
JFP 17 (3): 387–421, 2007. c© 2007 Cambridge University Press

doi:10.1017/S0956796807006223 First published online 15 February 2007 Printed in the United Kingdom

387

Warnings for pattern matching

LUC MARANGET

Inria Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France

(e-mail: Luc.Maranget@inria.fr)

Abstract

We examine the ML pattern-matching anomalies of useless clauses and non-exhaustive

matches. We state the definition of these anomalies, building upon pattern matching semantics,

and propose a simple algorithm to detect them. We have integrated the algorithm in the

Objective Caml compiler, but we show that the same algorithm is also usable in a non-strict

language such as Haskell. Or-patterns are considered for both strict and non-strict languages.

1 Introduction

Pattern matching is one of the key features of the ML family of programing

languages. Pattern matching favors reasoning (and programming) on a case by case

basis. This style of reasoning calls for two basic checks: Are all cases considered?

And, is any case subsumed by some others? In pattern matching terms, one wishes

to write exhaustive pattern matching expressions whose clauses all are useful.

ML compilers should normally flag pattern matching expressions that do not comply

with those two basic assumptions or, in other words, expressions that exhibit such

anomalies. By doing so, compilers provide an important help to programmers in

detecting errors.

Techniques for compiling pattern matching fall into two classes, depending

whether they target decision tress or backtracking automata. If we compare the

two in their ability to provide diagnostics, the decision tree technique has one

advantage: checks can be carried on the decision trees, since decision trees are

complete and include no dead code. By contrast, backtracking automata cannot be

easily analyzed. However, for reasons beyond the scope of this paper (Le Fessant &

Maranget, 2001), some compiler designers choose the backtracking technique. This

is, for instance, the case of Objective Caml (Leroy et al., 2003) and our initial

motivation was to carry out the pattern matching checks for this compiler. Our

initial idea was of course to use a simplified version of compilation to decision

trees. However, it appears that checking pattern matching requires much less work

than compiling pattern matching, up to the point that our final algorithm can be

considered as more than just a stripped down version of compilation to decision

trees. Furthermore, studying checks per se, independently from compilation, finally

yields a very general solution: our pattern matching analyzer gives valid answers for

both ML and Haskell, whose semantics are quite different.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

388 L. Maranget

We divide our study into two parts. In Part 1, we define pattern matching anom-

alies, introduce an algorithm that detects both anomalies, and prove the correctness

of our algorithm with respect to the strict, lazy, and Haskell semantics of pattern

matching. Part 2 describes the implementation of our algorithm. That is, we show

how to refine and adapt our algorithm to the initial, practical, question of providing

precise warnings to users. More specifically, in section 5 we show how to strengthen

a diagnostic of non-exhaustiveness by supplying examples of non-matching values.

Then, in section 6, we examine useless pattern detection, an important refinement of

simple useless clause detection. This refinement naturally arises in the presence of

or-patterns, a convenient feature to group clauses with identical actions. Finally, we

analyze the efficiency of our implementation and conclude.

PART ONE

An algorithm for detecting the anomalies

2 Patterns, values, etc.

Most ML values can be defined as ground terms over some signatures. Signatures

are introduced by data type definitions. For instance1:

type mylist = Nil | One of int | Cons of int * mylist

Values of type mylist are built from three constructors Nil (of zero arity, i.e.

constant constructor), One (unary) and Cons (binary). Most of ML values can be

expressed in that setting. Booleans are a two (constant) constructor type, the integer

type is defined as possessing infinitely many (or 231) constant constructors, pairs are

a type with a sole binary constructor (written with the infix operator “,”), etc.

More generally, our values are defined as (ground) terms over the constructor

signatures. We make them explicit as follows.

v ::= (Defined) values

c(v1, v2, . . . , va) a � 0

In examples, we systematically omit () after constants constructors, so as to match

Objective Caml syntax (we write Nil, true, 0, etc.). This simple definition of values

as terms suffices to our purpose of studying pattern matching anomalies in call-by-

value ML. However,

• A proper semantics for pattern matching in a lazy language should define

partial values, which we do in Section 4.

• Although many values, including integers, strings, can be seen as terms built

over known signatures (maybe of infinite size), not all values can be seen

as such. For instance, consider functions or values of a type that exhibits

parametric polymorphism. However, we are not interested in the exact nature

of all the types and values of ML. Instead, we shall rely on the following

1 In this paper, we use Objective Caml syntax

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 389

informal axiom: given any type t, we assume the existence of at least one

value that possesses t as a type.

Strictly speaking, the axiom does not hold, at least in Caml where one can define a

type with no values in it.

type t_empty

Then we can define the following data type and matching.

type t = C of t_empty

let f x = match x with C y -> y

Semantically the above clause C y -> y is useless: no value exists that matches the

pattern C y. But our checker will not flag the clause as such, since it assumes the

existence of a value of type t_empty. Similarly, our checker will flag the following

match as non-exhaustive.

type tt = A | B of t_empty

let g x = match x with A -> true

The non-exhaustiveness diagnostic is wrong, strictly speaking, since there does not

exist a value B(v), where v has type t_empty. As a consequence, the match above

matches all possible values of type tt. We view this issue as a minor one, considering

that the non-empty type axiom holds for the vast majority of types.

Patterns are used to discriminate amongst values. More precisely a pattern

describes a set of values with a common prefix. That is, patterns are terms with

variables and a given pattern p describes its instances σ(p) where σ ranges over

substitutions. However, we wish to stay close to programming practice and define

patterns as follows:

p ::= Patterns

wildcard

c(p1, p2, . . . , pa) constructed pattern a � 0

(p1 | p2) or-pattern

Variables in fact do not appear in our definition of patterns. For our purpose, they

can be replaced by the wildcard symbol “ ”. One can see wildcards as variables

whose exact names are irrelevant. Additionally, our patterns feature “or-patterns”

as offered by modern implementations of the ML language.

Furthermore, it is important to remark that patterns are type correct, that is, we

assume that patterns follow the sorting discipline enforced by some declarations

of data types. In practice, the Objective Caml compiler performs pattern matching

analysis after the typing phase, so that patterns do hold type annotations. In our

formal treatment we avoid making those annotations explicit everywhere, this would

be quite cumbersome and of little explanatory value. However, when appropriate,

we sometime show type annotation as (p : t).

In the usual theory of terms, a term v (of type t) is an instance of a pattern p

(of type t) when the pattern describes the prefix of the term. That is, when there

exists a substitution σ such that σ(p) = v. In the case of linear patterns, where no

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

390 L. Maranget

variable appears more than once in a given pattern, the instance relation can be

defined inductively and the exact names of variables are irrelevant.

Definition 1 (Instance relation)

Given any pattern p and a value v such that p and v are of a common type, the

instance relation p � v is defined as follows.

� v

(p1 | p2) � v iff p1 � v or p2 � v

c(p1, . . . , pa) � c(v1, . . . , va) iff (p1 · · · pa) � (v1 · · · va)
(p1 · · · pa) � (v1 · · · va) iff pi � vi, for all i ∈ [1 . . . a]

It is important to notice again that pattern matching is defined in a typed context.

In particular � v does not holds for any value v, but only for value v of the

specified type t, which can be made explicit with the notation (: t). Moreover, as a

consequence of our axiom “types are not empty”, any pattern p admits at least one

instance.

In Definition 1 above we used the very convenient notations �p = (p1 · · · pa) and

�v = (v1 · · · va). Notations �p and �v stand for (row) vectors of patterns and values

respectively. Observe that we just defined the instance relation on vectors. We shall

also consider matrices of patterns P = (pij), of size m × n where m is P height

(number of rows) and n is P width (number of columns). Boundary cases deserve

a few notations: matrices with no row (m = 0 and n � 0) are written ∅; while

non-empty matrices of empty rows (m > 0 and n = 0) are written
()

. Finally, we

sometime denote row number i of matrix P as �p i.

We recall the definition of ML pattern matching in this convenient framework of

matrices and vectors.

Definition 2 (ML pattern matching)

Let P be a pattern matrix and �v = (v1 · · · vn) be a value vector, where n is equal

to the width of P . Row number i in P filters �v, if and only if the following two

conditions hold.

1. (pi1 · · · pin) � (v1 · · · vn)
2. ∀j < i, (pj1 · · · pjn) �� (v1 · · · vn)

We shall also say that�v matches row number i in P .

In other words, vector �v matches the first row it is an instance of, starting from

the top of matrix P . Again, typing is implicit: all rows in P and �v must be of a

common type.

Example 1

Consider the following matrix P of size 5×2, and whose patterns are of type mylist.

P =

⎛
⎜⎜⎜⎜⎝

Nil

Nil

One(0)

One(0)

⎞
⎟⎟⎟⎟⎠

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 391

Then, for instance we have:

1. Vector �v = (Nil Nil) matches the first row of P , since (Nil) � (Nil Nil)

(because p1
1 = Nil � Nil = v1) and p1

2 = � Nil = v2).

2. Vector �w = (One(0) Nil) matches the second row of P , since we have

(a) (Nil) � (One(0) Nil), that is �w is an instance of the second row of

matrix P .

