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Abstract

Type theory was invented at the beginning of the twentieth century with the aim of avoiding
the paradoxes which result from the self-application of functions. A-calculus was developed in
the early 1930s as a theory of functions. In 1940, Church added type theory to his A-calculus
giving us the influential simply typed A-calculus where types were simple and never created by
binders (or abstractors). However, realising the limitations of the simply typed A-calculus, in
the second half of the twentieth century we saw the birth of new more powerful typed A-calculi
where types are indeed created by abstraction. Most of these calculi use two binders A and IT to
distinguish between functions (created by A-abstraction) and types (created by IT-abstraction).
Moreover, these calculi allow -reduction but not I1-reduction. That is, (n,.4.B)C — B[x = C]
is only allowed when 7 is A but not when it is I1. This means that, modern systems do not
allow types to have the same instantiation right as functions. In particular, when b has
type B, the type of (1,.4.b)C is taken immediately to be B[x := C] instead of (Il,.4.B)C.
Extensions of modern type systems with both Il-reduction and type instantiation have
appeared in (Kamareddine, Bloo and Nederpelt, 1999; Kamareddine and Nederpelt, 1996;
Peyton-Jones and Meijer, 1997). This makes the 1 and IT very similar and hence leads to
the obvious question: why not use a unique binder instead of the A and IT1? This makes
more sense since already, versions of de Bruijn’s Automath unified /4 and IT giving more
elegant systems. This paper studies the main properties of type systems with unified / and II.

1 Introduction

In Church’s simply typed A-calculus, the function which takes f : N — N and x : N
and returns f(f(x)) is given below together with its type:

doubling function on IN Af NoN-AxN-F(f(X))
type of doubling function on N (IN—->N)—> (N->N)
If we want the same function on booleans %, we would need to write:
doubling function on % At popdaf (f(X))
type of doubling function on % (B — B) > (# — B)

Instead of repeating the work, we can bind the varying type o. So, if we let o : *
stand for “o is a type” (any type), we can define the polymorphic doubling function
in the polymorphic A-calculus, as follows:

polymorphic doubling function Jowidof gmaedoc i f (F(X)).
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Now, we can instantiate o to what we need:

e o =N then: (/lsc:*j—_f:oc—m-;vx:x'f(f(x)))N = vf:]N—>]N~j-x:]N'f(f(x))'
e o= 4 then: (}va:*-if:o:aa-/ﬂbx:a-f(f(x)))t@ = )vf@ﬂ@/l‘c%f(f(x))
e a= (%4 — %) then: (;Lm:*-}vf:oc—»w;vx:x'f(f(x)))(g — %) =
Af (BB (B—B)Pox:(B—B)-f (f (X))
So, types (like terms) can be abstracted over and can be passed as arguments. The
types of the new polymorphic terms are given by a new binder usually written as V
or IT. We use I1. The type of the polymorphic doubling function is:

type of polymorphic doubling function IT,...(x = o) — (o0 — ).

Hence, unlike simple types, modern non-simple types have similar features to
functions. In particular, like functions, types can be:

e Created by abstraction. Functions are created via / where A,.4.B stands for
the function from A to B which given a € A returns B[x := qa] (i.e., B where
a is substituted for x); and types are created via I1 where Il,.4.B stands for
the type of the functions from A to U,c4B[x := a] which given a € A4 return
fa € B[x := da]. For example, the type I14...A — A of the polymorphic identity
function A4..4y.4.y, is obtained by taking any type A and returning the type
A — A of the identity function on A4, A,.4.y.

o [nstantiated. For example, if 4 above is the set of natural numbers IN then we
are concerned with the identity function over IN whose type is A — A where
A is substituted by N (written (4 — A)[4 := N]), i.e. N - IN.

Looking at the behaviour of A and II, it seems questionable why one needs two
different binders. In fact, in the literature, there were several attempts to unify the
binders / and IT in type systems:

e Sometimes, in his Automath, de Bruijn identified the abstractions obtained
by 4 and Il. He wrote [x : A]B for both A,.4.B and Il,.4.B. But what are
the properties of such type systems and is there a correspondence between
ordinary type systems and those where abstractions are identified?

e Others (Kamareddine, Bloo and Nederpelt, 1999; Kamareddine and Nederpelt,
1996; Peyton-Jones and Meijer, 1997) argued that I1-reduction and f-reduction
should be both allowed. That is, (II,.4B)C —pn B[x := C] and (4x.4B)C —p
B[x := (C] should be both allowed. Moreover, IT-reduction was a main feature
of Automath (de Bruijn, 1970). When de Bruijn did not identify A and II,
he gave Il-terms the same instantiation power as A-terms and allowed II-
reduction. In some sense, adding IT-reduction to a type system has similar effect
as replacing the A and IT by a unique binder.

e In a private communication, during his PhD studies, Laan attempted to unify
binders in the cube, however, no progress was made there except stating
(without any proof) a generation lemma and a weaker form of isomorphism.

e Coquand (Coquand, 1985) first presented the calculus of constructions using de
Bruijn’s identification of binders. However, he did not investigate the connec-
tion with type systems where binders have not been identified, nor did he
establish how contexts, terms and types behave under the exchange of binders.
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e De Groote (de Groote, 1993) defined a system A* which departs from the usual
systems as in for example, the Barendregt cube (Barendregt, 1992), in the sense
that degrees are no longer restricted to 0, 1, 2 or 3. The system A* uses the
same binder A for both A and II.

Despite the above-mentioned work, modern type systems with unified binders
have still not been investigated. Although Kamareddine (Kamareddine, 2002) gave
a tutorial on functions and types in which unified binders also featured, this
unification concentrated on the concepts of parameters, definitions, IT-reduction and
explicit substitutions, and studied an extension containing all these concepts. This is
unsatisfactory since there is no agreement on which system of explicit substitution
should be used (or indeed whether one needs explicit substitution at all), and the
same holds for systems of definitions. So, how can the idea of unifying binders
be accepted if it is built on top of controversial calculi of definitions and explicit
substitutions? This paper fills these gaps and gives the first extensive account of
modern type systems (as we know them, without any controversial extensions) where
the 4 and the IT are unified. We carry our study in Barendregt’s f-cube (Barendregt,
1992) which hosts eight influential type systems.

The paper is divided as follows. Section 2 presents the basic notions of reduction
and typing and relates flat terms (where binders are unified) to ordinary terms.
In Section 3 we review the ff-cube and establish the properties of typing modulo
flattened binders. We show that in any typing judgement of the f-cube, As and Ils
cannot be exchanged and hence, from the judgement itself, one can decide the status
of any binder. So, why use different binders when the typing judgement carries the
unique identity of a binder? In Section 4, we present the h-cube where both 4 and
IT are written as p. We show that this p-cube satisfies all the desirable properties
except for the unicity of types. We also show that this p-cube is isomorphic to the
f-cube in the sense that for any typing judgement in the p-cube, there corresponds a
unique typing judgement in the f-cube. We show furthermore that despite the loss of
the unicity of types, all the different types of the same term obey the same pattern.
In Section 5, we discuss type checking and type inference. In Section 6, we discuss
Coquand’s calculus of constructions with unified binders. In Section 7 we conclude.

2 Notions of reduction and typing

In this section we present the basic notions of reduction and typing. We use two
basic sets of terms: the set 7 of typed terms as written in modern type systems and
the set .77, where 4 and IT have been flattened into the single binder b.

Definition 1
[Terms and translations] We let 7 range over {4,I1}.

1. We define the set of terms 7 by: .7 == |0| ¥ |ny.7.T | T T .

2. We define the set of h-terms (or terms when no confusion occurs) .77, by:
g.b = O 77 |7«;/';_q’b..7b ‘ Fbﬂ—b.

3. Frde 7, wedefinede 7, by:s=s5,x=x,AB=AB,n,.4.B=bH,3.B.
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4. Let A € 7,. We define [A] to be {4" in 7 | A’ = A}. We also define 4* € 7
by: s* = 5,x* = x,(4B)* = A’B* and (px.4.B)* = J,.4..B".

Note that, if 4 € 7 then 4 € [A]. Moreover, if A € 7, then A* € [A].

Notation 2

We let s, ', 51, etc. range over the sorts {*,[0}. We take 7~ to be a set of variables over
which, x, y, z, xi, etc. range. We divide ¥ into two disjoint subsets ¥ and 7. We
use x*, )%, etc., to range over 75. We assume that {*,0} N7~ = 0. We take 4, 4, A,
B, a, b, etc. to range over both 7 and 7 ,. We use Fv(4) to denote the free variables
of A, and A[x := B] to denote the substitution of all the free occurrences of x in 4
by B. We assume familiarity with the notion of compatibility. As usual, we take terms
to be equivalent up to variable renaming and let = denote syntactic equality. We
assume the Barendregt convention (BC) where names of bound variables are chosen
to differ from free ones in a term and where different abstraction operators bind
different variables. Hence, for example, we write (7,.4.y)x instead of (my.4.x)x and
Tx.4.Ty.g.yz instead of my.4.7my.p.xz. We also assume (BC) for contexts and typings so
that for example, if I' F 7,.4.B : C then x will not occur in I'. We define subterms
in the usual way. For A € {4, I1,b}, we write Ay, .4, ... Ax,:,-4 as Al\’"A”A

2.1 Reduction

Definition 3
[Reductions]

p-reduction —p is the compatible closure of (4y.4.B)C —p B[x = C].

b-reduction —, is the compatible closure of (px.4.B)C —, B[x = C].

