
JFP 14 (4): 365–378, 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796804005076 Printed in the United Kingdom

365

EDUCATIONAL PEARL

The structure and interpretation of the
computer science curriculum

MATTHIAS FELLEISEN

Northeastern University, Boston, MA, USA

ROBERT BRUCE FINDLER

University of Chicago, Chicago, IL, USA

MATTHEW FLATT

University of Utah, Salt Lake City, UT, USA

SHRIRAM KRISHNAMURTHI

Brown University, Providence, RI, USA

Abstract

Twenty years ago Abelson and Sussman’s Structure and Interpretation of Computer Programs

radically changed the intellectual landscape of introductory computing courses. Instead

of teaching some currently fashionable programming language, it employed Scheme and

functional programming to teach important ideas. Introductory courses based on the book

showed up around the world and made Scheme and functional programming popular.

Unfortunately, these courses quickly disappeared again due to shortcomings of the book

and the whimsies of Scheme. Worse, the experiment left people with a bad impression of

Scheme and functional programming in general. In this pearl, we propose an alternative role

for functional programming in the first-year curriculum. Specifically, we present a framework

for discussing the first-year curriculum and, based on it, the design rationale for our book

and course, dubbed How to Design Programs . The approach emphasizes the systematic design

of programs. Experience shows that it works extremely well as a preparation for a course on

object-oriented programming.

1 History and critique

The publication of Abelson and Sussman’s Structure and Interpretation of Computer

Programs (sicp) (Abelson et al., 1985) revolutionized the landscape of the intro-

ductory computing curriculum in the 1980s. Most importantly, the book liberated

the introductory course from the tyranny of syntax. Instead of arranging a course

around the syntax of a currently fashionable programming language, sicp focused

the first course on the study of important ideas in computing: functional abstraction,

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


366 M. Felleisen et al.

data abstraction, streams, data-directed programming, implementation of message-

passing objects, interpreters, compilers, and register machines.

Over a short period, many universities in the US and around the world switched

their first course to sicp and Scheme. The book became a major bestseller for MIT

Press.1 Along with sicp, the Scheme programming language (Sussman & Steele Jr.,

1975; Steele Jr. & Sussman, 1978; Clinger, 1985; Clinger & Rees, 1991; Kelsey et al.,

1998) became widely used. It was no longer the subject of a few individual courses

at Indiana University, MIT, and Yale, but the language of choice in introductory

courses all over the world.

Unfortunately, the use of Scheme and sicp quickly dwindled again in the early

1990s. After working with sicp and Scheme for a while, instructors started to

complain. Some said that sicp’s content was too difficult for students outside

of MIT. Others blamed Scheme directly, claiming that functional programming in

Scheme was too different from programming in other languages. Even the functional

programming community criticized the sicp approach; around this time, Wadler

wrote his Critique of sicp and Scheme (Wadler, 1987).

Nowadays the critics even include professors at MIT, where the book and

the course have become legends. Jackson and Chapin, who both have significant

experience teaching sicp at MIT, recently wrote that

[f]rom an educational point of view, our experience suggests that undergraduate computer sci-

ence courses should emphasize basic notions of modularity, specification, and data abstraction,

and should not let these be displaced by more advanced topics, such as design patterns, object-

oriented methods, concurrency, functional languages, and so on (Jackson & Chapin, 2000).

In short, sicp, Scheme, and functional programming don’t prepare students properly

for other programming courses and thus fail to meet a basic need.

Advocates of Scheme and functional programming alike must be concerned about

these reactions. To address them and to overcome the problems of the sicp approach,

we present this pearl. It consists of three pieces: a structural framework for analyzing

the first-year computing curriculum; an interpretation of sicp with respect to this

framework;2 and our alternative to the sicp approach that overcomes sicp’s problems

while retaining the essence of Scheme and functional programming.

2 Structure

2.1 Solving constraints

The primary goal of a computing curriculum is to produce programmers and

software engineers. After all, most of its graduates accept industry positions and

produce software. Many will stay involved with software production for a long

1 According to Bob Prior (editor at MIT Press), sicp sold 45,000 copies in its first five years (Personal
communication, 9 June 2003).