(b) (Nil) �� (One(0) Nil) (because p1
1 = Nil �� One(0) = w1), that is, �w is

not an instance of the first row of matrix P .

3. Vector�z = (One(1) One(1)) matches the fifth row of matrix P , since we have:

(a) Vector�z is an instance if�p 5 = () (as any value vector of the appropriate

type is).

(b) Additionally, vector�z is not an instance of any of the first four rows of P .

For instance, 0 �� 1 implies One(0) �� One(1), which in turn implies that

vector �z cannot be an instance of rows number 3 and 4 of matrix P .

As we have already noticed, a pattern can be interpreted as the set of its instances.

Similarly, a matrix can be interpreted as the union of the instances of its rows.

Definition 3 (Instance relation for matrices)

Let P be a pattern matrix with n columns and m rows, and let �v = (v1 · · · vn) be a

value vector. Vector�v is an instance of matrix P , written P ��v, if and only if there

exists an row number i (i ∈ [1 . . . m]) such that:

(pi1 · · · pin) � (v1 · · · vn).

ML pattern matching can be reformulated with this new definition as: vector �v

matches row number i in matrix P , if and only if P [1...i) �� �v and �p i � �v, where

matrix P [1...i) is the (i − 1) × n matrix consisting of the rows of P that precede row

number i.

3 The useful clause problem

We express pattern matching anomalies in the matrix framework.

Definition 4 (Exhaustiveness)

Let P be a pattern matrix. Matrix P is exhaustive, if and only if, for all value

vectors �v of the appropriate type, there exists a row in P that filters �v in the sense

of Definition 2.

Definition 5 (Useless clause)

Let P be a pattern matrix. Row number i in P is useless, if and only if there does

not exists a value vector�v that matches row number i in the sense of Definition 2.

Useless clauses are sometimes called redundant. In our opinion, “useless” is more

precise, since it conveys the semantical nature of the concept better.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

392 L. Maranget

Example 2

Let P and Q be the following two pattern matrices.

P =

(
Nil

Nil

)
Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Nil

Nil

One()

One()

Cons (,)

Cons(,)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Matrix P is not exhaustive, since, for instance, vector �v = (One (0) One (0)) does

not match any row of P .

By contrast, matrix Q is exhaustive. Let us consider any value vector �v of the

appropriate type. Then, v1 and v2 are instances of the patterns Nil, One(), or

Cons(,). That is, we may partition values into nine sets denoted by nine different

pattern vectors. It turns out that this partition is precise enough to apply Definition 2.

If�v is an instance of. . . then,�v matches row number. . .

(Nil Nil) (Nil One()) (Nil Cons(,)) 1

(One() Nil) (Cons(,) Nil) 2

(One() One()) (One() Cons(,)) 3

(Cons(,) One()) 4

(Cons(,) Cons(,)) 5

As another consequence, one may observe that row number 6 of matrix Q is useless.

Because we use the ML definition of pattern matching (Definition 2) we claim that

the two definitions above express what is generally understood by “an exhaustive

match” and “an useless clause”, However it is intuitively clear that the two questions

are quite similar, and in fact they can be expressed using the following definition.

Definition 6 (Useful clause)

Let P be a pattern matrix of size m × n and let �q be a pattern vector of size n.

Vector �q is useful with respect to matrix P , if and only if

∃�v, P ���v ∧�q ��v.

We write U(P ,�q) for the formula above We also note M(P ,�q) the following set of

matching value vectors:

M(P ,�q) = {�v | P ���v ∧�q ��v }.

Thus, U(P ,�q) simply means that M(P ,�q) is not empty.

Proposition 1

1. Matrix P is exhaustive, if and only if U(P , (· · ·)) is false.

2. Row number i in matrix P is useless, if and only if U(P [1...i),�p i) is false.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 393

Proof

Corollary of definitions. �

Our framework of two separate definitions 2 and 3 exposes that, as far as pattern

matching anomalies are concerned, the matching predicate can be simplified. More

precisely, it is important to notice that �v matches some row in P (Definition 2)

is equivalent to P � �v (Definition 3). In other words, the order of rows in P is

irrelevant while computing U(P ,�q).

3.1 Solving the useful clause problem

In this section we compute U recursively. We proceed by first defining a recursive

function Urec and then showing U = Urec. The definition of Urec owes much to the

traditional compilation of ML pattern matching to decision trees — (Pettersson,

1992) gives a modern presentation of this quite ancient compilation scheme.

Let thus P be a pattern matrix of size m × n and �q be a pattern vector of size n.

Induction proceeds by decomposing P and �q along first column.

Base case If there is no column (i.e. n = 0), then the value of Urec(P , ()) depends

upon the number of rows m of matrix P .

1. If P has some rows (i.e. m > 0), we define Urec(
()

, ()) to be false.

2. If m is zero, then we define Urec(∅, ()) to be true. More generally, although not

really necessary, we can define Urec(∅,�q) to be true for any vector �q of any

size n.

Base cases are summarized as follows:

Urec(

()
, ()) = False Urec(∅,�q) = True.

Induction If there are columns (n > 0), then there are three sub-cases depending

upon the nature of pattern q1.

1. Pattern q1 is a constructed pattern, that is q1 = c(r1, . . . , ra). From matrix P ,

we extract the new specialized matrix S(c, P). The new matrix S(c, P) is of

width a+ n − 1 and its rows are defined from the rows of P , according to the

first component of these rows.

pi1 S(c, P)

c(r1, . . . , ra) r1 · · · ra pi2 · · · pin
c′(r1, . . . , ra′) (c′ �= c) No row

· · · pi2 · · · pin

(r1 | r2) S(c,

(
r1 pi2· · ·pin
r2 pi2· · ·pin

)
)

Notice that a given row �p i, may induce one, none or several rows in S(c, P).

In the following, we note S(c,�q) the application of S to a vector, when it

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

394 L. Maranget

yields a vector.

S(c, (c(r1, . . . , ra) q2 · · · qn)) = (r1 · · · ra q2 · · · qn)
S(c, (q2 · · · qn)) = (· · ·︸ ︷︷ ︸

a times

q2 · · · qn)

We also consider specialization of value vectors when relevant, that is when

v1 = c(w1, . . . , wa).

Finally, in the case where q1 is c(r1, . . . , ra), we define:

Urec(P ,�q) = Urec(S(c, P),S(c,�q)).

2. Pattern q1 is a wildcard. Let Σ = {c1, c2, . . . , cz} be the set of constructors that

appear as root constructors of the patterns of P ’s first column (and also as root

constructors of their arguments when they are or-patterns). The computation

of Urec depends on whether set Σ is a complete signature or not. In the former

case, any instance �v of �q necessarily possesses a first component whose root

constructor belongs to Σ. In the latter case, it turns out that it suffices to

examine those constructors that do not belong to Σ. Here, computing Urec

significantly departs from compilation to decision trees, which of course has

to take all constructors into account.

(a) Set Σ constitutes a complete signature. Then we define:

Urec(P ,�q) =

z∨
k=1

Urec(S(ck, P),S(ck,�q)).

(b) Set Σ is not a complete signature. From P , we extract the new default

matrix D(P) of width n − 1.

pi1 D(P)

ck(t1, . . . , tak) No row

pi2 · · · pin

(r1 | r2) D(

(
r1 pi2 · · · pin
r2 pi2 · · · pin

)
)

Matrix D(P) is defined in all situations, whether Σ is a complete signature

or not. However, D(P) is useful for computing Urec only in the latter case.

We define:

Urec(P , (q2 · · · qn)) = Urec(D(P), (q2 · · · qn)).

Observe that when Σ is empty, i.e. when the first column of P is made of

wildcards and of or-patterns thereof, then Σ is not a complete signature.

Thus the definition above also apply.

3. When pattern q1 is an or-pattern (r1 | r2), we define:

Urec(P , ((r1 | r2) q2 · · · qn)) = Urec(P , (r1 q2 · · · qn)) ∨ Urec(P , (r2 q2 · · · qn)).

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 395

We now establish a few “key” properties of matrix specialization (1 below) and

of the default matrix (2 to 4 below). Basically, the key property of specialization

expresses that matching by P and S(c, P) are equivalent for value vectors whose

first component admits c as a root constructor; while the key properties of the

default matrix express the equivalence of matching by P and D(P) in more detailed

situations.

Lemma 1 (Key properties)

For any matrix P , constructor c, and value vector�v such that v1 = c(w1, . . . , wa) (all

being of the appropriate types), we have:

P ���v ⇐⇒ S(c, P) �� S(c,�v). (1)

Additionally, for any value vector�v, we have:

P �� (v1 v2 · · · vn) =⇒ D(P) �� (v2 · · · vn). (2)

Furthermore, given any matrix P , let Σ be set of the root constructors of P ’s first

column. If Σ is not empty, then for any constructor c not in Σ and any value vector

(w1 · · ·wa v2 · · · vn), we have:

D(P) �� (v2 · · · vn) =⇒ P �� (c(w1, . . . , wa) v2 · · · vn). (3)

If Σ is empty, then, for any value vector�v, we have instead:

D(P) �� (v2 · · · vn) =⇒ P �� (v1 v2 · · · vn). (4)

Proof

Mechanical application of definitions. �

We could of course have formulated the key properties by reversing implications

and by using � in place of ��. However, we adopt the negated formulation, to match

Definition 2. Nevertheless, we shall also consider (1) when P has exactly one row. In

that case, for any value vector�v such that v1 = c(w1, . . . , wa), we write more directly:

�q ��v ⇐⇒ S(c,�q) � S(c,�v).