IT-reduction —1y is the compatible closure of (Ily.4.B)C —p B[x := C].

We define the union of reduction relations as usual. For example, fI1-reduction

— g1, is the union of —4 and —p.

Let r € {#,11, BI1,p}. We define r-redexes in the usual way. Moreover:

— —», is the reflexive transitive closure of —, and =, is the equivalence
closure of —,. We write —+»,. to denote one or more steps of r-reduction.

— If A —, B (resp. A —, B), we also write B ,«— A (resp. B ,«— A).

— We say that A is strongly normalising with respect to —, (we use the
notation SN_, (4)) if there are no infinite —,-reductions starting at A.

— We say that A4 is in r-normal form if there is no B such that A —, B.

— We use nf,(A4) to refer to the r-normal form of A if it exists.

Theorem 4 (Church-Rosser for I and —gp11/,)

Let r € {f,IL,b}.
If By ,«— A —, B, then there exists C € 7 such that B; —», C ,«— B,.

Proof
For f see Barendregt (Barendregt, 1992). For SI1 see Kamareddine et al. (Kamared-
dine, Bloo and Nederpelt, 1999). For p, note that for 4 € 7, At e T. X
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Corollary 5
For r € {p, fI1, b}, r-normal forms are unique. Moreover, A
if SN_., (5%1.4). SN-., (o). 4) and n # m then pElg.A #, b} .4

The next lemma will be used to connect the different kinds of terms.

Lemma 6
1. If A,B € 7 then A[x := B] = A[x := B].
2. Let A,B € 7, and R € {—,—}. If AR, B then for all A" € [4] there is B’ € [B]
such that A'Ryn B’
3. Let A,B€ 7, r € {B,BI} and R € {—,—»,=}. If AR, B then AR,B.
4. Let A € 7. a) If SN, (4) then SN_, (A).
b) If 4 is in pfII-normal form then A4 is in p-normal form.

5. Letre {f,pI1} and 4 € 7.

a) If SN_, (A) then SN_, (4') for all A" € [4].

b) If A is in p-normal form then A’ is in r-normal form for all A" € [A].
6. Let A € 7. A is in BIlI-normal form if and only if 4 is in h-normal form.

Proof

1. By induction on the structure of A.
—, ¢ induction on 4 —, B using 1. —,: induction on the length of 4 —, B.
—, and —»,: similar to 2. =,: use Church-Rosser and the property for —»,.
2 maps any —,-path from A into the same length —pn-path from 4 € [4].
3 maps any —,-path from 4’ € [4] into the same length — -path from A.
This is a corollary of 4 and 5 above. X

A

Remark 7
In Lemma 6.2 and 6.4, we cannot replace SII by . For example:

o (hysx)y =, ¥y and (Ilcu.x)y € [(pya.x)y] but (Ilc..x)y is in f-normal form.
hd (bx:*'XY)(bz:*-Z) >y ) and ()~x:*‘Xy)(Hz:*-Z) € [(bx:*‘xy)(bz:*‘z)]

but (Ac.xy)(I1;...z) /4 C where C € [y].
e SN_,, ((TTy:e.xx)(IL+.xx)) but it is not the case that SN_, ((pxu.XX)(h x:x.XX)).

The next lemma relates normal forms in 4 and J7,.

Lemma 8§ A
1 If SN, (nfl2.4), SN, (n]'5".B), 4 = B and n # m then x4 #4n

jil.m
Vj:Dj -B.

2. Let SN_,, (). a) nfyn(A) = nf,(4). b) If 4 = B then nfyn(4) = nfyn(B).

Proof
1. By Lemma 6,4 SN_,, (p"!:.4) and SN_,7(bi;1:i‘T";.§). If ni A =pn 75" B, then
by Lemma 6.3, bf\f}%.z = bi ,117"/’§ = bi /1D_'TZ, contradicting Corollary 5.
2. a) By Lemma 6.4, SN_, (4). By Lemma 6.6, nfyri(4) is in p-normal form. By
Lemma 6.3, A —, nfgn(4). By Corollary 5, nfgr(4) = nf, (4).
b) By Lemma 6.4, SN_, (4) and SN_, (B). As B € [A], by Lemma 6.5,
SN_,.(B). Since nf,(4) = nf,(B), by a) nfy(4) = nfy(B). X
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(axiom) HF=:0
I'tA4:s x*¢pom()
(start) LxAFx A
I'+A4:B IFC:s x¢pom(l)
(weak) LY. CFA:B
() I'FA:s Ix:AFB:s, (s,%)€ER
F"HX;A.B )

) I'x:AFb:B T'FII 4B :s
8 TF s :I..B
(convy) I'FA:B I'HB :s B=ﬂB/

/ THA:B

I'EF :I1,.4.B I'Fa:A

(appl)

I'+ Fa : B[x:=d]

Fig. 1. Typing rules with two binders 4 and II.

2.2 Typing

Definition 9
[Declarations, contexts, =]

1. A declaration d is of the form x : A. We define var(d) = x, type(d) = A4, and
Fv(d) = Fv(A). We let d,d’,dy, ... range over declarations.

2. A context T" is a concatenation of declarations dy,dy, -, d, such that if i & j
then var(d;) # var(d;). We define pom(I') = {var(d) | d € T'} and use () to
denote the empty context. We let I', A,T”,T'y,... range over contexts.

3. Assume I' is a context such that x ¢ pom (I'). We define the substitution of A
for x on I, denoted I'[x := A], inductively as follows:

O[x =A] = (), and I,y : B)[x :==A] =T"[x := A],y : B[x := A].

4. We define = between contexts as the least reflexive transitive relation closed

under: I''A = T, d, A.

We extend the translations in Definition 1 to contexts as follows:

eln7:()=() T,x:A=T,x:A.
eln7,:[IN={"|I"=T}.

Since we want to assess unified binders in a variety of type systems, we chose
to use the eight powerful systems of Barendregt’s f-cube. In the f-cube of Bar-
endregt (Barendregt, 1992), eight well-known type systems are given in a uniform
way. The weakest system is Church’s simply typed A-calculus f— (Church, 1940),
and the strongest system is the Calculus of Constructions ¢ (Coquand, 1988).
The second order A-calculus (Girard, 1972; Reynolds, 1974) figures on the f-cube
between f— and ¢ (cf. Figure 2). Moreover, via the Propositions-as-Types principle
(see (Howard, 1980)), many logical systems can be described in the f-cube.

The f-cube has two sorts * (the set of types) and I (the set of kinds) where
* [ If A : = (resp. A : ) we say A is a type (resp. a kind). All systems of the
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fo Be
5 Br,

B Bro ‘[(D’*) € R
s, — 5 > (O.0) e R
L (+O)eR

Fig. 2. Barendregt’s fi-cube.

f-cube have the same typing rules (cf. Figure 1) but differ by the set R of pairs of
sorts (s1,$2) allowed in the type-formation or I1-formation rule, (IT). Each system has
its own set R such that (+,*) € R < {(*,*),(*,0), (0, *),(E,0)}. With rule (IT), the
f-cube factorises the expressive power of fi¢ into three features: polymorphism, type
constructors, and dependent types:

e (*,*) is basic. All the f-cube systems have this rule.

e ([0, #) takes care of polymorphism. f, is the weakest system on the f-cube
that features this rule.

o ([0,00) takes care of type constructors. f3, is the weakest system on the f-cube
that features this rule.

e (x,[0) takes care of term dependent types. fip is the weakest system on the
f-cube that features this rule.

These features make the ff-cube an excellent bed for testing unified binders. Since we
will give another cube (the p-cube), we refer to each system of Figure 2 according
to the cube we are in. So, ¢ resp. b¢, is the calculus of constructions of the f-cube
resp. the p-cube. Now we give basic notions of type systems:

Definition 10
[Statements, judgements]

1. T+ A : B is a judgement which states that 4 has type B in context I. When I
is empty, we simply write - 4 : B.

2. T is F-legal (or simply legal) if there exist A, B where I' - A4 : B.

3. A is F-legal (or simply legal) if there exist [, B where ' A4 : BVI F B : A.

4. Ais I F-legal (or simply I'-legal) if there exists B where ' A4 : BVI'F B : A.

2.3 Desired Lemmas for Type Systems

Lemma 11 (Free Variable Lemma for - and —,)
1. If x : A and y : B are different elements in a legal context I', then x = y.
2. If T';,x : A, T, F B : C then rv(4) < pom(I'1) and
FV(B),Fv(C) = poMm (I'1,x : A, T5).

