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Abstract

Polytypic programming is a way of defining type-indexed operations, such as map, fold and zip,

based on type information. Run-time polytypic programming allows that type information to

be dynamically computed – this support is essential in modern programming languages that

support separate compilation, first-class type abstraction, or polymorphic recursion. However,

in previous work we defined run-time polytypic programming with a type-passing semantics.

Although it is natural to define polytypic programs as operating over first-class types, such a

semantics suffers from a number of drawbacks. This paper describes how to recast that work

in a type-erasure semantics, where terms represent type information in a safe manner. The

resulting language is simple and easy to implement – we present a prototype implementation

of the necessary machinery as a small Haskell library.

1 Polytypic programming

Some functions are naturally defined by the type structure of their arguments. For

example, a polytypic pretty printer can format any data structure by using type

information to decompose it into basic parts. Without such a mechanism, one must

write separate pretty printers for all data types and constantly update them as

data types evolve. Polytypic programming simplifies the maintenance of software

by allowing functions to automatically adapt to changes in the representation of

data. Other classic examples of polytypic operations include reductions, comparison

functions and mapping functions. The theory behind such operations has been

developed in a variety of frameworks (Abadi et al., 1991; Abadi et al., 1995; Crary

& Weirich, 1999; Dubois et al., 1995; Harper & Morrisett, 1995; Hinze, 2000;

Jansson & Jeuring, 1997; Jay et al., 1998; Ruehr, 1998; Sheard, 1993; Trifonov et al.,

2000; Wadler & Blott, 1989).

Many of these frameworks generate polytypic operations at compile time through

a source-to-source translation determined by static type information. In

contrast, run-time polytypic programming (also called higher-order intensional type

analysis (Weirich, 2002a)) defines polytypic operations with run-time analysis of

dynamic type information. Run-time type analysis has two advantages over static

forms of polytypism: First, run-time analysis may index polytypic operations by

types that are not known at compile time, allowing the language to support separate

compilation, dynamic loading and polymorphic recursion. Second, run-time analysis

may index polytypic operations by universal and existential types. Many polytypic
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operations defined for these types require type information for the abstracted types.

Therefore, to define these operations, the semantics of the programming language

must provide this type information at run time.

Run-time type analysis is naturally defined by a type-passing semantics because

types play an essential role in the execution of programs. However, there are several

significant reasons to prefer a semantics where types are erased prior to execution:

• A type-passing semantics always constructs and passes type information to

polymorphic functions. It cannot support abstract data types because the

identity of any type may be determined at run time. Furthermore, parametricity

theorems (Reynolds, 1983; Wadler, 1989) about polymorphic terms are not

valid with this semantics.

• Because both terms and type constructors describe run-time behavior, type

passing results in considerable complexity in the semantics of languages that

precisely describe execution. For example, a language that makes memory

allocation explicit (Morrisett et al., 1995; Morrisett & Harper, 1997) uses a

formal heap to model how data is stored; with run-time types it is necessary

to add a second heap (and all the attendant machinery) for type data.

• Operators that implement type analysis in a type-erasure semantics are easier

to incorporate with existing languages (such as Haskell and ML) that already

have this form of semantics. Extending these languages with this form of type

analysis does not require global changes to their implementations. In fact, for

some languages it is possible to define type analysis operators with library

routines written in that language. For example, Weirich (Weirich, 2001) shows

how to encode first-order run-time type analysis in Fω (Girard, 1971) and

Cheney and Hinze (Cheney & Hinze, 2002) implement the same capabilities

in the Haskell language (Peyton Jones, 2003).

In first-order type analysis, types such as int and bool × string are the subject of

analysis—an operator called typerec computes a catamorphism over the structure

of run-time types. The idea behind higher-order analysis is that the structure

of parameterized types (i.e. higher-order type constructors) is examined. In this

framework, typerec acts like an environment-based interpreter of the type language

during execution. Higher-order analysis can define more polytypic operations than

first order analysis. For example, a polytypic function that counts the number of

values of type α in a parameterized data structure of type τα must analyze the type

constructor τ. Many of the most important examples of polytypic programming are

only definable by higher-order analysis, including maps, zips, folds and reductions.

Crary, Weirich and Morrisett (2002) (CWM) describe how to support first-order

type analysis in a language with a type-erasure semantics. In their language λR ,

typerec examines terms that represent types instead of analyzing types. In a type-

erasure version of higher-order analysis, typerec should examine term representations

of higher-order type constructors. However, although CWM define representations

of higher-order type constructors in λR , these representations cannot be used for

higher-order analysis. For technical reasons discussed in Section 4, we cannot define

a term that operates over these type constructor representations in the same way
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Table 1. Language comparison

Type analysis Semantics

λR (Crary et al., 2002) First-order Type-erasure

LH (Weirich, 2002a) Higher-order Type-passing

LHR This paper Higher-order Type-erasure

as the type-passing typerec term operates over type constructors. These difficulties

prohibit an easy definition of a type-erasure language that may define higher-order

polytypic operations.

In this paper, we show how to reconcile higher-order analysis with type erasure.

Our specific contributions include:

• A language, called LHR, that supports higher-order type analysis in a type-

erasure semantics. Surprisingly, in some respects LHR is a simpler calculus

than the type-passing version of higher-order type analysis.

• A translation between the type-passing version of higher-order type analysis

and LHR, with a proof of correctness.

• A prototype implementation of LHR as a Haskell library that is simple, yet

specialized to the Haskell type system, allowing polytypic functions to operate

over built-in Haskell datatypes.

The structure of this paper is as follows. Section 3 reviews higher-order type

analysis (formalized with the language LH) and section 4 discusses the problems

with defining a type-erasure version of this language. In section 5 we present the

type-erasure language called LHR. We describe the translation between LH and

LHR in section 6. Section 7 describes the prototype implementation of LHR as a

Haskell library. In section 8 we discuss extensions of this translation, and in section 9

we present related work and conclude. Appendix A contains the proof of correctness

of the translation.

2 First-order type analysis with typerec

As a gentle introduction, we start with a common, first-order example of how typerec

works in a language with a type-passing semantics. The language that this example

is written in is an explicitly-typed polymorphic lambda calculus, much like System

F. However, unlike System F, type arguments cannot be erased prior to execution

as they are necessary for the typerec operator.

Figure 1 contains the archetypical tostring example that demonstrates the use

of type analysis to automatically generate marshalling functions for any type. This

functionality is reflected in the type of tostring: given any type α it returned a function

that converts α’s to strings. For example, the application tostring[int × int](3, 4)

returns the string “(3,4)”.

The typerec operator works by folding over its argument type α. The [λα.α →
string] annotation is used for type checking. The branches θ tell what to do for
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tostring :: ∀α: � .α → string

tostring = Λα: � .typerec[λα.α → string]α of θ

where θ =

{ int = string of int

unit = x:unit."()"

× = Λβ: � .λx:(β → string).Λγ: � .λy:(γ → string).

λv:(β × γ).

"(" ++ x(π1v)++ "," ++ y(π2v)++ ")"

→ = Λβ: � .λx:(β → string).Λγ: � .λy:(γ → string).

λv : (β → γ)."unprintable function"

+ = Λβ: � .λx:(β → string).Λγ: � .λy:(γ → string).

λv : (β + γ).case v of

(inj 1 z ⇒ "inj1 (" ++(xz)++ ")"

| inj 2 z ⇒ "inj2 (" ++(yz)++ ")" )

}

Fig. 1. Example: tostring.

each type constructor: For example, if α is int then a primitive function mapping

integers to strings is returned. Some type constructors, such as ×, → and + must

be applied to arguments to form types. In the branches for those type constructors,

typerec provides the arguments β and γ as well as marshallers for those types.

Unfortunately, the simple version of typerec described in this section is not

expressive enough to define some polytypic operations, its argument must have base

kind �. In the next section, we discuss an extension of typerec that can analyze

arguments of any kind. Furthermore, to be precise about the semantics of this

extension, we completely specify the LH language that contains it.