Proposition 2

For any matrix P and pattern vector �q of appropriate sizes and types, we have:

U(P ,�q) = Urec(P ,�q).

Proof

Base cases are easy. Let first �q be the empty pattern vector, written (). The set of �q

instances consists of the unique empty value vector, also written (). If P ’s rows exist

and are empty, then P ’s first row filters the value vector ().

M(

()
, ()) = ∅.

Moreover, if P has no rows, then it cannot filter any value, We have:

M(∅,�q) = {�v |�q ��v }.

And we conclude, since �q has at least one instance for any �q.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

396 L. Maranget

To prove inductive cases, it suffices to show that U meets the equations that define

Urec.

1. If q1 = c(r1, . . . , ra) for some constructor c, then we need prove:

U(P ,�q) = U(S(c, P),S(c,�q)).

However, by (1) applied to both P and �q, we have the stronger result:

M(P ,�q) = {�v | S(c,�v) ∈ M(S(c, P),S(c,�q))} .

Namely, remember that U(P ,�q) means that the set M(P ,�q) of matching values

is not empty (Definition 6).

2. If q1 is a wildcard, then let Σ = {c1, . . . , cz} be as in the definition of Urec.

(a) If Σ is a complete signature. For any ck in Σ, we define the set Mk:

Mk = M(S(ck, P),S(ck,�q)).

By typing, for any value v1 of the appropriate type, we have q1 � v1, if and

only if there exists a constructor ck in Σ and values w1, . . . , wak such that

v1 = ck(w1, . . . , wak). Thus, by property (1), one easily shows:

M(P ,�q) =

z⋃
k=1

{�v | S(ck,�v) ∈ Mk } .

And we can conclude:

U(P ,�q) =

z∨
k=1

U(S(ck, P),S(c,�q)).

(b) In all situations, we have (by (2)):

M(P ,�q) ⊆ {�v | (v2 · · · vn) ∈ M(D(P), (q2 · · · qn))} .

In the case where Σ is empty, the reverse inclusion holds — by (4). And

we can conclude, by the “type are not empty” axiom.

It is worth noticing that the reverse inclusion does not hold when Σ is

non-empty. Namely, when considering sets of matching values M, we have

to take all possible values into account. Anyway, by the inclusion above,

we have: U(P ,�q) =⇒ U(D(P), (q2 · · · qn)).
Conversely, assume U(D(P), (q2 · · · qn)) = True, and let t be the type of

the first component of tested value vectors. Then, there exists (v2 · · · vn)
such that D(P) �� (v2 · · · vn) and (q2 · · · qn) � (v2 · · · vn). Furthermore, by the

hypothesis “Σ does not hold all the constructors of type t” we know that

there exists some constructor c of type t1 × · · · × ta → t such that c �∈ Σ.

Thus, by our axiom “types are not empty”, there exist values w1, . . . , wa

of respective types t1, . . . , ta. Then, vector �v = (c(w1, . . . , wa) v2 · · · vn) is a

witness of the validity of U(P ,�q), by (3) and q1 = � v1.

3. If qi is an or-pattern (r1 | r2), then, by definition of � for or-patterns, we have:

M(P , ((r1 | r2) q2 · · · qn)) = M(P , (r1 q2 · · · qn)) ∪ M(P , (r2 q2 · · · qn)).

�

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 397

3.2 Detecting the anomalies

Since we know how to compute U, we can detect pattern matching anomalies.

Given some expression match . . . with p1 -> e1 | p2 -> e2 | . . . | pm -> em,

exhaustiveness is checked by computing:

Urec

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

p1

p2

...

pm

⎞
⎟⎟⎟⎠ , ()

⎞
⎟⎟⎟⎠ ;

while the usefulness of clause number i is checked by computing:

Urec

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

p1

p2

...

pi−1

⎞
⎟⎟⎟⎠ , (pi)

⎞
⎟⎟⎟⎠ .

4 Lazy pattern matching

4.1 Lazy pattern matching in theory

In previous sections we only considered strict ML. In a strict language we can

define ML pattern matching as a predicate operating on terms, which also are the

values of program expressions. In other words, pattern matching apply to completely

evaluated expressions, or normal forms.

Studying pattern matching in a lazy language such as Haskell requires a more

sophisticated semantical setting. Essentially, lazy language manipulate values that

are known partially and, more significant to our study, pattern matching operates

on such incomplete values.

v ::= Partial Values

Ω Undefined value

c(v1, v2, . . . , va) (constructor) head-normal form.

Definition 1 of the instance relation for patterns and values apply unchanged to

partial values (we have � Ω, value Ω possesses all types). Thus we keep the same

notation �, and maintain Definition 3 of the instance relation for matrices.

However we cannot keep Definition 2 of ML pattern matching.

Example 3

Let us consider a simple example2: case e of True -> 1 | -> 2. If the root

symbol of expression e is not a constructor, its partial value is Ω. Then, since

True �� Ω and � Ω, the value of the whole expression is 2. But, if we compute

e further, its value may become True. Then, the value of the whole expression

becomes 1. Something is wrong, since the value of the whole expression changed

from 1 to 2.

2 In this section, we use Haskell syntax

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

398 L. Maranget

More generally, partial values and computation interact. Let us consider some

expression e. If the root symbol of expression e is a constructor c, then expression e

is a head-normal form and we express the “current value” of e as c(v1, v2, . . . , va)

— see (Huet & Lévy, 1991) for a more precise treatment in the context of term

rewriting systems. Otherwise, the “current value” of expression e is Ω. Then, we

consider various “current values” along the evaluation of e. As constructors cannot

be reduced, those values are increasing according to the following precision ordering.

Definition 7 (Precision ordering)

Relation �Ω is defined on pairs of values (v, w) as follows.

Ω �Ω w

c(v1, . . . , va) �Ω c(w1, . . . , wa) iff (v1 · · · va) �Ω(w1 · · ·wa)

(v1 · · · vn) �Ω (w1 · · ·wn) iff vi �Ω wi, for all i ∈ [1 . . . n]

To be of practical use, a predicate P that defines pattern matching must be

monotonic. That is, when P(v) holds, P(w) also holds for all w such that v �Ω w.

With monotonic predicates, matching decisions do not change during computations.

One should notice that, given any pattern p, the predicate p � v is monotonic in v.

Example 3 shows that the predicate P ���v is not monotonic in general.

We thus need a new definition of pattern matching. For the moment, we leave

most of lazy pattern matching unspecified.

Definition 8 (General (lazy) pattern matching)

Let P(P ,�v) be a predicate defined over pattern matrices P and value vectors �v,

where the size n of�v is equal to the width of P . Row number i in P filters �v, if and

only if the following condition holds:

P(P [1...i),�v) ∧�p i ��v.

We call P the disambiguating predicate and now look for sufficient conditions

on P that account for our intuition of pattern matching in a lazy language.

1. Pattern matching is deterministic, in the sense that at most one clause is

matched. Hence, for all P and�v, we assume:

P(P ,�v) =⇒ P ���v.

2. Matching the first row of a matrix reduces to the instance relation. Hence, for

all�v, we assume:

P(∅,�v) = True.

3. We require predicate P to be monotonic in its value component. That is, given

any matrix P , for all value vectors�v and �w, we assume:

P(P ,�v) ∧�v �Ω �w =⇒ P(P ,�w).

The three conditions above are our basic restrictions on P. We further define UP
and MP as U and M (Definition 6) parameterized by P.

Now, given a definition of lazy pattern matching, we face the temptation to

assume that the computation of U described in Section 3.1 still works for UP.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 399

More precisely, by finding additional sufficient conditions on predicate P we aim at

proving UP = Urec. Thus, we re-examine the proof of Proposition 2 in the context

of lazy pattern matching.

Base cases follow from basic restrictions.

1. By our first basic restriction and since
()

� (), we have P(
()

, ()) = False.

Thus we have UP(
()

, ()) = False.

2. By our second basic restriction, we directly get UP(∅,�q) = True.

To prove the inductive cases, it suffices to reformulate the key properties of

Lemma 1, replacing P �� �v by P(P ,�v). However, key properties now are rather

assumed than established.