Lemma 12 (Start/Context Lemma for & and —,)
If T is F-legal then

I.TF=:Oand forallx:A eI, I'Fx: A
2. fT'=T,x:A,T, then I'y - 4 : s for some sort s.

https://doi.org/10.1017/5S095679680500554X Published online by Cambridge University Press


https://doi.org/10.1017/S095679680500554X

778 F. Kamareddine

Lemma 13 (Thinning Lemma for  and —,)
If I"and A are H-lega, T < A,and ' A4 : Bthen AF A4 : B.

Lemma 14 (Substitution Lemma for - and —)
Let I',x : A, A be -legal.
IfIx : A AFB:Cand I'a:Athen I',A[x :=da] F B[x :=d] : C[x :=a].

Lemma 15 (Generation Lemma for b and —,)
1. If Tks:C thens==*and C =0.

2.If 'kx:Cthenforsomes, A, x :Ael,C=, A, x=x*and '+ C :s.
3. If r = f then
(a) If ' F Ac.4.B : C then for some D, s, ' F II,4.D :s; I',x:A+ B : D;
Iy.4.D =4 C and if TI,.4.D % C then I' - C : s’ for some sort s'.
(b) If I' - II,.4.B : C then there is (s1,s2) € R such that '+ A4 : s,
Ix:AF B :s5, C=p sy and if C # s, then I' - C : s for some sort s.
(c) f '+ Fa : C then there are 4,B such that ' - F : I1,.4.B, ' Fa : A and
C =p B[x:=a] and if C # B[x:=a] then I' - C : s for some s.
4. If r = p then
(a) If T'Fpy.4.B : C then only one of the following holds:
i Either there are s and D where I'+p,.4.D :s; [, x:A+ B : D;
bx:u.D =, C and if py.4.D £ C then I' - C : §' for some sort s'.
ii Or there is (s;,s2) € Rsuch that ' - A4 : s, ILx:AF B : 5, C = 5,
and if C #£ s then I'F C : s for some sort s.

(b) If I'  Fa : C then there are A,B such that ' - F :p 4B, ' Fa : A and
C =, B[x:=a] and if C # B[x:=a] then I' - C : s for some s.

Lemma 16 (Correctness of types for - and —,)
IfTHFA:Bthen(B=0OorI'F B :s for some sort s).

Lemma 17 (Subject Reduction for = and —,)
IfTHFA:Band A —»,. A thenT' A" : B.

Lemma 18 (Reduction preserves types for - and —,)
IfTHFA:Band B—, B ' thenT'-A4 : B.

Lemma 19 (Strong Normalisation for - and —,)
If A is F-legal then SN_, (A).

Lemma 20 (Typability of subterms for b and —,)
If A is F-legal and B is a subterm of A, then B is F-legal.
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Lemma 21 (Unicity of Types for - and —,)
1. fT'FA:Byand T'+ A4 : By, then B; =, B,.
2. If T+ A1 . B1 and T A2 IBZ and A1 = Ag, then 31 = Bz.
3.IfTFB;:s,Bi=BandI'A4:B,thenT'F B, :s.

3 The f5-cube and typing modulo flattened binders

Definition 22

[The f-cube] The f-cube has terms 7 and the reduction relation —g. We use 4 to
denote type derivation in the fi-cube given by the rules of Figure 1. Sometimes, we
annotate g with particular systems. For example, 5. is type derivation in fic, the
calculus of constructions of the f-cube.

All of Lemmas 11..21 hold for the f-cube (see Barendregt (Barendregt, 1992)).
Moreover, we have the next lemma, which enables us to freely interchange f and
BII for Fg-legal terms.

Lemma 23
L. THeO: A THgAB : O, T tp Axu.B : s and I' tfg (I1c.4.B)a : C.
If ' A : B then all of I', 4 and B are free of Il-redexes.
Let 4 be kp-legal and R € {—, —}. ARgn A’ if and only if ARgA'.
Let A, A" be Fg-legal. A =pr; A’ if and only if A =5 A'.
Let A be Fp-legal.
(a) A is in pIl-normal form if and only if 4 is in f-normal form.
(b) Ilfﬁr[(A) = Ilf/g(A).
(c) SN, (A) if and only if SN_, (4).
(d) If A = A’ and A is in f-normal form then A’ is in f-normal form.

ok W

Proof
1. See Barendregt (Barendregt, 1992).
2. First we show by induction on the derivation I'y,x : D,I, 3 E : F that if E
and a are free of Il-redexes, I';,x : D, I g E : FandI'y kg a : D,then E[x := a]
is free of Il-redexes. We only do the (appl) case. Take a and E’b (hence E’
and b) free of Il-redexes, I't Fg a : D and let I',x : D,I', k3 E'b : F'[y:=b]
come from I'y,x : D, 3 E' : I1y.gr.F" and T'y,x : D, ITo kg b 1 E”.
By IH, E'[x := a] and b[x := a] are free of Il-redexes.
By Lemma 14, I'i, I's [x := a] b4 E'[x 1= a]b[x :=a] : F'[y:=b][x := a].
By 1., E'[x := a]b[x := a] is not a Il-redex. Hence, (E'b)[x := q] is free
of IT-redexes.
Now, we show 2 by induction on I' kg 4 : B. We only do the (appl) case. If
I' Fg Fa : B'[x:=a] comes from I' g F : Il,.4.B’ and T kg a : A, by IH,
I',F,a,A’" and B’ are free of Il-redexes. By 1., Fa is not a IT-redex. Hence,
I' and Fa are free of IT-redexes. Since I' g a : A", I',x : A" 3 B’ : s (by
Lemmas 16 and 15 on I' kg F : Il.4.B’), and a, B’ are free of II-redexes, then
by what we first proved above, B'[x := a] is free of Il-redexes.
3. For —, use 2. For A —» gy A" implies A —; A’, use induction on the length of
A —pn A’ (by Lemmas 17 and 18, if 4 —4 C then C is Fg-legal).
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4. Use Church—Rosser and 3.

5. (a) and (c): Corollary of 3. (d): Use (a), Lemma 6.4, and Lemma 6.5.
(b) By Lemma 17 or 18 and (a), nfg(A) is Fg-legal and in fII-normal form.
By Corollary 5, nfg(A4) = nfg(4). X

The normal forms of Fg-legal terms follow an organised pattern:

Lemma 24
Assume I' 4 Ay : By, T k5 Ay : B, and A; = A,.
1. If Ay, Ay, By, B, are in fi-normal form then for some 0 < ny,ny < m:
o Ay = G, Ay = AP TE.C, where € =+ or C =
XL] "'Lk for k ZO,
e B = H;il:};’jl.D, B, = H;,:il:;:z.D, where I',x1 : Fi,...,%p : Fp g C : D.
2. nfp(By) = TI{'{".D and nfg(B,) = T1{';*.D where ny,n; > 0.
3. If B1 =91 and 32 =5 then S1I =85 and Ilf[;(Al) = Ilf/g(Az)

Proof
1. By induction on the structure of A; in f-normal form.

e Ay =0 is not possible by Lemma 23.1.

o If Ay is x or = thentake ny =n, =m=0,C=A4A, =4, and D=B; =B,
(by unicity of types B; =g B, and as By, B, are in fi-normal form, B; = B,).

o If for 1 < p <2, 4y = I, 5,.G, where E; = E; and G| = G, by
generation, 3(sy, s,) such that I' g E, @55, [,x1 1 E, g G s, and B, =5,
(B1, B, in f-normal form). By IH, E; = H;IKIR =E, (let F; = E| = E»),
G =T, H=G,and s) =5, (let D =5, =5)) where H = * or
H=xLi--Lgfork>0I,x:Fi,x2:F....%x41 : Frqu Fp H : D and
r>0.Let m=r+ 1. Then, 4; = I{'{".H = A, and B, = B, = D.

o Iffor 1 < p <2, A, = Ay £,.G, where E; = E; and G| = G, by generation,
iH,,s, where I b4 Iy, .5,.Hy = sp, I, x1 1 Ep g G, Hy and B, = Iy, .,.H,
(by Lemmas 19, 17 and 18, we take H, in f-normal form). By generation,
Els;J where I' 5 E, : s;,. By IH, E; = E; (let F; = E; = E;) and for

0<n, <m:
__ qi:lm, iiny+1.m o
— Gy =4k G, -C where Cis * or XLy -+ Ly, for k =0,
i:l.n,
— H, = HXH]:%HI'D’ where I',x1 : Fi,x2 : Fa, ..., Xpq1 @ Fg1 Fp C 2 D.