3 LH: Higher-order analysis with type-passing

The LH language (see Figure 2) is a lightweight characterization of higher-order

type analysis that captures the core ideas of the language of Weirich (Weirich,

2002a). It is a call-by-name variant of the Girard-Reynolds polymorphic lambda

calculus (Girard, 1972; Girard, 1971; Reynolds, 1983) plus the typerec term to define

polytypic operations.1 The choice of call-by-value or call-by-name is not significant,

and call-by-name slightly simplifies the presentation. Also for simplicity, the formal

language contains only integers, functions, and polymorphic terms, although we will

include additional forms (such as products, sums, and term and type recursion, with

their usual semantics) in the examples. The behavior of typerec on these new type

forms is analogous to that for integers, functions and polymorphic types.

Types, σ, which describe terms, are separated from type constructors, τ, although

we often call type constructors of base kind, �, types. The operators, ⊕, are a

1 Unlike other languages with intensional type analysis such as λML
i (Harper & Morrisett, 1995) and

λR (Crary et al., 2002), LH does not include Typerec—a type constructor that defines other types by
intensional analysis.
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(kinds) κ ::= � | κ1 → κ2

(operators) ⊕ ::= int | → | ∀�

(type constructors) τ ::= α | λα:κ.τ | τ1τ2 | ⊕
(types) σ ::= τ | int | σ1 → σ2 | ∀α:κ.σ
(terms) e ::= i | x | λx:σ.e | e1e2

| Λα:κ.e | e[τ]
| typerec[τ′]〈τ : κ〉 of θ, η

(typerec branches) θ ::= ∅ | θ{⊕ ⇒ e}
(term environment) η ::= ∅ | η{α ⇒ (κ, τ, e)}
(tycon context) ∆ ::= ∅ | ∆{α ⇒ κ}
(term context) Γ ::= ∅ | Γ{x ⇒ σ}
(operator signature) Σ ::= { int ⇒ �,

→ ⇒ � → � → �,

∀� ⇒ (� → �) → �}

Fig. 2. Syntax of LH.

set of constants of the type constructor language. These constants correspond to

the various forms of types: for example, the constant → applied to τ1 and τ2 is

equivalent to the function type τ1 → τ2, and ∀�τ is equivalent to the type ∀α: � .τα.2
The signature, Σ, is a fixed finite map that describes the kinds of the operators. We

use the notation Σ(⊕) to refer to the kind of the operator ⊕.

The language includes several other finite maps, such as θ, η, etc. We write the

empty map as ∅, add a new binding to θ with θ{⊕ ⇒ e} (defined only when

⊕ 
∈ Dom(θ)) and retrieve a binding with θ(⊕) (defined only when ⊕ ∈ Dom(θ)).

The notation for the other maps is analogous.

The term typerec[τ′]〈τ : κ〉 of θ, η defines polytypic operations. Essentially, it

behaves like an interpreter of the type constructor language, translating the type

constructor τ (of kind κ) to an element of the term language using the branches

θ for the interpretation of operators and the environment η for the interpretation

of type variables. The typerec term is the binding occurrence for the variables that

might appear in τ at run-time – those that have a definition in the environment

η. This environment maps a type variable α to a triple (κ, τ, e), describing the kind

of α, a substitution for α when it appears outside the scope of the typerec, and its

interpretation. We use the notation ∆(η) to create a type context from the variables

bound by η and the notation η(τ) to substitute for those type variables that appear

free in the type constructor τ.

In a typerec term, the type constructor τ′ is an annotation that makes type

checking syntax directed. We call it the return type constructor and usually use the

metavariable τ′ to refer to it. The return type constructor is used to determined the

type of an analysis of a type constructor τ of kind κ, defined to be [τ′]〈η(τ) : κ〉
using the definition of a polykinded type, below.

2 There are no type constructors analogous to polymorphic types (∀α:κ.σ) when κ is not �. Including
them would require either an infinite number of operators or kind polymorphism.
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s ize =

Λα:� → �. typerec[λβ: � .β → int]〈α : � → �〉 of θ, ∅

where θ =

{ int ⇒ λy: int .0

unit ⇒ λy: unit .0

× ⇒ Λβ: � .λx:(β → int).Λγ: � .λy:(γ → int).

λv:(β × γ).

x(π1v) + y(π2v)

→ ⇒ undefined

+ ⇒ Λβ: � .λx:(β → int).Λγ: � .λy:(γ → int).

λv:(β + γ). case v of

(inj 1 z ⇒ x(z) | inj 2 z ⇒ y(z))

∀� ⇒ undefined

∃� ⇒ Λα:� → �.λr:(∀β: � .(β → int) → αβ → int).

λx:∃α.
let〈β, y〉 = unpack x in

(r [β] (λx:β.0) y)

µ� ⇒ Λα:� → �.

λx:(∀β: � .(β → int) → αβ → int).

fix f:(µ�α) → int .

λy:µ�α. (x [µ�α] f (unroll y))

}

Fig. 3. Example: s ize.

Definition 3.1

A polykinded type, written [τ′]〈τ : κ〉, where τ′ has kind � → � and τ has kind κ, is

defined by induction on κ by:

[τ′]〈τ : �〉 def
= τ′τ

[τ′]〈τ : κ1 → κ2〉 def
= ∀α:κ1.[τ

′]〈α : κ1〉 → [τ′]〈τα : κ2〉

A simple example of a typerec term is

typerec [λβ: � .β]〈α : �〉 of {int ⇒ 0}, {α ⇒ (�, int , 3)}

The environment for this term maps the type variable α to the number 3. This term

has type [λβ: � .β]〈int : �〉 = ((λβ: � .β) int) = int .

The function s ize in Figure 3 is a more realistic example of a polytypic function

defined with typerec. This function is defined over type constructors of kind � → �.

For example, lists are defined in this language as

List
def
= λβ: � .µ�(λα : �. unit +(β × α))

The type application s ize[List] is a function that takes a method to compute the

size of values of type β (i.e. a function of type β → int), and returns a function to

compute the size of the entire list of type List β.
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∆; Γ[τ′] 
 η

∆; Γ[τ′] 
 ∅

∆; Γ[τ′] 
 η ∆; Γ 
 e : [τ′]〈τ : κ〉 ∆ 
 τ : κ β 
∈ Dom(∆, η)

∆; Γ[τ′] 
 η{β ⇒ (κ, τ, e)}

∆; Γ 
 e : σ

∆ 
 τ′ : � → � ∆; Γ[τ′] 
 η ∆,∆(η) 
 τ : κ

∆; Γ 
 θ(⊕) : [τ′]〈⊕ : Σ(⊕)〉 (∀⊕ ∈ Dom(Σ))

∆; Γ 
 typerec[τ′]〈τ : κ〉 of θ, η : [τ′]〈η(τ) : κ〉

Fig. 4. Static semantics of LH typerec.

In s ize, the return type constructor is (λβ: � .β → int) so the type of s ize is

∀α:� → �.[λβ: � .β → int]〈α : � → �〉
= ∀α:� → �.∀β: � .(β → int) → (αβ) → int .

We can use s ize to generate the length function for lists if we supply the constant

function (λx:β.1) to compute the size of the list elements. In other words, length =

Λβ: � .s ize[List][β](λx:β.1). Likewise, if we would like a function that counts the

number of values stored in a tree or the number of values in a Maybe (either 1 or

0), we replace the type constructor argument List above with Tree
def
= λβ: � .µ�(λα :

�.β + (α × α)) or Maybe
def
= λβ : �. unit +β.

The branches θ define interpretations for the operators. For the types int and

unit , s ize returns the constant function 0 because we only wish to count values of

type α. Because the × constructor must be applied to two types β and γ to produce

a product type, its interpretation uses the size functions for β and γ to produce the

size function for a product type β × γ. The size of a product type is the sum of the

sizes of the two components of the product. Likewise, the size function for a sum

type determines the case of the sum and applies the appropriate size function. Like

many polytypic functions, s ize is undefined for functions and polymorphic terms

and will produce an error if these operators appear in its argument. For existential

types, s ize unpacks the existential and then computes the size of the body, using the

constant zero function as the size of the abstract type β. Finally, for recursive types,

the argument x will compute the s ize function of the body of the recursive type if it

is given the s ize function for the recursive type itself; this function is defined using

fix .