Definition 9 (Key properties)

We say that predicate P meets key properties when the following four properties

hold. For any matrix P , constructor c, and value vector�v such that v1 = c(w1, . . . , wa),

we assume:

P(P ,�v) ⇐⇒ P(S(c, P),S(c,�v)). (1)

Additionally, for any value vector�v, we assume:

P(P , (v1 v2 · · · vn)) =⇒ P(D(P), (v2 · · · vn)). (2)

Furthermore, given any matrix P , let Σ be set of the root constructors of P ’s first

column. If Σ is not empty, then for any constructor c not in Σ and any value vector

(w1 · · ·wa v2 · · · vn), we assume:

P(D(P), (v2 · · · vn)) =⇒ P(P , (c(w1, . . . , wa) v2 · · · vn)). (3)

If Σ is empty, then, for any value vector�v, we instead assume:

P(D(P), (v2 · · · vn)) =⇒ P(P , (v1 v2 · · · vn)). (4)

It is not obvious that assuming key properties suffices to prove that UP can be

computed as U is, since Ω does not show in the proof of Proposition 2. Indeed,

monotonicity plays some part here.

Proposition 3

We have UP = Urec.

Proof

Base cases follow from basic restrictions; while the proofs of all inductive cases in

Proposition 2, except 2-(a), apply unchanged.

Hence, we assume q1 to be a wildcard and the set Σ to be a complete signature.

We need prove:

UP(P , ((: t) q2 · · · qn)) =

z∨
k=1

UP(S(ck, P),S(ck,�q)).

By (1), for any constructor ck in Σ and any vector �v such that v1 = ck(w1, . . . , wak),

we have: �v ∈ MP(P ,�q) ⇐⇒ S(ck,�v) ∈ MP(S(ck, P),S(ck,�q)). Hence, a potential

difficulty arises for vectors�v in MP(P ,�q), when v1 is Ω. Then, by monotonicity of P

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

400 L. Maranget

(and �), the non-empty type axiom, and for any constructor c (in the signature of

type t), there exists (w1 · · ·wa) such that (c(w1, . . . , wa) v2 · · · vn) ∈ MP(P ,�q). That is

(by (1) in the forwards direction), UP(S(ck, P),S(ck,�q)) holds for all ck in Σ. �

As an immediate consequence of the proposition above, the useless clause problem

is now solved in the lazy case (see second item in Proposition 1). However, the exact

formulation of exhaustiveness needs a slight change. Reconsider Example 3.

case e of True -> 1 | _ -> 2

By definition of �, True � Ω does not hold, hence Ω cannot match first clause.

However, P(
(
True

)
,Ω) does not hold either, by monotonicity. Hence, there is no

row that filters value Ω and Definition 4 would flag this matching as non-exhaustive,

a clear contradiction with our intuition of exhaustiveness. Thus, we now directly

define an exhaustive matrix P from the condition UP(P , (· · ·)) = False. That is,

P is exhaustive, if and only if for all vectors �v, P(P ,�v) does not hold. By this new

definition, the example is exhaustive: for any value v in {Ω, False, True}, we have

≺ v. Thus we have:

P =

(
True

)
� v.

Hence, by our first basic restriction, for all v, P(P , v) does not hold.

4.2 Lazy pattern matching, à la Laville

Laville’s definition of lazy pattern matching (Laville, 1991) stems directly from the

need of a monotonic P: if we decide that some term is evaluated enough not to

match a pattern, then we want this to remain true when the term is evaluated

further. By definition, matrix P and value �v are incompatible, written P #�v , when

making�v more precise cannot produce an instance of P . That is, P #�v means

∀�w,�v �Ω �w =⇒ P �� �w.

Definition 10 (Lazy pattern matching (Laville))

Define P(P ,�v) = P #�v in the generic definition 8.

The first basic restriction follows by letting �w be �v in the definition of P #�v, the

second restriction follows from ∅ �� �w for all �w, and monotonicity is a consequence

of the transitivity of �Ω.

Incompatibility is the most general P in the following sense: for any predicate P,

any matrix and any value vector�v, we have.

P(P ,�v) =⇒ P #�v

For, if P and �v are compatible (i.e. not incompatible), then there exists �w, with

�v �Ω �w and P � �w. Thus, by the first basic restriction, P(P ,�w) does not hold, and,

by the monotonicity of P, P(P ,�v) does not hold either.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 401

Incompatibility is easily computed by the following rules.

c(p1, . . . , pa) # c′(v1, . . . , va′) (where c �= c′)

c(p1, . . . , pa) # c(v1, . . . , va) iff (p1 · · · pa) #(v1 · · · va)
(p1 · · · pn) # (v1 · · · vn) iff there exists i ∈ [1 . . . n], pi # vi

(p1 | p2) # v iff p1 # v and p2 # v

P # �v iff for all i ∈ [1 . . . n],�p i #�v

It is routine to show that incompatibility meets key properties. Hence, by Proposi-

tion 3, algorithm Urec is correct with respect to Laville’s semantics.

Laville’s definition is quite appealing as a good, implementation independent,

definition of lazy pattern matching. However, there is a slight difficulty: predicate

P #�v is not sequential in the sense of (Kahn & Plotkin, 1978) in �v for any

matrix P . This means that its compilation on an ordinary, sequential, computer

is problematic (Maranget, 1992; Sekar et al., 1992). As a consequence, the Haskell

committee adopted another semantics for pattern matching. Their definition is aware

of the presence of Ω and solves the difficulty by specifying left-to-right testing order.

4.3 Pattern matching in Haskell

By interpreting the Haskell report (Hudak et al., 1998) we can formulate a pattern

matching predicate for this language. Matching can yield three different results: it

may either succeed, fail or diverge. Furthermore, matching of arguments is performed

left-to-right. We encode “success”, “failure” and “divergence” by the three values T,

F and ⊥, and define the following H function.

H(, v) = T

H(c(p1, . . . , pa),Ω) = ⊥
H(c(p1, . . . , pa), c

′(v1, . . . , va′)) = F (where c �= c′)

H(c(p1, . . . , pa), c(v1, . . . , va)) = H((p1 · · · pa), (v1 · · · va))
H((p1 p2 · · · pn), (v1 v2 · · · vn)) = H(p1, v1) ∧⊥ H((p2 · · · pn), (v2 · · · vn))

H((), ()) = T

Where the extended (left-to-right) boolean connectors are defined as follows.

T ∧⊥ x = x

F ∧⊥ x = F

⊥ ∧⊥ x = ⊥

T ∨⊥ x = T

F ∨⊥ x = x

⊥ ∨⊥ x = ⊥

We ignore some of Haskell patterns such as irrefutable patterns. We also ignore

or-patterns at the moment. From this definition one easily shows the following two

properties on vectors:

H(�p,�v) = T ⇐⇒ �p ��v H(�p,�v) = F =⇒�p#�v =⇒�p ���v.

We then interpret the many program equivalences of section 3.17.3 in the Haskell

report as expressing a downward search for a pattern of which�v is an instance of:

H(∅,�v) = F H(P ,�v) = H(�p 1,�v) ∨⊥ H(P [2...m],�v).

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

402 L. Maranget

Informally, H(P ,�v) = T means “�v is found to match some row in P in the Haskell

way”, H(P ,�v) = F means “no row of P is found to be matched”, and H(P ,�v) = ⊥
means “�v is not precise enough to make a clear decision”. We can now formulate

the Haskell way of pattern matching in our setting.

Definition 11 (Haskell pattern matching)

Define P(P ,�v) to be H(P ,�v) = F in the generic Definition 8.

One easily checks that predicate H(P ,�v) = F meets all basic restrictions and

key properties (decomposing along first columns is instrumental). Hence, save for

or-patterns, algorithm Urec also computes the utility of pattern matching in Haskell.

4.4 Or-patterns in Haskell

As this work is partly dedicated to specific warnings for or-patterns, we wish to

enrich Haskell matching with or-patterns. The H function is extended to consider

or-patterns, sticking to left-to-right bias:

H((p1 | p2), v) = H(p1, v) ∨⊥ H(p2, v).

Semantical consequences are non-negligible, since the equivalence H(�p,�v) = T ⇐⇒
�p ��v does not hold any more, as can be seen by considering H((True |),Ω) = ⊥.

However, the left-to-right implication still holds, and the following definition of

Haskell pattern matching makes sense.

Definition 12 (Haskell matching with or-patterns)

Let P be a pattern matrix and �v be a value vector. Vector v matches row i in P , if

and only if the following proposition hold:

H(P [1...i),�v) = F ∧ H(�p i,�v) = T.

From this definition of matching, we define the utility predicate UH and the set of

matching values MH as we did in Definition 6.

The definition above is not the application of the generic definition 8 to P(P ,�v) =

(H(P ,�v) = F), because we have written H(�p i,�v) = T in place of the instance

relation �p i ��v . However, as illustrated by the following lemma, H(�q ,�v) = T and

�q ��v are closely related.

Lemma 2

Let p be a pattern and v be a value such that H(p, v) = ⊥. There exists value w

such that v �Ω w and H(p, w) �= ⊥. Furthermore, if p � v, then H(p, w) = T.

Proof

We first prove the existence of w by induction on p.

• If p = c(p1, . . . , pa), then, by hypothesis H(p, v) = ⊥, we have two sub-cases.