Hence, A, = 2y,.7,.G, = /Iii]:”;:ﬁ].l'[;ﬁ";z"'wr].c where I <n,+1<m+1.
o If Ay = Jy,.5,.G1, Ay =11, .5,.Gy, E; = E; and G| = G,, by generation:
— JH,s where I' Fg Il,,.g, . H :s5, I',x1 : E{ g Gy : H and By =1l g .H
(by Lemmas 19, 17 and 18, take H in ff-normal form).
— 3(s},s5) where I' b4 E; @ s}, I',x1 : Ex Fp Gy @ 55 and By = s).
— ds; where I' g Eq :sq, and by IH, E; = E,. Let F; = E; = E,.
By IH, G, = /jiln_ q1tlm ¢ G, = MM C (by Lemma 23.1, G,

i “Xit Fip1 7 X Fign . X1 :Fipr®
is not the form A,.g.F), H = H;i'i’ﬁFM.s’z where C = = or C = xL{--- Ly
for k > 0, and I',x; : Fi,x2 : Fa,...,Xmp1 © Fup1 Fp C s, Hence,

— qi:ln+1 yyint2.m+1 — yri:l.m+1 — yyi:l.n+1 —
A] = ;{Xi:Fi 'Hx,-:F,- .C, A2 = HX;ZF; .C, Bl = HxiiFi By and Bz = 5.
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o A; =11, .Gy, Ay = Ay, £,.Gy where E; = E; and G| = G, is similar.
o Iffor 1 <p<2,A4,=xLy Ly wherek >0and L; = Ly for 1 <i<k:

— If k = 0, by generation By = B,. Take ny =n; =m =0, C = x and
D =By =B,.

— Ifk # 0, by generation I' g xLy; - - Lyk—1) : Iy.c,.Dpyand T b5 Ly @ C,.
By IH, XLH . "Ll(kfl) = XL21 . "Lz(kfl) and Hy:Cl-Dl = Hy:C2~D2-
Hence, Ci = Crand Ly; = Ly for 1 <i<k—1.BylHonI kg Ly : Cp,
Ly, = Ly,. Hence, A; = A, = xL; - - Ly and by generation By = B;.

2. By Lemma 19, SN_, (4,) and SN_, (B,) for 1 < p < 2. By Lemmas 17 and 18,
I' kg nfg(A4,) : nfg(B,). By Lemmas 8.2 and 23.5, nfz(4;) = nfg(4>). By 1,
nfg(By) = L5".D and nfg(B,) = 112D where ny,ny > 0.

3. By Lemma 19, SN, (4,) for 1 < p < 2. By Lemma 17, I -4 nfg(4,) : s,. By
1. above, nfg(A4;) = nfg(4,) and 51 =5,. KX

The next lemma relates legal contexts and terms of the same class: As and ITs cannot
be exchanged in legal contexts, nor in the types of a term, nor in the terms belonging
to a type. This is basic for the isomorphism of both cubes.

Lemma 25
Assume I' -3 Ay : By and I' =3 4> @ By,

IfAil = Tz and B; =p B, then A; = A, and By = B,.

If B =5y, By =5, and A; = 4, then 4; = A, and s; = 5.
If I'y and T, are Fp-legal and if Ty =T, then I'y = I,.

. If B = B, then B; = B,.

. If A = 4> and B; = B, then A; = A, and B; = B,.

. If By =51, By = sy, A_1 =} A_z then A4, =p As.

DU E

Proof
1. By Lemma 24.1 for 1 < p <2, A, = 25" I ".C and B, = 7D, As
B, is Fg-legal and By =4 B, by Lemmas 19 and 23.(5 and 4), SN_, ;(B,) and
31 =p0 Bz. By Lemma 81, ny = nyp. SO, A1 = Az and Bl = Bz.
2. By Lemma 24.3, s; = s;. By 1 above, A; = A4,.
By induction on the length of I'y using start/context Lemma 12 and 2 above.
4. If By = 0O then B, = O and B; = B,. If By # O then B, % O and by
correctness of types, I' =g By : sy and I' =3 B> : 5. Hence, by 2, By = B».
5. By 4 above, B; = B;. Hence, by 1 above, 4] = 45.
6. By Church-Rosser A; —», C ,«— A,. By Lemma 6.2, Vi, 1 < i < 2 then 3D;
where D; = C and A4; —»pn D;. Since A; is Fg-legal by Lemma 23.3 4; —; D;.
By Lemma 17, I' - D; : s;. By 2 above, D; = D,. So, A; =5 A>. K

e
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(axiom) OF=:0O
'kA4:s x*¢pom(l)
(start) LLXAFx 4
IHA:B TFC:s x¢pom(l)
(weak) LY. CrA:B
b)) T'EA:s Ix:AF-B:s, (s;,%) €R
! TFpysB s
(b2) I''x:A+b:B I'kpeuB:s
? rl_b\Ab : bx:A-B
(conv, ) I'A:B T'FB :s B=bB/
b THA:B
I'HF :px:AB I'Fa:A
(applp) 4

I'+ Fa : B[x:=a]

Fig. 3. Typing rules with one binder.

4 The b-cube: Identifying 1 and IT in the cube

Definition 26

[The p-cube] The p-cube has 7, as the set of terms and p-reduction —, for the
reduction relation. We use -, to denote type derivation in the p-cube given by the
rules of Figure 3. If needed, we annotate I, with particular systems. For example,
Fy. is type derivation in p¢, the calculus of constructions of the p-cube.

Lemmas 11.14 hold for the p-cube and have the same proofs as in the ff-cube. Next
we prove Lemma 15 for the p-cube. Note the unicity clause in 3 which allows one
to easily unpack the status of a p as a 4 or a I1:

Proof
(Of Generation Lemma 15 for the h-cube)

1. By induction on the derivation I' -, E : C where E = .
2. By induction on the derivation I' i, E : C where E = x.
4(a). By induction on the derivation I' -, E : C where E = p.4.B. We only do
the interesting cases. Assume I -, py.4.B : C comes from:
— (p1): then ii holds. Moreover, i is impossible in this case since otherwise,
there is D such that p.4.D =, s, which is impossible by Church-Rosser.
— (p2): then i holds where C = p.4.D. If also ii holds then there is (si,s>)
such that p,.4.D =, s, which is impossible by Church—Rosser.
4(b). By induction on the derivation I' b, E : C where E = Fa. X

Also, Lemmas 16.18 and 20 hold for the p-cube and have the same proofs as
those for the f-cube. Before showing strong normalisation Lemma 19 and before
discussing unicity of types Lemma 21, we will establish the isomorphism of the
b-cube and the f-cube. First, we write the rules of Figure 3, in a syntax-directed
fashion as in Figure 4, which gives a type checking algorithm for the p-cube. We
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(tel) OF=:0
'tA4:s x*¢pom(l)
(te2) LY AF+:0
r-C:s x":Ael’' A=,C

tc3

(te3) TFx:C

(tc4)C=bsz I'HA:s; IN'x:AFB:s; (s,)€ER C#s,=TFC:s
I'kbouB:C

(tCS)C:bbx:A.D I'tpeuyD:s TI,x:A+-B:D C#pyD=>TFC:¥
I'kpwuB:C

(tc6)F|—F:bX:A.B I'Fa:A4 C=,B[x:=da C#B[x=a=TFC:s
I'Fa:C

Fig. 4. Type checking in the syntax-directed version of the rules of the p-cube.

use F¢c to denote type derivation using the rules of Figure 4. Note that rules (tc4)
and (tc5) do not overlap since by Church-Rosser we cannot have both C =, s, and
C =}, bx.4.D. Below, we show that -, and Fptc are equivalent.

Lemma 27
'k, A:Bif and only if I Fy¢c 4 : B.

Proof
“if”: by induction on I' k- tc A : B using Lemma 12.
“only if”: by induction on I' -, A4 : B using 1 and 2 below which we show by
induction on I' k¢ 4 : B.
LIfC e A:B, I =I"and Ik o * : O then T" ¢ 4 @ B.
2.IfTkygcA:B, IT'Fyc B :sand B=, B' then 'y 4 : B. [

Hence, we use t, for both -, and k-, ¢c. Next, we give an algorithm to construct for
each I'+, 4 : B, a triple (I",A’, B') € [I'] x [4] x [B] such that I" g A" : B'.

Definition 28
Let ', A4 : B. We define (I' +, A : B)™! € [I'] x [A] x [B] by:

() Fp = Oy = ((),*0)

(C,x* Ak, + 071 =(",x° : A4,*,0) where (T, 4 :s5)7! = (I, 4,5)

(Chy x*:C)7! = (I",x*,C’) where (T, C :s5)~! = (I",C,s)
I",I1,.4.B',C") if C =, s, and i.

ThypoaB:C)t =4 OBy : ’ ,

(TFy bria B C) { (I, 2a.B,C')  if C =, hys.D and ii.

(Cky Fa: C)7! = (I, F'd', C') where iii.
Where 1, i1, and iii are as follows:
i all the following hold:
— (I, 4 51~ = (I", 4, s;) for some s; where (s1,5,) € R,
— (I,x:AF, B :sy) ' =(I",x:A",B,s,) and
— if C = s, then C' =55 else
if C # s, then (', C :5)~! = (I, C,s) for some s.
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ii all the following hold:
— (T'F, bxaD 2 s)H = (I, x.q.D', ) for some s,
— (,x:AF, B:D)"'=(I",x:4",B,D") and
— if C = py.4.D then C' =1I1,.4.D’, else
if C # pyu.D then (T, C :§')~! = (I",C',s) for some s
iii for some 4, B where C =, B[x := a], all the following hold:
— (' F: bx;A.B)_l =", F,n.y.B),
J— (1" |_b a ZA)_l — (r//’ a’,A”) and
— if C = B[x :=d] then C' = B'[x = d], else
if C # B[x :=d] then (' k, C :5)~! = (I, C’,s) for some s.

