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Abstract

Intensional polymorphism, the ability to dispatch to different routines based on types at run

time, enables a variety of advanced implementation techniques for polymorphic languages,

including tag-free garbage collection, unboxed function arguments, polymorphic marshalling

and flattened data structures. To date, languages that support intensional polymorphism

have required a type-passing (as opposed to type-erasure) interpretation where types are

constructed and passed to polymorphic functions at run time. Unfortunately, type-passing

suffers from a number of drawbacks: it requires duplication of run-time constructs at the

term and type levels, it prevents abstraction, and it severely complicates polymorphic closure

conversion. We present a type-theoretic framework that supports intensional polymorphism,

but avoids many of the disadvantages of type passing. In our approach, run-time type

information is represented by ordinary terms. This avoids the duplication problem, allows us

to recover abstraction, and avoids complications with closure conversion. In addition, our

type system provides another improvement in expressiveness; it allows unknown types to be

refined in place, thereby avoiding certain beta-expansions required by other frameworks.

Capsule Review

Intensional polymorphism has been advocated as a technique for the implementation of

polymorphism in functional languages. It is the basis for the TIL compiler and the FLINT

backend for SML/NJ. At the heart of intensional polymorphism is passing types to polymor-

phic functions at run-time, leading to type-passing implementations. Type-passing has a cost,

both in terms of complicating the type theory of the compiler intermediate language, as well

as the run-time cost of building type representations. This paper mainly addresses the first

of these issues, providing an alternative to type-passing, where instead the representations of

types are passed at run-time. The payoff for this, for example, is a much simpler typing for

closures in a typed compiler intermediate language.

1 Introduction

Type-directed compilers use type information to enable optimizations and trans-

formations that are difficult or impossible without such information (Leroy, 1992;
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Harper & Morrisett, 1995; Morrisett, 1995; Birkedal et al., 1996; Ruf, 1997; Shao,

1997a). However, type-directed compilers for some languages such as ML face the

difficulty that some type information cannot be known at compile time. For exam-

ple, polymorphic code in ML may operate on inputs of type α where α is not only

unknown, but may in fact be instantiated by a variety of different types.

To use type information in contexts where it cannot be provided statically, a

number of advanced implementation techniques process type information at run

time (Harper & Morrisett, 1995; Morrisett, 1995; Tolmach, 1994; Morrisett &

Harper, 1997; Shao, 1997a). Such type information is used in two ways: behind

the scenes, typically by tag-free garbage collectors (Tolmach, 1994; Aditya & Caro,

1993), and explicitly in program code, for a variety of purposes such as efficient data

representation and marshaling (Morrisett, 1995; Harper & Morrisett, 1995; Shao,

1997b). In this paper we focus on the latter area of applications.

To lay a solid foundation for programs that analyze types at run time, Harper

and Morrisett devised an internal language, called λML

i , which supports the first-

class intensional analysis1 of type information (following earlier work by Constable

(Constable, 1982; Constable & Zlatin, 1984)). The λML

i language and its derivatives

were then used extensively in the high-performance ML compilers TIL/ML (Tarditi

et al., 1996; Morrisett et al., 1996) and FLINT (Shao, 1997b). Type constructors

may be analyzed by ‘typecase’ operators in both the term and the type constructor

languages; these operators allow computations and type expressions to depend upon

the values of other type expressions at run time.

Supporting intensional type analysis (and the use of type information at run time

in general) seems to require semantics where type information is formed and passed

to polymorphic functions during computation. However, there are three significant

reasons why such a type-passing semantics is unattractive:

• A type-passing language such as λML

i requires that type information always be

constructed and passed to polymorphic functions, even when one does not

desire to do so. For example, passing type information at run time comes

with a cost, and the type-passing framework cannot express the elimination of

that information where appropriate to optimize performance. Also, one may

wish to withhold run-time type information from a function to enforce type

abstraction, but this is impossible in the type-passing framework.

• Because both terms and type constructors describe run-time execution, type

passing results in considerable complexity in language semantics, as a number

of run-time semantic devices must be duplicated for both terms and type

constructors. Although this duplication does not induce substantial complexity

in the substitution-based semantics of λML

i , it does as one attempts to give λML

i

a semantics more faithful to real machines. For example, in semantics that

make memory allocation explicit (Morrisett et al., 1995) a central device is a

formal heap in which data is stored; in a type-erasure framework one such

1 Type analysis is ‘intensional’ when types are analyzed by their structure, rather than by what terms
they contain.
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heap suffices, but when types are passed it is necessary to add a second heap

(Morrisett & Harper, 1997), and all the attendant machinery, for type data.

Type passing also greatly complicates low-level intermediate languages,

due to the need to support mixed-phase devices (constructs with both type

constructor and term level components). This can pose a serious problem for

typed intermediate languages, because these devices can disrupt the essential

symmetries on which elegant type systems depend. For example, a type-passing

semantics for Typed Assembly Language (Morrisett et al., 1999) would require

additional instructions for allocating and initializing type constructors, which

in turn requires the typing machinery for allocation and initialization to be

lifted an additional level into the kind structure.

• As a particularly important example of the second issue, type passing severely

complicates typed closure conversion (compare the type-passing system of

Minamide et al. (1996) to the type-erasure system of Morrisett et al. (1999)).

In a type-erasure framework, the partial application of a polymorphic function

to a type may still be considered a value (since the application has no run-time

significance), which means that closed code may simply be instantiated with

its type environment when a closure is created. In a type-passing framework,

the instantiation with a type environment can have some run-time effect, so

it must be delayed until the function is invoked. Consequently, closures must

include a type environment, necessitating complicated mechanisms including

abstract kinds and translucent types (Minamide et al., 1996).

A possible solution to the first problem (but not the second or third) would be to

introduce a phase distinction between type constructors: Those purely necessary for

type checking would be marked static and the remainder dynamic, with restrictions

prohibiting dynamic type information from depending on static type constructors.

A framework of how to construct such a language appears in Abadi et al. (1999).

A possible solution to the second problem (but not the first or third) would be to

combine the type and term languages together in the same syntactic class, as in Pure

Type Systems (Barendregt, 1992). However, then the constructs used to describe

run-time execution would also complicate compile-time type checking.

In this paper we propose a typed calculus, called λR , that ameliorates all three

problems of type passing without sacrificing intensional type analysis. The fun-

damental idea behind our approach is to move the dynamic aspect of the type

information from the level of types to the level of ordinary terms. This works by

constructing and passing values that represent types instead of the types themselves.

The connection between a type constructor τ and its term representation v is made

in the static semantics by assigning v the special type R(τ). Semantically, we may

interpret R(τ) as a singleton type that contains only the representation of τ.

This framework resolves the difficulties with type-passing semantics discussed

above. In particular, as representations of types are simply terms, we can use the

pre-existing term operations to deal with run-time type information in languages

and their semantics. Furthermore, we can eliminate the difficulties associated with

polymorphic closure conversion, as we show in section 5. Finally, by making dynamic

https://doi.org/10.1017/S0956796801004282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004282


570 K. Crary et al.

type information explicit and separable from types, our approach enables the choice

not to pass representations. In turn, this choice allows us to eliminate the overhead of

constructing and passing representations of types where it is not necessary. Current

type-passing compilers, such as TIL/ML, already perform this optimization by using

annotations that mark whether a type must be passed at run-time. However, these

types may not be eliminated until late, untyped phases of the compiler. Our system

provides a formal, typed basis for that mechanism.

Perhaps more importantly, the ability not to pass types allows abstraction and

parametricity to be recovered. In most type systems, abstraction may be achieved

by hiding the identity of types either through parametric polymorphism (Reynolds,

1983) or through existential types (Mitchell & Plotkin, 1988). However, when all

types are passed and may be analyzed (as in λML

i ), the identity of types cannot be

hidden and consequently abstraction is impossible. In contrast, a λR type can be

analyzed only when its representation is available at run time, so abstraction can

be achieved simply by not supplying type representations.

For example, consider the type ∃α.α. When all types may be analyzed, this type

implements a dynamic type; an expression of this type provides an object of some

unknown type, and that unknown type’s identity can be determined at run time

by analyzing α. In λR , as in most other type systems, ∃α.α implements an abstract

type (in this particular example, a useless one), because no representation of α is

provided. Dynamic types are implemented in λR by including a representation of the

unknown type, as in ∃α. R(α)× α.

1.1 Expressiveness

In the interest of clarity of presentation, we express λR as an extension of Harper

and Morrisett’s λML

i and focus on their differences. The principal difference is the

restriction of type analysis to those types for which representations are provided. This

change does not diminish the expressiveness of our calculus; λML

i may be translated

in a straightforward syntax-directed manner into λR , as described in section 4.

Moreover, we incorporate into the λR calculus an additional improvement in ex-

pressiveness over λML

i that is independent of explicit type passing: In λML

i , information

gained by analyzing a type is not propagated to other variables having that type.

Consequently, when analyzing a type α with the interest of processing an object of

type α, it is necessary to create a function with argument type α and then apply that

function to the object of interest. In other words, the type system of λML

i requires the

use of beta-expansions that are not operationally necessary. In λR we resolve this

shortcoming by strengthening the typing rule for typecase so that it refines types

in place. This strengthening is not intrinsic to λR , and an analogous rule could be

added to λML

i to the same benefit.

1.2 Overview

The remainder of this paper is organized as follows. In section 2 we review the

λML

i calculus. We then present, in Section 3, our λR calculus and discuss its formal
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semantics, including representation terms, R-types, and the strengthened typecase

rule. As examples of its expressiveness, in section 4 we give an embedding of λML

i in

λR , and in section 5, we discuss the simplification of polymorphic closure conversion

by explicit type passing. We end with discussion of related work and conclusions

in sections 6 and 7. In the appendices we relate our typed semantics to an untyped

one through type erasure (Appendix A), and provide the formal static semantics

(Appendix B).