— Value v is c(v1, . . . , va), with H(pi, vi) = ⊥ for i in some (non-empty) index

set I . Applying induction hypothesis to all such i yields values v′
i such that

vi �Ω v′
i and H(pi, v

′
i) �= ⊥. Then, we define w = c(w1, . . . , wa) where wi = v′

i

for i ∈ I , and wi = vi otherwise.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 403

— Otherwise, value v is Ω. Let v′ be c(Ω, . . . ,Ω). If H(p, v′) is not ⊥, then we

define w = v′. Otherwise, we reason as in the previous case.

• If p = (q1 | q2), we have two sub-cases.

— If H(q1, v) = F and H(q2, v) = ⊥, then (by induction) there exists a

value w such that H(q2, w) �= ⊥. Finally, by definition of H, we have

H(p, w) = H(q2, w) �= ⊥.

— If H(q1, v) = ⊥, then (by induction) there exists a value w′, such that

v �Ω w′ and H(q1, w
′) �= ⊥ If H(q1, w

′) = T, we define w to be w′ and we

conclude. Otherwise, H(q1, w
′) = F and thus H((q1 | q2), w

′) = H(q2, w
′).

Then we conclude, either directly, or by induction in the case where

H(q2, w
′) = ⊥.

Additionally, H(p, w) = T holds under the extra hypothesis p � v, by H(p, w) =

F =⇒ p �� w and by the monotonicity of �. �

The lemma above suffices to relate Haskell matching to generic lazy matching,

and thus to compute the utility of Haskell matching.

Proposition 4

We have UH = Urec.

Proof

We note UH� the utility predicate that results from the generic definition, taking

P(P ,�v) to be H(p,�v) = F. From generic proposition 3, we have UH� = Urec.

(Formally we check that predicate H(P ,�v) = F meets key properties even when

some of the patterns in P are or-patterns).

Then we show UH = UH�. From the implication H(�q,�v) = T =⇒ �q � �v , we

have UH(P ,�q) =⇒ UH�(P ,�q); the converse implication follows from Lemma 2.

�

It is time to clearly stress on some important consequence of propositions U =

Urec, UP = Urec and UH = Urec: all our utility predicates are in fact equal.

This suggests a quite powerful and elegant“semantical” proof technique, which we

immediately demonstrate.

Lemma 3 (Irrelevance of column order)

Let P be a pattern matrix and �q be a pattern vector. By permuting the same

columns in both P and�q we get matrix P ′ and vector�q ′. Then we have UH(P ,�q) =

UH(P ′,�q ′).

Proof

Consider strict matching. Since predicates P �� �v and �q � �v do not depend on

column order, we have U(P ,�q) = U(P ′,�q ′). From UH = U, we conclude. �

First observe that proving the irrelevance of column order for Haskell matching by

induction on matrix and pattern structure would be quite cumbersome.

Also notice that the lemma above is not obvious, since Haskell matching depends

upon column order in a strong sense. For instance, let P ,�q , P ′ and�q ′ be as follows.

P =
(
True False

)
�q = (False) P ′ =

(
False True

)
�q ′ = (False).

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

404 L. Maranget

Matrix P ′ (resp. vector�q ′) is P (resp.�q) with columns swapped. The sets of matching

values are as follows.

MH(P ,�q) = { (False Ω), (False True), (False False) }
MH(P ′, �q′) = { (True False), (False False) }

Swapping the components of the elements of MH(P ,�q) does not yield MH(P ′,�q ′),

since (Ω False) does not belong to MH(P ′,�q ′). However, some of the values of the

MH sets above are related by the permutation. Moreover, the equality UH = U can

be seen as telling us that there is at least one such value.

From now on, we simply write U for any utility predicate, regardless of semantics.

We also write “algorithm U” for Urec.

PART TWO

Implementation

5 Specializing U for exhaustiveness check

Programmers sometimes are quite upset in front of “non-exhaustive match” warn-

ings. An example of a “non-matching value” helps a lot not only in convincing them

that they indeed wrote a non-exhaustive match, but also in correcting their code.

Such an example (or counter-example) is best expressed as a pattern representing

a set of non-matching instances. Then, programmers can add this “counter-example”

at the end of their matching, hoping this will make it exhaustive. Consider an easy

example.

let nilp = function [] -> true

Warning: this pattern-matching is not exhaustive.

Here is an example of a non-matching value:

::

The given pattern matching is not exhaustive and all instances of the pattern _::_

(a list cell) are non-matching. Here, one achieves exhaustive match by adding a

clause with pattern _::_.

Examples of non-matching values are easily computed by a slight extension of

algorithm U. Indeed, algorithm U shows that M(P ,�q) is not empty by implicitly

computing a witness of that fact.

The new algorithm I takes a matrix P and an integer n as arguments, since I is

used in a context where the pattern vector�q of Section 3.1 is a vector of n wildcards.

Algorithm I normally returns a pattern vector�p of size n such that all the instances

of �p are non-matching values. Or, if no such vector exists (i.e. if P is exhaustive), I
returns the distinguished constant ⊥.

Base case If n = 0, we define:

I(

()
, 0) = ⊥ I(∅, 0) = ().

More generally, one can observe that I(∅, n) is a vector consisting of n wildcards.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 405

Induction If n > 0, then let Σ be the set of constructors that appear at the root of

the patterns (and of or-pattern alternatives) in the first column of P .

1. We first assume that Σ is a complete signature. Then, we should perform the

recursive calls I(S(ck, P), ak + n − 1), for all ck taken from Σ.

If all those computations return ⊥, then I(P , n) also is ⊥. Otherwise, if one

of the calls I(S(ck, P), ak + n − 1) returns pattern vector (r1 · · · rak p2 · · · pn),
we can define I(P , n) = (ck(r1, . . . , rak) p2 · · · pn). Of course, in practice, we stop

performing recursive calls as soon as one such call is discovered. As there

can be others ck′ such that I(S(ck′ , P), ak′ + n − 1) returns a pattern vector,

algorithm I is non-deterministic.

2. If Σ is not a complete signature, we only perform the recursive call I(D(P), n−
1) and we define I(P , n) = ⊥ when the recursive call returns ⊥. Otherwise,

I(D(P), n−1) returns the vector (p2 · · · pn), and the result of I(P , n) depends on

whether Σ is empty or not. If Σ is empty, then we define I(P , n) = (p2 · · · pn).
If Σ is not empty, then we define I(P , n) = (c(, . . . ,) p2 · · · pn), where c is

a constructor from the signature of the ck ’s without being a ck . If the the

signature of the ck ’s is finite and not too big, one can even use an or-pattern

that includes all the extra constructors.

It should be clear that I(P , n) = ⊥, if and only if P is exhaustive. Otherwise, I(P , n)

is some pattern vector �p and all the instances of �p are non-matching values.

A simple example will demonstrate algorithm I at work. Let us check the

exhaustiveness of the following matching that acts on values of type mylist

(Section 2).

match . . . with One 1 -> · · ·

We thus compute I((One 1) , 1).

I(∅, 0) = () By base-2.

I(
(
One 1

)
, 1) = (Nil|Cons (,)) By induction-2, Σ = { One }.

One may think that algorithm I should make an additional effort to provide more

non-matching values, by systematically computing recursive calls on specialized

matrices when possible, and by returning a list of all pattern vectors returned by

recursive calls. We can first observe that it is not possible in general to supply the

users with all non-matching values, since the signature of integers is (potentially)

infinite. Furthermore, we claim that supplying one of the non-matching patterns

is enough. Correcting the source that triggers the warning is a programmer’s job,

and we intentionally limit the task of the compiler to supplying a precise (and not

too costly) warning, justified by a concrete example. In our example, the answer

(Nil|Cons (_,_)) points out the most obvious forgotten pattern. Furthermore, if

the programmers write a clause for the flagged pattern and recompile the corrected

program, then the compiler will flag other non-matching patterns such as One 0.

Hence, the whole information is available to programmers, if they want it.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

406 L. Maranget

6 Specializing U for the useless clause problem

At first sight, it seems that plain algorithm U suffices in flagging useless clauses.

Indeed, one hardly sees what additional, concise and useful, information could be

given to programmers, whose expected reaction is to suppress the useless clause

before recompiling. However or-patterns introduce their specific anomaly, which is

related to the useless clause anomaly but does not reduce to it.

6.1 Useless clause is (almost) enough

Let us assume that we write a function to detect lists of type mylist (Section 2)

whose first element is 1.

let f = function

| One x | Cons (x,_) -> x=1

| Nil | One _ | Cons (_,_) -> false

Intuitively, something is wrong: the last pattern looks too complicated. Indeed, the

following code is more concise and equivalent.

let f = function

| One x | Cons (x,_) -> x=1

| Nil -> false

Unfortunately, algorithm U silently accepts the first, “bad”, code. A good compiler

should suggest that we might replace this bad code by the second, “good”, code.

In fact, algorithm U already does such a suggestion in the case of the following,

“bad”, code, where the or-pattern is expanded.

let f = function

| One x | Cons (x,_) -> x=1

| Nil -> false

| One _ -> false

| Cons (_,_) -> false

Here, the compiler can tell us that the last two clauses are useless and we normally

react by deleting them.

The discussion shows what is wrong with our example.

let f = function

| One x | Cons (x,_) -> x=1

| Nil | One _ | Cons (_,_) -> false

Clause Nil | One _ | Cons (_,_) -> false is useful because of pattern Nil.