2 We chose sicp as our yardstick because it is the most widely used and known text that uses functional
programming and because we believe that all other texts – of almost equal age (Bird & Wadler, 1988)
or of recent vintage (Hudak, 2000) – on functional programming suffer from similar flaws.

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


Educational pearl 367

time, even if only as managers, and therefore also need to learn to adapt to the

ever-evolving nature of the field.

Translating the primary goal into a set of goals for the introductory curriculum

is a difficult task because various groups impose a range of unrelated constraints.

Faculty colleagues (inside and outside of computer science) often have an emotional

preference for a specific language in the introductory course. To some, the first

language is the one that they know and work(ed) with. To others, it is the currently

fashionable industry language, e.g. C++ and Java over the past ten years.

Some computer science faculty demand that the first course teach languages that

are used in upstream courses. Sometimes they believe that the instructor of the

second course should not have to start from scratch and that the simplest solution

is to use a single programming language. Sometimes they wish to expose students

to languages that are used in popular upstream courses such as operating systems.

First-year students also come with strong, preconceived notions about program-

ming and computing. Some students (or their parents) have read about the latest

industry trends in popular magazines, such as (in the US) Time, Newsweek and

US News and World Report, and expect to see some of these things in a freshman

course. Some base their understanding on prior experiences in high schools. The

latter group is used to sophisticated development environments (IDEs) that include

mechanical support for syntactic conventions, GUI development, etc.

The state of the first-year students’ education adds another set of constraints

to the mix. Some understand calculus; for others, even rudimentary algebra is a

minefield.

Finally, students also have a wide range of expectations. Some students wish

to learn what computer science is about; others have three years of programming

experience. Some wish to know why things work; others want to learn how to

construct games. Almost everyone expects that their college training will help them

find internships and professional positions.

Satisfying the primary goal of producing software professionals subject to these

constraints poses a complex problem. On one hand, learning to program well requires

a lot of practice and in particular a lot of hands-on practice. Hence, early courses

must introduce programming and must choose a specific programming language.

On the other hand, choosing one language over another must disappoint some

constituents, and we must therefore convey to them our choices with good reasons.

After all, education is as much about satisfying human needs as it is about technical

correctness.

We propose to solve this constraint problem with a second look at the primary

goal and the timing constraints. Clearly, a computer science curriculum must not,

and doesn’t have to, become a vocational training ground for the latest industrial

programming language and programming tools. Superficial aspects of industrial

practice change as fast as fashion trends. No academic department can switch

its course content fast enough and maintain a curriculum that passes on tested

wisdom. Still, when students cross over from academia into industry, they must be

prepared to program and ideally to program well. From this perspective, two points

in the curriculum take on special meaning: the first summer, when students work

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


368 M. Felleisen et al.

in internship positions, and the last year, when students interview for their first

full-time positions.

Following this reasoning, we believe it is natural to concentrate on principles for

most of the time and to accommodate industrial needs during the second semester of

the first year and the last year of a college program. Considering that college is the

only time in a programmer’s life when he is exposed to principled ideas on a regular

and rigorous basis, the idea of emphasizing principles in college is obvious. Once a

programmer has a full-time position, there are too many constraints and distraction

for principled additional education. At the same time, however, a curriculum must

also teach how these principles apply to the real world. Nobody can expect students

to take this step on their own. In short, teach good habits early; otherwise bad

habits become ingrained and require costly fixes – just like bugs in programs.

Applied to the first-year courses, these suggestions say that the year should start

with a heavy emphasis on principles and should add some industrially relevant

components during the second semester. Even more precisely, the first semester

should emphasize programming principles and habits; the second part should

illustrate the use of these principles in currently fashionable programming languages.

Of course, the “principled” semester may integrate fashionable parts where they

aren’t an obstacle, and, more importantly, the “fashionable” part of the first year

must continue to practice good design habits.