The static semantics of LH (Figure 4) includes a judgment of the form ∆; Γ 
 e : σ

to indicate that a term e has type σ in type context ∆ and term context Γ. ∆ maps

type variables to kinds and Γ maps term variables to types. Most of the rules for

deriving this judgment are standard and are not described in this paper. We describe

the rule for typerec below.
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e �→h e
′

{α ⇒ (κ, τ, e)} ∈ η

typerec[τ′]〈α : κ〉 of θ, η �→h e

typerec[τ′]〈(λα:κ′.τ1) : κ′ → κ〉 of θ, η �→h

Λβ:κ′.λx:[τ′]〈β : κ′〉.
typerec[τ′]〈τ1 : κ〉 of θ, η{α ⇒ (κ′, β, x)}

∆(η) 
 τ2 : κ′

typerec[τ′]〈τ1τ2 : κ〉 of θ, η �→h

(typerec[τ′]〈τ1 : κ′ → κ〉 of θ, η) [η(τ2)] (typerec[τ′]〈τ2 : κ′〉 of θ, η)

typerec[τ′]〈⊕ : Σ(⊕)〉 of θ, η �→h θ(⊕)

Fig. 5. Dynamic semantics of LH typerec.

In the expression typerec[τ′]〈τ : κ〉 of θ, η, the environment η used to interpret those

type variables. We check that η is well-formed with the judgment form ∆; Γ[τ′] 
 η.

This judgment declares that η maps type variables to appropriate terms for the

return type constructor [τ′], and to types of the appropriate kind. The first two

inference rules in Figure 4 show when this judgment may be derived.

With this judgment, we can state the formation rule for higher-order typerec (the

last rule in Figure 4). If the return type constructor is well formed, the environment

is well formed, the argument τ is well formed (with context extended by the variables

bound in the environment, ∆(η)) and all branches are described by the appropriate

polykinded type (where Σ(⊕) is the kind of ⊕), then the typerec term is well formed.

The operational semantics for typerec (Figure 5) precisely describes how typerec

interprets its argument τ. If τ is a type variable α, typerec looks up the interpretation

of that variable in the environment η. If τ is a type function (λα:κ.τ1), typerec steps

to a polymorphic term function that, after receiving x (the interpretation of α),

interprets τ1. If τ is a type application τ1τ2, typerec steps to an application of the

interpretation of τ1 to the type τ2 and its interpretation. Because τ2 escapes the

scope of typerec in the type application, we use η to substitute for the variables. If

τ is an operator ⊕, typerec retrieves that branch from θ.

For example, Haskell’s Maybe (or ML’s option) type constructor is defined

as λα: unit +α. We can use s ize to define a function that returns 0 when no

data is present (the first case of the sum) and 1 otherwise. The expression

s ize[Maybe][unit](λx : unit .1) does so for arguments of type Maybe unit . We

can trace the evaluation of this term as follows. Let η be the environment

{α ⇒ �, unit , (λx: unit .1)}, let θ be the branches for s ize and let τ′ be the return type

constructor (λα: � .α → int)):

s ize[λα: � .α + unit][unit](λx: unit .1)

�→h (Λβ: � .λw:(α → int).λv:(α × unit).

typerec[τ′]〈α + unit : �〉
of θ, {α ⇒ �, β, w}) [unit](λx: unit .1)
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�→h typerec[τ′]〈α + unit : �〉 of θ, η

�→h (typerec[τ′]〈+ : � → � → �〉)
[unit](typerec[τ′]〈α : �〉 of θ, η)

[unit](typerec[τ′]〈unit : �〉 of θ, η)

�→h (Λβ: � .λx:(β → int).Λγ: � .λy:(γ → int).

λv:(β + γ). case v of

(inj 1 z ⇒ x(z) | inj 2 z ⇒ y(z)))

[unit](typerec[τ′]〈α : �〉 of θ, η)

[unit](typerec[τ′]〈unit : �〉 of θ, η)

�→h λv:(unit + unit). case v of

(inj 1 z ⇒ (typerec[τ′]〈α : �〉 of θ, η)(z)

| inj 2 z ⇒ (typerec[τ′]〈unit : �〉 of θ, η)(z))

Reduction shows that this result is equivalent to: λv:(unit + unit). case v of

(inj 1 z ⇒ 1 | inj 2 z ⇒ 0)

4 The problem with type constructor representations

The LH language requires a type-passing semantics. The operational semantics

of typerec examines type constructors that must be present at run-time. However,

for many reasons we might want to add the facilities of higher-order typerec to

a language with a type-erasure semantics. Crary Weirich and Morrisett (2002)

(CWM) defined the λR language that has a type-erasure semantics and operations

for first-order type analysis. We can use ideas from that language as the basis of a

type-erasure language that supports higher-order analysis.

In λR , typerec analyzes terms that represent types instead of types. A special type

R τ is the type of the representation of τ. This language also includes term constants

to represent types, such as Rint that represents the integer type and so has type R

int , and R× that represents τ1 × τ2 when applied to the representations of τ1 and τ2.

R× has type ∀α: � .Rα → ∀β: � .Rβ → R(α × β).

CWM define representations for the entire type constructor language, including

higher-order type constructors, so that it is conceivable that we could extend CWM’s

typerec to the representations of higher-order type constructors. The execution of

higher-order typerec in LH depends on the syntactic form of its type constructor

argument: whether it is a variable α, a function λα:κ.τ, an application τ1τ2 or a

constant (such as int or →). It would seem reasonable for a type-erasure typerec

to determine whether the syntactic form of its argument is the representation of a

variable, the representation of a function, the representation of an application or

the representation of a constant.

However, there is a problem with this idea. Not all terms with representation

types are syntactically equal to the representation of some type constructor. CWM

represent a type variable with a term variable, a type function with a polymorphic

term function, a type application with term application, and a type operator with a

new representation constant. More specifically, R[[τ]], the representation of the type
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τ is defined as:

R[[α]] = xα
R[[λα:κ.τ]] = Λα:κ.λxα:[R]〈α : κ〉.R[[τ]]

R[[τ1τ2]] = (R[[τ1]])[τ2](R[[τ2]])

R[[⊕]] = R⊕

The type of a representation term is determined by the kind of the constructor it

represents. If τ has kind κ, then R[[τ]] has the polykinded type [R]〈τ : κ〉. However,

because other terms besides R[[τ]] have type [R]〈τ : κ〉, it is difficult to define an

operational semantics for typerec based on matching R[[τ]]. Consider trying to match

the representation of a type function. The type of the argument is the representation

of a constructor of kind κ → κ′ so it has type ∀:κ.[R]〈α : κ〉 → [R]〈τα : κ′〉. The

type-erasure version of typerec must determine if that argument is exactly a type

abstraction surrounding a term abstraction, a variable, a representation constant or

an application of a representation to a type and another representation. These rules

do not cover every case. For example, the term

Λα:κ.((λy:[R]〈α : κ〉 → [R]〈τα : κ′〉.y)(λxα:[R]〈α : κ〉.e))

has type ∀:κ.[R]〈α : κ〉 → [R]〈τα : κ′〉. Even if the operational semantics evaluates

the argument before analyzing it with typerec, it will still not produce a syntactic

λ as the subterm of the type abstraction. Because evaluation will not reduce the

application under the type abstraction, this term will be stuck and evaluation of the

typerec will not continue.

We solve this problem by reconsidering the operational semantics of typerec. We

can redefine the operational semantics of typerec so that we never have to determine

whether its argument is a syntactic type function. (See the relation �→κ in Figure 6.)

This new semantics first determines the kind of the argument to typerec. If that

argument is of kind type, it cannot be a type function. Therefore, we weak-head

normalize it and then use the relation ⇒κ to examine its syntax.

If the argument to typerec has a function kind then we make the following

observation: Because typerec in LH interprets a type constructor, it is not important

whether it analyzes the type constructor τ or its eta-expansion (λα : �.τ α). Both

arguments to typerec should produce the same result. Because something of a

function kind is always equivalent to a literal type function, we know it will always

step to a term function in LH. So with this semantics, an argument of function kind

will always step to a term function. Though it may proceed in a different evaluation

order than that of LH, this operational semantics will eventually produce the same

result (see Weirich (2002b) for a formalization and proof of this statement.)

In a type-erasure language, we do not want to make the operational semantics

depend on any type information, including its kind. However, because that kind is

known at compile-time, higher-order typerec is definable as a “macro” in the erasure

language. A typerec on an argument of kind κ1 → κ2 can always be replaced by

a typerec on argument of κ2. As a result, the erasure language restricts analysis to

arguments that represent constructors of kind �.

