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Chapter 6

Predefined Types and Classes

The Haskell Prelude contains predefined classes, types, and functions that are implicitly imported
into every Haskell program. In this chapter, we describe the types and classes found in the Prelude.
Most functions are not described in detail here as they can easily be understood from their definitions
as given in Chapter 8. Other predefined types such as arrays, complex numbers, and rationals are
defined in Part II.

6.1 Standard Haskell Types

These types are defined by the Haskell Prelude. Numeric types are described in Section 6.4. When
appropriate, the Haskell definition of the type is given. Some definitions may not be completely
valid on syntactic grounds but they faithfully convey the meaning of the underlying type.

6.1.1 Booleans

data Bool = False | True deriving
(Read, Show, Eq, Ord, Enum, Bounded)

The boolean type Bool is an enumeration. The basic boolean functions are && (and), | | (or), and
not. The name otherwise is defined as True to make guarded expressions more readable.
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6.1.2 Characters and Strings

The character type Char is an enumeration whose values represent Unicode characters [15]. The
lexical syntax for characters is defined in Section 2.6; character literals are nullary constructors in
the datatype Char. Type Char is an instance of the classes Read, Show, Eq, Ord, Enum, and
Bounded. The toEnum and fromEnum functions, standard functions from class Enum, map
characters to and from the Int type.

Note that ASCII control characters each have several representations in character literals: numeric
escapes, ASCII mnemonic escapes, and the \ "X notation. In addition, there are the following
equivalences: \a and \BEL, \b and \BS, \f and \FF, \r and \CR, \t and \HT, \v and \VT,
and \n and \LF.

A string is a list of characters:
type String = [Char]

Strings may be abbreviated using the lexical syntax described in Section 2.6. For example, "A string"
abbreviates
[ IA’,I I,Isl,It’,Ir’, Iil,lnl,lgl]

6.1.3 Lists

data [a] = [] | a : [a] deriving (Egq, Ord)

Lists are an algebraic datatype of two constructors, although with special syntax, as described in
Section 3.7. The first constructor is the null list, written ‘[ ]’ (“nil”), and the second is “:’ (“cons”).
The module PreludeList (see Chapter 8.2) defines many standard list functions. Arithmetic
sequences and list comprehensions, two convenient syntaxes for special kinds of lists, are described
in Sections 3.10 and 3.11, respectively. Lists are an instance of classes Read, Show, Eq, Ord,
Monad, Functor, and MonadPlus.

6.1.4 Tuples

Tuples are algebraic datatypes with special syntax, as defined in Section 3.8. Each tuple type has a
single constructor. All tuples are instances of Eq, Ord, Bounded, Read, and Show (provided, of
course, that all their component types are).

There is no upper bound on the size of a tuple, but some Haskell implementations may restrict the
size of tuples, and limit the instances associated with larger tuples. However, every Haskell imple-
mentation must support tuples up to size 15, together with the instances for Eq, Ord, Bounded,
Read, and Show. The Prelude and libraries define tuple functions such as zip for tuples up to a
size of 7.
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The constructor for a tuple is written by omitting the expressions surrounding the commas; thus
(x,y) and (,) x y produce the same value. The same holds for tuple type constructors; thus,
(Int,Bool,Int) and (,,) Int Bool Int denote the same type.

The following functions are defined for pairs (2-tuples): £st, snd, curry, and uncurry. Similar
functions are not predefined for larger tuples.

6.1.5 The Unit Datatype

data () = () deriving (Eq, Ord, Bounded, Enum, Read, Show)

The unit datatype () has one non-_L member, the nullary constructor (). See also Section 3.9.

6.1.6 Function Types

Functions are an abstract type: no constructors directly create functional values. The following
simple functions are found in the Prelude: id, const, (.), £lip, ($), and until.

6.1.7 The IO and IOError Types

The I0 type serves as a tag for operations (actions) that interact with the outside world. The IO type
is abstract: no constructors are visible to the user. I0 is an instance of the Monad and Functor
classes. Chapter 7 describes I/O operations.

IOError is an abstract type representing errors raised by I/O operations. It is an instance of Show
and Eq. Values of this type are constructed by the various I/O functions and are not presented in
any further detail in this report. The Prelude contains a few I/O functions (defined in Section 8.4),
and the IO Library (Chapter 21) contains many more.