Lemma 29
The following hold:

1. If (T, A : B)™' = (I", A", B') then (I, A", B') € [I'] x [A] x [BI.

2. If Tk, A : B then there is (I, A, B') such that (I' -, A : B)™! = (I", 4, B).
3. If(Cky A: By =(I",A4,B') then T b4 A’ : B,

4. If Tk, A : B then (T'H, 4 : B)~! is unique.

Proof
1. By induction on the derivation of (I' F, 4 : B)~! = (I", 4, B') according to
Definition 28 (use Lemma 6.1 in the last clause).
2. By induction on the derivation I' -, A : B using the rules of Figure 4 (use 1,
in (tc5) and (tc6)).
3. By induction on the derivation of (I' -, 4 : B)~! = (I, 4, B) according to
Definition 28.
e Case (() b, * : )" = ((), ,0), trivial.
o Let (O,x* : A by, * 0Ot = (I",x° : A, 0) where (T, 4 :5)7! =
(I",A',s). By IH, I 4 A" : s and by Lemma 12, I" g = : . Since
I,x* : Aty * : 0, then x* ¢ pom(T). By 1., I € [I'] and so x* ¢ pom (I").
Hence, by (weak) I'",x* : A" 5 * : [0,
o Let (TH, x* : C)~! = (I",x%,C’) where (T, C :s5)~! = (I",C',s). By IH,
I"Fg C' @5 Since T' k-, x° : C, by generation, there is x* : A € I where
A=, C.Let x* : A € I" where A" € [A]. By 1, I" € [I'] and C’ € [C]. As
I is Fg-legal, by Lemmas 12 and 15, I'" Fg x* : A" and I" kg A" : 5. By
Lemma 25.6 A" =g C'. Hence, by (convg) I Fg x* : C'.
e Let (THy pyu.B : €)1 = (I",I,.4.B’,C’) where C =, s, and:
— (I, 4 s1)~! = (I'", 4, s1) for some s; where (s1,s,) € R.
— [T,x:A4A+, B i) P =I",x: A", B,s).
— If C =5, then C' = 55 else
if C # s, then (', C :5)~! = (I, C,s) for some s.
ByIH, I"tp A" :syand I, x : A" b4 B" :5,. By 1, T, I € [T'], A", A" € [A]
and B’ € [B]. By Lemma 12 I'" -3 A” : s". By Lemma 25.3 I" = I"". By
Lemma 25.2, A" = A". By (IT), I'" kg M.4.B" : 5. If C =55 then C' = 55
and I" b4 T.p.B' : C'. If C % s, then since (', C :s)~! = (I, C,s),
by IHI" kg C" :sand by 1, I € [I'] and C’ € [C]. By Lemma 25.3
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I["=T".As C =, 55, C =, s5. By Lemmas 6.2 and 23.3 C" —»y s,. Since
I’ |—l; C: S, I’ I—/; Hx;Af.B/ ) and C’ =p S2, by (COIlV/;), I l_ﬁ HX;A/.B/ :C.
o Let (T ky pyaB : C)~t = (I, Ay.a.B',C') where C =, p.4.D and:
— (Cky pyaD i s)™t = (7, myn.D', s) for some s.
— (IL,x:AF, B:D)"'=(I",x:4",B,D").
— if C = py.4.D then C' =11,.4.D, else
if C #py.a.D then (T, C :§)~! = (I",C,s) for some s'.
By IH, I" bg ny0.D" : s and T”,x : A" -y B' : D”. By 1., I',\T” € [I],
A, A" € [A], B € [B] and D',D"” € [D]. By Lemma 15 I" k3 A’ : 5" and
I'"Fpg A” 5", By Lemma 25.(3,2) I" =I" and A’ = A”. By Lemma 23.1
I'" g Axa D’ i s s0 I" Fg Iy.p.D' 5. By Lemma 15 I",x : A" g D’ @ s.
Since D" £ O (else D' =0 and I'",x : A" 5 O : s absurd by Lemma 23.1),
by Lemma 16 I",x : A" g D" : 5. By Lemma 252 D' = D". By (1) I'" k-
Jxar.B" M D' If C = byu.D then C' =Tl .p.D" and I kg Ay.u.B' : C'.
If C # byuD, by IH, T 4 C" : s'. By 1., I € [I'] and C’ € [C]. By
Lemma 25.3 T" =I"”. By Lemma 25.6 C’' =g I1,.4.D’. Hence, by (convg),
I"bFg Axa.B : C.
e Let (T, Fa : C)~' = (I", F'd',C’) where for some A and B such that
C = B[x := a], all the following hold:
— (I l_b F: bx:A~B)_1 = (F,a F, nx:A’-B/)a
— (Chya:A)'=(I"d,4") and
— if C = B[x := d] then C' = B'[x := d], else
if C # B[x :=d] then (T'F, C :5)~! =(I"",C’,s) for some s.
ByIH,I"Fg F' :my.p.B and I g’ : A”. By 1, T, T € [T'], A, A" € [4],
B’ € [B], F' € [F] and d € [a]. By Lemma 253 I" = I"". By Lemma 16
I'" kg nyq.B’ s and by Lemma 23.1 ©= = II. By Lemma 15 I" kg
A" 1 §". Moreover, A” % O (else A’ = O and I" kg O : s” absurd by
Lemma 23.1). By Lemma 16 I" 3 A” : s”’. By Lemma 25.2, A" = A”. By
(appl) I kg F'd’ : B'[x := d']. If C = B[x = 4a] then C' = B'[x := d]
and I" b3 F'a’ : C'. If C # B[x :=a] then by IH I 4 C' : s and by 1,
I € [I'] and C’ € [C]. By Lemma 25.3 T" =TI". By Lemmas 15 and 14
I" Fg B'[x = d] : §'. Recall that C =, B[x := a] and by Lemma 6.1
B'[x :=d'] = B[x := a]. Hence by Lemma 25.6 C' =4 B’[x := d']. Finally,
by (convg), I" -3 F'd’ : C'.
4. Let (F |_b A B)71 = (F],A1,B1) and (F |_b A B)il = (Fz,Az,Bz). By 1.,
(F],A],Bl),(rz,Az,Bz) (S [F]X [A]X[B] By 3., F1 |—/; A1 . B1 and Fz I—/; Az . B2.
By Lemma 25.3 I'y =TI, and by Lemma 255 A = A4, and By =B,. K

The next theorem shows the isomorphism between the p-cube and the f-cube.
It also says that given a typing judgement in terms of p, this judgement can be
uniquely written in terms of A and I1. This means that the semantic meaning of all
the subterms of I', 4 and B of the judgement I' -, 4 : B is preserved.

Theorem 30

1.IfTkgA:BthenT H, A4 :B.
2. If '+, A : B then
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o there exists a unique I € [I'] such that I" is F4-legal, and

o there exist unique A" € [4], unique B’ € [B] such that I'" -3 A" : B'.
Moreover, I",4" and B’ are constructed by ~! where (I' F, A4 : B)~!
(T, A, B).

Proof

1. By induction on the derivation I' g 4 : B.

2. By Lemma 29, let (I, A, B') € [I'] x [A] x [B] such that (T, A : B)™! =
(I",A’,B'). Again by Lemma 29, I"" -3 A’ : B'. By Lemma 25.3, I'” is the unique
Fgs-legal element of [I']. By Lemma 25.5, (4, B) is unique in [A4] x [B] such
that I"Fp A" : B. X

Strong normalisation for the p-cube can be established directly as for the fi-cube,
or indirectly via Theorem 30. Below, we give the indirect proof.

Lemma 31 (Strong Normalisation for -, and —,)
If A is ,-legal then SN_, (A).

Proof

Sinchislegal,l"l—bA tBorI'H B:A If ', B : 4, by Lemma 16, 4 = [
(and SN_, (4)) or I' i, A :s. Hence, we only do the proof for I' -, 4 : B. By
Theorem 30, I" 3 A" : B’ for " =T, A’ = A and B’ = B. By Lemma 19, SN_, (4').
By Lemma 23.5, SN_,  (4'). By Lemma 6.4, SN_, (4). X

Hence, all the properties of the f-cube (except for unicity of types), hold indeed for
the p-cube. What about unicity of types? This does not hold since p.4.B represents
both A,.4.B’ and Il,.,.B" which may both be typable. In other words, py.4.B can
have two types C and D where C #;, D. Here is an example:

Example 32

1. Using (00,00): Fp Ayex t e and By by X Dy
Using ([0, #): Fp Iex 0% and by pyex o
Note: . 7, *.

2. Using (O, #*) and (00,00): g Ave Ly  Ie® and By b Dy @D ®.
Using (00, *): Fp Iy dlywy o # and b, brwpysny @5
Using (00,00): g Aysdpey e dlpnt and By brsbysy @ DDyt
Note: Iy.s.4y...y is not typable and VA % B € {pyu.®, *,byu.byw.*}, 4 #, B.