2 Intensional type analysis

Suppose we wanted to store efficiently an array of boolean values. Most computer

architectures require that memory accesses are a word at a time, but it is a waste

of space to store booleans as integers. A solution is to pack 32 booleans into one

word and use bit manipulations to retrieve the correct value. To subscript from a

packed boolean array, we might use the following function (with << for shift left, &

for bitwise and, and <> for inequality):

val bitsub : array[int] * int -> bool =

fn (a,i) =>

sub(a,i div 32) & (1<<(i mod 32)) <> 0

This function is fine when we know a given array contains boolean values, but we

would like code polymorphic over all arrays to be able to use this mechanism. Below

we define a new array constructor, PackedArray, which will produce an array of

integers to hold booleans, and an ordinary array for other types. We also define an

associated subscript operation, packedsub, which calls bitsub on arrays of booleans

and the ordinary subscript operator on arrays of other types. These constructs can

be implemented with intensional type analysis, where in both cases an argument

type is examined with a ‘typecase’ construct:

type PackedArray[α] =

Typecase α of

bool => array[int]

| => array[α]

val packedsub : ∀α. PackedArray[α] * int -> α =

Fn α =>

typecase α of

bool => bitsub

| => sub

2.1 The λML

i calculus

To formalize the tools of intensional type analysis, we begin by summarizing Harper

and Morrisett’s λML

i calculus (1995). The λML

i calculus provides these tools in a form

that is relatively simple, but already quite powerful.

The syntax of λML

i , with some minor modifications, appears in figure 1. The
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(kinds) κ :: = Type | κ1 → κ2

(con′s) c :: = α | λα:κ.c | c1c2 | ˆint | c1→̂c2 | c1×̂c2

| Typerec c (cint, c→, c×)

(types) σ :: = T (c) | int | σ1 → σ2 | σ1 × σ2 | ∀α:κ.σ | ∃α:κ.σ

(terms) e :: = i | x | λx:σ.e | fix f:σ.v | e1e2 | 〈e1, e2〉 | π1e | π2e | Λα:κ.e | e[c]
| pack e as ∃α:κ.σ hiding c | unpack 〈α, x〉 = e1 in e2

| typecase[α.σ] c of

int⇒ eint

β → γ ⇒ e→
β × γ ⇒ e×

(values) v :: = i | λx:σ.e | fix x:σ.v | 〈v1, v2〉 | Λα:κ.e | pack v as ∃α.σ hiding c

Fig. 1. Syntax of λML
i .

(λx:σ.e)v 7→ e[v/x] (fix f:σ.v)v′ 7→i (v[fix f:σ.v/f])v′

π1〈v1, v2〉 7→ v1 π2〈v1, v2〉 7→ v2

unpack 〈α, x〉 = (pack v as ∃β.σ hiding c) in e2 7→ e2[σ2/α, v/x]

e1 7→ e′1
e1e2 7→ e′1e2

e 7→ e′
ve 7→ ve′

e 7→ e′
e[c] 7→ e′[c]

e 7→ e′
πie 7→ πie

′
e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
e 7→ e′

〈v, e〉 7→ 〈v, e′〉
e 7→ e′

pack e as ∃β.σ hiding c 7→ pack e′ as ∃β.σ hiding c

e 7→ e′
unpack 〈α, x〉 = e in e2 7→ unpack 〈α, x〉 = e′ in e2

Fig. 2. Operational semantics for core language.

complete static semantics appears in Appendix B, though we will include relevant

rules in this section. A small-step call-by-value operational semantics of λML

i appears

in figures 2 and 3. We write 7→ for evaluation steps that apply to both λML

i and λR , and

7→i for evaluation steps that apply only to λML

i . We write E[E ′/X] for the capture-

avoiding substitution of E ′ for X in E. In all cases, we consider alpha-equivalent

expressions to be identical.

The backbone of λML

i is a predicative variant of Girard’s Fω (1972; 1971) in which

the quantified type ∀α:κ.σ ranges only over type constructors and “small” types (i .e.,

monotypes), which do not include the quantified types. An explicit injection T (c)

converts a type constructor into a type. For example, T ( ˆint) is equal to the type int,

and T (c1→̂c2) is equal to T (c1)→ T (c2).

The type analysis operators are Typerec and typecase at the constructor and
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(Λα:κ.e)[c] 7→i e[c/α] (fix f:σ.v)[c] 7→i (v[fix f:σ.v/f])[c]

c normalizes to ˆint
typecase c (eint, βγ.e→, βγ.e×) 7→i eint

c normalizes to (c1→̂c2)

typecase c (eint, βγ.e→, βγ.e×) 7→i e→[c1/β, c2/γ]

c normalizes to (c1×̂c2)

typecase c (eint, βγ.e→, βγ.e×) 7→i e×[c1/β, c2/γ]

Fig. 3. Operational semantics for type application and typecase.

fix tostring : (∀α: Type . T (α)→ string).

Λα: Type .

typecase[δ. T (δ)→ string] α of
ˆint⇒ int2string

string⇒ λobj : string .obj

β→̂γ ⇒
λobj :T (β→̂γ)."function"

β×̂γ ⇒
λobj :T (β×̂γ).

"<" ^ (tostring[β](π1 obj )) ^ "," ^ (tostring[γ](π2 obj )) ^ ">"

Fig. 4. The function tostring.

term levels respectively. These operators, given an argument type c, dispatch to an

appropriate branch based on whether c is ˆint, a constructor for a function type or a

product type. The [α.σ] annotation in a typecase term is used to make type checking

syntax-directed, and indicates that when given a type argument c, the typecase is to

return a value of type σ[c/α]. When α does not appear free in σ we often omit it.

Occasionally, for brevity, we will write typecase terms as

typecase[α.σ] c (eint, βγ.e→, βγ.e×).

As an example of the use of type analysis in λML

i (with the addition of another

base type, string), consider the function tostring in figure 4. This function uses

typecase to produce a string representation of a data object. For example, the call

tostring [ ˆint] 3 returns the string “3”. As we cannot provide any information about

the implementation of functions, we just return the word “function” when one is

encountered, as in the call:

tostring [( ˆint→̂ ˆint)×̂ ˆint] 〈λx: int . x+ 1, 3〉
which returns:

“〈function, 3〉”
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Judgment Meaning

Γ ` c : κ c is a valid constructor of kind κ

Γ ` c1 = c2 : κ c1 and c2 are equal constructors

Γ ` σ σ is a valid type

Γ ` σ1 = σ2 σ1 and σ2 are equal types

Γ ` e : σ e is a term of type σ

Fig. 5. Judgments of λML
i .

When the argument to tostring is a product type, the function calls itself recur-

sively. In this branch, the type variables β and γ are bound to the types of the first

and second components of the tuple, so that the recursive call can be instantiated

with the correct type.

Type checking λML

i is based on the judgments in figure 5, which define well-

formedness of type constructors, types and terms, as well as equivalence of type

constructors and types. In these judgments, Γ is a unified type and kind context:

an ordered, partial map from constructor variables (α, β, . . .) to kinds, and term

variables (x, y, . . .) to types. As before, we use ` for rules of these judgments that

apply to both λML

i and λR , employing `i for rules specific to λML

i .

With this intuition, the typing rule for typecase is the natural one (but we will see

that this rule is unnecessarily restrictive):

Γ `i c : Type Γ, δ: Type `i σ Γ `i eint : σ[ ˆint/δ]

Γ, β: Type, γ: Type `i e→ : σ[(β→̂γ)/δ]

Γ, β: Type, γ: Type `i e× : σ[(β×̂γ)/δ]

Γ `i


typecase[δ.σ] c of

ˆint⇒ eint

β→̂γ ⇒ e→
β×̂γ ⇒ e×

 : σ[c/δ]

Often, to compute the result type σ of a typecase expression the constructor-

level Typerec on the argument α will be required. Typerec allows the creation of

new types by similar intensional analysis. Several examples of its use appear in

Harper and Morrisett (1995), including type-directed data layout, marshalling and

unboxing.

While recursion in the term-level typecase is handled by fix, at the the constructor

level there is no such mechanism. For this reason, Typerec is essentially a ‘fold’

operation (or catamorphism) over inductively defined types. It provides primitive

recursion by calling itself recursively on all of the components of the argument

type. Also unlike typecase, where the branches explicitly bind arguments for the

components of the type, the c→ and c× branches of Typerec are constructor functions.

For example, if the argument of a Typerec operation is c1×̂c2, then that operation

reduces to its c× branch (a constructor function of four arguments) applied to

the components c1 and c2, and to the result of recursively computing the Typerec
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(types) σ ::= T (c) | int | σ1 → σ2 | σ1 × σ2 | ∀α:κ.σ | ∃α:κ.σ | R(c)

(terms) e ::= i | x | λx:σ.e | fix f:σ.v | e1e2 | 〈e1, e2〉 | π1e | π2e

| Λα:κ.v | e[c] | pack e as ∃α:κ.σ hiding c

| unpack 〈α, x〉 = e1 in e2

|
| Rint | R→[c1, c2](e1, e2) | R×[c1, c2](e1, e2)

typecase[α.σ] e of

Rint ⇒ eint

R→[β, γ](x, y)⇒ e→
R×[β, γ](x, y)⇒ e×

(values) v ::= i | λx:σ.e | fix f:σ.v | 〈v1, v2〉
| Λα:κ.v | (fix f:σ.v)[c1] . . . [cn] | pack v as ∃α.σ hiding c

| Rint | R→[c1, c2](v1, v2) | R×[c1, c2](v1, v2)

Fig. 6. Syntax of λR .

operation on those components.

Typerec (c1×̂c2) (cint, c→, c×) =

c× c1 c2

(Typerec c1 (cint, c→, c×))

(Typerec c2 (cint, c→, c×))

The kinding rule for Typerec is again the natural one. To compute a constructor

of kind κ, present a type argument and three branches returning κ constructors:

Γ ` c : Type Γ ` cint : κ

Γ ` c→ : Type→ Type→ κ→ κ→ κ

Γ ` c× : Type→ Type→ κ→ κ→ κ

Γ ` Typerec c (cint, c→, c×) : κ

3 The λR calculus

Figure 6 presents the syntax of λR , which we describe in detail in the following section.