2.2 Principles of programming

The first challenge is thus to identify technical principles for the first-year program-

ming courses. Clearly, we should teach good program design habits (not just syntax

and programming style). Based on our experience, we have identified the following

set of program design ideas that a first course should translate into habits:

1. Students must learn to read problem statements carefully, extract information,

and rewrite it into useful pieces:

(a) a concise purpose statement for the program and each of its major pieces;

(b) a description of the classes of data that play a role;

(c) a collection of examples that illustrate both the classes as well as the

purpose statements.

Ideally the latter should (eventually) make up a rigorous test suite for the

program and its functions.

2. Students must learn to organize programs so that they match the class

descriptions of item (1b). For example, a functional programmer must define

datatypes and functions on these types whose structure matches the type; an

object-oriented programmer must define class hierarchies and appropriately

distributed methods.

If students learn to organize programs in this manner, they quickly learn

that small changes to the problem statement translate into small changes in

the program’s code. Considering the rapid changes in the requirements for

real-world software, we consider this principle central to our effort.

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


Educational pearl 369

3. Students must learn to use the examples developed in item (1c) above. They

must learn to calculate through examples before they code. They must learn to

translate the examples into automatic test suites, so that they can test programs

as they create them and as the programs evolve later.

More concisely, students must learn that programming requires far more than writing

down code and running it on some haphazardly chosen examples afterwards.

The last point in particular suggests that functional languages with their natural

model-view separation are superior choices for this first year. When students write

automatic test suites, they must to split a program into a part that deals with

computation proper (the “model”) and another part that interacts with the user (the

“view”). They then use the model in two distinct contexts: with a test suite and with

the view. To re-use the model in a test suite context, they don’t want to print results

but hand them over directly to a comparison function. Put differently, teaching

good software architecture principles to beginners requires function composition

and discourages a programming style that is primarily about reading and printing

values.

2.3 Principles of teaching

The second challenge for a first-year instructor is to understand the teaching priorities

concerning the first language and the first course. Currently, most instructors teach

programming with examples. In a typical week, they introduce a new (control)

construct, explain with a few examples how to use it, and then assign some exercises

from a text book. Students copy the examples and modify them to fit the homework

exercises. Since these exercises tend to change the context for the new construct,

students also begin to appreciate its general powers and pitfalls. Put differently, the

teaching of (control) constructs is explicit while the teaching of design principles

remains implicit; instructors leave it to the students to discover how to go from a

blank screen to a full-fledged program.3

We believe that the conventional approach to teaching programming reverses the

natural roles of data and control. Recall Brooks’s slogan page 102

Show me your [code] and conceal your [data structures], and I shall continue to be mystified.

Show me your [data structures], and I won’t usually need your [code]; it’ll be obvious.

as paraphrased by Raymond (1998). When we reason about a program, we want to

know the format of the data that it uses, and we can almost imagine how it works.

In analogy, when we teach how to program, we should let data drive the syllabus.

First we show how to design a program that works on simple data and what kind of

(control) constructs this requires. Then we increase the complexity of the data and

show how to design programs for these classes of data. Such a step may, or may not,

3 Challenging instructors throw in ideas from data structures and algorithms or, worse, pose problems
that require significant domain knowledge, that is, knowledge about non-computing topics. The problem
is then that students tend to confuse algorithms and application domain knowledge with program
construction, and neither helps students come up with good program organizations on their own when
they are left to their own devices.

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


370 M. Felleisen et al.

require new constructs, but in the end it forces students to understand how to go

from data to design explicitly , and they will pick up language constructs implicitly.

Since most students are active learners, it is important to retain the example-

driven strategy that is currently used. The examples must, however, focus on the

use of program design principles in new situations instead of the use of language

constructs.

In summary, the first course should introduce the principles of program design,

state them explicitly as habits, and have students practice them with numerous

data-driven examples. To avoid any confusion, the course should not pose problems

from complex application domains and it should not use a complex language that

distracts from the design principles.