However, patterns One _ and Cons (_,_) are useless, since they can be deleted

without altering f behavior. Moreover, a more positive definition of useless pat-

terns is easily built upon the standard notion of useless clause by expanding or-

patterns.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 407

On the practical side, the Objective Caml compiler will here flag two useless

patterns (and no useless clause):

let f = function

| One x | Cons (x,_) -> x=1

| Nil | One _ | Cons (_,_) -> false

Warning: this pattern is unused.

Warning: this pattern is unused.

6.2 Expansion of or-patterns

Because there can be many or-patterns, it is our interest to consider the expansion of

exactly one or-pattern amongst many, so as to avoid producing code of exponential

size. Consider function f below.

let f = function

| (1|2), (3|4), (5|6), . . ., (2k − 1|2k) -> true

| _ -> false

To check the arguments of or-pattern (2k − 1|2k), one expansion suffices.

let f = function

| (1|2), (3|4), (5|6), . . ., 2k − 1 -> true

| (1|2), (3|4), (5|6), . . ., 2k -> true

| _ -> false

And we can safely assert that patterns 2k − 1 and 2k are useful by using known

algorithm U, which does not exhibit exponential behavior here, provided that we

compute disjunctions sequentially.

Expansion considers that, in or-pattern (p1 | p2), the left alternative p1 has a higher

priority than the right alternative p2. This left-to-right bias allows a clear decision

in the following boundary examples.

let f1 = function (1|_) -> true

and f2 = function (_|1) -> true

and f3 = function (1|1) -> true

and f4 = function (_|_) -> true

Expansion shows in what sense the right alternative of or-patterns is useful for f1

and useless in the remaining cases.

let f1 = function 1 -> true | _ -> true

and f2 = function _ -> true | 1 -> true

and f3 = function 1 -> true | 1 -> true

and f4 = function _ -> true | _ -> true

It may seem that giving good diagnostics forces us into reconsidering the definition

of matching, which does not specify any order for trying to match or-pattern

arguments (except for Haskell matching). In fact, for strict and Laville’s matching,

we still can avoid specifying such an order: those definitions of pattern matching

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

408 L. Maranget

Er1 Er2 E(r1 | r2)

∅ ∅ ∅
� � �
∅ � {r2}
� ∅ {r1}

Er1 Er2 E(r1 | r2)

∅ {r′′, . . .} {r′′, . . .}
{r′, . . .} ∅ {r′, . . .}

� {r′′, . . .} {r1, r′′, . . .}
{r′, . . .} � {r′, . . . , r2}
{r′, . . .} {r′′, . . .} {r′, . . . , r′′ . . .}

Fig. 1. Rules for combining the utility of or-pattern arguments

rely on what row is matched and not on how it is matched. However, in practice,

for the sake of consistency between diagnostics and produced code (because of

variables in or-patterns, execution can indeed reveal the matched alternative), the

pattern matching compiler must take left-to-right order into account. This is easily

done by the (strict) compiler of Le Fessant & Maranget (2001), which performs the

expansion during pattern matching compilation, as by any compiler that features

or-patterns by performing expansion before pattern matching compilation such as

the SML/NJ compiler (Appel & MacQueen, 1991).

In the next section we describe a refinement of our algorithm U. This refinement

aims at finding useless patterns and relies on the expansion of or-patterns. As a

preliminary, we first note that expansion does not alter the output of algorithm U.

Lemma 4 (Utility of expansion)

For all three definitions of pattern matching, we have:

U(P , ((r1 | r2) q2 · · · qn)) = U(P , (r1 q2 · · · qn)) ∨ U(P@(r1 q2 · · · qn), (r2 q2 · · · qn)).
Where P@�p means matrix P with row �p added at the bottom.

Proof

For Haskell matching, the equality follows from definitions — H((r1 | r2), v1) = T, if

and only if H(r1, v1) = T or H(r1, v1) = F ∧ H(r2, v1) = T. �

6.3 Rules for finding useless patterns

It is certainly easier to first consider finding useless sub-patterns in the case of one

or-pattern. Let P be a pattern matrix and let �q be a pattern vector, with q1 being

the or-pattern (r1 | r2). We wish to make a distinction between four possibilities, r1
and r2 are both useful, r1 alone is useless, r2 alone is useless, and both r1 and r2
are useless. More concretely, we design a new function U′(P ,�q) that returns a set

of useless patterns (more exactly a set of useless pattern positions); that is, ∅ in the

first case, {r1} in the second case, {r2} in the third case, and the distinguished set �
in the fourth case.

From P and �q we define two expanded matchings

P ′ = P , �q ′ = (r1 q2 · · · qn) and P ′′ = P@�q ′, �q ′′ = (r2 q2 · · · qn).
Where P@�q ′ means adding row �q ′ to the bottom of matrix P . Then, we use U to

compute the utility of both expansions and we write Er1 and Er2 for the results of

these computations, logically encoding True by ∅ and False by � (E sets are sets of

useless patterns). Then we combine Er1 and Er2 into Eq1
by the rules given in the

left table of Figure 1.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 409

If r1 and r2 are themselves or-patterns, we would like to compute the utility of their

arguments. To do so, U′ is called recursively. As a consequence, results other than ∅
and � are possible, when r1 or r2 are partially useless. We combine those new results

as described in the second table of Figure 1. Those extra rules complete the definition

of pattern utility by expansion. As an example of such nested expansions, assume

q1 = ((r1 | r2) |(r3 | r4)), the utility of r4 is computed on the expansion consisting of

matrixP@((r1 | r2) q2 · · · qn)@(r3 q2 · · · qn) and vector (r4 q2 · · · qn).
If several components of �q are or-patterns, we perform several independent

expansions. For instance, let us assume that both q1 and q2 are or-patterns, we first

proceed as described above, yielding one result Eq1
. Then, we expand P and �q along

their second column. Such an expansion can be defined easily as the composition of

swapping the first two columns of P and �q and of the expansion introduced at the

beginning of this section. This process yields another result Eq2
.

We now need to combine the two results Eq1
and Eq2

. Let us first consider the

case when neither Eq1
nor Eq2

is �. Then, those two results are (possibly empty)

sets of useless patterns which we combine by set union, yielding the new result

Eq1
∪ Eq2

. Let us now consider the case when Eq1
is �. We assume, as we show

later, that U′ is a conservative extension of U. That is U′(P ,�q) = �, if and only if

U(P ,�q) = False. Hence, Eq1
is � implies U(P ,�q) is False — i.e. �q is useless w.r.t. P .

However, swapping two columns in P (and �q) does not change U result (Lemma 3).

Thus we also have Eq2
= �. Conversely, if Eq2

is �, then Eq1
necessarily is �. Overall,

whether expansion is performed along first or second column does not matter and

the value of U′(P ,�q) should be �. As a conclusion, we can define the combination

of the utility of two disjoint or-patterns to be Eq1
∪Eq2

, provided we adopt the extra

definition � ∪ � = �.

6.4 Computation of useless patterns

We now give a precise description of algorithm U′, as implemented in the Objective

Caml compiler. The key idea is to use specialization (S(c, P) of Section 3.1) as a

tool to discover or-patterns, before performing expansions as we did in the previous

section. In practice, it is convenient to partition the columns of matrices and vectors

into three subparts. We note those separations with “•”. That is, U′ takes such

“dotted” matrices and vectors as arguments, written P • Q • R and �p •�q •�r. Dotted

matrices and vectors stand for triples of matrices and vectors. Later in this section,

component �q will hold patterns that cannot contain or-patterns (i.e. wildcards),

while all the components of�r will be or-patterns.

Dotted matrices and vectors define matchings in the ordinary sense, provided we

erase the dots. More precisely we concatenate the subparts column-wise, written “&”,

and consider U(P &Q&R,�p&�q&�r). This new notation emphasizes the distinction

between column-wise (or vertical) concatenation and row-wise (or horizontal)

concatenation, which we write “@”.

Figure 2 defines some useful operations on dotted matrices. It is assumed that

sub-matrix P has n columns (n > 0). Informally, the first phase of algorithm U′

destructures the patterns of�p (using S from figure 2), looking for or-patterns. When

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

410 L. Maranget

(a) Specialization by constructor c

row in P • Q • R row(s) in S(c, P • Q • R)

c(t1, . . . , ta) · · ·pin•qi1· · ·qik•ri1· · ·riz t1· · ·ta pi2· · ·pin•qi1· · ·qik•ri1· · ·riz
· · ·pin•qi1· · ·qik•ri1· · ·riz · · · pi2· · ·pin•qi1· · ·qik•ri1· · ·riz

c′(t1, . . . , ta′)· · ·pin•qi1· · ·qik•ri1· · ·riz no row

(t1 | t2) · · ·pin•qi1· · ·qik•ri1· · ·riz S
(
c,

(
t1· · ·pin•qi1· · ·qik•ri1· · ·riz
t2· · ·pin•qi1· · ·qik•ri1· · ·riz

))

(b) Right shifts

row in P • Q • R

pi1· · ·pin•qi1· · ·qik•ri1· · ·riz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

row in ⇒1(P • Q • R)

pi2· · ·pin•pi1 qi1· · ·qik•ri1· · ·riz

row in ⇒2(P • Q • R)

pi2· · ·pin•qi1· · ·qik•pi1 ri1· · ·riz
Fig. 2. Operations on dotted matrices

or-patterns are found, the corresponding columns are transferred to the R subpart

(using ⇒2), ready for the expansion phase. Other columns are transferred to the

Q subpart (using ⇒1).

