parameters in polymorphic types, and these

constraints are discharged in forming polymorphic types.

The type rules for the mini-language are provided in Fig. 1. We do not consider

subclass hierarchies in this type system; they do not materially affect the results.

3.2 Overlapping restriction

At the heart of our overload resolution strategy is the overlapping restriction for

instance types. We provide two versions of this restriction, the strong and weak

overlapping restrictions. The strong restriction is simple to motivate based on the

examples in section 2. The weak restriction is more complicated but not as restrictive.

For the strong overlapping restriction, we assume that every overloaded operator

type is of the form τ1 → · · · → τn → τ0, where τ0 is not a function type. We

require that for any instance type for an overloaded operation, the domain of the

instance type (defined by the types τ1, . . . , τn) completely determines the codomain τ0.

For example, suppose we allowed instances of + with types Int → Float → Int,

Int → Float → Float and Float → Float → Float. Then in the expression

(1+2.5)+3.1, there would be two possible resolutions for the first use of +. We

avoid this incoherence by disallowing both of the definitions with types Int →
Float → Int and Int → Float → Float. Only one of these can be defined.

On the other hand, we do want to allow overlapping instances of the form:

instance (Times α β γ, Plus γ γ γ) ⇒
Times (Matrix α) (Matrix β) (Matrix γ) where ...

instance Times α β γ ⇒ Times α (Matrix β) (Matrix γ) where ...

In this case, the second instance is a ‘default’ instance that is chosen if the first is

not applicable. To incorporate this into our type system, we add negative context

constraints, of the form α 6= t(α1, . . . , αn). The above instance types are then provided

as:

instance (Times α β γ, Plus γ γ γ) ⇒
Times (Matrix α) (Matrix β) (Matrix γ) where ...

instance (Times α β γ, α 6= Matrix δ) ⇒
Times α (Matrix β) (Matrix γ) where ...

A substitution is a finite function from type variables to types, homomorphically

extended to a function from types to types. Say that a substitution θ satisfies a

negative context constraint α 6= t(α1, . . . , αn) if θ(α) 6= t(τ1, . . . , τn) for any τ1, . . . , τn.

Note that this is not θ(α) 6= t(θ(α1), . . . , θ(αn)); this latter condition is too difficult to

check for in overload resolution.

The overlapping restriction uses the negative context constraints to allow over-

lapping instance types provided it does not lead to an ambiguous type system.

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 145

Definition 3.2 (Strong Overlapping Restriction)

We assume that every multi-parameter class definition is of the form (c :: k
o(x :

∀αk+1.α1 → · · · → αk → αk+1)). For every pair of distinct instance types (∀α. . . . ⇒
c(τk+1)), (∀β. . . . ⇒ c(τ′k+1)) ∈ A0, it must be the case that there is no substitution

θ satisfying the negative context constraints for the two instance types, such that

θ(τi) = θ(τ′i) for all i = 1, . . . , k.

The definition of a satisfying substitution for an overload context is provided in

the next subsection.

Since the strong overlapping restriction is sometimes too strong, we weaken this

to a more complicated but weaker restriction.

Definition 3.3 (Weak Overlapping Restriction)

We assume that every multi-parameter class definition is of the form (c ::ko (x :

∀αm.τ, where FV (τ) ⊆ {αm} and k 6 m. For any instance type ∀α. . . . ⇒ c(τm), we

refer to τ1, . . . , τk as the domain types of the instance type (by analogy with the

strong overlapping restriction). For every pair of distinct instance types (∀α. . . . ⇒
c(τm)), (∀β. . . . ⇒ c(τ′m)) ∈ A0, it must be the case that there is no substitution θ

satisfying the negative context constraints for the two instance types, such that

θ(τi) = θ(τ′i) for all i = 1, . . . , k.

The strong overlapping restriction requires that every multi-parameter type class

be of the form:

class C α1 . . . αk αk+1 where f :: α1 → · · · → αk → αk+1

The weak overlapping restriction generalizes the allowable multi-parameter type

class declarations to have the form:

class C α1 . . . αk αk+1 . . . αm where f :: τ

Then there cannot be distinct instances for the C class which have similar instan-

tiations for α1, . . . , αk; the first k type parameters (the domain types) completely

determine the instance (and therefore the range types of the instance).

The strong overlapping restriction rules out some useful operator signatures, for

example, fromInteger :: Num α ⇒ Int → α and read :: Read α ⇒ String

→ α. The weak overlapping restriction allows these operator signatures, for example

(Num ::1
o (fromInteger : ∀α.Int → α)). Practically this means that no unifying

resolution is possible for these operators. This point is discussed further in section 7.

For obvious reasons of economy, we use a mini-language with simple multi-

parameter type classes. There is no obstacle to generalizing these restrictions to

full Haskell with type constructor classes. A negative context constraint in such a

type system has the form (α 6= (t β1 . . . βk)), where α and (t β1 . . . βk) are type

expressions with the same kind. It is again important to note that negative context

constraints only place a negative condition on the outermost type constructor of

any instantiation of α. There are no conceptual problems with allowing negative

context constraints of the form (α 6= (β β1 . . . βk)), with a variable at the head of

the right-hand side. However, such an extension is of questionable value. Consider

for example attempting to define a generic instance for monad transformers:

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

146 D. Duggan and J. Ophel

instance (Monad β, Monad (γ β), γ 6= (δ α)) ⇒ MonadT γ β where ...

instance (Monad β, Monad (StateT α β)) ⇒ MonadT (StateT α) β where ...