3 Interpretation: functional versus object-oriented programming

Now that we have discussed the structure of the first-year curriculum and its

teaching methods, we can turn to the choice of programming language. If we accept

the premise that first-year students should learn to use two programming languages,

we now face the question which (kind of) languages we should choose. If we also

accept the premise that the first language should facilitate the teaching of design

principles, choosing a simple functional language for the first course is natural.

The second course can then use a (subset of a) complex, industrially fashionable

language, such as C# or Java, and show how the design principles apply there.

We justify this suggestion in more detail in the first subsection and explain our

concrete choice in the second one.

3.1 Functional and object-oriented programming

Functional and object-oriented programming share the desired curricular focus on

data as the starting point for program design. A functional programmer begins with

the definition of types and then defines functions on these types. An object-oriented

programmer defines classes and adds methods to these classes. Once the vocabulary

of data and operations are defined, programs are usually just a function or a method

call.

Functional programming and object-oriented programming differ with respect

to the syntax and semantics of the underlying languages. The core of a functional

language is small. All a beginning programmer needs are function definition, function

application, variables, constants, a conditional form, and possibly a construct for

defining algebraic types. In contrast, using an object-oriented language for the same

purposes requires classes, fields, methods, inheritance in addition to everything that

a functional language needs. Furthermore, the computational model of a functional

language is a minor extension of that of secondary school algebra. The model of

object-oriented computation requires far more sophistication, especially its focus on

method dispatch (instead of conditional reasoning) and early state modification.

Using a functional language followed by object-oriented language is thus the

natural choice. The functional language allows students to gain confidence with

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


Educational pearl 371

program design principles. They learn to think about values and operations on

values. They can easily comprehend how the functions and operations work with

values. Better still, they can use the same rules to figure out why a program produces

the wrong values, which it often will. Teaching an object-oriented language in the

second course is then a small shift of focus. It requires instructors to spend more

time on the syntactic complexities of the language, yet they can still rely on, and

reinforce, the design principles of the first course. In particular, the switch is of

a mostly syntactic nature, because the focus on designing classes of data and

operations on these classes remains the same.

3.2 The role of Scheme

Given this context, we picked Scheme as the most suitable starting point for the

first language. The arguments in its favor have been told time and again. We have

already argued elsewhere that plain Scheme is a weak language for the first course

and that it requires more support (Findler et al., 2002). We briefly summarize these

arguments here:

Scheme’s syntax is simple. Indeed, it is too simple because almost every parenthes-

ized expression is a syntactically valid program. When a student misplaces a

parenthesis, the program may produce an indecipherable error message or a

meaningless value. Our fix is to define a series of teaching subsets of Scheme

and to implement each of them in our DrScheme programming environment.

Implementing each subset enables us to produce error messages on the appropriate

knowledge level for beginners.4

Scheme’s semantics is easy to understand. sicp can quickly move from syntax to

computer science concepts because it uses a language subset with a straightforward

substitution semantics. Semantically speaking, the language is a generalization of

high school algebra. If a Scheme implementation comes with an algebraic stepper

that illustrates this concept (Clements et al., 2001), students can easily explore a

program’s evaluation without thinking about registers, stacks, memory cells, and

other low-level concepts.5

Scheme is safe. More precisely, Scheme’s standard (Kelsey et al., 1998) allows a

Scheme implementation to be safe. DrScheme, for example, implements a safe

language with fully predictable behavior. When a computational operation violates

its stated invariants, the implementation raises an exception and high-lights the

offending expression. For beginners, detecting and pinpointing the source of run-

time exceptions are critical elements of the language.6

4 In the 1970s, instructors who taught PL/1 faced a similar challenge and came up with a similar
solution, though without the full compiler support for error messages that we provide (Holt et al.,
1977).

5 It may still be valuable to teach some of these concepts later in the course, when students have
absorbed the basic ideas of program construction.

6 This partly explains why C++ is such a failure. Its lack of safety does not even guarantee that when
a program prints a number, it is actually interpreting bits that represent a number. Similarly, core
dumps and bus errors are much worse than exceptions, because they typically happen long after the
first violation occurred.