6.1.8 Other Types

data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)
data Either a b Left a | Right b deriving (Egq, Ord, Read, Show)
data Ordering LT | EQ | GT deriving

(Eq, Ord, Bounded, Enum, Read, Show)

The Maybe type is an instance of classes Functor, Monad, and MonadPlus. The Ordering
type is used by compare in the class Ord. The functions maybe and either are found in the
Prelude.
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6.2 Strict Evaluation

Function application in Haskell is non-strict; that is, a function argument is evaluated only when
required. Sometimes it is desirable to force the evaluation of a value, using the seq function:

seq ::t a ->b ->b
The function seq is defined by the equations:

seq Ll b =1
seqab = b, if a # L

seq is usually introduced to improve performance by avoiding unneeded laziness. Strict datatypes
(see Section 4.2.1) are defined in terms of the $! operator. However, the provision of seq has
important semantic consequences, because it is available at every type. As a consequence, L is
not the same as \x -> L, since seq can be used to distinguish them. For the same reason, the
existence of seq weakens Haskell’s parametricity properties.

The operator $! is strict (call-by-value) application, and is defined in terms of seq. The Prelude
also defines the $ operator to perform non-strict application.

infixr 0 $, $!

($), ($!) :: (a -=> b) > a ->b
f$ x = f x

f $! x = x ’‘seq’ f x

The non-strict application operator $ may appear redundant, since ordinary application (f x)
means the same as (£ $ x). However, $ has low, right-associative binding precedence, so it
sometimes allows parentheses to be omitted; for example:

f$g$hx = £ (9 (hx))

It is also useful in higher-order situations, such asmap ($ 0) xs,orzipWith ($) fs xs.

6.3 Standard Haskell Classes

Figure 6.1 shows the hierarchy of Haskell classes defined in the Prelude and the Prelude types that
are instances of these classes.

Default class method declarations (Section 4.3) are provided for many of the methods in standard
classes. A comment with each class declaration in Chapter 8 specifies the smallest collection of
method definitions that, together with the default declarations, provide a reasonable definition for
all the class methods. If there is no such comment, then all class methods must be given to fully
specify an instance.
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Show

All except
IO: ('>)

Eq
All except 10, (->)

Ord
All except (->)
10, IOError

Num

Int, Integer,
Float, Double

Enum

(), Bool, Char, Ordering,
Int, Integer, Float,
Double

Real

Int, Integer,
loat, Double

RealFrac
Float, Double

Integral
Int, Integer

RealFloat
Float, Double

Monad
10, [], Maybe

Fractional
Float, Double

Floating
Float, Double

Functor
10, [], Maybe

Read

All except
IOs (_>)

Bounded

Int, Char, Bool, ()

Ordering, tuples

Figure 6.1: Standard Haskell Classes
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6.3.1 The Eq Class

class Eq a where
(==), (/=) =:: a ->a -> Bool

X /=y = not (x ==17Y)
X ==y = not (x /=vy)

The Eq class provides equality (==) and inequality (/=) methods. All basic datatypes except for
functions and IO are instances of this class. Instances of Eq can be derived for any user-defined
datatype whose constituents are also instances of Eq.

This declaration gives default method declarations for both /= and ==, each being defined in terms
of the other. If an instance declaration for Eq defines neither == nor /=, then both will loop. If
one is defined, the default method for the other will make use of the one that is defined. If both are
defined, neither default method is used.

6.3.2 The Ord Class

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<)r (<==)y (>=), (>) :: a -> a -> Bool
max, min s a ->a -> a

compare Xy | x ==y = EQ
| x <=y = LT
| otherwise = GT
X <=y = compare x y /= GT
X < y = compare x y == LT
X >y = compare x y /= LT
X > y = compare x y == GT
-- Note that (min x y, max x y) = (X,y) or (y,X)
max xy | x <=y =y
| otherw1se = x
min x y | x y = x
| otherwise = vy

The Ord class is used for totally ordered datatypes. All basic datatypes except for functions, IO,
and IOError, are instances of this class. Instances of Ord can be derived for any user-defined
datatype whose constituent types are in Ord. The declared order of the constructors in the data
declaration determines the ordering in derived Ord instances. The Ordering datatype allows a
single comparison to determine the precise ordering of two objects.