A more plausible definition lists the concrete classes that are to be chosen over the

default instance:

instance (Monad β, Monad (γ β), γ 6= (StateT α)) ⇒ MonadT γ β where ...

instance (Monad β, Monad (StateT α β)) ⇒ MonadT (StateT α) β where ...

The definition of ambiguous typing is not affected by the addition of negative

context constraints, since inequality constraints do not appear in polytypes. For

instance types ∀αn.{κ1, . . . , κm} ⇒ c(τk), we require that
⋃{TV (κm)} ⊆ ⋃{TV (τn)}.

3.3 Instance relation, matching condition and satisfying substitution

Define A,C ` (∀α.{cm(τm), γn 6= τ′′n)} ⇒ τ)−→(∀β.{c′p(τ′p)} ⇒ τ′) to be true if there is

some θ with domain {α} such that:

1. τ′ = θ(τ).

2. θ satisfies the negative context constraints γ1 6= τ′′1 , . . . , γn 6= τ′′n .
3. Let C ′ = C ∪ {c′k(τ′k) | k = 1, . . . , p}. Then A,C ′ ` ρj−→cj(τj) for some

ρj ∈ A ∪ C ′, for j = 1, . . . , m.

4. {β} ∩ TV (A ∪ C) = {}.
Condition (1) states that the body of the second instance type is obtained by

instantiating the body of the first instance type. Condition (2) states that the

negative context constraints are satisfied. Condition (3) states that the constraints

in the first polymorphic type can be derived from the constraints in the second

polymorphic type; if the latter are satisfiable, then so are the former. Finally,

Condition (4) states that the type variables bound in the second polymorphic type

are not free in the environment. The relation A,C ` σ−→σ′ requires the type

environment (A,C) because the statement of the relation needs to make assertions

about the derivability of type constraints in polymorphic types. The relation A0, C `
ρ−→c(τ) is defined in an analogous fashion: define A,C ` (∀α.{cm(τ′m), γn 6= τ′′n)} ⇒
c(τ1, . . . , τk))−→c(τ′′′1 , . . . , τ′′′k) to be true if there is some θ with domain {α} such that:

1. τ′′′i = θ(τi) for i = 1, . . . , k.

2. θ satisfies the negative context constraints γ1 6= τ′′1 , . . . , γn 6= τ′′n .
3. A,C ` ρj−→cj(τ′j) for some ρj ∈ A ∪ C , for j = 1, . . . , m.

The justification for local overload resolution during type inference is given by

the following (used in the Let rule in the type rules).

Definition 3.4 (Matching Condition)

A constraint set C satisfies the matching condition provided:

1. For any c(τ) ∈ C , there is some (∀α. . . . ⇒ c(τ′)) ∈ A0 such that c(τ) and c(τ′)
are unifiable, where the unifying substitution satisfies any negative context

constraints in the instance type.

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 147

(c ::ko (x : ∀α.τ)) ∈ A ρ ∈ A ∪ C A0, C ` ρ−→c(τ′)
A;C ` x : {τ′/α}τ (OVar)

A,C ` σ−→τ where (x : σ) ∈ A
A;C ` x : τ

(Var)

A ∪ {x : τ1};C ` e : τ2

A;C ` (λx.e) : τ1 → τ2

(Abs)

A;C ` e1 : τ2 → τ1 A;C ` e2 : τ2

A;C ` (e1 e2) : τ1

(App)

A;C1 ` e1 : τ1 {αm} = (TV (τ1) ∪ TV (C1))− TV (A)

C1 satisfies the matching condition

(A ∪ {x : (∀αm.C1 ⇒ τ1)});C2 ` e2 : τ2

A;C2 ` let x = e1 in e2 : τ′
(Let)

Fig. 1. Type rules.

2. For any (c :: k
0(x : σ)) ∈ A0, c(τm) ∈ C , there is some i ∈ {1, . . . , k} such that τi is

a variable (i.e. it is not the case that all of the domain types are non-variable).

3. Finally, given (c :: k
0(x : σ)) ∈ A0, there do not exist distinct c(τm), c(τ′m) ∈ C

such that τi = τ′i for i = 1, . . . , k.

The first condition states that every constraint at least unifies with the head

of some instance type. The second condition states that there is no unresolved

constraint where the outer type constructors of the domain types are determined;

this condition forces further resolution of such a constraint. Without this condition,

a resolution algorithm that did nothing would be correct according to the type

system. But the whole point of unifying resolution is that leaving the constraints

unresolved can lead to practical problems. The third condition states that if there

are two constraints with the same domain types, then these constraints should be

combined (their range types unified).

Define that θ is a satisfying substitution for C , denoted θ |= C , if for all c(τ) ∈ θ(C),

there is some ρ ∈ A0 such that A0, {} ` ρ−→c(τ). Define Θ(C) = {θ | θ |= C}. Define

(A,C)−→(A′, C ′) to be:

1. Θ(C ′) ⊆ Θ(C).