An additional concern is one of linguistic complexity. Because the type-passing

version of typerec examines arguments with type variables, we need to evaluate terms
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Paths

ρ ::= α | ⊕ | ρ τ

τ�wh ρ

α�wh α ⊕�wh ⊕
τ1[τ2/α]�wh ρ

(λα:κ.τ1)τ2 �wh ρ

τ1 �wh ρ

τ1τ2 �wh ρ τ2

e ⇒k e
′

{α ⇒ (κ1 → . . . → κn → �, τ, e)} ∈ η

typerec[τ′]〈α τ1 . . . τn : �〉 of θ, η

⇒k e [η(τ1)] (typerec[τ′]〈τ1 : κ1〉 of θ, η) . . . [η(τn)] (typerec[τ′]〈τn : κn〉 of θ, η)

Σ(⊕) = κ1 → . . . → κn → �

typerec[τ′]〈⊕ τ1 . . . τn : �〉 of θ, η

⇒k θ(⊕) [η(τ1)] (typerec[τ′]〈τ1 : κ1〉 of θ, η) . . . [η(τn)] (typerec[τ′]〈τn : κn〉 of θ, η)

e �→k e
′

τ�wh ρ

typerec[τ′]〈ρ : �〉 of θ, η ⇒k e

typerec[τ′]〈τ : �〉 of θ, η �→k e

typerec[τ′]〈τ : κ1 → κ2〉 of θ, η

�→k Λβ:κ1. λx:[τ′]〈β : κ1〉.
typerec[τ′]〈τγ : κ2〉 of θ, (η{γ ⇒ (κ1, β, x)})

Fig. 6. Kind-directed operational semantics.

with free term variables (the representations of those type variables.) Extending the

semantics to include the evaluation of open terms would require many new rules.

Instead, there is a simpler way to define the type-erasure calculus, based on an

implementation of induction over higher-order abstract syntax (Fegaras & Sheard,

1996; Washburn & Weirich, 2003). To avoid evaluating representations with free

term variables, we change how typerec interprets type variables. Instead of using an

environment to store the interpretations of variables, we use substitution. We add a

special inverse operator (called untyrec) to immediately substitute the interpretation

of a variable for its representation.

5 LHR: Higher-order analysis in a type-erasure language

Figure 7 shows the syntax of the LHR language. This language has a type-

erasure semantics. Unlike Figure 5, no rule in the dynamic semantics of typerec

(Figure 8) examines the syntax of a type constructor. Instead, typerec analyzes the

term representations of type constructors formed from the representations of the

operators Rint , R→ and R∀�
. Furthermore, in this language typerec may only analyze

the representations of constructors of kind �, but as we describe below, that will is

not a limitation to its expressiveness.

https://doi.org/10.1017/S0956796806005879 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005879


692 S. Weirich

(kinds) κ ::= � | κ1 → κ2

(operators) ⊕ ::= int | → | ∀�

(type con’s) τ ::= α | λα:κ.τ | τ1τ2 | ⊕
(types) σ ::= τ | int | σ1 → σ2 | ∀α:κ.σ | Rτ′τ

(operator rep’s) R⊕::= Rint | R→ | R∀�

(terms) e ::= i | x | λx:σ.e | e1e2

| Λα:κ.v | e[τ] | R⊕

| typerec[τ′] e of θ | untyrec[τ′] e

(values) v ::= i | λx:σ.e | Λα:κ.v

| p | untyrec[τ′] e

(paths) p ::= R⊕[τ′] | p [τ] e1 e2

Fig. 7. Syntax of LHR.

e �→LHR e′

typerec[τ′] (untyrec[τ′] e) of θ �→LHR e

typerec[τ′] (Rint ) of θ �→LHR θ(int)

typerec[τ′] (R→ [τ′][τ1] e
′
τ1

eτ1 [τ2] e
′
τ2

eτ2 ) of θ

�→LHR θ(→) [τ1] e
′
τ1

(typerec[τ′] eτ1 of θ)

[τ2] e
′
τ2

(typerec[τ′] eτ2 of θ)

typerec[τ′] (R∀� [τ′][τ1]e
′
τ1
eτ1 ) of θ

�→LHR θ(∀�) [τ1] e
′
τ1

(Λβ: � .λxβ:R̂〈β : �〉.λy:(τ′β).

typerec[τ′] (eτ1 [β] xβ (untyrec[τ′] y)) of θ)

e �→LHR e′

typerec[τ′] e of θ �→LHR typerec[τ′] e′ of θ

Fig. 8. LHR: Operational semantics of typerec.

Each rule for a specific operator of LHR in Figure 8 is generated from the

following general rule that corresponds to ⇒k evaluation of an operator of kind

κ1 → . . . → κn → �.

typerec[τ′] (R⊕ [τ′] [τ1] e
′
1 e1 . . . [τn] e

′
n en) of θ �→

θ(⊕) [τ1] e
′
1 (typerec[τ′]〈e1 : κ1〉 of θ) . . .

[τn] e
′
n (typerec[τ′]〈en : κn〉 of θ)

With term representations of types and the restriction of typerec to the rep-

resentation of types, LHR bears many similarities to λR . However, there is one

crucial difference between this language and λR that allows the embedding of

higher-order typerec. LHR includes an “inverse” operator to typerec, called untyrec.

When typerec analyzes (untyrec[τ′]e), the embedded term e is returned. This inverse

plays the role of η in higher-order typerec by recording the interpretation of type
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LHR Polykinded types

[τ′]〈〈τ : �〉〉 def
=τ′τ

[τ′]〈〈τ : κ1 → κ2〉〉 def
=∀α:κ1.R̂〈α : κ1〉 → [τ′]〈〈α : κ1〉〉 → [τ′]〈〈τα : κ2〉〉

R̂〈τ : κ〉 def
=∀α:κ.[Rα]〈〈τ : κ〉〉

∆ 
 σ

∆ 
 τ′ : � → � ∆ 
 τ : �

∆ 
 R τ′ τ

∆ 
 σ = σ′

∆ 
 τ′ = τ′′ : � → � ∆ 
 τ1 = τ2 : �

∆ 
 R τ′ τ1 = R τ′′ τ2

∆ 
 τ : � → �

∆ 
 ∀�τ = ∀α: � .R̂〈α : �〉 → τα

∆; Γ 
 e : σ

∆ 
 ⊕ : Σ(⊕)

∆; Γ 
 R⊕ : R̂〈⊕ : Σ(⊕)〉

∆ 
 τ : � ∆ 
 τ′ : � → � ∆; Γ 
 e : R τ′τ

∆; Γ 
 θ(⊕) : [τ′]〈〈⊕ : Σ(⊕)〉〉 (∀⊕ ∈ Dom(Σ))

∆; Γ 
 typerec[τ′] e of θ : τ′τ

∆ 
 τ : � ∆ 
 τ′ : � → � ∆; Γ 
 e : τ′τ

∆; Γ 
 untyrec[τ′] e : R τ′τ

Fig. 9. LHR: Static Semantics (excerpt)

variables. Where we might analyze an argument with a free type variable in LH:

typerec[τ′]〈β : �〉 of θ, η{β ⇒ (�, τ, e)}

we will translate that term to the LHR term:

typerec[τ′] (untyrec[τ′] e) of θ

Figure 9 shows the static semantics for the representation terms, typerec and

untyrec. For type soundness, we must restrict what terms may be the argument to

untyrec. Essentially, untyrec coerces any term into a representation of some type.

If an arbitrary term were allowed, analysis of an untyrec term could result in the

wrong type. The coercion is sound if we restrict the type of analysis allowed for

the resulting representation. Therefore LHR parameterizes the R type with an extra

argument to describe the result of type analysis allowed for that representation.
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typerec[τ′]〈eτ : �〉of θ
def
= typerec[τ′] eτ of θ

typerec[τ′]〈eτ : κ1 → κ2〉of θ
def
= Λα:κ1.λx:R̂〈α : κ1〉.λy:[τ′]〈〈α : κ1〉〉.N

where

N = typerec[τ′]〈(eτ[α] x M) : κ2〉of θ

M = untyrec[τ′]〈y : κ1〉of θ

untyrec[τ′]〈eτ : �〉of θ
def
= untyrec[τ′] eτ

untyrec[τ′]〈eτ : κ1 → κ2〉of θ
def
= Λα:κ1.λx:R̂〈α : κ1〉.λy:[τ′]〈〈α : κ1〉〉.N

where

N = untyrec[τ′]〈(eτ[α] x M) : κ2〉of θ

M = typerec[τ′]〈y : κ1〉of θ

Fig. 10. Higher-order typerec in LHR.