The features distinguishing λR from λML

i are highlighted. The syntactic classes for

kinds and constructors of λR are identical to those of λML

i , and are accordingly

omitted from the figure.

3.1 Term representations of types

The key feature we add to the term language of λR is the representations of types as

terms, which remain when the types themselves are ultimately erased. The base type,
ˆint, has a corresponding representation constant Rint. Likewise, non-base types have

representation constructors; for example, the type constructor ˆint→̂ ˆint is represented

by the term R→[ ˆint, ˆint](Rint,Rint).
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(Λα:κ.v)[c] 7→R (v[c/α])

(fix f:σ.v)[c1] . . . [cn]v
′ 7→R (v[fix f:σ.v/f])[c1] . . . [cn]v

′

typecase[δ.σ] Rint (eint, βγxy.e→, βγxy.e×) 7→R eint

typecase[δ.σ](R→[c1, c2](v1, v2))(eint, βγxy.e→, βγxy.e×) 7→R e→[c1/β, c2/γ, v1/x, v2/y]

typecase[δ.σ](R×[c1, c2](v1, v2))(eint, βγxy.e→, βγxy.e×) 7→R e×[c1/β, c2/γ, v1/x, v2/y]

e 7→R e
′

typecase[δ.σ] e (eint, βγxy.e→, βγxy.e×) 7→R typecase[δ.σ] e′ (eint, βγxy.e→, βγxy.e×)

e1 7→R e
′
1

R→[c1, c2](e1, e2) 7→R R→[c1, c2](e′1, e2)

e 7→R e
′

R→[c1, c2](v, e) 7→R R→[c1, c2](v, e′)

e1 7→R e
′
1

R×[c1, c2](e1, e2) 7→R R×[c1, c2](e′1, e2)

e 7→R e
′

R×[c1, c2](v, e) 7→R R×[c1, c2](v, e′)

Fig. 7. Operational semantics for λR .

The argument to the term level typecase is a type representation, instead of an

actual type. For example, if the argument is of the form R→[c1, c2](v1, v2), the arrow

branch (e→) is taken. The type variables β and γ are still bound to c1 and c2, the

types that v1 and v2 represent. Because we need not only the component types but

also their representations, x and y are bound to v1 and v2. Hence, the operational

semantics establishes the following rule for evaluating typecases over arrow types:

typecase[δ.c] (R→[c1, c2](v1, v2)) (eint, βγxy.e→, βγxy.e×)

7→R

e→[c1/β, c2/γ, v1/x, v2/y]

The operational semantics for λR is given in figures 2 and 7. Recall that evaluation

steps applying to both λML

i and λR are written with 7→. Evaluation steps applying

only to λR are written with 7→R .

The operational semantics is designed to permit a type erasure interpretation.

In the main body of this paper, we give the semantics with types included (this

makes programs more readable, and greatly eases the proof of type safety); but

the semantics is designed so that programs behave in the same manner with types

(and attendant machinery such as type abstractions and applications) removed. This

erasure property is verifiable by inspection, and is formalized in Appendix A.

To achieve the desired erasure property, a number of changes are made from λML

i .

Aside from the most notable change, the use of type representations in typecase

expressions, there are other minor changes as well. For example, λR imposes a

value restriction on type abstractions. Without this restriction, a type abstraction

(necessarily a value (Harper & Lillibridge, 1993)) could erase to a non-value, thereby

defeating the erasure property. Similarly, if (fix f:σ.v)[c] stepped to v[fix f:σ.v/f][c],

as in λML

i , then when viewed under the lens of erasure, (fix f.v) would unroll for no
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Γ `R τ : Type

Γ `R R(τ)

Γ `R Rint : R( ˆint)
Γ `R e1 : R(τ1) Γ `R e2 : R(τ2)

Γ `R R→[τ1, τ2](e1, e2) : R(τ1→̂τ2)

Γ `R e1 : R(τ1) Γ ` e2 : R(τ2)

Γ `R R×[τ1, τ2](e1, e2) : R(τ1×̂τ2)

Fig. 8. Formation rules for representation type and representation terms.

reason, despite being a value. Consequently, (fix f:σ.v)[c1] · · · [cn] is taken to be a

value; the internal fix does not unroll until the recursive function is applied to an

actual value.

To assign types to term representations of types, we have extended the types of

λR to include the R construct, where the representation of a type τ is given the type

R(τ). The formation rules for the type R(τ) and for the representation terms appear

in figure 8. For example, the formation rule for the representation of function types

states that if the two subterms, e1 and e2, are type representations of τ1 and τ2, then

R→[τ1, τ2](e1, e2) will be a representation of τ1→̂τ2.

As an example of the use of λR , the tostring function from the previous section

can be translated into λR by requiring it to take an additional term argument, xα for

the representation of the argument type:

fix tostring : (∀α: Type . R(α)→ T (α)→ string).

Λα: Type . λxα:R(α).

typecase[δ. T (δ)→ string] xα of

Rint ⇒ int2string

Rstring ⇒ λobj : string .obj

R→[β, γ](x, y)⇒
λobj :T (β→̂γ). "function"

R×[β, γ](x, y)⇒
λobj :T (β×̂γ).
"<"^(tostring [β] x (π1 obj ))^

","^(tostring [γ] y (π2 obj ))^">"

The static semantics we have defined ensures that these R-types are singleton

types; for each one there is exactly one value which inhabits it. This fact allows

us to express constraints between types and their representations at a very fine

level. For instance, in the tostring example, the representation argument must be the

representation of the type of the object.

3.2 In-place refinement of types

The typing rules of λML

i often force an inelegant use of typecase. In the tostring

example in section 2, and in its λR rendition above, we created closures in each of
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Γ, α: Type,Γ′ `R e : R(α)

Γ,Γ′[ ˆint/α] `R eint[ ˆint/α] : σ[ ˆint/α, ˆint/δ]

Γ, β: Type, γ: Type, x:R(β), y:R(γ),Γ′[(β → γ)/α] `R
e→[(β → γ)/α] : σ[(β → γ)/α, (β → γ)/δ]

Γ, β: Type, γ: Type, x:R(β), y:R(γ),Γ′[(β×̂γ)/α] `R
e×[(β×̂γ)/α] : σ[(β×̂γ)/α, (β×̂γ)/δ]

(α, β, γ 6∈ Dom(Γ,Γ′))
Γ, α: Type,Γ′ `R typecase[δ.σ] e (eint, βγxy.e→, βγxy.e×) : σ[α/δ]

Fig. 9. The variable refining typecase rule.

the branches of the typecase. It would be slightly more efficient and much more

convenient, in this case, if we could lift the lambdas outside of the typecase, so that

the branches of the typecase are not functions. This would allow the application to

the type information and argument to be uncurried. Then, instead of a closure, each

branch of the typecase would return a string. We could then write this function as:

fix tostring : (∀α: Type . R(α)→ T (α)→ string).

Λα: Type . λxα:R(α). λobj :T (α).

typecase[8. string] xα of

Rint ⇒ int2string obj

Rstring ⇒ obj

R→[β, γ](x, y)⇒
"function"

R×[β, γ](x, y)⇒
"<"^(tostring [β] x (π1 obj ))^

","^(tostring [γ] y (π2 obj ))^">"

The reason we could not write this function in λML

i is that it requires the type of obj to

change based on which branch of the typecase is selected. In λML

i , all that is known in

the product branch is that obj has type T (α); it is not known that it has type T (β×̂γ).
To project from it in the recursive calls, the typing rules would have to update the

type of obj to reflect the fact that we know that α is β×̂γ in the product branch.

With the right enhancement to the static semantics this optimization is possible.

We have held off discussion of the λR ’s typecase typing rule in order to emphasize

this point. The basic idea is that in some cases typecase increases our knowledge of

the argument type, and we can propagate this knowledge back to the type system.

In the rule for type checking a typecase term, when the argument has type R(α), we

refine all types containing α to reflect the gain in information. This refinement is

done using a simple substitution, as shown in figure 9.

For example, to typecheck the e→ branch, we substitute β→̂γ for α everywhere,

including the surrounding context.2 Consequently, the types of the variables bound

2 The substitution for α is applied within the branches themselves in order to avoid creating a hole in
the scope of α. In practice, a typechecker would implement this operation by a local type definition,
rather than by substitution.
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Γ `R e : R(c) Γ `R eint : σ[ ˆint/δ]

Γ, β: Type, γ: Type, x:R(β), y:R(γ) `R e→ : σ[(β→̂γ)/δ]

Γ, β: Type, γ: Type, x:R(β), y:R(γ) `R e× : σ[(β×̂γ)/δ]

Γ `R typecase[δ.σ] e (eint, βγxy.e→, βγxy.e×) : σ[c/δ]
(β, γ 6∈ Dom(Γ,Γ′))

Fig. 10. Non-refining typecase rule.

in the context will be refined by that substitution. In contrast, in λML

i this substitution

is only made in the return type of each branch – not in the context – so in order to

propagate the desired information one must abstract over all variables of interest.

Sometimes refinement is not possible even with this rule; such cases arise when

the type being analyzed is not a variable.3 For such cases, our type system includes

an ordinary non-refining typing rule as well (figure 10).

3.3 Semantics

The static semantics of λR consists of a collection of rules for deriving judgments

of the forms shown in figure 5. The formal operational and static semantics of λR
appear in figure 7 and Appendix B, and from them we can prove several useful

properties about λR .

Theorem 3.1 (Decidability)

It is decidable whether or not Γ ` e : τ is derivable in λR .

The proof of decidability of λR typechecking is merely an extension of the decid-

ability of λML

i typechecking to a few new constructs; full details of that proof appear

in Morrisett (1995). This proof consists of two parts: showing that constructors and

types may be reduced to a normal form, and showing that type derivations can be

normalized to an equivalent syntax-directed version.

Next, we would like to show that the static semantics guarantees safety; that is,

if a term typechecks, then the operational semantics will not get stuck. As usual, a

term is considered stuck if it is not a value and no rule of our operational semantics

applies to it.