The default declarations allow a user to create an Ord instance either with a type-specific compare
function or with type-specific == and <= functions.
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6.3.3 The Read and Show Classes

type ReadS a = String -> [(a,String)]
type ShowS = String -> String

class Read a where
readsPrec :: Int -> ReadS a
readList :: ReadS [a]
—-— ... default decl for readList given in Prelude

class Show a where
showsPrec :: Int -> a -> ShowS
show :: a -> String
showList :: [a] -> ShowS

showsPrec  x s = show x ++ s
show x = showsPrec 0 x
—-— ... default decl for showList given in Prelude

nn

The Read and Show classes are used to convert values to or from strings. The Int argument to
showsPrec and readsPrec gives the operator precedence of the enclosing context (see Sec-
tion 10.4).

showsPrec and showList return a String-to-String function, to allow constant-time con-
catenation of its results using function composition. A specialised variant, show, is also provided,
which uses precedence context zero, and returns an ordinary String. The method showList
is provided to allow the programmer to give a specialised way of showing lists of values. This is
particularly useful for the Char type, where values of type String should be shown in double
quotes, rather than between square brackets.

Derived instances of Read and Show replicate the style in which a constructor is declared: infix
constructors and field names are used on input and output. Strings produced by showsPrec are
usually readable by readsPrec.

All Prelude types, except function types and IO types, are instances of Show and Read. (If
desired, a programmer can easily make functions and IO types into (vacuous) instances of Show,
by providing an instance declaration.)

For convenience, the Prelude provides the following auxiliary functions:

reads :: (Read a) => ReadS a

reads = readsPrec 0

shows ¢ (Show a) => a -> ShowS

shows = showsPrec 0

read :: (Read a) => String -> a

read s = case [Xx | (%x,t) <- reads s, ("","") <- lex t] of
[xX] -> X
[1] -> error "PreludeText.read: no parse"

-> error "PreludeText.read: ambiguous parse"
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The shows and reads functions use a default precedence of 0. The read function reads input
from a string, which must be completely consumed by the input process.

The function 1ex :: ReadS String, used by read, is also part of the Prelude. It reads a sin-
gle lexeme from the input, discarding initial white space, and returning the characters that constitute
the lexeme. If the input string contains only white space, 1ex returns a single successful “lexeme”
consisting of the empty string. (Thus lex "" =7[("","")].) If there is no legal lexeme at the
beginning of the input string, 1ex fails (i.e. returns [ ]).

6.3.4 The Enum Class

class Enum a where

succ, pred t:a -> a

toEnum t: Int -> a

fromEnum :: a -> Int

enumFrom t: a -> [a] -- [n..]
enumFromThen t: a -> a -> [a] --— [n,n’"..]
enumFromTo t: a -> a > [a] -- [n..m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n’..m]

—- Default declarations given in Prelude

Class Enum defines operations on sequentially ordered types. The functions succ and pred return
the successor and predecessor, respectively, of a value. The functions fromEnum and toEnum map
values from a type in Enum to and from Int. The enumFrom... methods are used when translating
arithmetic sequences (Section 3.10).

Instances of Enum may be derived for any enumeration type (types whose constructors have no
fields); see Chapter 10.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

e The calls succ maxBound and pred minBound should result in a runtime error.

e fromEnum and toEnum should give a runtime error if the result value is not representable
in the result type. For example, toEnum 7 :: Bool is an error.

e enumFrom and enumFromThen should be defined with an implicit bound, thus:

enumFrom X = enumFromTo x maxBound
enumFromThen x y = enumFromThenTo x y bound
where
bound | fromEnum y >= fromEnum x = maxBound
| otherwise = minBound
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The following Prelude types are instances of Enum:

o Enumeration types: (), Bool, and Ordering. The semantics of these instances is given
by Chapter 10. For example, [LT. . ] is the list [LT,EQ,GT].

e Char: the instance is given in Chapter 8, based on the primitive functions that convert be-
tween a Char and an Int. For example, enumFromTo ‘a’ ‘'z’ denotes the list of low-
ercase letters in alphabetical order.

e Numeric types: Int, Integer, Float, Double. The semantics of these instances is given
next.

For all four numeric types, succ adds 1, and pred subtracts 1. The conversions fromEnum and
toEnum convert between the type and Int. In the case of Float and Double, the digits after the
decimal point may be lost. It is implementation-dependent what f romEnum returns when applied
to a value that is too large to fit in an Int.