2. For all x, τ, θ ∈ Θ(C ′), if θ(A′); {} ` x : τ then θ(A); {} ` x : τ.

To understand this, consider A0 = {(c ::1
o (x : ∀α.α)), c(Int)}, A = A′ = A0∪{(y : β)},

C = {} and C ′ = {c(β)}. (A′, C ′) is an instance of (A,C) since the type of y is

constrained to be Int in (A′, C ′). As another example, consider A0, C, C
′ as before,

and A = A0 ∪ {(y : Int)}, A′ = A0 ∪ {(y : β)}. The type of y in A′ is an instance

of y in A because of the constraint on β in C ′. Define (A,C)←→(A′, C ′) to be:

(A,C)−→(A′, C ′) and (A′, C ′)−→(A,C).

A semantics for the language can be provided in terms of a translation where

contexts are realized as ‘type dictionaries’. This semantics can be used to verify the

soundness of the type system. Since similar semantics have already been presented

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

148 D. Duggan and J. Ophel

(c ::ko (x : ∀α.τ)) ∈ A θ = {β/α} each βi is new

A ` x =⇒ (θ, θ(τ), {c(β)}) (OVar)

A(x) = ∀α.C ⇒ τ θ = {β/α} each βi is new

A ` x =⇒ (θ, θ(τ), θ(C))
(Var)

A ∪ {(x : α)} ` e =⇒ (θ, τ′, C) α new

A ` (λx.e) =⇒ (θ, θ(α)→ τ′, C)
(Abs)

A ` e1 =⇒ (θ1, τ1, C1) θ1(A) ` e2 =⇒ (θ2, τ2, C2)

θ = UNIFY (θ2(τ1), τ2 → α) α new

A ` (e1 e2) =⇒ (θ ◦ θ2 ◦ θ1, θ(τ2), θ(θ2(C1) ∪ C2))
(App)

A ` e1 =⇒ (θ1, τ1, C1) C1 ↓= (θ, C ′1)

{α} = (TV (C ′1) ∪ TV (θ(τ1)))− TV (θ(θ1(A)))

θ(θ1(A)) ∪ {(x : ∀α.C ′1 ⇒ θ(τ1))} ` e2 =⇒ (θ2, τ, C2)

A ` (let x = e1 in e2) =⇒ (θ2 ◦ θ ◦ θ1, τ2, C2)
(Let)

Fig. 2. Type-checking algorithm.

in the literature, we do not provide any further details. See Hall et al. (1996) for

a representative example. Although the type rules do not enforce satisfiability, the

type system is still sound because type constraints are converted to implicit operator

parameters during compilation, suspending the evaluation of the expression with

the unresolvable use of overloaded operations. This is similar to the situation with

the Haskell type rules, which only enforce a weak form of satisfiability.

Figure 2 provides the type-checking algorithm. The algorithm takes as inputs a

type environment A and a program e. The outputs of the algorithm consist of a

substitution θ and a type τ. The algorithm also computes a constraint set C , that is

discharged in the types of polymorphic definitions.

4 Domain-driven unifying overload resolution

In this section we describe the overload resolution algorithm used in the type

inference algorithm in the previous section, and then consider the correctness of

type inference.

We assume a function UNIFY (τ, τ′) that computes the most general unifying

substitution of the types τ and τ′. We also assume a function UNIFY SET defined

by:

UNIFY SET ({}) = {}
UNIFY SET ({(τ, τ′)}] S) = UNIFY SET (θ(S)) ◦ θ, where θ = UNIFY (τ, τ′)

where] denotes disjoint union.

Definition 4.1 (Domain-driven unifying overload resolution)

Given an initial set of constraints C , let C ↓= (θr, Cr) denote the result of repeated

application of the following resolution step to the initial configuration ({}, C).

Given a pair (θ, C) where θ is a substitution, C a set of constraints. Each step of

the resolution algorithm consists of performing one of the following actions:

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 149

1. Let A0 contain the class declaration (c ::lo (x : ∀βk.τ)) where l 6 k. Let C

contain a constraint of the form c(τk), where each τi is of the form ti(. . .) for

some ti, i = 1, . . . , l. Let A0 contain an instance type:

(c ::i ∀α.{c1(τ1), . . . , cm(τm), β1 6= τ′′1 , . . . , βn 6= τ′′n} ⇒ c(τ′k))

Suppose that there is a unifying substitution θ′ such that θ′(τi) = θ′(τ′i) for i =

1, . . . , l, satisfying the negative context constraints β1 6= τ′′1 , . . . , βn 6= τ′′n , where

{α} are renamed to be new type variables. Let θ′′ = UNIFY (c(τj), c(τ
′
j)). Let

C ′ result from removing the constraint c(τk) from C , and adding the constraints

c1(θ′′(τ1)), . . . , cm(θ′′(τm)). Then the algorithm transitions to (θ′′ ◦ θ, θ′′(C ′)).
2. Let A0 contain the instance declaration (c ::lo σ). Let C contain constraints of

the form c(τk) and c(τ′k), such that τi = τ′i for i = 1, . . . , l. Let

θ′ = UNIFY SET ({(τj , τ′j) | j = l+ 1, . . . , k}). Let C ′ result from removing the

constraint c(τk) from C . Then the algorithm transitions to (θ′ ◦ θ, θ′(C ′)).
3. The overload resolution algorithm fails if there is a constraint c(τ) ∈ C for

which there is no overload instance type that unifies with c(τ).