3.If A = bybrypycrDrsc Do, -X2x3 then =, A : B for any B in the
set {bx| :*-bxz:b},zc.*-bm:C~|7x4:xz><3~*a bxl :*-bxz:b),@*-bx;:cﬁa bx| 2*'bxzib}-;(‘.*'*’ bx1 ¥ *}
(Note that you need the necessary (si,s2) € R.) In the f-cube, the only
possible judgements -3 A’ : B" where A’ € [A] are as follows:

l_[i ;Lxl :*sz:l'l).;f.*-;vm:C~}~x4:x2><3~x2x3 : Hx1 :*-HxZ:H\.;C.*-ng ZC'HX4 X2X3

l_[i ;Lx1 :*sz:l'l).;c.*-}vx; ZC'HX4 xyx3-X2X3 : Hx| :*-sz :H\.;C.*-ng :C- *
I—[; ;Lx] :*./IXZ;H)_:C.*.r{x3 ;C.Hx4;xe3.X2X3 : H)q 5*'H«\'2:H)-:(‘-*' *
I—[; ;ux] :*~Hx; :H},;(.*~HX3:C-HX4:xzx3~x2x3 : Hxl . *
l_,[f Hx| :*-sz :H}.;C.*-H,\'; :C~H>c4 xox3-X2X3 L *
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As can be seen, we can relate the types of the same p-term. First, a definition:

Definition 33
Let A € {ILb}.

e Wesay A; “p Ay iff 4 = A;}z"F’i’l.B and A, = A;l;‘F':Z.B, where ny,ny = 0.
e Note that if A, <~>]'[ A, then Z] ?b Iz
e Let SN_, (4) and SN_, (4,). We say A1 =, A iff nf}(4;) °, nf,(4>).

Now, look at the types of the p-terms in Example 32. Note that the types of by...x
are related by °,. That is, py..* %, *. Similarly, all the types of hy..py:..y are related
by %,. In fact, for all A, B € {pyu., % pyw.h %}, we have 4 ¢, B. So, it seems that °,
will be the relation satisfied by all the types of the same p-term. We must however
take this relation modulo =, as is usual in the cube, due to the conversion rule
(convy ). First, we need the next lemma:

Lemma 34
1.If ', A : B then O does not occur in A. 2.ty Fa:0O.

Proof
1. By induction on the derivation I' F, 4 : B. 2. Assume I' k-, Fa : . By
Lemma 15, I' b, F : pxuB, I' k) a : A and O =, B[x := a]. Hence,
B[x :=a] —, O. By Lemmas 16 and 15, '+ by.y.B :sand I, x : A+, B : 5.
By Lemmas 14 and 17, T'F, B[x :=a] :s' and I' b, O : s’ contradicting 1. X

Now, Lemma 21 becomes:

Lemma 35 (Organised multiplicity of Types for &, and —})
1. IfTH, A:B;and Tk, A : By, then By =, B,.
2. If T’ l_b Ay :Byand T l_b Ay 1 By and A, =} A,, then B; ;b B».
3. Ifl“l—b B, :sq, By = B, and Fl—b A : B, then Fl—b B; :sy.
4. Assume '+, A : By and (', A : By)~! = (I, 4, B}). Then By =, B, if:
(a) either [+, A : By, (T+, A : B)~! = (I", A", B,) and B| = B,
(b) orT'k, C : By, (TH, C :By)™' =(I',C',B}) and 4’ =4 C'.

Proof

1. By Theorem 30, there are unique I'" € [I'], 41,4, € [A], B] € [B;] and
B, € [B,] such that I'" 4 A; : B] and I" kg A, : B} (by Lemma 25.3, we
take the same I in both judgements). By Lemma 24.2, nfy(B{) °n nfg(B).
Hence, nfg(B]) ©, nfg(B5). Since for 1 < i < 2, B} is p-legal, by Lemma 19,
SN_,,(B;) and by Lemma 23.5, SN_, (B) and nfg(B]) = nfgp(B;). Hence,
nfyn(B)) ¢, nfgn(B)) and by Lemma 8.2, nf,(B}) °, nf,(B5). So, B =, B..

2. By Church—Rosser, there is an A3 such that 4; —, A3 ,«— A,. By subject
reduction, I' -, A3 : By and I' i, A3 : B,. Hence by 1, By ;b B,.

3. By (convp), ', 4 : By. By 1, nf,(By) ¢, nf,(B,). For 1 < p <2, let nf,(B,) =
b'XIF'?"C where n, > 0. If B, = [0 then B; —, O and by subject reduction,
I' =, O : sy, absurd by Lemma 34.1. Hence, B, # [0 and by correctness of
types, 3s, such that I' -, B; : s,. By subject reduction, I' -, nf,(B;) : sy and
I' by nf,(Bs) : s2. By ny (resp. ny) generations, for ' =, sy and 5" =, s»,
I,x1 :Fi,oo.,xn, tFpy by C s and Txg 0 Fr,. Xy, 1 Fyy by C 087
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Properties f-cube b-cube

Church—Rosser yes yes

Correctness of types yes yes

Typability of subterms yes yes

Subject reduction yes yes

Unicity of types yes organised patterned multiplicity
Strong normalisation yes yes

Fig. 5. Comparing the f-cube and the h-cube.

e If ny < ny, by thinning, I, xy : Fi,...,Xy, :Fp by C 1. By 15" %) s,
e If ny > ny, by thinning, I, x1 : Fy,..., X, 1 Fy, b, C 18" By 1, 5" %) s,

Hence, s' = s”. Since s’ =, s; and " =, s5, we get sy =5, and '+, By : 51,
4. (a) By Lemma 29 B] = By A B, = B,. As B| =; B}, by Lemma 6.3 B; =, B,.
(b) I is unique by Lemma 25.3. By Lemma 29 I" kg A" : By AT" 5 C' : BAA
B| = B; A B, = B,. By Lemmas 21 and 6.3, B} =4 B} and B; =, B,. X

This lemma means that the h-cube works as expected. We do not want that a p-term
which represents a A-term gets the same type as a p-term which represents a IT-term.
The type of A,.4.B must have more abstractions than the type of Il,.4.B. In fact,
the type of a term decides if this term is A- or a II-term. Take Example 32.1, by
Theorem 30, F, hy.x 1 hys.* can only be written in one way using A and I instead
of p. The p in py...* must be IT (By Lemma 23, t/ A....* @ s). Also, the p in py...x
must be A (otherwise by generation, Il...* =g s absurd by Church—Rosser). In the
b-cube, we keep all the possibilities of a term open, but we have a relationship
between all the types of a term. As soon as a particular type is chosen, the term and
its type can be uniquely unpacked with As and II.

Figure 5 states that the p-cube has all the properties of the f-cube except unicity
of types which is replaced by an organised patterned multiplicity of types.

It is useful for the rest of the paper to classify terms according to degrees.

Definition 36

We follow (Barendregt, 1992) and define the degree of terms A denoted H(A) by:
g =3 g(x)=2 s =1 bE)=0 &brpA4)=H5AB)=15(4).

We say that 4 : B is oK if g(B) = (A) + 1. We say that 4 : B is HOK (hereditarily

oK) if it is oK and for every p.c occurring in A or in B, we have x : C is OK.

The next lemma and its proof are adapted from Barendregt (Barendregt, 1992).

Lemma 37
1. If ', A O then 5(4) = 2.
IfT'+, A:B and g(A4) ¢ {0,1} then B =[.
If B(x) = (a) then §(B[x := a]) = (B).
IfI', A:Bthen A : B and every y : C in I' are HOK.
If bx.ua.B is F,-legal then 1 < B(A) <2 and g(B) < 2.
If A and A’ are k,-legal and A =, A’ then f(4) = k(A').

A il
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Proof

1. is by induction on the derivation I' -, 4 : [.

2. is by induction on the derivation I' -, 4 : B.

3. is by induction on the structure of B.

4. is by induction on the derivation I" -, 4 : B. For (applp) use 3 both for
showing that Fa : B[x = a] is oK and that for any p,.c[x.—4q occurring in
B[x = a] we have that y : C[x := a] is oK. We only do the (conv,) case. Let
'+, A:B come fromI'H, A:B,T'F, B’ : s and B =, B'. By Lemma 35.3,
I', B :s. By IH, g(4) + 1 = k(B).

e If s = [ then by 1 above, §(B) = §(B’) = 2. Hence, 5(4) + 1 = g(B’).
e If s = = then by 2 above, 5(B) € {0,1}. By IH, g(B’) = g(*) — 1 = 1. Since
B(4) + 1 = g(B), we deduce §(B) = 1 = g(B’). Hence, 8(4) + 1 = g(B').

5. By Lemmas 16 and 15, I',x : A, B : D for some D. By Lemma 12, ", A4 :s.
By4,x:A4,A4 :sand b,.4.B : C are oK. Hence, 1 < (4) <2 and §(B) < 2.