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


372 M. Felleisen et al.

Scheme is dynamically typed. The lack of a type system means that we don’t have to

spend energy on finding and explaining type errors with the same care with which

we explain syntax errors. Better yet, when we use Scheme to teach design principles

we can informally superimpose a type system and use the types for program design.

In particular, it is easy to define and use sets and subsets of Scheme values. This

comes close to students’ intuitions about classes and subclasses in object-oriented

programs and thus provides a good transition for the second course.

3.3 Programming environments

The choice of language for a first-year course isn’t just about the linguistics; it must

also take into account the programming environment. After all, developing and

running a program means more than just writing correct code. It requires support

for editing; compiling and running programs; understanding how a program is

evaluated; and so on.

Like the language, we believe that the programming environment for the first

course should be a lightweight, easy-to-use tool. That is, it should provide just enough

to edit and execute functions and programs, plus some tools for understanding

fundamental concepts, e.g. lexical scope and program reduction. Everything else

should be hidden from the student.

We believe that the lack of such a programming environment hurt the SICP

approach of teaching and the functional community in general. For that reason, we

have produced a programming environment that supports teaching program design

principles with Scheme (Findler et al., 2002). Others have had similar insights and

have produced alternative environments independently (Schemer’s Inc., 1991).

4 Interpretation: teaching design principles

4.1 Structure and Interpretation of Computer Programs (SICP)

sicp covers many important program design ideas. The course starts with an overview

of Scheme and recursive programming. In parallel, the course explains how to

evaluate variable expressions and function applications; that is, it introduces a

symbolic model of computation so that students understand the actions that a

program performs. The book then covers topics such as higher-order procedural

abstraction; data abstraction; mutable data objects; a message passing model of

objects; streams; modularity; meta-linguistic abstraction; and compilation.

Although this collection of topics is impressive at first glance, a second look shows

that sicp suffers from a serious flaw. While the course briefly explains programming

as the definition of some recursive procedures, it does not discuss how programmers

determine which procedures are needed or how to organize these procedures. While

it explains that programs benefit from functions as first-class values, it does not

show how programmers discover the need for this power. While SICP introduces

the idea that programs should use abstraction layers, it never mentions how or when

programmers should introduce such layers of abstraction. Finally, while the book

discusses the pros and cons of stateful modularity versus stream-based modularity,

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


Educational pearl 373

sicp:

primality

interval arithmetic

symbolic differentiation

representing sets

huffman encoding trees

symbolic algebra

digital circuits

normal/applicative order

strictness/laziness

non-determinism

logic programming

register machines

compilers

htdp:

moving circles

hangman

moving shapes

moving pictures

rearranging words

binary search trees

evaluating scheme

more on web pages

evaluating scheme again

moving pictures, again

mathematical examples

Gaussian elimination

checking (on) queens

accumulators on trees

missionaries and cannibals

board solitaire

exploring places

moving pictures, a last time

Fig. 1. sicp and htdp exercises.

it does so without explaining how to recognize situations in which one is more useful

than the other.

More generally, sicp doesn’t state how to program and how to manage the design

of a program. It leaves these things implicit and implies that students can discover a

discipline of design and programming on their own. The course presents the various

uses and roles of programming ideas with a series of examples. Some exercises then

ask students to modify this code basis, requiring students to read and study code;

others ask them to solve similar problems, which means they have to study the

construction and to change it to the best of their abilities. In short, sicp students

learn by copying and modifying code, which is barely an improvement over typical

programming text books.

sicp’s second major problem concerns its selection of examples and exercises. All

of these use complex domain knowledge. Consider the left column in figure 1. It

presents the choice of major examples that are used in the first few chapters of sicp.

Some early sections and the last two chapters cover topics from computer science:

see lower half of the left column in Figure 1.