When a term representation is polymorphic over this return type constructor (for

example, if it is of type ∀β:� → �.Rβτ) then it may be used for any analysis. We use

the notation R̂〈τ : κ〉 as type of the representation of τ of kind κ that may be used

for any analysis.

The notation R̂〈τ : κ〉 is also used for the type of the representation constants. If

⊕ is an arbitrary type constructor constant, such as int , →, ∀� in LHR, R⊕ is its

term representation. If ⊕ is of kind Σ(⊕), then the type of R⊕ is R̂〈⊕ : Σ(⊕)〉.
The type R̂〈τ : κ〉 is mutually defined in terms of the LHR definition of polykinded

types, [τ′]〈〈τ : κ〉〉 (at the top of Figure 9). The difference between these polykinded

types and those of LH is the additional representation argument. LHR polykinded

types are also used to type the branches of typerec. That way, branches such as ×
or + receive the representation of their type arguments.

A similar change is to the type equivalence rule for the operator ∀�. (If ∃� were in

our formal language, we would define its equivalence rule similarly.) Some polytypic

functions defined over quantified types need to analyze the hidden type. By changing

the type equivalence rule in this way, we make sure the representation of that bound

variable is accessible for analysis. It is also possible to add the operator ∀̂� to this

calculus, such that ∀̂�τ = ∀α: � .τα. This operator produces the type of parametric

functions that cannot analyze their type arguments. This operator makes no sense

in LH, because all types are analyzable.

The untyrec term allows us to implement higher-order typerec. Consider analyzing

the List type constructor in LH:

typerec[τ′]〈List : � → �〉 of θ, η

In LHR, the representations of type constructors of higher kinds are term functions.

For example, if eList is the representation of List then it is a function from the

representation of some type α to the representation of the type List α. Therefore, in

LHR, we can analyze the list constructor with a term that abstracts the interpretation

of α and then analyzes the result of applying eList to untyrec surrounding that
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interpretation.

Λα: � .λxα:R̂〈α : �〉.λy:(τ′α).

typerec[τ′] (eList [α] xα (untyrec[τ′] y)) of θ.

LHR does not include a higher-order version of typerec because it may encode

such terms. If eτ is the representation of the type τ of kind κ, the general

encoding of the analysis of eτ, notated typerec[τ′]〈eτ : κ〉 of θ, is in Figure 10.

This operation is defined in conjunction with its inverse, a higher-order version of

untyrec. Both operations are defined by induction on κ, the kind of the represented

type constructor.

This completes the description of LHR. As is standard, we have shown that the

static semantics agrees with the dynamic semantics.

Theorem 5.1 (Type Safety)

If ∅ 
 e : σ then e either evaluates to a value or diverges.

Proof

(Sketch) Proof follows from the usual progress and preservation theorems. �

In the next section, we will show that LHR is as expressive as LH by defining a

translation between the two languages. To gain an intuition behind this translation,

we end this section with an example in Figure 11, s ize written in the type-erasure

language. This function analyzes xα, the representation of the type α. Even though α

must be a type, we can still use this s ize to define length for lists below, where eList
is the representation of the List type constructor.

length = Λα: � .λxα:R̂〈α : �〉.
s ize[List α](eList [α] xα (untyrec[λβ: � .β → int](λx:α.1)))

There are two key differences between this version and the LH version of s ize.

Whenever a type is abstracted its representation is also abstracted (for example, in

the branches for × and +). Whenever a type is applied, its representation is also

applied. (In the µ branch, the application of x to the type [µ�α] is followed by the

representation of µ�α, the term R̂[[µ�α]] defined in the next section.)

6 Translating LH to LHR

The translation between LH and LHR is based on a process called phase splitting.

This process separates the static and dynamic roles of types by producing type

representations in the target language for each type in the source language. The

translation for types T[[σ]] and terms E[[e]] appears in Figure 13. Kinds and

type constructors are unchanged. We use a number of auxiliary definitions in this

translation, listed in Figure 12. An invariant of this translation is that whenever a

type variable, α, is in scope, its term representation is also in scope as variable xα.

Therefore, every type abstraction (Λα) is immediately followed by an abstraction of

its representation (λxα). Consequently, the type translation for polymorphic types

includes the type of this additional argument. When a polymorphic term is applied

to a type argument τ, that argument is followed by its term representation, R̂[[τ]].
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s ize = Λα: � .λxα:R(λβ: � .β → int) α.

typerec[λβ: � .β → int] xα of θ

where θ =

{ int ⇒ λy: int .0

unit ⇒ λy: unit .0

× ⇒ Λβ: � .λxβ:R̂〈β : �〉.λx:(β → int).

Λγ: � .λxγ:R̂〈γ : �〉.λy:(γ → int).

λv:(β × γ).

x(π1v) + y(π2v)

→ ⇒ undefined

+ ⇒ Λβ: � .λxβ:R̂〈β : �〉.λx:(β → int).

Λγ: � .λxβ:R̂〈γ : �〉.λy:(γ → int).

λv:(β + γ). case v of

(inj 1 z ⇒ x(z) | inj 2 z ⇒ y(z))

∀� ⇒ undefined

∃� ⇒ Λα:� → �.λxα:R̂〈α : � → �〉.
λr:(∀β: � .R̂〈β : �〉 → (β → int) → αβ → int).

λx:(∃β : �.R̂〈β : �〉 × (αβ)).

let〈β, 〈xβ, y〉〉 = unpack x in

(r [β] xβ (λx:β.0) y)

µ� ⇒ Λα:� → �.λxα:R̂〈α : � → �〉.
λx:(∀β: � .R̂〈β : �〉 → (β → int) → αβ → int).

fix f:(µ�α → int).

λy:µ�α. (x [µ�α] R̂[[µ�α]] f (unroll y))

}

Fig. 11. Example: Erasure version of s ize.

Translation from LH to LHR

Type translation T[[σ]] (Figure 13)

Term translation E[[e]] (Figure 13)

Derived forms in LHR

LHR Polykinded type [τ′]〈〈τ : κ〉〉 (Figure 9)

Higher-order typerec typerec[τ′]〈e : κ〉of θ (Figure 10)

Higher-order untyrec untyrec[τ′]〈e : κ〉of θ (Figure 10)

General type representation R̂[[τ]] (Figure 14)

Specialized representation R[[τ]](∆,τ′) (Figure 14)

Fig. 12. Notation used in the translation.

The most important part of this translation is the translation of typerec, at the

bottom of Figure 13. This translation replaces the argument to typerec, not with

the standard representation of the type argument, but one that is specialized to the

typerec term. The appropriate typerec argument is constructed in two phases: First a

“specialized representation” R[[τ]](∆,τ′) is constructed, which may contains references
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T[[τ]] = τ

T[[int]] = int

T[[σ1 → σ2]] = T[[σ1]] → T[[σ2]]

T[[∀α:κ.σ]] = ∀α:κ.R̂〈α : κ〉 → T[[σ]]

T[[Rττ′]] = R τ τ′

E[[i]] = i

E[[λx:σ.e]] = λx:T[[σ]].E[[e]]

E[[e1e2]] = E[[e1]]E[[e2]]

E[[Λα:κ.e]] = Λα:κ.λxα:R̂〈α : κ〉.E[[e]]

E[[e[τ]]] = E[[e]] [τ] R̂[[τ]]

E[[ typerec[τ′]〈τ : κ〉 of θ, η ]] = typerec[τ′]〈Φ(R[[τ]](∆,τ′)) : κ〉of E[[θ]]

where for each {α ⇒ (κα, τα, e)} ∈ η

∆(α) = κα

Φ(α) = τα

Φ(xα) = R̂[[τα]]

Φ(yα) = untyrec[τ′]〈E[[e]] : κα〉 of E[[θ]]

Fig. 13. Translation of LH to LHR.

to the term variables xα and yα for each α in the domain of the environment η.

We describe this process in the next section—briefly, the xα indicate where the

representation of the type τα is needed, and the yα mark where untyrec should

embed the branch for α. After the construction of the specialized representation, all

occurrences of α, xα and yα are replaced by the substitution Φ.