To understand the first transition rule, consider:

data Employee = EMPLOYEE String String Int

class Name α β where name :: α → β

instance Name Employee String where name (EMPLOYEE x y z) = x

name (EMPLOYEE "Jane" ...) == name (EMPLOYEE "Joe" ...)

As already noted in section 2, this gives rise to the overload constraints

Eq α, Name Employee α.

The first part of the match condition requires that the second constraint be resolved

against the single unifying instance, instantiating α with String. The first constraint

is then Eq String, which again can be resolved.

The first transition rule checks that the domain types unify, rather than only

checking for matching. The following example illustrates why this is so:

class Foo α β where foo :: α → β → ()

instance Foo [α] [α] where foo xs ys = ()

f x y = foo [x] [y]

The first transition of overload resolution recognizes that the type constraint Foo

[α] [β] can be resolved with the instance for lists, equating the types of x and y,

so f has the type ∀α.α→ α→ ().

To understand the second transition rule, consider:

f x y = (x+y, x+y)

Two constraints are generated: Plus α β γ and Plus α β δ. The second transition

rule combines these into one constraint.

Lemma 4.1 (Correctness of Overload Resolution)

If C ↓= (θ′, C ′), then for all θ ∈ Θ(C), there exists θ′′ ∈ Θ(C ′) such that θ = θ′′ ◦ θ′.

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

150 D. Duggan and J. Ophel

Proof

Equivalence of the constraint sets is verified by induction on the transitions of

the overload resolution algorithm, using the overlapping restriction to reason that

each resolution step does not remove any satisfying instantiations for the overload

constraints. �

Using this result, we verify the following by induction on the execution of the type

inference algorithm.

Theorem 4.1 (Soundness of Type Inference)

Suppose A ` e =⇒ (θ, τ, C). Then θ(A);C ` e : τ.

The overload resolution algorithm is sound, since it preserves the set of satisfying

substitutions. However overload resolution may not terminate. We have not consid-

ered the restrictions that would need to be placed on overload instance types in order

to ensure termination. In fact it is difficult to see what kind of restrictions could be

imposed to ensure termination, while retaining a useful type system. For example,

the following restrictions are too strong, and disallow the examples in section 1:

Primitive Recursion Instance Restriction: Any overload instance type must have the form:

∀α1 · · · ∀αk.{c(α1
i , . . . , α

k
i) | i = 1, . . . , n} ⇒ c(t1(α1), . . . , tk(αk))

Matching resolution can easily be shown to terminate with this restriction. However,

unifying resolution may fail to terminate if the constraints are not satisfiable.

Consider, for example:

class Foo α β where foo :: α → β → Int

instance Foo Int Float where foo x y = 0

instance Foo α β ⇒ Foo [α] [β] where foo (x:) (y:) = foo x y

g x y = (foo [x] y) + (foo [y] x)

The allowable instance types for foo are

Int→ Float→ Int, [Int]→ [Float]→ Int, [[Int]]→ [[Float]]→ Int, . . .

Unifying resolution fails to terminate with the constraints (Foo [α] β), (Foo [β]

α) resulting from type-checking g.

Nevertheless, we have the following result:

Lemma 4.2

Given C and θ |= C . Then the unifying resolution algorithm is guaranteed to

terminate.

Proof

For each constraint c(τ) ∈ C , the algorithm builds a partial derivation Π′ for

A0, {} ` ρ−→c(θ′(τ)), for some instance type ρ ∈ A0 and substitution θ′. By the

correctness of overload resolution, any derivation Π′′ for the constraint must have

root judgement A0, {} ` ρ−→c(θ′′(θ′(τ))) for some θ′′, and the partial derivation Π′
can be instantiated and completed to Π′′. Since any path in θ′′(Π′) is a prefix of

a path in Π′′, and all paths in the latter tree are finite, the algorithm cannot loop

infinitely. �

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 151

Therefore, termination can be assured if we can verify that the constraints are

satisfiable. In the next section we show that satisfiability is undecidable for any type

system that supports the examples given in section 1.

Theorem 4.2 (Completeness of Type Inference)

Given A, e. Suppose there exists A′, C ′, θ′, τ′ such that (θ′(A), {})−→(A′, C ′) and

A′;C ′ ` e : τ′. Then we have A ` e =⇒ (θ, τ, C1), for some θ, τ, C1 and C2 such that:

1. τ′ = θ′′(τ) and θ′ = θ′′ ◦ θ for some θ′′;
2. (θ′(A), θ′′(C1))−→(A′, C ′)

Proof

By induction on the derivation for A′;C ′ ` e : τ′. The proof is essentially the same as

the standard completeness proof for ML-style type inference, using the correctness

of overload resolution (Lemma 4.1). �

5 Satisfiability is undecidable

In this section we demonstrate via an example how to reduce the Post Correspon-

dence Problem to the problem of checking the satisfiability of a set of multi-parameter

overloading constraints. To demonstrate that the construction is applicable in more

restricted type systems for multi-parameter type classes, we assume that instance

definitions satisfy the following.