Theorem 3.2 (Type Safety)

If ∅ ` e : σ and e 7→∗ e′ then e′ is not stuck.

Type safety is proved syntactically, in the manner popularized by Wright &

Felleisen (1994), employing the usual Progress and Subject Reduction Lemmas.

Lemma 3.3 (Progress)

If ∅ ` e : τ and e is not a value then there exists an e′ such that e 7→ e′.

3 Some non-variable cases can still be refined by the trivialization rules of the next section. Cases in
which refinement is impossible are those in which the outermost type constructor cannot be determined
statically, that is, irreducible application and Typerec expressions.
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Lemma 3.4 (Subject Reduction)

If ∅ ` e : τ and e 7→ e′ then ∅ ` e′ : τ.

The proof of these lemmas is largely standard, following the pattern in Mor-

risett (1995), for example. However, one subtlety does arise as a result of in-place

refinement. This subtlety arises in one of the usual substitution lemmas used in the

Subject Reduction lemma:

Lemma 3.5 (Constructor Substitution into Terms)

If Γ, α:κ,Γ′ ` e : τ and ∅ ` c : κ then Γ,Γ′[c/α] ` e[c/α] : τ[c/α].

In Lemma 3.5, suppose e is a typecase expression in which the type being

analyzed is the variable of substitution α, and suppose the refining rule is used to

typecheck e:

...
Γ, α: Type,Γ′ ` e′ : R(α)

...

Γ,Γ′[ ˆint/α] ` eint[ ˆint/α] : σ[ ˆint/α, ˆint/δ] · · ·
Γ, α: Type,Γ′ ` typecase[δ.σ] e′ (eint, βγxy.e→, βγxy.e×) : σ[α/δ]

After substitution for α, the type being analyzed is no longer a variable and the

refining rule no longer applies. Not surprisingly, the non-refining rule does not

generally suffice to typecheck these cases.

We resolve this problem by adding three new rules for typechecking analyses of

types whose outermost constructor is known:

Γ ` e : R( ˆint) Γ ` eint : σ[ ˆint/δ]

Γ ` typecase[δ.σ] e (eint, βγxy.e→, βγxy.e×) : σ[ ˆint/δ]

Γ ` e : R(c1 → c2) Γ, x:R(c1), y:R(c2) ` e→[c1/β, c2/γ] : σ[(c1→̂c2)/δ]

Γ ` typecase[δ.σ] e (eint, βγxy.e→, βγxy.e×) : σ[(c1→̂c2)/δ]

Γ ` e : R(c1×̂c2) Γ, x:R(c1), y:R(c2) ` e×[c1/β, c2/γ] : σ[(c1×̂c2)/δ]

Γ ` typecase[δ.σ] e (eint, βγxy.e→, βγxy.e×) : σ[(c1×̂c2)/δ]

We call these trivialization rules because they typecheck trivial analyses, ones that

can be eliminated statically. They operate by typechecking the relevant branch and

discarding the remaining branches as dead code.

For example, suppose the substitutend c is ˆint. Then we obtain:

(by substitution)

Γ,Γ′[ ˆint/α] ` e′[ ˆint/α] : R( ˆint)

(retained)

Γ,Γ′[ ˆint/α] ` eint[ ˆint/α] : σ[ ˆint/α][ ˆint/δ]

Γ,Γ′[ ˆint/α] ` (typecase[δ.σ] e′ (eint, . . .))[ ˆint/α] : σ[ ˆint/α][ ˆint/δ]

and observe that σ[ ˆint/α][ ˆint/δ] = σ[α/δ][ ˆint/α], as desired.

In general, since c kindchecks in the empty context, it easy to show that c is

equivalent to a constructor whose outermost constructor is known. It follows that

one of the three trivialization rules must apply, since if (for example) c = c1×̂c2,

then R(c) = R(c1 × c2), and consequently e : R(c) implies e : R(c1×̂c2).
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types |T (c)| = T (c)

| int | = int

|σ1 → σ2| = |σ1| → |σ2|
|σ1 × σ2| = |σ1| × |σ2|
|∀α:κ.σ| = ∀α:κ.R(α:κ)→ |σ|
|∃α:κ.σ| = ∃α:κ.R(α:κ)× |σ|

expressions |x| = x

|i| = i

|λx:σ.e| = λx:|σ|.|e|
| fix f:σ.v| = fix f:|σ|.|v|
|e1e2| = |e1||e2|

|〈e1, e2〉| = 〈|e1|, |e2|〉
|π1e| = π1|e|
|π2e| = π2|e|

|Λα:κ.e| = Λα:κ.λxα:R(α:κ).|e|
|e[c]| = |e| [c] Rep(c)

| pack e as (∃α:κ.σ) hiding c| = pack 〈Rep(|σ2|), |e|〉
as ∃α:κ. R(α:κ)× |σ| hiding |c|

| unpack 〈α, x〉 = e1 in e2| = unpack 〈α, y〉 = |e1|
in |e2|[π1y/xα, π2y/x]∣∣∣∣∣∣∣∣

typecase[α.σ] c of

int⇒ eint

β → γ ⇒ e→
β × γ ⇒ e×

∣∣∣∣∣∣∣∣ =

typecase[α.|σ|] Rep(c) of

Rint ⇒ |eint|
R→[β, γ](xβ, xγ)⇒ |e→|
R×[β, γ](xβ, xγ)⇒ |e×|

Fig. 11. Translation from λML
i to λR .

4 Embedding of λML

i

We next describe an embedding of λML

i expressions into λR . We include this embedding

for two reasons: first, to show that λR is as expressive as λML

i , and second, to

demonstrate a simple use of λR as an intermediate language. The full details of the

embedding appear in figures 11–13. The embedding of λML

i types and terms is written

|σ| and |e|.
The main difference between λML

i and λR is the typecase term; in λML

i it takes a type

constructor as its argument, in λR it takes a term representing a type. Therefore, to

simulate a λML

i typecase term with an λR typecase term, we need to be able to form

the term representation of the type constructor argument. This operation, written

Rep(·), appears in figure 12.

Creating the representation of a given type constructor is complicated by the

fact that the argument to Typerec can (and often will) contain constructors with

free type variables. These type variables are translated to term variables that rep-

resent them, but in order to do this translation, we must maintain the invariant

that for every accessible type variable, a corresponding term variable representing

it is also accessible. We make this guarantee by a process reminiscent of phase

splitting (Harper et al., 1990) or evidence passing (Jones, 1992). In the translation of

constructor abstractions, we split the abstractions to take both the constructor and
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Rep( ˆint) = Rint

Rep(τ1→̂τ2) = R→[τ1, τ2](Rep(τ1),Rep(τ2))

Rep(τ1×̂τ2) = R×[τ1, τ2](Rep(τ1),Rep(τ2))

Rep(α) = xα
Rep(λα:κ.c) = Λα:κ.λxα:R(α:κ).Rep(c)

Rep(c1c2) = Rep(c1)[c2]Rep(c2)

Rep(Typerec τ(cint, c→, c×)) = (fix f:∀α: Type .R(α)→ R(c∗[α]:κ).

Λα: Type .

λxα:R(α).

typecase[R(c∗[α]:κ)] xα
Rint ⇒ Rep(cint)

R→[β, γ](xβ, xγ)⇒
Rep(c→)[β]xβ [γ]xγ

[c∗[β]](f[β]xβ) [c∗[γ]](f[γ]xγ)

R×[β, γ](xβ, xγ)⇒
Rep(c×)[β]xβ [γ]xγ

[c∗[β]](f[β]xβ) [c∗[γ]](f[γ]xγ)

) [τ] Rep(τ)

where c∗[τ′] = Typerec τ′(cint, c→, c×)

and κ is the kind of the full Typerec expression

Fig. 12. Translation of constructors to their representations.

R(τ : Type)
def
= R(τ)

R(c : κ1 → κ2)
def
= ∀α:κ1. R(α : κ1)→ R(cα : κ2)

Fig. 13. Representations of higher constructors.

a term variable, where the term variable is constrained to be the representation of

that constructor, and application is also changed accordingly:

|Λα:κ.e| = Λα:κ.λxα:R(α:κ).|e|
|e[c]| = |e| [c] Rep(c)

Note that this translation also satisfies the value restriction placed on λR type

abstractions. Dually, we also include the representation of a type constructor when

we form an existential package. The notation R(α:κ) is defined shortly.

The next issue to address is the representation of higher-order type constructors.

If, for example, c has kind Type → Type, it maps type arguments to type results.

Accordingly, the representation of c maps the representation of c’s type argument

to the representation of c’s type result. More generally, when c has kind κ1 → κ2, its

representation is a polymorphic function taking the representation of c’s constructor

argument to the representation of the result of applying c to that argument. When

c has kind κ, we define R(c : κ) to be the type of c’s representation, as given in

figure 13.

The last issue in our translation of type constructors to their representations is

the definition of the representation of a Typerec constructor. We represent it as a
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Spl(·) = ·
Spl(Γ, x:τ) = Spl(Γ), x:τ

Spl(Γ, α:κ) = Spl(Γ), α:κ, xα:R(α:κ)

Fig. 14. Context splitting.

typecase on the representation of the argument to the Typerec, but because Typerec

is recursive, we must wrap the typecase in a recursive polymorphic function:

Rep(Typerec τ(cint, c→, c×)) = ((fix f : ∀α: Type .R(α)→ R(c∗[α]:κ).

Λα: Type . λxα:R(α).

typecase xα
Rint ⇒ Rep(cint)

...)

[τ] Rep(τ))

where c∗[τ] = Typerec τ(cint, c→, c×) and κ is the result kind of the Typerec.