6.1 Representing the constructor language

The definition of type representations (R̂[[τ]]) and specialized representations

(R[[τ]](∆,τ′)) is in Figure 14. Type representations are defined in terms of specialized

representations at the bottom of the figure.

Specialized representations are used for the argument to typerec. These repres-

entation are specialized to τ′ the return type constructor of an analysis of this

term, and to ∆, a context containing type variables. As before, type variables are

represented by term variables, but here, each type variable has both a “specialized

representation”, yα, of type [Rτ′]〈〈α : κ〉〉 as well as its standard representation, xα,

of type R̂〈α : κ〉). The context ∆ determines which term variable should be used, the

specialized representation or an instantiation of the general one.

Most of the time, the specialized representation should be used. To enable this,

type-level abstractions are translated to abstractions that provide not just the general

representation of a type argument, but its specialized representation as well.

A general type representation (defined in the last line of the figure) abstracts over

the return type constructor, so that it may be used in any analysis. Because the

type of the yα depend on the return type constructor, they should not be used for

type variables that are currently in scope. Instead, a general type representation uses

the empty context, and represents any currently in scope type variables with xα[τ
′],
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R[[τ]](∆,τ′) : [Rτ′]〈〈τ : κ〉〉

R[[⊕]](∆,τ′)
def
= R⊕[τ′]

R[[α]](∆,τ′)
def
=

{
yα if α ∈ Dom ∆

xα[τ
′] otherwise

R[[λα:κ.τ1]](∆,τ′)
def
= Λα:κ.λxα:R̂〈α : κ〉.λyα:[Rτ′]〈〈α : κ〉〉.R[[τ1]](∆{α⇒κ},τ′)

R[[τ1τ2]](∆,τ′)
def
= R[[τ1]](∆,τ′) [τ2] R̂[[τ2]] R[[τ2]](∆,τ′)

R̂[[τ]] : R̂〈τ : κ〉 = ∀α:� → �.[Rα]〈〈τ : κ〉〉

R̂[[τ]]
def
= Λα:� → �.R[[τ]](∅,α)

Fig. 14. Representation of LHR type constructors.

the general representation for that type variable instantiated with the return type

constructor.

For example, R̂[[λα: � .α → int]] expands to

Λβ:� → �.Λα: � .λxα:R̂〈α : �〉.λyα:[Rβ]〈〈α : �〉〉.
R→[β] [α] (Λγ:� → �.xα[γ]) yα [int] (Λγ:� → �.Rint [γ]) (Rint [β])

Here, we instantiate R→ with the return constructor β, the first component of

the arrow type α, along with its general representation xα and its specialized

representation yα, and the second component of the product type int , along with its

general representation Rint and its specialized representation Rint [β].

Why must R→ be applied to both the specialized and general representations of its

subcomponents? The branch for → in typerec expects both the general representation

and the iteration over the specialized representation for each component. Recall the

dynamic semantics for this branch:

typerec[τ′] (R→ [τ′][τ1] e
′
τ1
eτ1

[τ2] e
′
τ2
eτ2

) of θ

�→LHR θ(→) [τ1] e
′
τ1

(typerec[τ′] eτ1
of θ)

[τ2] e
′
τ2

(typerec[τ′] eτ2
of θ)

We cannot generate the general representations from the specialized representations,

yet we must produce them as the θ(→) branch may use them as the arguments to

other polytypic functions.

7 Implementation

In this section we describe an implementation of a simplified version of LHR to

show how these ideas could be incorporated into a language like Haskell. For

simplicity, our implementation is a Haskell library 3. An extension to Haskell might

3 This implementation requires the extensions of first-class polymorphism and existential types (Odersky
& Läufer, 1996) supported by the implementations GHC and Hugs.
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be more attractive to programmers, but the important details of the implementation

are present in this version.

The interface to this implementation is the following:

type R c a

rint :: R c Int

runit :: R c ()

rtimes :: R c a -> R c b -> R c (a, b)

rname :: (String, [DataCon (R c) b]) -> R c b

rex :: (forall b. R c b -> R c (a b))

-> R c (Ex a)

typerec :: Theta c -> R c a -> c a

untyrec :: c a -> R c a

data Theta c = Theta {

int :: c Int,

unit :: c (),

times :: forall a b. c a -> c b -> c (a, b),

name :: forall b. (String, [DC c b]) -> c b,

ex :: forall a. (forall b. c b -> c (a b)) -> c (Ex a)

}

This implementation includes definitions of the R type constructor, constants for

the representations of type operators R⊕, the untyrec operator, and the type analysis

operator typerec. The datatype Theta is a record that describes the types of the

branches to typerec.

The name branch in Theta is for the analysis of Haskell data types and newtypes.

These type forms represent recursive types such as lists and trees. There is a list of

DCs in the argument to the name branch that corresponds to the constructors of the

datatype.

data DC c a = forall b. DC String (c b) (b -> a) (a -> Maybe b)

For each data constructor, this datatype contains the name of that constructor, the

result of typerec for the argument of that constructor (for uniformity we uncurry

data constructors), the constructor itself, and a “matching” function to determine if

an element of type a is the specified constructor.

For example, we represent the list type constructor by a term function. This

function uses rname to create a representation of [a] given the information about

the named type: the string "List" and the representations of the data constructors

nil and cons. The string can be used to augment a generic function with a special

case for a particular named type.

rlist :: R c a -> R c [a]

rlist ra = rname ("List", [rnil, rcons ra])

rnil :: DC (R c) [a]
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rnil = DC "[]" runit (\x -> [])

(\x -> case x of

[] -> Just ()

( ) -> Nothing)

rcons :: R c a -> DC (R c) [a]

rcons ra = DC ":" (rtimes ra (rlist ra))

(\(t1,t2) -> t1 : t2)

(\x -> case x of

(t1:t2) -> Just(t1,t2)

( ) -> Nothing)

The last branch of Theta is for existential types. We use the following datatype to

represent an existential type that includes the general representation of the hidden

type (i.e. ∃a.(∀c. R c a × f a)).

data Ex f = forall a. Ex (forall c. (R c a, f a))

We could also omit the general representation from the existential type constructor

but the polytypic operations that we could instantiate with this constructor are

limited because we do not have access to the representation of the hidden type

variable.

The difference between this interface and LHR is that here the branches for

typerec do not provide the general representation of the subcomponents of the types

or the result of typerec for that subcomponent. Otherwise, the type of the times

branch would be:

times :: forall a b.

(forall c. R c a) -> c a -> c a

-> (forall c. R c b) -> c b -> c b

-> c (a, b)

This omission means that type representations also do not carry general representa-

tions. Extending this implementation to include those representations is tedious but

not difficult. General representations would allow our polytypic operations to be

defined in terms of other polytypic operations.

However, even without general representations, we have enough information to

implement the size example. To pass the return type constructor (λα: � .α → int) as

an argument to the R type constructor requires that we first give it a name with a

newtype. (Haskell does not allow type-level lambdas).

newtype Size a = S (a -> Int)

unS (S a) = a

size :: R Size a -> a -> Int

size ra = unS . (typerec theta size ra)

The branches for size are very similar to the ones in Figure 11, except for the

coercions into the newtype Size. For example, in the int branch, we use S to coerce

the constant zero function to be of type Size Int.
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theta size :: Theta Size

theta size = Theta {

int = S (\x -> 0),

unit = S (\x -> 0),

times = \xa xb -> S $ \v ->

unS xa (fst v) + unS xb (snd v),

name = (string, cons) ->

S $ \v ->

let loop (DC xa inn out: rest) =

case (out v) of

Just y -> unS xa y

Nothing -> loop rest

loop [] = error "impossible"

in loop cons,

ex = \xa -> S $ \(Ex w) ->

let (rep,z) = w in

unS (xa (S $ \x -> 0)) z

}

As before, we can use size to implement length for lists by using (λx:α.1) as the

size function for α.

length :: [a] -> Int

length = size (rlist (untyrec (S $ \x -> 1)))

We can apply length to Haskell lists. For example, length [1,2,3] = 3.