While these topics are interesting to students who use computing in electrical

engineering and to those who already have significant experience of programming

and computing, they assume too much understanding from students who haven’t

understood programming yet and they assume too much domain knowledge from

any beginning student who needs to acquire program design skills. On the average,

beginners are not interested in mathematics and electrical engineering, and they do

not have ready access to the domain knowledge necessary for solving the domain

problems. As a result, sicp students must spend a considerable effort on the domain

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


374 M. Felleisen et al.

knowledge and often end up confusing domain knowledge and program design

knowledge. They may even come to the conclusion that programming is a shallow

activity and that what truly matters is an understanding of domain knowledge.7

Similarly, many students lack an understanding of the role of compilers, logical

models of program execution, and so on. While first-semester students should

definitely find out about these ideas, they should do so in a context that reaffirms

the program design lessons.

In summary, while sicp does an excellent job shifting the focus of the first course

to challenging computer science topics, it fails to recognize the role of the first course

in the overall curriculum. In particular, sicp’s implicit approach to program design

ideas and its emphasis on complex domains obscures the goal of the first course as

seen from the perspective of a typical four-year curriculum.

4.2 How to design programs

Over the past few years, we have developed an alternative approach to teaching the

first course. We have translated the approach into a new text book, and we believe

that it addresses sicp’s failings along four dimensions. First, the book discusses

explicitly how programs should be constructed. Second, to tame the complexity

of programming, it defines a series of teaching languages based on Scheme that

represent five distinct knowledge levels through which students pass during their

first course. The levels correspond to the complexity of data definitions that the

program design guidelines use. Third, the book uses exercises to reinforce the explicit

guidelines on program design; few, if any, exercises are designed for the sake

of domain knowledge. Finally, the book uses more accessible forms of domain

knowledge than sicp. Because of this shift in emphasis, we gave our book the title

How to Design Programs (htdp).

A cursory look at htdp’s table of contents reveals the new emphasis. Every chapter

comes with at least one section on the design of a particular class of functions. At

the same time, no section title concerns domain knowledge, except for those labeled

“extended exercise.”

htdp’s explicit design knowledge is encapsulated in design recipes. Every design

recipe enforces basic design habits:8

1. analyze the problem and describe the classes of problem data;

2. formulate a concise purpose statement (and a type signature);

3. illustrate the data definitions and the purpose statement with examples;

4. create a function layout based on steps 1 through 3;

7 Some faculty members argue that a course on introductory programming is a good place for teaching
students mathematical problem solving. While we partly agree with the idea that programming can
teach domain knowledge, we also believe that a course on programming should teach knowledge about
program design. We therefore ignore this line of argument here.

8 Glaser et al.’s notion of “programming by numbers” (Glaser et al., 2000) is a simple version of our
notion of a design recipe. It uses a version of step 4 in our design recipes for functions on algebraic
datatypes without going through the preparatory steps.

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


Educational pearl 375

5. write code; and

6. turn the examples into (automatic) test cases.

The book contains a series of approximately 10 design recipes. The first half of the

series shows how the description of the classes of data suggest a natural organization

of the functions that process them. These recipes addresses the design of functions

for classes of atomic data (numbers, booleans, characters), intervals and unions,

composites, self-referential definitions, groups of mutually referential definitions,

and so on. The second half of the series cover other important topics: abstracting

over similar functions and data definitions, generative recursion, accumulator-style

programming, and programming with mutation. In these cases, the design recipes

especially address the topic of when to use a technique or mode of an existing recipe;

no technique is introduced as just another trick for the toolbox.

The recipes also introduce a new distinction into program design: structural versus

generative recursion. The structural design recipes in the first half of the book match

the structure of a function to the structure of a data definition. When the data

definition happens to be self-referential, the function is recursive; when there is

a group of definitions with mutual cross-references, there is a group of function

definitions with mutual references among the functions. In contrast, generative

recursion concerns the generation of new problem data in the middle of the problem

solving process and the re-use of the problem solving method.