Definition 5.1 (Linear Instance Restriction)

An instance definition must satisfy the conditions of Definition 3.1, as well as the

following restriction:

3. Any type variable occurring in TV (c(τn)) has a single occurrence.

The linearity restriction is not necessary for our algorithms. We only include it

to demonstrate the wide application of this undecidability result. In fact two of the

examples in section 1 (collection classes and monad transformers) fail to satisfy the

linearity restriction.

Recall the statement of the PCP: given two sequences of strings u1, . . . , um and

v1, . . . , vm, is there some sequence i1, . . . , ik such that ui1 . . . uik = vi1 . . . vik? Volpano &

Smith, (1991) originally used a reduction to PCP to demonstrate the undecidability

of satisfiability with unrestricted single-parameter type classes. Their construction uses

only single-parameter type classes, but violates Instance Restriction (2) and also the

linearity restriction above. Our approach is similar to their construction, but does not

violate the Instance Restrictions; therefore our result demonstrates the undecidability

of satisfiability with restricted multi-parameter type classes. To code PCP as a type-

checking problem, we use a class as a predicate: class PCP(α1, · · · , αp, β1, · · · , βp, γ)
where p is (max {| ui |, | vj |}i,j) + 1. Intuitively we have

PCP(1, 0, ε, u, 1, 0, 1, v, γ) if ui1 = 10, vi1 = 101, ui2 . . . uik = u, vi2 . . . vik = v

for some ui1 , ui2 , . . . , uik , vi1 , vi2 , . . . , vik , where ε denotes the empty sequence. Since not

every ui or vj has length p, we fill up the remaining spaces with the special symbol e

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

152 D. Duggan and J. Ophel

(denoting the empty sequence ε). When a recursive call to PCP computes a sequence

of types, the FLAT predicate removes all of the e’s from the result. FLAT also builds

a ‘list’ of the non-e symbols, where the list ‘cons’ operation is represented by the

arrow type constructor. So

PCP(1, 0, ε, u, 1, 0, 1, v, γ), FLAT3(1, 0, ε, u, u′), FLAT3(1, 0, 1, v, v′)

implies that

u′ = (1→ 0→ u) and v′ = (1→ 0→ 1→ v)

The predicates ZERO, ONE and EPSILON are predicates for the singleton sets

containing 0, 1 and e, respectively. They are necessary for some of the clauses

because the Instance Restrictions do not allow nested type constructors. For the

FLAT predicates, the reader may wish to consider these as ‘moded logic programs’

whose second-to-last and last arguments produce output based on the input of the

other arguments. The output of the second-to-last argument consists of the input

argument ‘list’ with all occurrences of e removed.

The top-level call to the predicate is represented by PCPinit(w, w, γ), which gives

rise to the constraints

PCP(a1, a2, a3, u, b1, b2, b3, v, δ),

FLAT3(a1, a2, a3, u, u
′), FLAT3(b1, b2, b3, v, v

′), u′ = w, v′ = w

The calls to PCP and FLAT3 build up a type using 1, 0 and →, and unification at

the top-level checks that the sequences of 0’s and 1’s thereby constructed are equal

(u′ = w = v′).

Theorem 5.1

Satisfiability is undecidable for constraint sets with the Instance Restrictions gener-

alized from the Haskell single-parameter case.

6 Related work

Variations on multi-parameter parametric overloading have been described in the lit-

erature. Wadler & Blot (1989) provided a type system that included multi-parameter

parametric overloading. Cormack & Wright (1990) provided an overload resolution

algorithm, but did not provide a type system. In practice the algorithm may fail to

terminate. The algorithm also encounters many order-of-type-checking dependen-

cies, making it fairly incomplete.

The Gofer language (Jones, 1991) is a dialect of Haskell, experimentally extended

with multi-parameter type classes (among other interesting extensions). Because

multi-parameter type classes are an experimental extension, Gofer does not place

any restrictions on overload instance declarations, and so even matching overload

resolution is not guaranteed to terminate. The problem of increased opportunities for

ambiguity with multi-parameter type classes has been recognized in early experiments

with the Gofer extensions (Jones, 1991, 1994).

Peyton-Jones et al. (1997) investigate the design alternatives for multi-parameter

type classes, and some of these design choices have been realized experimentally

in the GHC and HUGS Haskell compilers. Peyton-Jones et al. acknowledge that

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 153

Question: Is λx.(PCPinit x x) well-typed?

class (PCPinit α β γ) where PCPinit :: α→ β → γ

instance (PCP α1 α2 α3 α4 β1 β2 β3 β4 δ),

(FLAT3 α1 α2 α3 α4 γ1 γ′1), (FLAT3 β1 β2 β3 β4 γ2 γ′2)

⇒ (PCPinit γ1 γ2 (t α1 α2 α3 α4 β1 β2 β3 β4 γ′1 γ′2 δ))

class (PCP α1 α2 α3 α4 β1 β2 β3 β4 γ)

instance (PCP 1 0 e e 1 0 1 e t1)

instance (PCP α1 α2 α3 α4 β1 β2 β3 β4 δ),

(FLAT3 α1 α2 α3 α4 γ1 γ′1), (FLAT3 β1 β2 β3 β4 γ2 γ′2)