We can also use this facility to implement first-order polytypic operations (such

as those usually implemented by type classes). For example, instead of defining the

Show type class, we can implement rshow:

newtype RepShow a = RS (a -> String)

unRS (RS a) = a

rshow :: R RepShow a -> a -> String

rshow ra = unRS . (typerec theta show ra)

theta show :: Theta RepShow

theta show = Theta {

int = RS showInt,

unit = RS (const "()"),

times = \xa xb -> RS $ \v ->

"(" ++ unRS xa (fst v) ++ ","

++ unRS xb (snd v) ++ ")",

name = \(string, cons) ->

RS $ \v ->

let loop (DC str xa inn out : rest) =

case (out v) of

Just s ->

let s’ = unRS xa s in
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if s’ == "()" then str

else str ++ " " ++ s’

Nothing -> loop rest

loop [] = error "impossible"

in loop cons,

ex = \xa -> RS $ \ (Ex w) ->

let (rep,z) = w in

unRS (xa (typerec thetaShow rep)) z

}

rshow (rlist rint) [1, 2, 3]

= ": (1,: (2,: (3,[])))"

The result of rshow is different from how we might want to display lists because

rshow does not use infix notation or precedence rules. Below, we describe how to

modify rshow to use infix. (It is also possible to account for precedence). To show

cons with infix, we change the case for data constructors above so that it checks

the string to see if it is cons (:). If so, we use the polytypic infixshow to show the

argument to cons. We are able to call infixshow because it returns the same type

of result as rshow and so we can call it with the specific representation. For most

flexibility in calling other polytypic functions, we need the general representations.

case (out v) of

Just s ->

if str == ":" then infixshow xa s

else let s’ = rshow xa s in ....

The infixshow function behaves just like rshow except that in the case of a pair it

shows the first component, then ":" and then the second component.

infixshow :: R RepShow a -> a -> String

infixshow = unRS . (typerec (theta show {

times = \xa xb -> RS $ \v ->

"(" ++ rshow xa (fst v) ++ "):("

++ rshow xb (snd v) ++ ")"}))

rshow (rlist rint) [1, 2, 3]

= "(1):((2):((3):([])))"

Unlike type classes, rshow extends to existential types. An extension to type classes

that supports existential types would still be problematic because it would only work

for existentials that contain the right dictionaries. Because this version requires a

general representation of the type instead of a specific dictionary, we can use it for

existentials.
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For example, we can represent the type ∃α. int ×α with:

type Hidden = Ex ( (,) Int)

rhidden :: R c Hidden

rhidden = rex (rtimes rint)

hidden int :: Hidden

hidden int = Ex (rint, (3, 4))

The branch for existentials prints out the entire term, including those parts with the

abstract type. For example, rshow rhidden hidden int = "(3,4)". However, the

branch for existentials can also hide components of abstract type by providing a

constant function:

ex = \xa -> RS $ \ (Ex w) ->

let (rep,z) = w in

unRS (xa (RS $ const "XXX" )) z

With the above branch, any values of the abstract type appear as "XXX". In other

words, rshow rhidden hidden int = "(3,XXX)".

We implement type representations in Haskell in a manner similar to representing

Church numerals—each type representation is implemented as its elimination form.

Because of that, we define the R type to be a function from the record of typerec

branches to the return type.

newtype R c b = R (Theta c -> c b)

The implementation of typerec applies its representation argument to the branches

to get the result. The definition of untyrec takes those branches, ignores them, and

returns its argument x.

typerec :: Theta c -> R c a -> c a

typerec theta (R rep) = rep theta

untyrec :: c a -> R c a

untyrec x = R (\theta -> x)

The type representations each select the corresponding component from theta. (For

each record label, Haskell defines a function with the same name that projects that

label from a record.) For example, in the definition of rint, int is a function that

retrieves the int component of theta. Therefore, it is of type Theta c -> c Int,

and the R data constructor coerces it to be of type R c Int.

rint :: R c Int

rint = R int

runit :: R c ()

runit = R unit

The times branch of theta needs the representations of the two subcomponents t1

and t2. The name branch needs the name of the type and the representations of the

data constructors. Furthermore, the existential branch just needs the representation

of its subcomponent.
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rtimes :: R c a -> R c b -> R c (a, b)

rtimes t1 t2 = R (\theta -> times theta (typerec theta t1)

(typerec theta t2))

rname :: (String, [DC (R c) b]) -> R c b

rname = \(str,cons) -> R (\x -> name x (str,cons))

rname = \(str,cons) -> R (\x -> name x (str,loop x cons))

where loop x [] = []

loop x (DC str rep inn out : rest) =

DC str (typerec x rep) inn out : loop x rest

rex :: (forall b. R c b -> R c (a b)) -> R c (Ex a)

rex t1 = R (\x -> ex x (\y -> (typerec x (t1 (untyrec y)))))

8 Extensions

LH is only a subset of the language described by Weirich (2002a). The LH language is

lacking two features that complicate (but do not prohibit) the translation to the type-

erasure language. The first is that the full language (following Hinze (Hinze, 2000))

generalizes polykinded types to a relation of n arguments for more expressiveness.

For example, the polytypic definition of map requires two arguments and the defini-

tion of zip requires three. A type-erasure version must have multiple representations

and multiple typerecs, one for each n. However, all of these representations and

typerecs have the same erasure, so a direct implementation (instead of the Haskell

library implementation) could use the same terms at runtime.

A second difference is that the full language includes kind polymorphism and

extends typerec to constructors with polymorphic kind. There are two reasons for

this extension. First, a polytypic function in LH (such as s ize) must specify and

therefore restrict the kind of its type argument. This restriction is artificial in

LH because typerec may iterate over type constructors with any kind. However,

the lack of kind polymorphism does not restrict LHR, as typerec in LHR is not

kind-polymorphic. We do not need to make a polytypic function kind-polymorphic

because we can apply such a function to the representations of higher-kinded

constructors by first using untyrec.

The second reason for kind polymorphism is that polymorphic types (universal

and existential) bind type variables with many kinds. Kind polymorphism allows

typerec to handle all such types with one branch. We believe that it is possible,

though complicated, to add kind polymorphism to LHR. The complexity arises in

the definition of typerec[τ′]〈e : κ〉of θ and untyrec[τ′]〈e : κ〉of θ when κ is an abstract

kind χ. The translation to LHR must provide this information. Therefore, all kind

abstractions must also abstract a term that knows how to implement typerec for

that kind of argument.

9 Summary and related work

This paper develops a type-erasure language supporting higher-order type analysis,

necessary for run-time polytypic programming. While type-erasure versions of several
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other type analyzing languages have been previously developed (Crary et al., 2002;

Saha et al., 2000), several aspects of the source language made this a not-so-

straightforward task.

The largest difficulty was to develop a kind-directed operational semantics

for typerec so that we did not need to rely on the syntactic properties of the

representations of higher kinds. This operational semantics is similar to Stone and

Harper’s language with singleton kinds (Stone & Harper, 2000), which was inspired

by Coquand’s approach to βη-equivalence for a type theory with Π types and

one universe (Coquand, 1991). Because equivalence of constructors in Stone and

Harper’s language strongly depends on the kind at which they are compared, their

procedure drives the kind of the compared terms to the base form before weak-head

normalizing and comparing structurally.

A second issue with creating the type-erasure language was that we did not

want to define a version of evaluation for terms with free variables. Instead,

we chose to directly replace those variables with a place holder for the result

of their interpretation. This place holder draws inspiration from the calculus of

Trifonov et al. (2000) who themselves refer to Fegaras & Sheard (1996). Fegaras

and Sheard designed their calculus to extend catamorphisms to datatypes with

parametric function spaces, employing a place holder as the trivial inverse of the

iterator. Trifonov et al. adapted this idea in a type-level Typerec for recursive

types. Like the parameterized return constructor of the R-type in this calculus, they

parameterize the return kind of a Typerec iteration. Such an extension to LHR would

allow a higher-order type-level Typerec. Washburn & Weirich (2003) examine the

general technique of using a place holder to implement induction over higher-order

abstract syntax. In particular, they are able to show a close connection between

using this technique in Fω and the modal calculus of Schürmann, Despeyroux &

Pfenning (2001).

The result of this paper, however, is a fairly simple type-erasure language

that supports higher-order type analysis. Such a language is an important step

in the implementation of a system that allows run-time polytypic programming.

The calculus that we have defined is simple to implement: we give a prototype

implementation in only a few lines. Closely related work to this paper is a

proposal for Dependency-Style Generic Haskell (Löh et al., 2003) that addresses

the problem in Generic Haskell of defining polytypic operations that depend

on one another. Because general representations to the branches of polytypic

operations are already provided, that capability already exists in LHR to some

extent. Furthermore, by not allowing type interpretation at run-time (or any sort

of general run-time type information), Generic Haskell cannot allow types to be

defined in separate modules from generic operations or analyze first-class abstract

types.