6. First, show that if 4 is -,-legal and 4 —, A’ then {(A4) = (A4'). Two cases:

o IfI', A :B, by Lemma 17,I" -, A’ : B and by 4., 5(4) = &(B)—1 = g(4).

o IfI't, B:A by Lemma 18, ', B : 4" and by 4., 5(4) = &(B)+1 = g(4).
If A =, A then by Church-Rosser 4 —», C ,« 4. So, §(4) = §(C) =
B4). X

5 Type Checking/inference in the p-cube

Given I', A and B, type checking deals with the question “does I' - 4 : B hold?”.
Given I' and A4, type inference deals with the question “is there a B where ' A4 : B
holds?” and infers such a B. The rules of Figure 4 give a type checking algorithm
for the p-cube. In this section we deal with type inference and with the connection
between type checking/inference in the f-cube and the p-cube. The next definition
gives a type inference class algorithm in the b-cube.

Definition 38
[Type Inference classes in the p-cube] We define tnf(I', 4) = 77, as follows:

tnf(I', 0) =0
tnf(T, *) = {0k, *:0}
tnf(T, x°) ={nf,(A)|x* :AE€T ATk, 4 :5}

(T, bca B) = {b,nf 4 C | C € T, x 1 A, BYAT by hrs.C 15"}U
{s' € tnf([, x : A, B) | 3s € tnf(I’, A) where (s,5') € R}
tnf(T, Fa) = {nf,(B[x :=a]) | bx.u.B € tnf(I', F) A A € tnf(T",a)}
Lemma 39
1. If B € tnf(I', A) then B is in p-normal form and I' -, 4 : B.
2. If I' -y A : B then nf},(B) € tnf(I", A).
3. tnf(I', A) = 0 if and only if for every B, I' i, 4 : B.

Proof
1. By induction on the structure of A.
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2. By induction on the derivation I' -, A : B where in (weak) we need:
“UT =I’,41s I' Fy-legal and I'" is F,-legal then tnf(I', 4) = tnf(I”, 4)”
which can be shown by induction on the structure of 4 (for this note that if
Cetnf(I',x :D,E) thenby 1, I,x :DF, E : C and hence I' -, p..p.C : 5" =
I’ l_b bx;D.C ZS”).

3. follows from 1 and 2. X

This means that 4 is typable in context I' if and only if tnf(I", 4) # (. Moreover,
the normal form of any possible I'-type of A is in tnf(I", A). Finally, all the infered
types are related by ¢, and, when we type (py.4.B)a, although we have many types
for b.4.B, we only have one applicable type for a and hence, the number of types
of (px:4.B)a will not grow beyond the number of types of p.4.B:

Lemma 40
1. If B,C € tnf(I', A) then B ?b C.

2. Let Fa be I' F,-legal. There is a unique 4 € tnf(I', a) where p,.4.B € tnf(I', F).
3. If 5,0 nf,4)-C € tnf(T,bx:a.B) then C = pil-i.s where n > 0.
4. Let |S| stand for the size of set S. We have: [tnf(T, *)] < 1, |tnf([, x)| < 1,

\tnf(T, Fa)| < |tnf(T, F)| and [tnf(T, bx.4.B)| < [tnf(T,x : 4, B)| + 1.

Proof

1. By Lemma 39.1, B,C are in p-normal form, I' -, 4 : B and I' -, 4 : C. By
Lemma 35.1, B =, C. Hence, B ¢, C.

2.As Fais I' Fy-legal, I' b, Fa : C or I' i, C : Fa. By Lemma 16 we
assume I' -, Fa : C. By lemma 39.2, tnf(I', Fa) # 0. Hence, 34 € tnf(T, a)
where py.4.B € tnf(I', F). If D € tnf(I',a) where p,.p.E € tnf(I',F), by 1,
bxa.B %y bxp.E and so A = D.

3. By 1 above, b np (,)-C % s. Hence, C = pil-n.s where n > 0.

4. For Fa use 2. For by.4.B note that if s,s" € tnf(I",p,.4.B), by 1,s=5. K

Using Theorem 30 and Lemma 24 we can establish the following:

Lemma 41
If I' -, A : B then nf,(4) = b’ l.m C and nf,(B) = b;l,ﬁ D where 0 < n < m, and:
C==orC=xL;---Lg Wherek>0andrx1 Fi,- Xy : Fpy by C D

Proof

By Theorem 30, (', A : B)™' = (I",A’,B’) where ' =T, A’ = 4, B’ = B and
Ity A : B'. By Lemma 24, nfﬁ(A )= );1F", H;”}”} ™.C"and nfy(B') = H’”l'ﬁ", D' where
0<n<m,C' =+orC’'=xL| L, where k >0and I” , X1 2 Fl,o X 1 Fpy I—[g C':D.
Since A’, B’ are Fp-legal, by Lemma 23.5 nfy(A4’) = nfyr(A’) and nfg(B’) = nfyn(B').
Let C'=C,D =D, for 0 < i<k L; = L;, and for 0 < i < m F] = F;. By Lemma 8.2
and Theorem 30, nf,(4) = p'#".C and nfb(B) bil.D where 0 <n <m, C = * or
CExL1~~-Lkwherek}OandF,xl.F1, m Fub, C:D. X

Looking at Lemmas 40.3 and 41, one may wonder whether it is the case that:
if Tk, by.a.B :biL1.D where n > 1 then for all k, if 0 <k < n we have:
'y byeaB e b’ 1 k .D. This however does not hold. Here is an example:
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Example 42

Loy iy bxyX 1Dy but y b bryx oy

2. If (4,0) € R and (O, *) ¢ R then Fy, hyw.X © hyu® DUt B, pruwX o %,

Next, we show that type checking/inference in the p-cube is equivalent to type
checking/inference in the f-cube.

Lemma 43
Let r € {f,p}. Let II,, resp. I1; stand for type checking resp. type inference in the
r-cube. Il.4 is equivalent to Il., and Il is equivalent to IT;,.

Proof
Theorem 30 and Lemmas 29 and 39 help us prove the next equivalences:

1. T+, A:Bifand only if {(I",A,B’) € [T'] X [A] X [B] |T" 3 A" : B'} # 0.
2. 3B where I' -, A : B if and only if

{(I";A") € [I'] x [A] | 3B’ where I -3 A’ : B’} # 0.
3.THsA:Bifandonlyif T, A:Band (T H, 4 : B)™! = (I, A4, B).
4. 3B where I' =g A : B if and only if

{(Cetnf(T,A)|(TH, 4:C)"' =(I',A4,D)} # 0.

By 1., Iy, reduces to Il.5. By 2., I, reduces to Iljs. By 3., Il. reduces to I1.. By
4., Mg reduces to IT;,. KX

6 Comparing with Coquand’s unification of binders
6.1 Coquand’s calculus of constructions with unified binders

Coquand (Coquand, 1985) first gave the calculus of constructions C* with unified

binders. He used de Bruijn’s notation [x : A]B for abstraction, but for uniformity,

we write his calculus with the b-binder. Note that Coquand’s calculus as presented

in this section may look quite different from the usual notation for the systems of

the cube. In Section 6.3, we present Coquand’s calculus in modern notation.
Coquand gave terms and contexts as follows:

g2 = g0 | gl 77?

3.0/1 — fO ‘ 3‘1

3-]/2 — 3‘1|9‘2

70 = 9V | ppsng? | T070 | 7071
T! = v5 | pypgt | T70 | FlT]
T? = * | bygnd’

r O | Ly .72

We use the same convention for metavariables as in Notation 2. We may decorate
terms with superscripts to reflect the set they belong to (e.g, 4° € J° and
A2 € 71/%). We write A> < B? if and only if “4> = b _ip...b. ap%* B> =
1/2 172 A xXi:,

bxl‘Bl/Z ...bx pl* where I <nand A4;"" =, B;’" for 1 <i< I

B, Xu:By

Coquand gave the typing rules of C* (cf. Figure 6) and proved Lemma 44 as
well as the strong normalisation theorem for C*. We use F¢- for type derivation in
Coquand’s C* according to the rules of Figure 6.

1
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(axiomc) () F =

Tix: ATk

varc
(vare) Fx:AV T Ex A4V
I'+B': ’ r r-p> X r
(contc) * * x1 ¢ pom (') Dx 2¢ pom (I')
ILx":B' k= I',x":B° =
(L) Ix:A4FB' = Ix:4"F B
¢ rl_bx:Auz.Bl L ¥ rl_bX:Auz‘Bz
) Ix:A”+b:B
Tkb a2b:b, 2B
'A4:B' THC':» Bl=,C' TFHA':B> T+C* B>=,(C?
(convc) I i 5
r+A4:C r-4":c
(apple) [FF:p_gpB Thra:A"?
PP I't Fa: B[x :=a]
Fig. 6. Coquand’s typing rules for C".
Lemma 44

Let @ range over A2, B' : 4> and C° : B'. The following holds:

1. If T'1,T) Fe- @ then I'y B¢ =,
2.(a) f T k¢ A% : B! and T k¢ A% : C! then B! =, C.
(b) If T ¢+ A' : B2 and T F¢- A' : C? then either B> < C? or C? < B2,
3. Assume every occurrence of x : D'/ in T occurs also in I'" where I ¢+ * and
I"bee #. If T ke @ then IV ¢ .
4. If T ke a :DY? and T, x : D2, T" k¢ @ then I' T [x == a] F¢- ®[x == a].
5.(a) If T ¢ A° : B! then T ¢+ B! %,
(b) I T k¢ A : B2 then T ¢+ B2,
6. (a) If [,x : DL, T" b¢c- ® and T F¢- E! : * and D! =, E! then
Ix:ELT Fe- O,
(b) If I,x : DT b¢- ® and T k¢ E? and D? =, E? then
Ix:EALT b O,
7. If T k¢ B : AY? and B —», B’ then " ¢ B’ : A'/2.