⇒ (PCP 1 0 e γ1 1 0 1 γ2 (t4 α1 α2 α3 α4 β1 β2 β3 β4 γ′1 γ′2 δ))

These two clauses for PCP correspond to a ui = 10 and vi = 101, for some i.

class (EPSILON α) instance (EPSILON e)

class (ZERO α) instance (ZERO 0)

class (ONE α) instance (ONE 1)

class (FLAT3 α1 α2 α3 α4 β γ)

instance (FLAT2 α2 α3 α4 β γ), (ZERO α1)

⇒ (FLAT3 0 α2 α3 α4 (α1 → β) (t3,0 γ))

instance (FLAT2 α2 α3 α4 β γ), (ONE α1)

⇒ (FLAT3 1 α2 α3 α4 (α1 → β) (t3,1 γ))

instance (FLAT2 α2 α3 α4 β γ) ⇒ (FLAT3 e α2 α3 α4 β (t3,e γ))

class (FLAT2 α1 α2 α3 β γ)

instance (FLAT1 α2 α3 β γ), (ZERO α1) ⇒ (FLAT2 0 α2 α3 (α1 → β) (t2,0 γ))

instance (FLAT1 α2 α3 β γ), (ONE α1) ⇒ (FLAT2 1 α2 α3 (α1 → β) (t2,1 γ))

instance (FLAT1 α2 α3 β γ) ⇒ (FLAT2 e α2 α3 β (t2,e γ))

class (FLAT1 α1 α2 β γ)

instance (COPY α2 β), (ZERO α1) ⇒ (FLAT1 0 α2 (α1 → β) t1,0)

instance (COPY α2 β), (ONE α1) ⇒ (FLAT1 1 α2 (α1 → β) t1,1)

instance (COPY α2 β) ⇒ (FLAT1 e α2 β t1,2)

class (COPY α β)

instance (COPY e e)

instance (COPY 0 0)

instance (COPY 1 1)

instance (COPY α β), (COPY α′ β′) ⇒ (COPY (α→ α′) (β → β′))

Fig. 3. Example of PCP reduced to satisfiability.

multi-parameter type classes introduce new opportunities for ambiguity in Haskell

languages. However they do not propose any solution to the problem.

Peyton-Jones (1998) describes the restrictions on type classes in an experimental

extension of GHC with multi-parameter type classes. Our restrictions are more

onerous in two respects. GHC allows overlapping instances (with unifying types)

provided one type is an instance of another. We add negative context constraints to

allow overlapping instances. Negative context constraints are limited to restricting

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

154 D. Duggan and J. Ophel

outermost type constructors in substitutions, so for example the following is allowed

by GHC but not by our type system:

class C α where ...

instance C [α] where ...

instance C [[Int]] where ...

The nearest that can be accomplished in our type system is:

class C α where ...

instance α 6= Int ⇒ C [α] where ...

instance C [Int] where ...

The GHC restriction relies on an operational description of matching overload res-

olution to resolve the ambiguity due to overlapping instance types. This operational

description fails with multi-parameter type classes and unifying overload resolution.

Consider the type class:

class C α β where foo :: α→ β

class C α Int where ...

class C Int Int where ...

The intention in GHC is that the first instance type is the default, whereas the second

instance is used to resolve constraints of the form C Int Int. Therefore, if unifying

overload resolution is used (with the strong overlapping restriction), the constraint

C β β should be resolved against the default instance, and β will be instantiated

to Int. But this contradicts the operational requirement that the constraint C Int

Int should be resolved against the second instance type. In our type system, the

first instance type includes the negative context constraint α 6= Int, so unifying

resolution fails to resolve C β β against this instance type.

The second restriction we place on instance types, that is not imposed by GHC,

is that an instance type has the form ∀α. . . .⇒ c(τ) where each τi is either a variable

or of the form t(β) (Condition (2) of Definition 3.1). GHC places no restriction on

the τi types. The reason for our restriction is to recognize when a constraint has a

single instance against which it can be resolved, even when the constraint domain

types do not match the instance type. An example of this is given by the second

example after Definition 4.1, where there is an instance type Foo [α] [α] and a

constraint Foo [β] [γ], and both parameters to Foo are domain types.

Jones (1995) has developed a framework for formalizing type inference algorithms

for type systems with various forms of type constraints. In particular the notion of

‘improving rules’, the main contribution of Jones’ work, has similar motivation to

the notion of unifying resolution presented here. It appears likely therefore that the

algorithm presented here could be expressed in his formal framework. On the other

hand, Jones states:

Our approach is to leave the task of finding suitable simplifying and improving functions

to the designer of specific applications of qualified types. . . The work described here provides

simple correctness criteria for simplifying and improving functions, but it does not provide

any further insights into the construction of such functions for specific applications.

Independent of this work, the HUGS and GHC compilers have been released with

experimental support for ‘functional dependencies’ (Jones, 2000). These allow class

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 155

declarations to specify that the instantiations of some type parameters determine

the instantiations of other type parameters. For example a class for the + operation

can be defined by:

class Plus α β γ | (α β → γ) where (+) :: α → β → γ

On the one hand, this can be seen as a generalization of the overlapping restriction,

where the latter corresponds to the functional dependency:

class C α1 ... αm β1 ... βn | (α1 ... αm → β1 ... βn) where ...