In the arrow and product of the typecase, this function must be called recursively

on the subcomponents of the type, just as in Typerec. For example, consider the

arrow case:

R→[β, γ](xβ, xγ)⇒
Rep(c→) [β] xβ [γ] xγ [c∗[β]] (f[β] xβ) [c∗[γ]] (f[γ] xγ)

The c→ arm of the Typerec is a function taking four type variables, the first two

being β and γ, the second two being the results of calling the Typerec recursively on

β and γ. However, because of phase splitting in the translation, each type argument

has an associated term argument for its representation, so the translation of c→,

takes four pairs of type and term arguments. For the first two pairs, β and γ, their

representations xβ and xγ are readily available from the typecase. For the recursive

arguments, we use the original Typerec to find the resulting constructors and call f

recursively to find the representations of those resulting constructors.

4.1 Correctness of the embedding

The static and dynamic correctness of the embedding is not difficult to show. In

what follows, we write `i for typing derivations in λML

i and `R for typing derivations

in λR .

We begin by establishing a lemma, stating that the representations defined above

have the appropriate type. Recall that the definition of representations required

an inductive assumption that representations are always available for constructor

variables. This invariant is enforced using an auxiliary definition to split contexts

(written Spl(Γ)), explicitly adding representations for each variable in the context.

Lemma 4.1

If Γ `R c : κ then Spl(Γ) `R Rep(c) : R(c : κ)

Now we can establish the static correctness of the embedding:
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Rep[[ ˆint]] = {Rint}
Rep[[τ1→̂τ2]] = {R→[τ′1, τ′2](e1, e2) | Γ ` τi = τ′i: Type, ei ∈ Rep[[τi]], i = 1, 2}
Rep[[τ1×̂τ2]] = {R×[τ′1, τ′2](e1, e2) | Γ ` τi = τ′i: Type, ei ∈ Rep[[τi]], i = 1, 2}

Rep[[α]] = {xα}
Rep[[λα:κ.c]] = {Λα:κ.λxα:R(α:κ).e | e ∈ Rep[[c]]}

Rep[[c1c2]] = {e1[c′2]e2 | e1 ∈ Rep[[c1]],Γ ` c2 = c′2 : κ, e2 ∈ Rep[[c2]]}
Rep[[Typerec τ

(cint, c→, c×)

]] = {(fix f:∀α: Type .R(α)→ R(c∗[α]:κ).

Λα: Type .λxα:R(α).

typecase[R(c∗[α]:κ)] xα
Rint ⇒ eint

R→[β, γ](xβ, xγ)⇒
e→[β]xβ [γ]xγ

[c∗[β]](f[β]xβ) [c∗[γ]](f[γ]xγ)

R×[β, γ](xβ, xγ)⇒
e×[β]xβ [γ]xγ

[c∗[β]](f[β]xβ) [c∗[γ]](f[γ]xγ)

) [τ′] e | eint ∈ Rep[[cint]], e→ ∈ Rep[[c→]], e× ∈ Rep[[c×]],

Γ ` τ′ = τ : Type, e ∈ Rep[[τ]] }
where c∗[τ′] = Typerec τ′(cint, c→, c×)

and κ is the kind of the full Typerec expression

Rep[[c]] = {e | Γ ` c = c′ : κ & e ∈ Rep[[c′]]}

Fig. 15. Extended representations

Theorem 4.2 (Static correctness)

Define |Γ| as Spl(Γ′), where Γ′ is defined as the pointwise translation of Γ (that is,

for all x ∈ Γ, Γ′(x) = |Γ(x)|, and for all α ∈ Γ, Γ′(α) = Γ(α)). Then:

1. If Γ `i c : κ then |Γ| `R c : κ

2. If Γ `i c1 = c2 : κ then |Γ| `R c1 = c2 : κ

3. If Γ `i σ then |Γ| `R |σ|
4. If Γ `i σ1 = σ2 then |Γ| `R |σ1| = |σ2|
5. If Γ `i e : τ then |Γ| `R |e| : |τ|

In order to show the dynamic correctness of the embedding, we must show

that the result of translation simulates the operation of λML

i . However, because the

the evaluation of the term representations does not exactly match the reduction of

constructors, we must add some imprecision to the simulation. We allow constructors

and their representations appearing in the result of the embedding to be of any

equivalent constructor (based on the definition of constructor equality), instead of

exactly matching the constructor appearing in the source λML

i term.

We define the operation Rep[[c]] which produces a set of representations of the

constructor c, in Figure 15. For any c, Rep(c) is in the set Rep[[c]]. The other

members of this set differ from Rep(c) only in the embedded constructors. For

example, Rep[[ ˆint→̂ ˆint]] includes both R→[ ˆint, ˆint](Rint,Rint), and

R→[(λβ: Type .β) ˆint, ˆint](Rint,Rint). The set Rep[[c]], defined at the bottom of the

figure, is even larger. It includes all representations of equivalent constructors. For

https://doi.org/10.1017/S0956796801004282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004282


Intensional polymorphism in type-erasure semantics 585

types

[[T (c)]] = {T (c′) | Γ ` c = c′ : Type}
[[int]] = {int}

[[σ1 → σ2]] = {σ′1 → σ′2 | σi ∈ [[σi]], i = 1, 2}
[[σ1 × σ2]] = {σ′1 × σ′2 | σi ∈ [[σi]], i = 1, 2}
[[∀α:κ.σ]] = {∀α:κ.R(α:κ)→ σ′ | σ′ ∈ [[σ]]}
[[∃α:κ.σ]] = {∃α:κ.R(α:κ)× σ′ | σ′ ∈ [[σ]]}

expressions

[[x]] = {x}
[[i]] = {i}

[[λx:σ.e]] = {λx:σ′.e′ | σ′ ∈ [[σ]], e′ ∈ [[e]]}
[[fix f:σ.v]] = {fix f:σ′.v′ | σ′ ∈ [[σ]], v′ ∈ [[v]]}

[[e1 e2]] = { e′1 e′2 | e′1 ∈ [[e1]], e′2 ∈ [[e2]]}
[[〈e1, e2〉]] = {〈e′1, e′2〉 | e′1 ∈ [[e1]], e′2 ∈ [[e2]]}

[[π1e]] = {π1e
′ | e′ ∈ [[e]]}

[[π2e]] = {π2e
′ | e′ ∈ [[e]]}

[[Λα:κ.e]] = {Λα:κ.λxα:R(α:κ).e′ | e′ ∈ [[e]]}
[[e[c]]] = {e′[c′] e′′ | e′ ∈ [[e]],Γ ` c = c′ : κ, e′′ ∈ Rep[[c]]}

[[
pack e as (∃α:κ.σ)

hiding c

]]
=

pack 〈e′′, e′〉 e′′ ∈ Rep[[c]]

as ∃α:κ. R(α:κ)× σ′ e′ ∈ [[e]], σ′ ∈ [[σ]]

hiding c′ Γ ` c′ = c : κ


[[unpack 〈α, x〉 = e1 in e2]] =

{
unpack 〈α, y〉 = e′1 e′1 ∈ [[e1]]

in (λxα:R(α:κ).λx:α.e′2)(π1y)(π2y) e′2 ∈ [[e2]]

}



typecase[α.σ] c of
ˆint⇒ eint

β→̂γ ⇒ e→
β × γ ⇒ e×


 =


typecase[α.σ′] e of e ∈ Rep[[c]]

Rint ⇒ e′int e′int∈ [[eint]]

R→[β, γ](xβ, xγ)⇒ e′→ e′→∈ [[e→]]

R×[β, γ](xβ, xγ)⇒ e′× e′× ∈ [[e×]]

σ′ ∈ [[σ]]


Fig. 16. Extended translation

example, not only does Rep[[ ˆint→̂ ˆint]] include the above terms, but it also includes

a representation of ((λβ: Type .β) int)→ int

R→[(λβ: Type .β) ˆint, ˆint]((Λβ: Type .λxβ:R(β).x)Rint),Rint).

Likewise, the operations [[σ]] and [[e]] in Figure 16 generalize the translation of

λML

i types and terms. Again |σ| is in the set [[σ]] and |e| is in [[e]]. In these sets,

embedded constructors and their representations may be replaced with equivalent

forms. For example, [[T ( ˆint)]] includes both the types T ( ˆint) and T ((λβ: Type .β) ˆint).

For the translation of terms, [[x[ ˆint]]] includes x[ ˆint]Rint, x[(λβ: Type .β) ˆint]Rint, and

x[ ˆint]((Λβ: Type .λxβ:R(β).x)Rint).

To begin, we must establish how substitution interacts with these operations. In

the following, we will use the following abbreviations (where S1 and S2 are arbitrary
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sets of terms):

S1[S2/x]
def
= {e[e′/x] | e ∈ S1 & e′ ∈ S2}

S1[e′/x]
def
= S1[{e′}/x]

Lemma 4.3 (Substitution)

1. If Γ, α:κ ` c′ : κ′ and Γ ` c : κ, then Rep[[c′]][c/α][Rep[[c]]/xα] ⊆ Rep[[c′[c/α]]].
2. If Γ, α:κ ` c′ : κ′ and Γ ` c : κ, then Rep[[c′]][c/α][Rep[[c]]/xα] ⊆ Rep[[c′[c/α]]].
3. If Γ, α:κ ` c′ : κ′ and Γ ` c : κ, then Rep[[c′]][c/α][Rep[[c]]/xα] ⊆ Rep[[c′[c/α]]].
4. If Γ, α:κ `i σ and Γ ` c : κ then [[σ]][c/α] ⊆ [[σ[c/α]]].

5. If Γ, α:κ `i e : σ and Γ ` c′ = c : κ, then [[e]][c′/α][Rep[[c′]]/xα] ⊆ [[e[c/α]]].

6. If Γ, x:σ `i e : σ′ and Γ `i v : σ then [[e]][[[v]]/x] = [[e[v/x]]].

Next, we also need to establish that the evaluation of term representations agrees

with constructor equality. In the end, our goal is to show that if e ∈ Rep[[int]] then

e must evaluate to Rint (and similar results for arrow and product types).

Lemma 4.4

For all ∅ ` c : κ, e ∈ Rep[[c]] then either e is a value or there exists some e′ and c′
such that e 7→+ e′ and e′ ∈ Rep[[c′]] and c reduces to c′.

Lemma 4.5

If e ∈ Rep[[c]] then e evaluates to a value v ∈ Rep[[c]].