For the types Int and Integer, the enumeration functions have the following meaning:

e The sequence enumFrom e; isthelist [e; ,e; +1,e; +2,...1.

e The sequence enumFromThen e; e, is the list [e; ,e; +1,¢e; + 2¢, ... ], where the in-
crement, ¢, is ez — e;. The increment may be zero or negative. If the increment is zero, all
the list elements are the same.

e The sequence enumFromTo e; ey is the list [e; ,e; +1,e; +2,...e3]. The list is
empty if e; > es.

e The sequence enumFromThenTo e; e eg isthelist [e; ,e; +1,e; + 2i, ...e5], where
the increment, 7, is es — e;. If the increment is positive or zero, the list terminates when
the next element would be greater than ey; the list is empty if e; > e5. If the increment is
negative, the list terminates when the next element would be less than eg; the list is empty if
el < es.

For Float and Double, the semantics of the enumFrom family is given by the rules for Int
above, except that the list terminates when the elements become greater than es + i /2 for positive
increment ¢, or when they become less than e¢5 + i /2 for negative i.

For all four of these Prelude numeric types, all of the enumFrom family of functions are strict in
all their arguments.

6.3.5 The Functor Class

class Functor f where
fmap t: (a->b) ->fa->f£fb
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The Functor class is used for types that can be mapped over. Lists, I0, and Maybe are in this
class.

Instances of Functor should satisfy the following laws:

fmap id = id
fmap (f . g) = fmap £ . fmap g

All instances of Functor defined in the Prelude satisfy these laws.

6.3.6 The Monad Class

class Monad m where

(>>=) ttma->(a->mb) ->mb
(>>) tt:ma->mb->mb
return :: a -> m a
fail :: String -> m a

m >> k
fail s

m>>= \_ ->k
error s

The Monad class defines the basic operations over a monad. See Chapter 7 for more information
about monads.

“do” expressions provide a convenient syntax for writing monadic expressions (see Section 3.14).
The £ail method is invoked on pattern-match failure in a do expression.

In the Prelude, lists, Maybe, and IO are all instances of Monad. The fail method for lists returns
the empty list [ ], for Maybe returns Nothing, and for IO raises a user exception in the IO monad
(see Section 7.3).

Instances of Monad should satisfy the following laws:

return a >>= k = k a
m >>= return = m
m>>= (\x -> k x >>= h) = (m >>= k) >>=h

Instances of both Monad and Functor should additionally satisfy the law:
fmap £ xs = xs >>= return . f

All instances of Monad defined in the Prelude satisfy these laws.

The Prelude provides the following auxiliary functions:

sequence :: Monad m => [m a] -> m [a]

sequence_ :: Monad m => [m a] -> m ()

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM ¢ Monad m => (a -> m b) -> [a] -> m ()
(=<<) : Monad m => (a -=>mb) -=>ma ->mb
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6.3.7 The Bounded Class

class Bounded a where
minBound, maxBound :: a

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of
Bounded since types that are not totally ordered may also have upper and lower bounds. The types
Int, Char, Bool, (), Ordering, and all tuples are instances of Bounded. The Bounded
class may be derived for any enumeration type; minBound is the first constructor listed in the
data declaration and maxBound is the last. Bounded may also be derived for single-constructor
datatypes whose constituent types are in Bounded.

6.4 Numbers

Haskell provides several kinds of numbers; the numeric types and the operations upon them have
been heavily influenced by Common Lisp and Scheme. Numeric function names and operators
are usually overloaded, using several type classes with an inclusion relation shown in Figure 6.1,
page 85. The class Num of numeric types is a subclass of Eq, since all numbers may be compared for
equality; its subclass Real is also a subclass of Ord, since the other comparison operations apply to
all but complex numbers (defined in the Complex library). The class Integral contains integers
of both limited and unlimited range; the class Fractional contains all non-integral types; and
the class Floating contains all floating-point types, both real and complex.

The Prelude defines only the most basic numeric types: fixed sized integers (Int), arbitrary preci-
sion integers (Integer), single precision floating (Float), and double precision floating (Dou-
ble). Other numeric types such as rationals and complex numbers are defined in libraries. In
particular, the type Rational is aratio of two Integer values, as defined in the Ratio library.

The default floating point operations defined by the Haskell Prelude do not conform to current
language independent arithmetic (LIA) standards. These standards require considerably more com-
plexity in the numeric structure and have thus been relegated to a library. Some, but not all, aspects
of the IEEE floating point standard have been accounted for in Prelude class RealFloat.