On the other hand, our approach of the overlapping restriction solves the same

problems of ambiguity that are the stated motivation for functional dependencies.

Our approach has the benefit of being simpler to state and to reason about, and

appears to be easier to implement (because we do not have to track functional

dependencies during type-checking). Functional dependences are more expressive

than the overlapping restriction; it remains to be seen if this extra generality is

useful in practice.

At the time of writing, the two compilers take different approaches to the problem

of non-termination demonstrated by the example in section 4. The HUGS compiler

infers the type

g :: (Foo [[[[a]]]] [[[[b]]]], Foo [[[[[b]]]]] [[[a]]]) ⇒
[[[[b]]]] → [[[a]]] → Int

This appears to be due to a depth bound in the HUGS type checker. GHC on the

other hand uses ‘lazy context reduction’, returning the type

g :: (Foo [[a]] [b], Foo [[b]] [a]) ⇒ [a] → [b] → Int

That is, the constraints are left unresolved. This has the problem that it introduces

the possibility that type errors may be masked by unresolved type constraints. As

evidenced by the example of the Collects class in section 2, this masking of type

errors was one of the motivations for functional dependencies to begin with. Eager

context resolution is triggered if an explicit type declaration is provided. It is not

clear if this eager resolution is guaranteed to terminate; as explained in section 2,

unresolved multi-parameter overload constraints can give rise to intermediate free

type variables, even with a top-level type signature.

Odersky et al. (1995) describe a simplified form of single-parameter parametric

overloading. Instance types have the form τ1 → τ2, where τ1 = t(α1, . . . , αn) and the

type constructor t uniquely identifies the instance. Although there is a superficial

similarity between this scheme and domain-driven unifying resolution, the two are

quite different in motivation and properties:

1. Odersky et al. require that an overloaded operator have type (α → τ) where

α is the only type parameter in the operator type, and the domain of an

instance type (τ1 → τ2) then completely determines the instantiation of the

instance type. In particular, all free variables in the instance type are free in

τ1. This is quite different from the overlapping restriction: we require that

the free type variables in the domain types determine the free type variables

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

156 D. Duggan and J. Ophel

in the range type, but do not necessarily include them. For example, the

type of matrix multiplication (Matrix α) → (Matrix β) → (Matrix γ) is

not allowed under the restriction of Odersky et al. They do not consider

multi-parameter type classes at all in their work.
2. The motivation, mechanisms and properties of the two systems are quite dif-

ferent. The motivation for the approach of Odersky et al. is to remove the

need for passing type dictionaries at run-time. They are also able to remove

class declarations, and they are able to use their system to define extensible

records. Run-time type dictionaries and class declarations are still essential in

our type system. The overlapping restriction for multi-parameter type classes

is motivated by coherence problems, and domain-driven unifying resolution is

motivated by practical problems with matching resolution for multi-parameter

type classes. Termination and satisfiability for unifying resolution with multi-

paramete type classes are difficult or impossible to ensure, while the corre-

sponding properties for the system of Odersky et al. are reasonably easy to

verify.

Dubois et al. (1995) have proposed what amounts to an alternative to multi-

parameter type classes. Their approach gives up on type-checking completely, and

relies instead on link-time abstract interpretation to detect type errors. Interestingly,

many of the examples they describe are also examples of the use of multi-parameter

type classes. This provides further evidence of the practical usefulness of multi-

parameter type classes.

7 Conclusions

We have described an approach to type-checking multi-parameter type classes.

Domain-driven unifying resolution is simple, efficient and in practice very useful for

some applications of parametric overloading. We have identified a restriction that is

useful for multi-parameter parametric overloading, the overlapping restriction. With

this restriction, domain-driven unifying resolution is guaranteed to preserve the set

of valid resolutions for program overloadings. Domain-driven overload resolution

is guaranteed to terminate provided the input overload constraints are satisfiable.

All existing Haskell single-parameter type classes are allowed by the overlapping

restriction. With a straightforward generalization of our type system to include

type constructor classes, all of the examples provided in section 1 are allowed

by the overlapping restriction. The restriction allows the programmer the freedom

to choose a trade-off between restrictions on overlapping of instances, and the

amount of unifying resolution allowed. Specifically, given a multi-parameter type

class declaration (c ::ko (x : ∀αm.τ)), then setting k = m only requires that instances of

x have non-unifiable types, while also disallowing unifying resolution. On the other

hand, setting k = 0 only allows a single instance of x: considering Definition 3.3,

the k domain types of two distinct instances are trivially unifiable when k = 0, so

there cannot be two distinct instances for x. For the original problem of ambiguity

with multi-parameter type classes, unifying resolution provides a solution to this

problem with type class declarations satisfying the overlapping restriction. All of the

examples considered in section 2 are of this form.

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

Multi-parameter type classes 157

Our results shed some light on the implications of attempting unifying overload

resolution (of any form) to solve the problems with ambiguity with multi-parameter

type classes. Our negative results are that:

1. unifying overload resolution may fail to terminate for a program that is not

typable, and

2. it is difficult to see what reasonable restrictions could be placed on (multi-

parameter) overload instance types, that could ensure termination.