Compare insort and kwik , two standard sort functions:

;; (listof X ) → (listof X )

(define (insort l )

(cond

[(empty? l ) empty]

[else

(place

(first l )

(insort (rest l )))]))

;; (listof X ) → (listof X )

(define (kwik l )

(cond

[(empty? l ) empty]

[else

(append (kwik (larger (first l ) l ))

(first l )

(kwik (smaller (first l ) l )))]))

The first function, insort , recurs on a structural portion of the given datum,

namely, (rest l ). The second function, kwik , recurs on data that are generated

by some other functions. To design a structurally recursive function is usually a

straightforward process. To design a generative recursive function, however, almost

always requires some ad hoc insight into the process. Often this insight is derived

from some mathematical idea. In addition, while structurally recursive functions

naturally terminate for all inputs, a generative recursive function may diverge. htdp

therefore suggests that students add a discussion about termination to the definition

of generative recursive functions.

Distinguishing the two forms of recursion and focusing on the structural case

makes our approach scalable to the object-oriented (OO) world. In an OO world,

the structural recipes naturally suggest class hierarchies and recursive methods that

call directly along containment (“has a”) relationships. Indeed, an OO purist might

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


376 M. Felleisen et al.

argue that OO programming languages arise from implementing structural recipes

as a linguistic construct.

Contrast this with sicp’s treatment of recursion. The two notions are not

distinguished and, worse, the book’s first recursive procedure (sqrt-iter page 23)

uses generative recursion. The structural aspect of recursion is almost ignored

and certainly never presented as the bridge to object-oriented programming. More

generally, because sicp misses structural recursion and structural reasoning, it

confuses implementing objects with object-oriented programming. The book never

actually discusses reasoning about, and programming with, classes of data, which is

the essence of modern OO programming.

htdp introduces the idea of iterative refinement for both programs and data

separately. As students learn to cope with increasingly complex forms of data, the

book shows how a programmer can design programs with a series of correspondingly

more precise data representations. As the representations become more precise, the

program implements more of the desired functionalities. Combining the design

recipes with the idea of refinement then helps students produce complex programs

systematically.

htdp and sicp also vastly differ with regard to the treatment of language syntax.

htdp uses an analog of Quine’s approach to studying set theory and its logic (van

Orman Quine, 1963). Each language level is tuned to a particular stage in the

exploration of design. htdp shows what kinds of programs are natural to write and

explains during the next stage why a construct should be added. Thus, for example,

htdp students work with classes of data and hierarchies of classes long before they

encounter an assignment statement and before DrScheme interprets set! for them.

This represents our insight that it is critically important for students to organize

programs according to measurable criteria and for teachers to be able to tell students

when working programs are justifiably bad.

Finally, htdp uses domain knowledge differently from sicp. Figure 1 juxtaposes

the section titles in sicp and htdp that are concerned with exercises. Even a short

glance shows that htdp uses domain knowledge that is within reach of most students.

It does offer some exercise sets that introduce mathematics that may be new to some

students (such as Gaussian elimination and adaptive integration), but such exercises

are never on the critical path.

5 Experience and outlook

The htdp approach has been implemented at about a dozen colleges and, to some

extent, at several dozen high schools. At the college level, the change has always

shown strong results. For example, at Rice University and at Northeastern University,

students can/could enter the second course (using Java) from either an htdp course

(taught in computer science) or a C++ course (taught in computer engineering).

At both universities, independent instructors confirmed that the htdp students are

better prepared to program in an OO world than the C++ students and that they

have much better programming habits. The Northeastern htdp students received

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


Educational pearl 377

five times as many A’s (best grade) as the C++ students; at the other grade levels,

the numbers are approximately the same.9

High school teachers who implement htdp report similar success stories as

colleges but in a less measurable manner. Still, the htdp curriculum has had an

interesting measurable effect concerning female students. Several instructors reported

that female students like the htdp curriculum exceptionally well. In a controlled

experiment, an htdp-trained instructor taught a conventional AP curriculum and

the Scheme curriculum to the same three classes of students. Together the three

classes consisted of over 70 students. While all students preferred our approach

to programming, the preference among females was a stunning factor of four. An

independent evaluator is now investigating this aspect of the project in more depth.