To compute the utility of clause number i in match . . . with p1 -> e1 | p2 ->

e2 | . . . | pm -> em, we perform the initial call

U′

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

p1

p2

...

pi−1

⎞
⎟⎟⎟⎠ • • , (pi) • •

⎞
⎟⎟⎟⎠ .

The typical call U′(P • Q • R,�p •�q •�r) yields four situations. First three situations

are the “search for or-patterns” phase and apply when P has columns.

1. If p1 is a constructed pattern c(t1, . . . , ta), we define:

U′(P • Q • R, (c(t1, . . . , ta) p2 · · · pn) •�q •�r) =

U′(S(c, P • Q • R), (t1 · · · ta p2 · · · pn) •�q •�r).

2. If p1 is a wildcard, we transfer P ’s first column into Q:

U′(P • Q • R, (p2 · · · pn) •�q •�r) = U′(⇒1(P • Q • R),⇒1(�p •�q •�q)).

3. If p1 is an or-pattern, we transfer P ’s first column into R:

U′(P • Q • R, ((t1 | t2) p2 · · · pn) •�q •�r) = U′(⇒2(P • Q • R),⇒2(�p •�q •�q)).

4. If P has no columns, there are two sub-cases depending on whether there are

columns in R or not.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 411

(a) If there were no or-patterns inside initial �p (�r = ()), we simply call U.

U′(• Q • , •�q •) = ∅ if U(Q,�q) = True

U′(• Q • , •�q •) = � if U(Q,�q) = False

(b) Otherwise R and �r possess z columns (z > 0) and all the components of

�r are or-patterns. For a given column index j in �r, we write �r \ j for the

vector build from�r by suppressing component rj . Similarly we write R \ j

for matrix R with column j erased. Finally [R]j is the matrix R reduced to

its column j. By hypothesis, rj is an or-pattern (t1 | t2), and we perform the

following two recursive calls.

Et1 = U′([R]j • (R \ j)&Q • , (t1) • (�r \ j)&�q •)

Et2 = U′([R]j@(t1) • ((R \ j)&Q)@((�r \ j)&�q) • , (t2) • (�r \ j)&�q •)

This formulas may be a bit complicated, they simply express the expansion

of pattern rj in a general setting (see the beginning of Section 6.3 for the

particular case of exactly one or-pattern). One should notice that columns j ′

of R and�r with j ′ �= j get transfered to subpart Q and will not be expanded

by further calls to U′. That is, expansion of one or-pattern is performed

exactly once.

Then, we combine Et1 and Et2 by the rules of Figure 1, yielding Erj . Finally,

we define:

U′(• Q • R, •�q •�r) =

z⋃
j=1

Erj .

We now prove that the new algorithm U′ is a conservative extension of the original

algorithm U.

Proposition 5

Let P be a pattern matrix and �q be a pattern vector. Then, U′(P • • ,�p • •) = � is

equivalent to U(P ,�p) = False.

Proof

We prove the following stronger property.

U′(P • Q • R,�p •�q •�r) = � ⇐⇒ U(P &Q&R,�p&�q&�r) = False

Proof is by induction on the definition of U′. Most cases are obvious, case 4-(a) is

the base case, inductive cases 2. and 3. follow from Lemma 3 on the irrelevance of

column order, while inductive case 1. is like inductive case 1. in Proposition 2.

Case 4-(b) (P is empty, R is not empty) is the most interesting. We first consider

one expansion. In order to simplify notations a bit, we define S = Q&R and

�s =�q&�r. Furthermore, we express the expansion of rj = (t1 | t2) as follows.

Et1 = U′(P ′ • Q′ • , (t1) •�q ′ •), Et2 = U′(P ′′ • Q′′ • , (t2) •�q ′ •)

Where it should be clear that P ′′ is P ′@(t1) and Q′′ is Q′@�q ′. We further define

S ′ to be P ′ &Q′ and S ′′ to be P ′′ &Q′′. Notice that S ′′ is S ′ with the row (t1) &�q ′

added. Let also�s ′ be the vector (t1 | t2) &�q ′. Matrix S ′ and vector�s ′ are the images

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

412 L. Maranget

of S and�s by the same permutation of columns. By lemmas 3 and 4, we have:

U(S,�s) = U(S ′,�s ′) = U(S ′, (t1) &�q ′) ∨ U(S ′′, (t2) &�q ′).

By induction, we have the following two equivalences.

Et1 = � ⇐⇒ U(S ′, (t1) &�q ′) = False Et2 = � ⇐⇒ U(S ′′, (t2) &�q ′) = False

Then, since E(t1 | t2) = � if and only if Et1 = � and Et2 = �, we have:

Erj = � ⇐⇒ U(S,�s) = False.

And we can conclude, since U′(• Q • R, •�q •�r) = Er1 ∪ · · · ∪ Erz . �

One can make the computation of U′ slightly more efficient by the following two

techniques:

• At inductive step 2, if all patterns in the first column of P are wildcards, we

delete this column in place of transferring it into Q. This will avoid repeated

deletion by U.

• At inductive step 4-(b), if Er1 is �, we can immediately return �.

7 Performance

7.1 Elements of complexity analysis

Given some pattern matching expression of m patterns, algorithm I (Section 5) is

called once and U′ (previous section) is called m times with matrix arguments of 0,

. . . , m − 1 rows. We can roughly assimilate I with U. As regards U′, after a first,

linear phase, U is called once, if they are no or-patterns, or as many times as there

are or-pattern alternatives. Disregarding or-patterns and (unreasonably) assuming

that U is linear in its input size, we expect a quadratic behavior in the size of the

pattern matrices, which we define as the sum of the sizes of its patterns, and will

assimilate to source file size in experiments. Namely, for a matrix of size S with

m rows, we perform m+ 1 calls of U on arguments of size at most S , where m is, at

worst, of the same order of magnitude as S .

Here, we do not claim to perform a thorough complexity analysis. Rather, we

intend to define a reachable target for the running time of a practical implementation.

As a matter of fact, even when or-patterns are not considered, the useful clause

problem is NP-complete (Sekar et al., 1992). It is thus no surprise that algorithm U
can exhibit exponential time behavior in the size of its arguments P and �q. This

exponential behavior originates from inductive step 2-(a) (Section 3.1): the rows of

matrix P whose first pattern is a wildcard get copied into all specialized matrices

S(ck, P), and recursive calls on all these matrices may be performed. The most

unfavorable situation is as follows: U(P ,�q) is false; all patterns in �q are wildcards;

and the patterns in P contain mostly wildcards and a few different constructor

patterns such that constructors collected column-wise are complete signatures. And

indeed, one can construct a series of matchings that confirms the exponential time

behavior of a straightforward implementation of algorithm U. Besides, randomly

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 413

generated matrices also confirm that the exponential time behavior can occur. Such

problematic random matrices test vectors of booleans and many of their patterns

are wildcards.

7.2 Safeguards

Input to the Objective Caml compiler a priori is neither nasty nor random, it consists

of programs written by human beings attempting to solve specific problems, not to

break the compiler. If such reasonable input triggers exponential behavior, then the

compilation of useful programs may perhaps become unfeasible.

We now search for means that may prevent U from reacting exponentially to

reasonable input. We call such a mean a safeguard. An exhaustive match is a poten-

tially unfavorable situation, since we here compute U(P , (· · ·)) = False. Hence, we

examine how human beings write exhaustive matches. An easy and frequent way to

ensure exhaustiveness is to complete a matching with a wildcard pattern. Hence, we

could first scan matrices searching for rows of wildcards, and announce exhaustive

match as soon as we discover one. However, this process would not be very general.

Let us rather consider strict pattern matching and remark that for any defined value

we have � v. That is, for any pattern p and defined value v, we have p � v =⇒ � v

(or �� v =⇒ p �� v). Hence, if some row of some matrix P is made of wildcards,

then that row contains all the non-matching potential of the whole matrix P .

Wildcards can also appear inside patterns, as in the following example.

match v with (1,2) -> 1 | (1,_) -> 2

Then, for any defined value v, we have (1,2) � v =⇒ (1,) � v (or (1,) �� v =⇒
(1,2) �� v). Thus, before we compute exhaustiveness, we can delete pattern (1,2)

from the matching, because its presence does not add non-matching values to those

values that do not match the remaining pattern (1,).

We now consider the general case.

Definition 13

Let�p and �q be two pattern vectors. By definition,�p subsumes �q when, for all defined

value vectors�v, we have: �q ��v =⇒�p ��v.