Elaborating on the latter point: without recursive instance types, overload resolution

is guaranteed to be decidable (if potentially intractable). Primitive recursion is the

simplest form of recursion from recursion theory. The linear algebra example in

section 2 does in fact include primitive recursive instance types. Restricting instances

to be ‘primitive recursive’ is actually fairly useless, since it rules out many examples

(including some of the instance types in the linear algebra example). Yet even

this draconian restriction is insufficient to ensure termination of unifying overload

resolution. Any restrictions that eliminate this example must eliminate primitive

recursive instance types; it is difficult to see what would be left with such restrictions.

Furthermore, although satisfiability ensures termination for domain-driven over-

load resolution, we have shown that satisfiability is undecidable, even with a type

system that is arguably too restrictive to be useful.

It is not clear if these negative results necessarily rule out the use of unifying over-

load resolution. For many years, the Gofer language has provided multi-parameter

type classes (with matching resolution) without any restrictions, and in practice non-

termination has not been a problem. Based on the example involving the primitive

recursion instance restriction in Sect. 4, it appears plausible that non-termination of

overload resolution could become more of a practical issue with unifying overload

resolution. Adding a depth bound or loop check to overload resolution could be

a feasible approach to handling a non-terminating overload resolution algorithm.

Overload resolution with a depth bound has been an experimental extension in the

GHC compiler (Peyton-Jones, 1998). Our work sheds some light on the possibilities

in this area.

Acknowledgements

Thanks to Mark Jones, Simon Peyton-Jones and Satish Thatté for helpful corre-

spondence. Thanks to the anonymous reviewers for helping to greatly improve the

original presentation.

References

Chen, K., Hudak, P. and Odersky, M. (1992) Parameteric type classes (extended

abstract). Proceedings of ACM Symposium on Lisp and Functional Programming,

pp. 170–181. ACM Press.

Cormack, G. and Wright, A. (1990) Type-dependent parameter inference. Pro-

ceedings of ACM SIGPLAN Conference on Programming Language Design and

Implementation, pp. 127–136. ACM Press.

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

158 D. Duggan and J. Ophel

Dubois, C., Rouaix, F. and Weis, P. (1995) Extensional polymorphism. Proceedings

of ACM Symposium on Principles of Programming Languages, ACM Press.

Hall, C., Hammond, K., Peyton-Jones, S. and Wadler, P. (1996) Type classes in

Haskell. ACM Trans. Programming Langu. Syst. 18(2), 109–138.

Jones, M. (1991) An introduction to Gofer. Available via ftp from

nebula.cs.yale.edu in pub/haskell/gofer.

Jones, M. (1992) Qualified Types: Theory and Practice. PhD thesis, Oxford University

Computing Laboratory.

Jones, M. (1993) A system of constructor classes: Overloading and implicit higher-

order polymorphism. Proceedings of ACM Symposium on Functional Program-

ming and Computer Architecture: Lecture Notes in Computer Science 594, pp. 1–10.

Springer-Verlag.

Jones, M. (1994) Re: Multiple parameter classes. E-mail message on Haskell mailing

list.

Jones, M. (1995) Simplifying and improving qualified types Proceedings of ACM

Symposium on Functional Programming and Computer Architecture. ACM Press.

Jones, M. (2000) Type classes with functional dependencies. European Symposium on

Programming: Lecture Notes in Computer Science 1782. Springer-Verlag.

Kaes, S. (1988) Parametric overloading in polymorphic programming languages.

In: D. Sannella, editor, European Symposium on Programming: Lecture Notes in

Computer Science 300, pp. 131–144. Springer-Verlag.

Liang, S., Hudak, P. and Jones, M. (1995) Monad transformers and modular inter-

preters. Proceedings of ACM Symposium on Principles of Programming Languages,

pp. 333–343. ACM Press.

Nipkow, T. and Prehofer, C. (1993) Type reconstruction for type classes. Proceedings

of ACM Symposium on Principles of Programming Languages, pp. 409–418. ACM

Press.

Nipkow, T. and Snelting, G. (1991) Type classes and overloading resolution via

order-sorted unification. In: J. Hughes, editor, Proceedings of ACM Symposium on

Functional Programming and Computer Architecture: Lecture Notes in Computer

Science 523, pp. 1–14. Springer-Verlag.

Odersky, M., Wadler, P. and Wehr, M. (1995) A second look at overloading. Proc.

ACM Conf. on Functional Programming and Computer Architecture, pp. 135–146.

Peyton-Jones, S. (1998) Multi-parameter type classes in GHC. URL: http://

research.microsoft.com/Users/simonpj/Haskell/multi-param.html.

Peyton-Jones, S., Jones, M. and Meijer, E. (1997) Type classes: an exploration of the

design space. Haskell Workshop. Amsterdam, the Netherlands.

Volpano, D. and Smith, G. (1991) On the complexity of ML typability with over-

loading. In: J. Hughes, editor, Proceedings of ACM Symposium on Functional

Programming and Computer Architecture: Lecture Notes in Computer Science 523,

pp. 15–28. Springer-Verlag.

Wadler, P. and Blott, S. (1989) How to make ad-hoc polymorphism less ad-hoc.

In: M. O’Donnell and S. Feldman, editors, Proceedings of ACM Symposium on

Principles of Programming Languages, pp. 60–76. ACM Press.

https://doi.org/10.1017/S0956796801004233 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004233