In general, we believe that the htdp project has validated the usefulness of

functional programming and functional programming languages in the first program-

ming course. We have found that teaching Scheme for Scheme’s sake (or Haskell

for Haskell’s sake) won’t work. Combining sicp with a GUI-based development

environment for Scheme won’t work better than plain sicp. The two keys to our

success were to tame Scheme into teaching languages that beginners can handle and

to distill well-known functional principles of programming into generally applicable

design recipes. Then we could show our colleagues that a combination of functional

programming as a preparation for a course on object-oriented programming is

an effective and indeed superior alternative to a year on just C++, Java, or a

combination.

We are hoping that other functional communities can replicate our success in

different contexts. We suggest, however, that using plain Erlang, Haskell, or ML and

that teaching programming in these languages implicitly will not do. We all need to

understand the role of functional programming in our curricula and the needs of our

students. Fortunately, Chakravarty & Keller’s (2004) recent educational pearl shows

that we are not the only ones who have recognized the deficiencies of conventional

approaches.

Note: DrScheme and How to Design Programs are freely available on the Web at

http://www.teach-scheme.org/.

References

Abelson, H., Sussman, G. J. and Sussman, J. (1985) Structure and interpretation of Computer

Programs. MIT Press.

Bird, R. and Wadler, P. (1988) Introduction to Functional Programming. Prentice Hall, New

York.

Chakravarty, M. M. T. and Keller, G. (2004) The risks and benefits of teaching purely

functional programming in first year. J. Functional Program. 14(1), 113–123.

Clements, J., Flatt, M. and Felleisen, M. (2001) Modeling an algebraic stepper. European

Symposium on Programming.

9 The numbers are normalized. The sample is approximately 150 students with approximately 40 students
from C++ and the rest from an htdp course.

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076


378 M. Felleisen et al.

Clinger, W. (1985) The revised revised report on the algorithmic language Scheme. Joint technical

report, Indiana University and MIT.

Clinger, W. and Rees, J. (1991) The revised4 report on the algorithmic language Scheme.

ACM Lisp Pointers, 4(3).

Findler, R. B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P. and

Felleisen, M. (2002) DrScheme: A programming environment for Scheme. J. Functional

Program. 12(2), 159–182. (A preliminary version of this paper appeared in PLILP 1997,

LNCS 1292, pp. 369–388, Springer-Verlag.).

Glaser, H., Hartel, P. H. and Garratt, P. W. (2000) Programming by numbers – a programming

method for complete novices. Comput. J. 43(4), 252–265.

Holt, R. C., Wortman, D. B., Barnard, D. T. and Cordy, J. R. (1977) Sp/k: A system for

teaching computer programming. Comm. ACM 20(5), 301–309.

Hudak, P. (2000) The Haskell School of Expression. Cambridge University Press.

Jackson, D. and Chapin, J. (2000) Redesigning air traffic control: An exercise in software

design. IEEE Softw. 17(3).

Kelsey, R., Clinger, W. and Rees, J. (editors) (1998) Revised5 report of the algorithmic

language Scheme. ACM SIGPLAN Notices, 33(9), 26–76.

Raymond, E. S. (1998) The cathedral and the bazaar. First Monday, 3(3).

Schemer’s Inc. (1991) EdScheme: A modern Lisp.

Steele Jr., G. L. and Sussman, G. L. (1978) The revised report on scheme, a dialect of lisp.

Technical report 452, MIT Artificial Intelligence Laboratory.

Sussman, G. L. and Steele Jr., G. L. (1975) Scheme: An interpreter for extended lambda calculus.

Technical report 349, MIT Artificial Intelligence Laboratory.

van Orman Quine, W. (1963) Set Theory and its Logic. Harvard Press.

Wadler, P. (1987) A critique of Abelson and Sussman, or, why calculating is better than

scheming. SIGPLAN Notices, 22(3).

https://doi.org/10.1017/S0956796804005076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005076