The standard numeric types are listed in Table 6.1. The finite-precision integer type Int covers at
least the range [ — 2%7, 2% — 1]. As Int is an instance of the Bounded class, maxBound and
minBound can be used to determine the exact Int range defined by an implementation. Float
is implementation-defined; it is desirable that this type be at least equal in range and precision to the
IEEE single-precision type. Similarly, Double should cover IEEE double-precision. The results
of exceptional conditions (such as overflow or underflow) on the fixed-precision numeric types are
undefined; an implementation may choose error (L, semantically), a truncated value, or a special
value such as infinity, indefinite, etc.

The standard numeric classes and other numeric functions defined in the Prelude are shown in
Figures 6.2 and 6.3. Figure 6.1 shows the class dependencies and built-in types that are instances of
the numeric classes.
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Table 6.1: Standard Numeric Types

Type Class Description
Integer Integral Arbitrary-precision integers
Int Integral Fixed-precision integers
(Integral a) => Ratio a RealFrac Rational numbers
Float RealFloat Real floating-point, single precision
Double RealFloat Real floating-point, double precision

(RealFloat a) => Complex a Floating Complex floating-point

6.4.1 Numeric Literals

The syntax of numeric literals is given in Section 2.5. An integer literal represents the application
of the function fromInteger to the appropriate value of type Integer. Similarly, a float-
ing literal stands for an application of fromRational to a value of type Rational (that is,
Ratio Integer). Given the typings:

fromInteger :: (Num a) => Integer -> a
fromRational :: (Fractional a) => Rational -> a

integer and floating literals have the typings (Num a) => a and (Fractional a) => a,
respectively. Numeric literals are defined in this indirect way so that they may be interpreted as
values of any appropriate numeric type. See Section 4.3.4 for a discussion of overloading ambiguity.

6.4.2 Arithmetic and Number-Theoretic Operations

The infix class methods (+), (*), (-), and the unary function negate (which can also be written
as a prefix minus sign; see Section 3.4) apply to all numbers. The class methods quot, rem, div,
and mod apply only to integral numbers, while the class method (/) applies only to fractional ones.
The quot, rem, div, and mod class methods satisfy these laws if y is non-zero:

(X ‘quot’ y)*y + (X ‘rem y) == X
(x div’ y)*y + (x mod y) == X

quot is integer division truncated toward zero, while the result of div is truncated toward negative
infinity. The quotRem class method takes a dividend and a divisor as arguments and returns a
(quotient, remainder) pair; divMod is defined similarly:

quotRem x y = (X ‘quot y, x rem y)
divMod xy = (x div y, x ‘mod vy)

Also available on integral numbers are the even and odd predicates:

even X = X rem 2 == 0
odd not . even
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class (Eq a, Show a) => Num a where
(+), (=), (*) :: a ->a -> a

negate tta -> a
abs, signum t: a -> a
fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
quot, rem, div, mod :: a -> a -> a
quotRem, divMod t: a -> a -> (a,a)
toInteger a -> Integer

class (Num a) => Fractional a where
(/) t:a ->a->a
recip 1 a -> a
fromRational :: Rational -> a

class (Fractional a) => Floating a where

pi t:a

exp, log, sqgrt tt a -> a
(**), logBase tta ->a ->a
sin, cos, tan t: a -> a
asin, acos, atan t: a -> a
sinh, cosh, tanh t: a -> a
asinh, acosh, atanh :: a -> a

Figure 6.2: Standard Numeric Classes and Related Operations, Part 1

Finally, there are the greatest common divisor and least common multiple functions. gcd z y is the
greatest (positive) integer that divides both z and y; for example gecd (-3) 6 = 3,
gcd (-3) (-6)=3,gcd 0 4=4.gcd 0 0 raises a runtime error.

lcm z y is the smallest positive integer that both z and y divide.

6.4.3 Exponentiation and Logarithms

The one-argument exponential function exp and the logarithm function 1og act on floating-point
numbers and use base e. logBase a z returns the logarithm of = in base a. sqrt returns the
principal square root of a floating-point number. There are three two-argument exponentiation op-
erations: (~) raises any number to a nonnegative integer power, (- ") raises a fractional number
to any integer power, and ( **) takes two floating-point arguments. The value of 2”0 or 2~ "0 is
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class (Real a, Fractional a) => RealFrac a where
properFraction :: (Integral b) => a -> (b,a)
truncate, round :: (Integral b) => a -> b
ceiling, floor ¢t (Integral b) => a -> b

class (RealFrac a, Floating a) => RealFloat a where

floatRadix :: a -> Integer
floatDigits :: a -> Int

floatRange t: a -> (Int,Int)
decodeFloat t: a -> (Integer,Int)
encodeFloat :: Integer -> Int -> a
exponent t: a -> Int
significand tr a -> a

scaleFloat :: Int -> a -> a

isNaN, isInfinite, isDenormalized, isNegativeZero,
:: a -> Bool

atan2 tta->a ->a
gcd, lcm :
(") :
(") :
fromIntegral
realToFrac :