Corollary 4.6

1. If e ∈ Rep[[int]] then e evaluates to Rint.

2. If e ∈ Rep[[τ1→̂τ2]] then e evaluates to R→[τ′1, τ′2](v1, v2), where ∅ ` τi = τ′i :

Type and vi ∈ Rep[[τi]] for i = 1, 2.

3. If e ∈ Rep[[τ1 × τ2]] then e evaluates to R×[τ′1, τ′2](v1, v2), where ∅ ` τi = τ′i :

Type and vi ∈ Rep[[τi]] for i = 1, 2.

Lemma 4.7 (Simulation)

If `i e1 : σ and e1 7→i e2 then for all e′1 ∈ [[e1]] there exists an e′2 ∈ [[e2]] such that

e1 7→∗R e′2.

Now we can conclude the dynamic correctness of the translation:

Theorem 4.8 (Dynamic Correctness)

If ` e : int and e 7→∗i i then |e| 7→∗R i.

5 Typed closure conversion

As a final example, we consider typed closure conversion in an impredicative, λR-like

framework. Our analysis will show that typed closure conversion is much simpler in

our setting, and will shed light on which mechanisms from typed closure conversion

in the type-passing setting are actually essential.

The goal of closure conversion is to eliminate nested lambdas and produce an

equivalent program where all functions are defined only at the top level. This is done

by replacing all inner functions with explicit closures that are represented within

the language as pairs consisting of a function pointer (the code of the closure), and

https://doi.org/10.1017/S0956796801004282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004282


Intensional polymorphism in type-erasure semantics 587

a tuple (the environment of the closure). The environment contains values for the

free variables of the function. The function pointer is bound globally to a function

that abstracts the environment as well as the arguments of the function and is thus

closed. Application is rewritten so that the code of a closure is first applied to its

environment and then to its arguments.

The development in this section is given at an informal level, as fully formalizing

the type theory in our discussion would take us too far from our key points.

Formalizations of the type theory necessary to this section are given for type erasure

in Crary & Weirich (1999), and for type passing in Minamide et al. (1996).

5.1 Monomorphic typed closure conversion

The challenge of typed closure conversion is to preserve the typing properties of

the program. If two source expressions have the same source type, they should have

the same target type. Consider first the typed closure conversion of a monomorphic

language (Minamide et al., 1996). So that functions having the same type but different

free variables will have equivalent types after closure conversion, an existential type

is used to hold the type of the environment abstract. Therefore, a function of type

τ1 → τ2 is translated to a closure of type ∃α.((τ1 × α) → τ2) × α. For example,

to closure convert the following function declaration (containing the free variables

x : int and y : bool),

val mymonofunc = λf: int→ int .〈fx, y〉
we need to abstract over the free variables x and y. This changes the lambda to

expect two arguments, the first being the argument f and the second being an

environment consisting of a tuple containing the values for the free variables x

and y.

λz:(int→ int)× (int× bool).〈(π1z)(π1(π2z)), (π2(π2z))〉
To simplify the examples, we will use pattern matching syntax in lambdas, and write

this function as:

λ〈f: int→ int, 〈x: int, y: bool〉〉.〈fx, y〉
Since the argument f in the source term is a function, it too must be closure

converted. Therefore, f is taken to have the type:

σf = ∃α.(int×α→ int)× α
To apply f, our main function must unpack it, extract the code pointer and its

environment, and then apply the code to both x and that environment:

λ〈f:σf, 〈x: int, y: bool〉〉.
〈unpack 〈α, f′:(int×α→ int)× α〉 = f in (π1f

′)〈x, π2f
′〉, y〉

This lambda abstraction is closed and may be hoisted to the top level. Suppose

this hoisting is performed and the closed lambda is given the name mymonocode.

It remains to construct the closure for mymonofunc, by pairing the code pointer

(mymonocode) with its environment, and then hiding the environment’s type in an
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existential package:

val mymonoclosure = pack 〈mymonocode, 〈x, y〉〉 as ∃α.(σf × α→ int)× α
hiding int× bool

5.2 Polymorphic typed closure conversion

In the monomorphic case there is no discrepancy between type-passing (Minamide

et al., 1996) and type-erasure (Morrisett et al., 1999) closure conversion. However,

with the introduction of polymorphism, significant differences arise. The differences

stem from the fact that functions may contain free type variables as well as free

value variables, and closed code must abstract both. This abstraction of code over

free type variables is performed in the same manner in both settings; the differences

arise in when the closure is constructed.

In a type-erasure semantics, where type application has no run-time effect, it is

possible to resolve the code’s abstracted type variables when the closure is created,

simply by applying the code to the appropriate type arguments. In principle, this

would mean performing the indicated type substitution at run time (an unacceptable

run-time cost), but since types are erased this need not take place in reality; the

instantiated ‘duplicate’ is no different from the original and may share with it in

memory.

In a type-passing semantics, types are real run-time data so this strategy is

impermissible. Instead, free type variables are collected into an environment in the

same manner as free value variables. Operationally, this is dealt with in exactly the

same manner as for value variables (as discussed above); however, considerably more

type-theoretic machinery is required in the target language in order to typecheck the

resulting closure (Minamide et al., 1996).

For example, consider the following function declaration (containing the free

type variables α and β and the free value variables y : β and z : int, for some

appropriately typed term ex,y,z):

val myfunc : α→ (int×β) = λx:α. ex,y,z

The closed version of this function abstracts over the free type and value variables:

Λγ: Type×Type . λz:(π1γ × (π2γ × int)). e(π1z),(π1(π2z)),(π2(π2z))

In pattern matching notation:

Λ〈α: Type, β: Type〉. λ〈x:α, 〈y:β, z: int〉〉. ex,y,z
Suppose that this closed code is hoisted to the top level and given the name mycode.

Observe that mycode has the type:

∀γ:κtenv . (π1γ × τvenv )→ (int×π2γ)

where κtenv = Type×Type and τvenv = π2γ × int. It remains to build a closure from

mycode.
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5.2.1 Type-passing closures

In the example above, observe that although the function is intended to take an

argument of type α, the type of mycode indicates an argument of type π1γ, where

γ is the type environment. Thus, if mycode is applied to the ‘wrong’ type argument

(one for which the first component is not α), the code cannot be used as intended.

However, nothing prevents mycode from being applied to any constructor having

kind κtenv . Therefore, the first step to building a closure is to constrain mycode to

be applied only to the appropriate type argument:

val myclosure 1 : ∀γ:κtenv =〈α, β〉. (α× τvenv )→ (int×β) = mycode

This type uses a translucent type (Harper & Lillibridge, 1994) to dictate that the

constructor argument γ must be 〈α, β〉. This type constraint can be understood in

two steps: first, a subtyping step to add the constraint, and, second, an equality step

(since it follows from this constraint that π1γ = α and π2γ = β),

∀γ:κtenv . (π1γ × τvenv )→ (int×π2γ)

6 ∀γ:κtenv =〈α, β〉. (π1γ × τvenv )→ (int×π2γ)

= ∀γ:κtenv =〈α, β〉. (α× σvenv )→ (int×β)

where σvenv = β × int ∼= τvenv [〈α, β〉/γ]. The need for this translucency mechanism

and the type theory supporting it are described in much greater detail in Minamide

et al. (1996).

The next step in constructing a closure from mycode is to pair myclosure 1 with

the value environment (〈y, z〉) and the type environment (〈α, β〉). The operator for

pairing values with types is existential packaging, so we obtain:

val myclosure 2 = pack 〈myclosure 1, 〈y, z〉〉 as σmyclosure 2 hiding 〈α, β〉

with type:

σmyclosure 2 =

∃δtenv :κtenv . (∀γ:κtenv =δtenv . (α× σvenv )→ (int×β))× σvenv

The final step is to hide (as before) the type of the value environment, and (unlike

before) the kind of the type environment, obtaining:

val myclosure = packkind

pack myclosure 2 as . . . hiding σvenv

as σmyclosure hiding κtenv

with type:

σmyclosure =

∃ktenv : Kind . ∃εvenv : Type . ∃δtenv :ktenv .

(∀γ:ktenv =δtenv . (α× εvenv )→ (int×β))× εvenv
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More generally, a closure for a function of type τ1 → τ2 will have the type:4

∃ktenv : Kind . ∃εvenv : Type . ∃δtenv :ktenv .

(∀γ:ktenv =δtenv . (τ1 × εvenv )→ τ2)× εvenv

This illustrates that building a closure in a type-passing setting requires two heavy-

weight type-theoretic constructs: first, a translucent type mechanism, so that the

code may be constrained to be applied only to the correct type environment, and,

second, a special form of existential type for abstracting kinds.5

5.2.2 Type-erasure Closures

In a type-erasure setting, things work out more simply than in the type-passing

setting. Since type application has no run-time effect, the closed code can simply

be applied to its type environment when the closure is constructed; there is no

need to defer that application by including the type environment in the closure.

Also, no explicit translucency mechanism is required to ensure that the correct type

environment is used, since the code is eagerly applied to the correct type environment

at the outset.

The simplest account of typed closure conversion in a type-erasure setting is

given in Morrisett et al. (1999), but that account does not support intensional type

analysis, so it is not entirely comparable to the type-passing account of Minamide et

al. (1996) summarized above. For comparable expressive power, the function requires

representations of the free type variables α and β so that its body can analyze these

types. Once we add these representations to the context, however, we may proceed

using exactly the closure conversion process of Morrisett et al., and it is instructive

to observe what happens.

For example, myfunc is rewritten to

val myfunc′ : α→ (int×β) = λx:α. ex,y,z,wα,wβ

containing the additional free value variables wα : R(α) and wβ : R(β).

The closed version of this function (in pattern matching notation) is:

Λ〈α: Type, β: Type〉. λ〈x:α, 〈y:β, 〈z: int, 〈wα:R(α), wβ:R(β)〉〉〉〉. ex,y,z,wα,wβ
Again, suppose this code is hoisted and given the name mycode′. Then mycode′ has

type:

∀γ:κtenv . (π1γ × τ′venv )→ (int×π2γ)

where τ′venv = π2γ × (int×(R(π1γ)× R(π2γ))).