Lemma 44.2 is related to Lemma 35.1. Below, we compare C* to p¢ further.

6.2 The isomorphism between Coquand’s calculus and b ¢

We simplify the presentation of C* by using a new calculus C” whose syntax is that
of C* together with the set 73 ::= [0 and whose typing rules are those of Figure 7.
As before, we use s to range over {*,[0} and from the superscript on s we can work
out what s stands for: s? is * and s is [J. We use F¢o to denote type derivation in
CH.
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(axiomc®) OF=*:0

I,x: A2 T, F=*:0

O
varc
( ) Cx: A4 Ty x 42
(contc™) FEB ™ ie{l,2} x ¢pom(I)
[,x:B'F=:0

(o) Lox:A B s ie (12

f TFb,gpB s
(9) Ix:4"Fb:B  B#O

¢ k- bx:Al/z'b : bx:Al/z'B
(conve®) FFA:B  TFC st B'=C' ie{l2}

THA:C
THF:p pB  Thka:4'V

(applc) x:A

'k Fa : B[x :=d]

Fig. 7. The typing rules of C".
We show that C™, C* and p¢ are isomorphic. First, we need to define translations
|| and (.) between statements of C* and C" as follows:
|4%| = 4% : O IB:C|=B:C (B:C>={
Note that |(B : C)| =B : C.

B ifC=0
B : C otherwise

Lemma 45 (C* isomorphic to C7)
1. f Tkeo A : B then T ¢+ (4 : B).
2. Let @ range over A> :[dand B : C. If T F¢- @ then I F¢o |D].

Proof
1. By induction on I' ¢ 4 : B. 2. By induction on I' F¢- @. X

The next lemma (used in Lemma 47) shows that the Z's classify terms of CU
according to their degrees and that F,-legal terms A € 7, belong to 7 *4) of CU.

Lemma 46
1. For0<i<3 7 7,
2. For0<i<3,54)=i
3. If A is F-legal then 4 € 734,
4. IfTH, A:sand §(4) =ithen A € 7', s€ 7 and i € {1,2}.

Proof
1. Obviously 7% < 7,. Then, prove by induction on the structure of A that if
A€ T2 then A € T,
2. By induction on the structure of A’ € J.
3. By induction on the structure of 4. We only treat p,.5.C and Fa. Since A = [
is Fy-legal then I' =, A4 : D for some I', D (use Lemma 16 if needed).
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o If A = p,.p.C then by Lemma 37.5, 1 < B(B) < 2 and 5(C) < 2. By IH,
B e 7%B) < 712 and C € 789 < 7912 Hence, ph,.5.C € 75O =
FEb.C).

e If A = Fa, by generation, I' -, F : p,.5.C and I' i, a : B. By Lemma 37.5,
B(B),8(C) < 2. By Lemma 37.4, 5(a) = 5(B)—1 < 1,and §(F) = g(C)—1 < 1.
By IH, F € 750 < 7% and a € 759 < 79! Hence, Fa € 73 =
g (Fa)

4. By Lemma 374, i=t(4) =4(s)—1 € {1,2}.By3,s€ 7+ and A 7. K

Lemma 47 (CP isomorphic to b¢)
I',. A:Bifand only if I' o 4 : B.

Proof
“If” is by induction on the derivation I' Fco 4 : B. Note by Lemma 46.1, for
0<i<3,7'c7,. Also,in pc, for any s,5, (s,5') € R. We only treat:

o (varcP). If T'y,x : A2, Ty Feo x : AY? comes from Ty, x : AV2 Ty Feo * 1 O,
by IH, [y, x : AY2, Ty by * : 0. By Lemma 12, T, x : AYV2, T . x 0 412

o (). If T Feo byginB @ st comes from I',x:4Y? koo B' : s™*! where
i€ {1,2},by IH, I,x:AY? -,  B' :s"*!. By Lemma 12, T I, AY? : 5. By (b1),
r }_bC bx:Auz.Bi ISi+1.

e ). If T Feo pygieb @ byygi2.B comes from T, x:AY? Feo b : B where
B = [0, by IH, T, x:4'/? Fye b 1 B. By Lemmas 12 and 16, I' I, A2 s
and T,x:AY2 . B : s5. By (b1), T Fy. bys12.B : s2. Hence, by (pa),
r l_bc bx:A'/z‘b : bx:AW-B'

The “only if” case is by induction on the derivation I' F,. 4 : B. We only treat:

e (weak). If I''x%:C F,. A4 : B comes from I' . 4 : B, ' . C : s and
x* ¢ poM(I), by IH, T o A : B and T Feo C :s. By Lemma 46.4, C = C!
and s = s where i € {1,2}. By (contc®), I, x*:C F¢o * : . By Lemma 45.1,
I' b¢- (A4 : B) and I,x%:C k¢ *. By Lemma 44.(1 resp. 3) T’ F¢- * and
I,x:C k¢- (A : B). By Lemma 45.2, T, x*:C b¢co [(4 : B)] = A : B.

e (b1). If I' by by:u.B @ sy comes from I' -, A : sy and I',x : Ak, B : 5o,
by IH, T' Feo A4 : sy and I',x : A Feo B @ s,. By Lemmas 37.5 and 46.3,
1 <84 <2and 4 = A2 By Lemma 464, B = B’ and s = s'"! where
i € {1,2}. Hence, by (TI2), T F¢o pyoa.B : s2.

e (convy). If 'y, A : C comes fromI' -, A : B, T'F,. C :sand B =, C
then by IH, T o A : B, T Feo C :s. Let i = 5(C). By Lemma 464, s = s't!,
C=C'eJ"andie€ {1,2}. By Lemma 37.6, §(B) = 5(C) = i. By Lemma 46.3,
B =B'c 7' Hence by (convc”), TFo4:C. KX

6.3 Coquand’s calculus in modern notation

We define the calculus C, whose terms are 7, and whose typing rules are those of
Figure 8. We show that C" (hence C*) and C, are isomorphic.

Lemma 48
I'FeoA:Bifand only if I'k¢ A @ B.
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(axiomc®) F=*:0

I'i,x:ATL,F=:0
Fl,x :A,le—x A

(var)

T'FB:s x* ¢ poM(T')

]

(cont™) Ix*:BF=*:0
I'x:AFB:s

= o m e

(IT) I'tbyaB:s

o) Ix:A+Fb:B B#0O
F l_ bx:A-b : bx:A-B

(conv?) I't4:B I'C:s B=,C

I'tA:C

I'F:pwyuB TFa:A4
'k Fa : B[x :=d]

(appl)

Fig. 8. The typing rules of C,.

Proof

Recall by Lemma 46.1 that for 0 <i< 3, 7' < 7. Since the rules of C" are rules
of Cy,, we only need to show: if I' ¢, A4 : B then I' o 4 : B. This is by induction
on the derivation I' -¢, 4 : B using Lemmas 12, 46 and 47. X

7 Conclusion

In this paper, we used a unique binder a la de Bruijn instead of the usual two binders
A and I1. We studied eight of the most used type systems (those of Barendregt’s
f-cube) written in this notation and established an isomorphism between the two
versions. We showed that although p replaces both 4 and IT, in any legal term, one
can easily unpack the status of a p (i.e. whether it should act as a 1 or as a IT). We
also showed that all the desirable properties of type systems still hold in the h-cube
except for unicity of types. Moreover, we established a relationship , between types
where A ©, B if and only if A = by .4, ...Dx,4,-C and B = by, .4, ... by, :4,.C Where
n,m > 0. We showed that if a term has two types 4 and B, then nf,(4) %, nf,(B).
This result, together with the ability to unpack the status of a b if needed, as well
as all the other properties, make it desirable to write the single p instead of the two
different binders A and IT. The Automath experience is another factor as to why
unifying A and II is desirable. Just as the development of type theory meant that
in the more expressive type systems, terms and types have the same syntax and act
alike, we believe that this development should also mean that 4 and IT act alike. In
fact, 2 and II already act alike, so why not use the same name for them? This paper
shows that there are no reasons why these binders should not be unified and that it
is more natural that they are unified. Moreover, this unification brings elegance to
the representation of powerful features. As an example, the type inclusion rule used
in the Automath system AUT-QE to enable two different terms which stand for the
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same definition to have at least one common type, is written in the p- resp. f-cubes
as follows (note the elegance of (Q,) compared to (Qg)):

LA pilis
—bxlA 0<m<n (@)
TFA
T H AT
_Lxidr- xidi” 0<m<n, A% lepC (Qp)
| RNEACAN § K RZ I K
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