(Integral a) => a -> a-> a
(Num a, Integral b) => a -> b -> a
(Fractional a, Integral b) => a -> b -> a

(Integral a, Num b) => a -> b
(Real a, Fractional b) => a -> b

isIEEE

Figure 6.3: Standard Numeric Classes and Related Operations, Part 2

1 for any z, including zero; 0* * y is undefined.

6.4.4 Magnitude and Sign

A number has a magnitude and a sign. The functions abs and signum apply to any number and

satisfy the law:
abs x * signum x == x

For real numbers, these functions are defined by:

abs x | x >=0 =x
| x < 0 = -x

signum x | x > 0 =1
| x == 0 0
| x < 0 = -1

https://doi.org/10.1017/50956796803000819 Published online by Cambridge University Press



https://doi.org/10.1017/S0956796803000819

6.4. NUMBERS 95
6.4.5 Trigonometric Functions

Class Floating provides the circular and hyperbolic sine, cosine, and tangent functions and their
inverses. Default implementations of tan, tanh, logBase, **, and sqgrt are provided, but
implementors are free to provide more accurate implementations.

Class RealFloat provides a version of arctangent taking two real floating-point arguments. For
real floating = and y, atan2 y = computes the angle (from the positive x-axis) of the vector from
the origin to the point (z, y). atan2 y z returns a value in the range [-pi, pi]. It follows the
Common Lisp semantics for the origin when signed zeroes are supported. atan2 y 1, with y in a
type that is RealFloat, should return the same value as atan y. A default definition of atan2
is provided, but implementors can provide a more accurate implementation.

The precise definition of the above functions is as in Common Lisp, which in turn follows Penfield’s
proposal for APL [13]. See these references for discussions of branch cuts, discontinuities, and
implementation.

6.4.6 Coercions and Component Extraction

The ceiling, floor, truncate, and round functions each take a real fractional argument
and return an integral result. ceiling z returns the least integer not less than z, and £loor z,
the greatest integer not greater than z. truncate z yields the integer nearest  between 0 and z,
inclusive. round z returns the nearest integer to «, the even integer if  is equidistant between two
integers.

The function properFraction takes a real fractional number z and returns a pair (n, f) such
that z = n + f, and: » is an integral number with the same sign as z; and [ is a fraction f with the
same type and sign as z, and with absolute value less than 1. The ceiling, floor, truncate,
and round functions can be defined in terms of properFraction.

Two functions convert numbers to type Rational: toRational returns the rational equivalent
of its real argument with full precision; approxRational takes two real fractional arguments z
and € and returns the simplest rational number within ¢ of 2, where a rational p/q in reduced form
is simpler than another p’/¢’ if |p| < |p/| and ¢ < ¢'. Every real interval contains a unique simplest
rational; in particular, note that 0/1 is the simplest rational of all.

The class methods of class RealFloat allow efficient, machine-independent access to the compo-
nents of a floating-point number. The functions floatRadix, floatDigits, and floatRange
give the parameters of a floating-point type: the radix of the representation, the number of digits of
this radix in the significand, and the lowest and highest values the exponent may assume, respec-
tively. The function decodeFloat applied to a real floating-point number returns the significand
expressed as an Integer and an appropriately scaled exponent (an Int). If decodeFloat x
yields (m, n), then x is equal in value to mb™, where b is the floating-point radix, and furthermore,
either m and n are both zero or else b%~! < m < b?, where d is the value of floatDigits x.
encodeFloat performs the inverse of this transformation. The functions significand and
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exponent together provide the same information as decodeFloat, but rather than an Integer,
significand x yields a value of the same type as x, scaled to lie in the open interval (— 1, 1).
exponent 0 is zero. scaleFloat multiplies a floating-point number by an integer power of
the radix.

The functions isNaN, isInfinite, isDenormalized, isNegativeZero, and isIEEE
all support numbers represented using the IEEE standard. For non-IEEE floating point numbers,
these may all return false.

Also available are the following coercion functions:

fromIntegral
realToFrac :

(Integral a, Num b) => a ->b
(Real a, Fractional b) => a -> b
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