Important future work is the integration of type-level type analysis to this language,

as is found in intensional type. Although there are many examples of polytypism

where the result of a type-analyzing function can be described parametrically in

terms of its argument, this is not always the case. For example, Hinze et al. (2002)

describe how the type of generalized tries depends on the key type.
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Other future work includes a practical implementation based on the LHR language

in this paper. The prototype implementation has the advantage of being small and

implementable as a Haskell library. However, if these facilities were provided as

a Haskell extension, they might be made more easy for programmers to use. For

example, some of the complexity of defining polytypic operations comes from using

a newtype to specify the return type constructor. A specialized extension could

integrate some form of local type inference (Pierce & Turner, 1998) to specify

this type constructor and not require the coercions to and from the newtype.

Furthermore, defining the branches of the polytypic function as records is somewhat

awkward, and could be improved with specialized syntax. Finally, a Haskell extension

could automatically define the representations of user defined datatypes, instead of

requiring that they be supplied by users.

A Correctness of embedding

We call the LH language with the operational semantic of Figure 6 LK. Below we

prove the correctness of the translation between LK and LHR.

A.1 Static correctness

The static correctness of this translation follows from a straightforward set of

inductive arguments. To prove that the translation of a LK term is well-typed in

LHR, we must show that the representation of a LK-constructor has the correct

representation type.

Because we essentially have two versions of type representations—one for con-

structors that may have variables bound by an enclosing typerec, and one for

constructors that are in other contexts, there are two lemmas about the type

soundness of the representations.

In these two results, we must define two different translations of ∆ to produce

the context for the type representations variables. In the first case, the translation

is specialized by a return type constructor. The type of each representation variable

must be specialized to this constructor. In the second case, for those variables

bound by a term-level type abstraction (Λ), the types of the representations must be

polymorphic over the return type.

|∆, α:κ|c = |∆|τ′ , yα : [τ′]〈〈α : κ〉〉

|∆, α:κ| = |∆|, xα : R̂〈α : κ〉

In the following two lemmas, we show that the representation of a constructor τ is

well-typed. The free variables of τ may be bound in many different situations. We

let ∆1 refer to all of those bound by enclosing term-level type abstractions (Λ), ∆2

refer to variables bound by type level type abstractions (λ) or by enclosing typerec

expressions.
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Lemma A.1

Let ∆ = ∆1,∆2. If ∆ 
 τ : κ and ∆1,
 τ′ : � → � then

∆1∆2; |∆1|, |∆2|τ′ 
 R[[τ]]((∆2 ,τ′)) : [Rτ′]〈〈τ : κ〉〉

Another lemma that we need is that the translation of a LH polykinded type is a

LHR polykinded type.

Lemma A.2

If T[[[τ′]〈τ : κ〉]] = [τ′]〈〈τ : κ〉〉.

We may now prove the static correctness of phase-splitting.

Theorem A.3 (Static Correctness)

If ∆; Γ 
 e : σ then ∆; |∆|,T[[Γ]] 
 E[[e]] : T[[σ]]

A.2 Dynamic correctness

We will prove operational correctness up to the definition in Figure A.2 of

equivalence of result terms. The symbol ≡E relates two LHR terms that differ only

by type β-expansions. This notion of equivalence does not weaken our dynamic-

correctness result as all equal terms differ only in the type annotations. All equivalent

terms have the same erasure, so we can argue that they model the same computation.

The reason that we can prove operational correctness only up to this notion

of equivalence is because of how substitution interacts with the definition of

representation. We would like substitution to commute with representation, but

that is not the case.

R[[τ1[τ2/α]]](∆,τ) 
= R[[τ1]](∆,τ)[τ2/α][R̂[[τ2]]/xα]

For example, if τ1 is α then the left hand side equals R[[τ2]](∆,τ) while the right hand

side equals (xα[τ])[R̂[[τ2]]/xα] = (Λβ:� → �.R[[τ2]](∆,β))[τ].

Proposition A.4

By examination of the definition of ≡E, we assert the following properties of this

relation:

1. ≡E is an equivalence relation.

2. If e1 ≡E e2 then e[e1/x] ≡E e[e2/x].

3. If e1 ≡E e2 then e1[e/x] ≡E e2[e/x].

4. If e is not of the form (Λβ:� → �.e1)[τ] and e ≡E e′ then e′ �→∗ e′′ where e′′

has the same outermost form as e and e′′ ≡E e.

Lemma A.5 (Strengthening)

If α is not free in τ, then for any ∆, c, τ′,

R[[τ]](∆{α⇒κ},τ′) = R[[τ]](∆,τ′)

Proof

Examination of the definition of R[[τ]](∆,τ′). �

https://doi.org/10.1017/S0956796806005879 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005879


708 S. Weirich

Type-β

(Λβ:� → �.e)[τ] ≡E e[τ/β]

Symmetry

e′ ≡E e

e ≡E e′

Congruence rules

i ≡E i x ≡E x R⊕ ≡E R⊕

e ≡E e′

λx:σ.e ≡E λx:σ.e′
e1 ≡E e′

1 e2 ≡E e′
2

e1e2 ≡E e′
1e

′
2

e ≡E e′

Λα:κ.e ≡E Λα:κ.e′
e ≡E e′

e[τ] ≡E e′[τ]

e ≡E e′ θ(⊕) ≡E e′
⊕

typerec[κ][τ] e θ ≡E typerec[κ][τ] e′ θ′

e ≡E e′ θ(⊕) ≡E e′
⊕

untyrec[κ][τ] e θ ≡E untyrec[κ][τ] e′ θ′

Fig. A 1. Type β-equivalence.

Lemma A.6 (Substitution of closed constructors)

If ∆, α:κ2 
 τ1 : κ1 and ∅ 
 τ2 : κ2 then

R[[τ1[τ2/α]]](∆,τ) ≡E R[[τ1]](∆,τ)[τ2/α][R̂[[τ2]]/xα]

Lemma A.7 (Open substitution)

If ∆, α:κ′ 
 τ1 : κ and ∆ 
 τ2 : κ′ then

R[[τ1[τ2/α]]](∆,τ) ≡E
R[[τ1]](∆{α⇒κ′},τ)[τ2/α][R̂[[τ2]]/xα][R[[τ2]](∆,τ)/yα]

Lemma A.8

If ∆ 
 τ1 : κ and τ1 �wh τ2 then for all e1 ≡E R[[τ1]]((∆,τ′)), e1 �→∗ e2 and e2 ≡E
R[[τ2]]((∆,τ′)).

Corollary A.9

If τ weak head normalizes to p, and e ≡E R[[τ]]((∆,c,Ψ)) then e �→∗ p′ ≡E R[[p]]((∆,τ)).

Lemma A.10 (Path correctness)

If ∅ 
κ typerec[τ′]〈p : �〉 of θ, η : σ and typerec[τ′]〈p : �〉 of θ, η ⇒k e and θ′ ≡E E[[θ]]

and p′ ≡E R[[p]]((∅,τ′ ,(∆,E[[η]],ρ,E[[θ]]))) then

typerec[τ′] p′ θ′ ⇒LHR e2 ≡E E[[e]].

Lemma A.11 (Typerec Correctness)

If typerec[τ′]〈τ : κ〉 of θ, η �→k e and e1 ≡E E[[typerec[τ′]〈τ : κ〉 of θ, η]] then e1 �→∗
LHR

e2 ≡E E[[e]].
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Lemma A.12 (Constructor substitution)

If ∆, α:κ; Γ 
 e : σ and ∆ 
 τ : κ, then E[[e[τ/α]]] ≡E E[[e]][τ/α][R̂[[τ]]xα].

Lemma A.13 (Term substitution)

If ∆, ; Γ, x : σ′ 
 e : σ and ∆; Γ 
 e′ : σ′, then E[[e[e′/x]]] = E[[e]][E[[e′]]/x].

Lemma A.14 (Dynamic correctness)

If ∅ 
 e1 : σ and e1 �→k e2 then if e′
1 ≡E E[[e1]], e

′
1 �→∗

LHR e′
2 ≡E E[[e2]].
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