To build a closure from mycode′, we first apply it to the appropriate type envi-

ronment:

val myclosure 1′ : (α× σ′venv )→ (int×β) = mycode′[〈α, β〉]

4 Except that any function types within τ1 and τ2 must be closure-converted themselves.
5 By an abuse of terminology, this second mechanism is often called an ‘existential kind’, even though

the existential itself is a type.
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where σ′venv = β × (int×(R(α)× R(β))) ∼= τ′venv [〈α, β〉/γ]. Next we pair

myclosure 1′ with its value environment, obtaining:

val myclosure 2′ = 〈myclosure 1′, 〈x, 〈y, 〈wα, wβ〉〉〉〉
with type ((α× σ′venv )→ (int×β))× σ′venv .

Finally, we hide the type of the value environment, obtaining:

val myclosure′ = pack myclosure 2′ as σ′myclosure hiding σ′venv

with type:

σ′myclosure = ∃δ. ((α× δ)→ (int×β))× δ
More generally, a closure for a function of type τ1 → τ2 will have the type:

∃δ. ((τ1 × δ)→ τ2)× δ
Observe that, despite the support for intensional type analysis, like Morrisett et al.

(1999) we are able to give the same type for closures as in the monomorphic case.

Consider what remains of the key mechanisms of type-passing closure conversion,

translucent types and abstract kinds: The type for myclosure 1′ dictates that its

environment contains representations for two types, and specifically (via the R-type

mechanism) for the types α and β in particular. In other words, the R-type mechanism

provides a sense of translucency; the code cannot be applied to (environments

containing) representations of arbitrary types, just the particular indicated types.

Thus, although we avoid the full-blown translucency mechanism of Minamide et

al. (1996), some form of translucency nevertheless emerges as essential.

On the other hand, the need for abstract kinds, like the particular form of translu-

cency used by Minamide et al., appears to be a requirement of type-passing closure

conversion only. In the quasi-type-passing system that we propose here, it is replaced

by a standard existential over constructors, thereby simplifying the type theory.

6 Related work

Closely related to our work is the work of Minamide on lifting of type parameters

for tag-free garbage collection (Minamide, 1997). Minamide was interested in lifting

type parameters out of code so they could be preallocated at compile time. His

lifting procedure required the maintenance of interrelated constraints between type

parameters to retain type soundness, and he used a system similar to ours that makes

explicit the passing of type parameters in order to simplify the expression of such

constraints. The principal difference between Minamide’s system and ours is that

Minamide did not consider intensional type analysis. Minamide’s system also makes

a distinction between type representations (which he calls evidence, following Jones

(1992)) and ordinary terms, while λR type representations are fully first-class. Finally,

his system does not support separate compilation well while a transformation to λR
can be applied uniformly across modules.

The issue of type parameter lifting is an important one for compilers based on λR .

The construction of type representations at run time would likely lead to significant
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cost and, in practice, should be lifted out to compile time whenever possible.

(Unfortunately, in the presence of polymorphic recursion, which λR supports, it is

not always possible.) Mechanisms for such lifting have been developed by Minamide

(in the work discussed above) and by Saha & Shao (1998).

Dubois et al. (1995) also pass explicit type representations to polymorphic func-

tions when compiling ad-hoc polymorphism. However, their system differs from ours

and Minamide’s in that no mechanism is provided for connecting representations

to the types they denote, and consequently, information gained by analyzing type

representations does not propagate into the type system.

Duggan (1998) proposes another typed framework for intensional type analysis

that is similar in some ways to λML

i . Like λML

i , Duggan’s system passes types implicitly

and allows for the intensional analysis of types at the term level. Duggan’s system

does not support intensional type analysis at the constructor level, as λML

i and λR do,

but it adds a facility for defining type classes (using union and recursive kinds) and

allows type analysis to be restricted to members of such classes.

Since the results of this paper were first announced (Crary et al., 1998), work has

continued on the topic of intensional type analysis in type-erasure settings: Crary &

Weirich (1999) proposed a somewhat involved but highly expressive type theory in

which the mechanisms of this paper can be used as a simple programming idiom,

instead of as primitive language mechanisms. This type theory has the advantage

that the source-level type structure can be preserved for the purpose of intensional

type analysis even through program transformations that change types. This makes

the type theory compatible with low-level typed intermediate languages in a type-

preserving compiler, resolving a proposed direction for future work from our original

report. Furthermore, Crary and Weirich show that their type theory supports the

intensional analysis of polymorphic types, which λML

i and λR do not.

Also, the mechanisms of this paper were used by Saha et al. (2000) to develop a

type-erasure-compatible version of the type system of Trifonov et al. (2000). Trifonov

et al.’s type system extends λML

i with kind polymorphism, thereby allowing the

analysis of polymorphic types represented with higher-order abstract syntax. Because

the kind of the bound variable is held abstract, they may analyze polymorphic

types with quantifiers ranging over higher kinds. In contrast, Crary and Weirich’s

mechanism limits quantifiers to the base kind and uses first-order analysis.

7 Conclusions and future directions

We have presented a type-theoretic framework that supports the passing and analysis

of type information at run time, but avoids the shortcomings associated with

previous such frameworks (e.g., duplication of constructs, lack of abstraction, and

complication of closure conversion). This new framework makes it feasible to use

intensional type analysis in settings where the shortcomings previously made it

impractical.

For example, Morrisett et al. (1999) developed typing mechanisms for low-level

intermediate and target languages that allow type information to be used all the

way to the end of compilation. It would be desirable, in a system based on those

https://doi.org/10.1017/S0956796801004282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004282


Intensional polymorphism in type-erasure semantics 593

mechanisms, to be able to exploit that type information using intensional type analy-

sis. Unfortunately, the shortcomings of type-passing semantics made it incompatible

with some of those low-level typing mechanisms. This unfortunate incompatibility

has made it infeasible to use the mechanisms of Morrisett et al. in type-analyzing

compilers such as TIL/ML (Tarditi et al., 1996; Morrisett et al., 1996) and FLINT

(Shao, 1997b), and has made it infeasible to use intensional type analysis in the

end-to-end typed compiler TALC (Morrisett et al., 1999). The framework in this

paper makes it possible to unify these two lines of work for the first time.

Another important question is whether a parametricity theorem like that of

Reynolds (1983) can be shown for λR . Polymorphism is clearly non-parametric in

λML

i , but the lowering of type analysis to explicit term-level representatives makes it

plausible that some sort of parametricity could be shown for λR . In other words, we

discussed at an intuitive level in Section 1 how the explicit passing of types restores

the ability to abstract types that was discarded by λML

i ; it would be interesting to

explore how that intuition may be formalized.

A Untyped variant of λR

Although the formal static and operational semantics for λR are for a typed language,

we would like to emphasize the point that types are unnecessary for computation

and can safely be erased. Accordingly, we exhibit an untyped language, λR
◦, a

translation of λR to this language through type erasure, and the following theorem,

which states that execution in the untyped language mirrors execution in the typed

language:

Theorem A.1

1. If e1 7→∗ e2 then e1
◦ 7→∗ e2

◦.
2. If ∅ ` e1 : τ and e1

◦ 7→∗ u then there exists e2 such that e1 7→∗ e2 and e2
◦ = u.

From this theorem and type safety for λR it follows that our untyped semantics is

safe.

Corollary A.2

If ∅ ` e : τ and e◦ 7→∗ u then u is not stuck.

A.1 Syntax of untyped calculus

(terms) u :: = i | x | λx.u | fix f.w | u1u2

| 〈u1, u2〉 | π1u | π2u | Rint

| R→(u1, u2) | R×(u1, u2)

| typecase u of

Rint ⇒ uint

R→(x, y)⇒ u→
R×(x, y)⇒ u×

(values) w :: = i | λx.u | fix f.w | 〈w1, w2〉
| Rint | R×(w1, w2) | R→(w1, w2)

https://doi.org/10.1017/S0956796801004282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004282


594 K. Crary et al.

A.2 Type erasure

x◦ = x

i◦ = i

〈e1, e2〉◦ = 〈e1
◦, e2

◦〉
(πie)

◦ = πie
◦

(λx:σ.e)◦ = λx.e◦
(Λα:κ.v)◦ = v◦

(fix f:σ.v)◦ = fix f.v◦
(e1e2)◦ = e1

◦e2
◦

e[c]◦ = e◦
pack e as ∃α.σ hiding c◦ = e◦

unpack 〈α, x〉 = e1 in e2
◦ = (λx.e2

◦) e1
◦

Rint
◦ = Rint

R→[c1, c2](e1, e2)◦ = R→(e1
◦, e2

◦)
R×[c1, c2](e1, e2)◦ = R×(e1

◦, e2
◦)

(typecase[α.c] e of

Rint ⇒ eint

R→(x, y) as (β → γ)⇒ e→
R×(x, y) as (β × γ)⇒ e×)◦

= typecase e◦ of
Rint ⇒ eint

◦

R→(x, y)⇒ e→◦

R×(x, y)⇒ e×◦

A.3 Operational semantics of λR
◦

(λx.u)w 7→ u[w/x]

(fix f.w)w′ 7→ (w[fix f.w/f])w′

π1〈w1, w2〉 7→ w1 π2〈w1, w2〉 7→ w2

typecase Rint (uint, xy.u→, xy.u×) 7→ uint

typecase (R×(w1, w2)) (uint, xy.u→, xy.u×) 7→ u×[w1, w2/x, y]

typecase (R→(w1, w2)) (uint, xy.u→, xy.u×) 7→ u→[w1, w2/x, y]

u1 7→ u′1
u1u2 7→ u′1u2

u 7→ u′
wu 7→ wu′

u1 7→ u′1
〈u1, u2〉 7→ 〈u′1, u2〉

u 7→ u′
〈w, u〉 7→ 〈w, u′〉

u 7→ u′
π1u 7→ π1u

′
u 7→ u′

π2u 7→ π2u
′
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u1 7→ u′1
R→(u1, u2) 7→ R→(u′1, u2)

u 7→ u′
R→(w, u) 7→ R→(w, u′)

u1 7→ u′1
R×(u1, u2) 7→ R×(u′1, u2)

u 7→ u

R×(w, u) 7→ R×(w, u′)

u 7→ u′

typecase u (uint, xy.u→, xy.u×) 7→
typecase u′ (uint, xy.u→, xy.u×)

B Static semantics of λML

i and λR

B.1 Constructor formation

Γ ` c : κ

Γ ` ˆint : Type

Γ ` α : κ
(Γ(α) = κ)

Γ ` c1 : Type Γ ` c2 : Type

Γ ` c1→̂c2 : Type

Γ ` c1 : Type Γ ` c2 : Type

Γ ` c1×̂c2 : Type

Γ, α:κ1 ` c : κ2

Γ ` λα:κ1.c : κ1 → κ2

(α 6∈ Dom(Γ))

Γ ` c1 : κ1 → κ2 Γ ` c2 : κ1

Γ ` c1c2 : κ2

Γ ` c : Type Γ ` cint : κ

Γ ` c→ : Type→ Type→ κ→ κ→ κ

Γ ` c× : Type→ Type→ κ→ κ→ κ

Γ ` Typerec c (cint, c→, c×) : κ

B.2 Constructor equivalence

Γ ` c1 = c2 : κ

Γ, α:κ′ ` c1 : κ Γ ` c2 : κ′

Γ ` (λα:κ′.c1)c2 = c1[c2/α] : κ
(α 6∈ Dom(Γ))

Γ ` c : κ1 → κ2

Γ ` λα:κ1.c α = c : κ1 → κ2

(α 6∈ Dom(Γ))

NNN

Γ, α:κ ` c = c′ : κ′

Γ ` λα:κ.c = λα:κ.c′ : κ→ κ′
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Γ ` c1 = c′1 : κ′ → κ Γ ` c2 = c′2 : κ′

Γ ` c1c2 = c′1c′2 : κ

Γ ` c1 = c′1 : Type Γ ` c2 = c′2 : Type

Γ ` c1 → c2 = c′1 → c′2 : Type

Γ ` c1 = c′1 : Type Γ ` c2 = c′2 : Type

Γ ` c1 × c2 = c′1 × c′2 : Type

Γ ` c = c : κ

Γ ` c′ = c : κ

Γ ` c = c′ : κ

Γ ` c = c′ : κ Γ ` c′ = c′′ : κ

Γ ` c = c′′ : κ

Γ ` cint : κ

Γ ` c→ : Type→ Type→ κ→ κ→ κ

Γ ` c× : Type→ Type→ κ→ κ→ κ

Γ ` Typerec( ˆint) (cint, c→, c×) = cint : κ

Γ ` c1 : Type Γ `i c2 : Type Γ ` cint : κ

Γ ` c→ : Type→ Type→ κ→ κ→ κ

Γ ` c× : Type→ Type→ κ→ κ→ κ
Γ ` Typerec(c1→̂c2) (cint, c→, c×) =

c→ c1 c2 (Typerec c1 (cint, c→, c×))(Typerec c2 (cint, c→, c×)) : κ

Γ ` Typerec(c1×̂c2) (cint, c→, c×) =

c× c1 c2 (Typerec c1 (cint, c→, c×))(Typerec c2 (cint, c→, c×)) : κ


Γ ` c = c′ : Type

Γ ` cint = c′int : κ

Γ ` c→ = c′→ : Type→ Type→ κ→ κ→ κ

Γ ` c× = c′× : Type→ Type→ κ→ κ→ κ

Γ ` Typerec c (cint, c→, c×) = Typerec c′ (c′int, c
′→, c′×) : κ

B.3 Type formation

Γ ` σ
Γ ` c : Type

Γ ` T (c)

Γ ` int

Γ ` σ1 Γ ` σ2

Γ ` σ1 × σ2

Γ ` σ1 Γ ` σ2

Γ ` σ1 → σ2

Γ, α:κ ` σ
Γ ` ∀α:κ.σ (α 6∈ Dom(Γ))

Γ, α:κ ` σ
Γ ` ∃α:κ.σ (α 6∈ Dom(Γ))

B.3.1 Specific to λR

Γ `R c : Type

Γ `R R(c)
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B.4 Type equivalence

Γ ` σ1 = σ2

Γ ` c1 = c2 : κ

Γ ` T (c1) = T (c2)

Γ ` T ( ˆint) = int Γ ` T (c1→̂c2) = T (c1)→ T (c2) Γ ` T (c1×̂c2) = T (c1)× T (c2)

Γ ` σ1 = σ′1 Γ ` σ2 = σ′2
Γ ` σ1 → σ2 = σ′1 → σ′2

Γ ` σ1 = σ′1 Γ ` σ2 = σ′2
Γ ` σ1 × σ2 = σ′1 × σ′2

Γ, α:κ ` σ = σ′

Γ ` ∀α:κ.σ = ∀α:κ.σ′
Γ, α:κ ` σ = σ′

Γ ` ∃α:κ.σ = ∃α:κ.σ′

Γ ` σ = σ

Γ ` σ′ = σ

Γ ` σ = σ′
Γ ` σ = σ′ Γ ` σ′ = σ′′

Γ ` σ = σ′′

B.5 Specific to λR

Γ `R c = c′ : Type

Γ `R R(c) = R(c′)

B.6 Term formation

Γ ` e : σ

Γ ` i : int Γ ` x : σ
(Γ(x) = σ)

Γ, x:σ2 ` e : σ1 Γ ` σ2

Γ ` λx:σ2.e : σ2 → σ1

(x 6∈ Dom(Γ))

Γ ` e1 : σ2 → σ1 Γ ` e2 : σ2

Γ ` e1e2 : σ1

Γ, f:σ ` e : σ Γ ` σ
Γ ` fix f:σ. e : σ

(
σ = ∀α1:κ1 · · · αn:κn.σ1 → σ2

f 6∈ Dom(Γ), n > 0

)

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` 〈e1, e2〉 : σ1 × σ2

Γ ` e : σ1 × σ2

Γ ` π1e : σ1

Γ ` e : σ1 × σ2

Γ ` π2e : σ2

Γ ` e : ∀α:κ.σ Γ ` c : κ

Γ ` e[c] : σ[c/α]
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Γ, α:κ ` e : σ

Γ ` Λα:κ.e : ∀α:κ.σ (x 6∈ Dom(Γ))

Γ, α:κ ` σ : Γ ` c : κ Γ ` e : σ[c/α]

Γ ` pack e as ∃α:κ.σ hiding c : ∃α:κ.σ (α 6∈ Dom(Γ))

Γ ` e1 : ∃α:κ.σ2 Γ, α:κ, x:σ2 ` e2 : σ1

Γ ` unpack 〈α, x〉 = e1 in e2 : σ1

(α, x 6∈ Dom(Γ))

Γ ` e : σ2 Γ ` σ1 = σ2

Γ ` e : σ1

B.6.1 Specific to λML

i

Γ `i c : Type Γ `i eint : σ[ ˆint/α]

Γ, β: Type, γ: Type `i e→ : σ[β→̂γ/α]
Γ, β: Type, γ: Type `i e× : σ[β×̂γ/α]

Γ `i typecase [α.σ] c (eint, βγ.e→, βγ.e×) : σ[c/α]
(β, γ 6∈ Dom(Γ))

B.6.2 Specific to λR

Γ `R Rint : R( ˆint)
Γ `R e1 : R(c1) Γ `R e2 : R(c2)

Γ `R R→[c1, c2](e1, e2) : R(c1→̂c2)

Γ `R e1 : R(c1) Γ ` e2 : R(c2)

Γ `R R×[c1, c2](e1, e2) : R(c1×̂c2)

Γ, δ: Type,Γ′ `R e : R(δ)

Γ[ ˆint/δ] `R eint[ ˆint/δ] : σ[ ˆint/δ, ˆint/α]

Γ, β: Type, γ: Type, x:R(β), y:R(γ),Γ′[(β→̂γ)/δ] `R
e→[(β→̂γ)/δ] : σ[(β→̂γ)/δ, (β→̂γ)/α]

Γ, β: Type, γ: Type, x:R(β), y:R(γ),Γ′[(β×̂γ)/δ] `R
e×[(β×̂γ)/δ] : σ[(β×̂γ)/δ, (β×̂γ)/α]

(β, γ, δ 6∈ Dom(Γ,Γ′))
Γ, δ: Type,Γ′ `R typecase[α.σ] e (eint, βγxy.e→, βγxy.e×) : σ[δ/α]

Γ `R e : R(c) Γ `R eint : σ[ ˆint/α]

Γ, β: Type, γ: Type, x:R(β), y:R(γ) `R e→ : σ[β→̂γ/α]
Γ, β: Type, γ: Type, x:R(β), y:R(γ) `R e× : σ[β×̂γ/α]

(β, γ 6∈ Dom(Γ))

Γ `R typecase[δ.σ] e (eint, βγxy.e→, βγxy.e×) : σ[c/α]

Γ `R e : R( ˆint) Γ ` eint : σ[ ˆint/α]

Γ `R typecase[δ.σ] e (eint, βγxy.e→, βγxy.e×) : σ[ ˆint/α]
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Γ `R e : R(c1→̂c2) Γ, x:R(c1), y:R(c2) `R e→[c1/β, c2/γ] : σ[(c1→̂c2)/α]

Γ `R typecase[δ.σ] e (eint, βγxy.e→, βγxy.e×) : σ[(c1→̂c2)/α]

Γ `R e : R(c1×̂c2) Γ, x:R(c1), y:R(c2) `R e×[c1/β, c2/γ] : σ[(c1×̂c2)/α]

Γ `R typecase[δ.σ] e (eint, βγxy.e→, βγxy.e×) : σ[(c1×̂c2)/α]
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d’ordre supérieur. PhD thesis, Université Paris VII.
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