Lemma 5

Let P be a pattern matrix. We further assume that there exist two rows of P , �p i

and�p j , such that�p i subsumes�p j . And we write P ′ for P without row�p j . Then, for

any pattern vector �q we have: U(P ,�q) = U(P ′,�q).

Proof

By definition of �� we have:

P ���v ⇐⇒ P ′ ���v ∧�p j ���v.

Furthermore, by definition of P ′ ���v and by hypothesis “row �p i subsumes �p j”, we

have:

P ′ �� v =⇒�p i ���v =⇒�p j ���v

Finally, for any defined value�v we have: P ′ ���v ⇐⇒ P ���v. �

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

414 L. Maranget

Example 4

Let us consider the following matrix P .

P =

(
(,)

(,)

)

Because the constructor of pairs “,” is alone in its signature, pattern (,) subsumes

pattern . Namely, any (defined) value v that possesses the type t1 × t2 of a pair can

be written v = (v1, v2) and is thus an instance of (,)3. As a consequence, erasing

any of the two rows of P does not matter and we have:

U(P ,�q) = U(
(

(,)
)
,�q) = U(

(
(,)

)
,�q)

It turns out that we can decide the relation “�p subsumes �q” by using predicate U.

Lemma 6

Let �p and �q be two pattern vectors. Then �p subsumes �q, if and only if U(�p,�q) does

not hold.

Proof

The property is obvious by considering the strict semantics of pattern matching.

U(�p,�q) = False ⇐⇒ (∀�v,�p ��v ∨�q ���v) ⇐⇒ (∀�v,�q ��v =⇒�p ��v)

Notice that ∀�v here means “for all defined values”. �

By Lemma 5 and Lemma 6 we now have a mean to delete rows from matrix P

before we compute U. And this mean is valid for all our semantics of pattern

matching. More precisely, we have:

U(�p i,�p j) = False =⇒ U(P ,�q) = U(P ′,�q).

Where P ′ is P without row number j.

In practice, before computing U(P ,�q), our first safeguard consists in deleting any

row of P that is subsumed by another row of P . In the worst case, (when no row

is subsumed) this requires computing U(�p i,�p j) for all pairs of (distinct) rows in P .

However, in the absence of or-patterns, computing U(�p i,�p j) cannot be exponential

— since bad case 2-(a) may only occur here for constructor signatures of size

one, which, in that particular case, yields exactly one recursive call. We can thus

approximate the cost of our first safeguard as a quadratic number of “ordinary”

pattern operations whose cost is roughly linear in the size of input patterns (still

disregarding or-patterns). As a conclusion, if this first safeguard saves us from

exponential computations, it is worth its price.

We now design a second, less expensive, safeguard. Two patterns are said to

be incompatible when they have no instance in common. Thus, before computing

U(P ,�q) we can delete some row �p i from P , provided �p i and �q are incompatible

(consider strict matching). It turns out that incompatibility of patterns can be

computed as an “ordinary” pattern operation by using the rules for computing

3 It is worth noticing that all instances of no longer are instances of (,) when partial values are
considered. Namely, the undefined value Ω is not an instance of (,).

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 415

the incompatibility of pattern and value (see Section 4.2). Thus, we can attempt to

simplify matrix P with m rows for the price of m ordinary patterns operations.

Unfortunately, this process does not help while checking exhaustiveness, since

(· · ·) is compatible with any pattern vector. Furthermore, the first phase of

computing U′(P ,�q) for checking utility in fact gets rid of rows that are incompatible

with checked row �q (at step 1.). However, the price of this second safeguard is low

and it may be a good idea to perform it before performing the first safeguard.

As a result, we may reduce the size of input to the first safeguard. Of course, this

makes sense because the first safeguard performs a quadratic number of ordinary

pattern operations while the second safeguard performs a linear number of ordinary

pattern operations. In fact, example I of the following section exhibits S3 behavior

without the second safeguard, whereas, with second safeguard enabled, it exhibits

quasi-quadratic behavior.

7.3 Measures

We performed some measures of the machine time taken by our implementation,

which is integrated in the Objective Caml compiler. We measure compilation

time both with and without pattern-matching diagnostics enabled. Then, a simple

subtraction yields the time taken by the detection of anomalies.

Measures apply to series of pattern-matching expressions of identical structure

and increasing size. Three of our series T, S and V, may drive compilation of pattern

matching to decision trees into producing code of exponential size. We selected

those because algorithm U is similar to compilation of pattern matching to decision

trees. The fourth series, I, is the matching of n constant constructors. We selected

series I because of a real example that triggered excessive compilation times while

we were implementing algorithm U. All series are defined precisely in appendix A.

In Figure 3, the X-axis shows the size of matchings squared, (expressed as source file

size squared), while the Y-axis shows user machine time on a Linux 1Ghz PC. We

perform measures both with and without the safeguards described in the previous

section (those are named “opt” and “std”).

Experiments S and V demonstrate that algorithm U is more resistant to exponen-

tial behavior than simple compilation to decision trees. Namely, exponential behavior

of compilation to decision trees have been reported for those examples (Sestoft, 1996;

Maranget, 1992). Observe that algorithm U does not exhibit exponential running

time even without safeguards (written “std” in Figure 3).

However, algorithm U is not immune from exponential behavior, as demonstrated

by experiment T. In that particular case, safeguards prove efficient and we decided

to retain them in our implementation for that reason. Adopting safeguards incurs

some penalty, since safeguards significantly degrade performance in experiment S.

However, it should be noticed that it requires a 161×320 matrix to reach one minute

of analysis time in experiment S (with safeguards), whereas it takes only a 42 × 21

matrix to reach a similar time in experiment T (without safeguards).

Finally the plots of figure 3 suggest that the running time of pattern matching

analysis with safeguards is approximatively quadratic in input size, at least for our

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

416 L. Maranget

Fig. 3. Effect of safeguards in four experiments. User CPU time (in seconds) as a function

of file size squared (in kilobytes squared)

examples and on the studied domain. However, notice that experiment I suggests a

slightly more than quadratic running time.

We also estimate the time taken by our algorithm relatively to total compilation

time of ordinary programs. To do so, we measure the running time of the compilation

of some programs, with pattern matching analysis disabled (no), with pattern

matching analysis enabled but without safeguards (std), and with safeguards (opt).

We made some effort not to measure irrelevant operations such as linking and the

application of external tools. We made ten measures in each experiment and we

computed geometric means. The compiled programs are the Objective Caml compiler

itself (ocamlc), the hevea LATEX to html translator and another compiler (zyva).

All those programs use pattern matching significantly and are of respectable size.

no std opt

ocamlc 13.63 13.92 14.02

hevea 7.84 8.01 8.05

zyva 4.61 4.70 4.74

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 417

Those results show that the price of pattern-matching analysis remains quite low in

practice. One might even conclude that safeguards are not very useful when it comes

to compiling “actual” programs. Still, we adopt safeguards because they are designed

to avoid exponential behavior in some specific situations, which do not show up in the

above examples. Our choice follows the general philosophy behind preferring back-

tracking automata to decision trees: avoid exponential behaviors as much as possible.

8 Conclusion

To the best of our knowledge, there is no literature on the analysis of pattern

matching. the works closest to ours are (Sekar et al., 1992; Maranget, 1992), which

give some algorithms for computing directions (also called indices). Those algorithms

are in fact very similar to our algorithm U. Indeed, our present work can be seen

as a thorough exploration of how to apply the initial algorithm to pattern matching

diagnostics, while directions are confined to the compilation of Laville’s semantics.

Works on the compilation of pattern matching to decision trees sometimes recall

that this compilation technique yields “non-exhaustive match” and “useless clause”

warnings as by-products (Baudinet & MacQueen, 1985; Aitken, 1992; Sestoft, 1996).

However there are good reasons to adopt backtracking automata: a potentially

exponential behavior is avoided, and, in practice, output code size is somehow

reduced. In our opinion, designers that wish to adopt backtracking automata should

not be prevented to do so by the question of pattern matching diagnostics. Hence,

we consider diagnostics directly. As a consequence, our algorithm for producing

diagnostics is not only independent from any compilation strategy, but is also

proved correct with respect to several semantics.

We now examine how a few compilers perform pattern matching diagnostics.

The SML/NJ compiler (Appel & MacQueen, 1991) compiles pattern matching by

following the decision tree approach, thereby naturally producing diagnostics. How-

ever, it flags “useless patterns” as “useless clauses”, which can confuse programmers.

It should be noticed that for the sake of precise warnings for “useless patterns” (i.e.

useless arguments in or-patterns), we defined some partial expansion of or-patterns,

whereas compilation calls for a complete expansion. From our understanding of its

code and architecture, the SML/NJ compiler performs such a complete expansion

before the compilation of pattern matching, and then ignores the existence of or-

patterns. Additionally, the SML/NJ takes exponential time (and produce code of

exponential size) in experiments V and S.

The Glasgow Haskell compiler ghc (Peyton Jones et al., 1993) also carries out

pattern matching checks. Surprisingly, by default, the “useless clause” diagnostic is

enabled, while the “non-exhaustive match” diagnostic is disabled. As ghc compiles

pattern matching to backtracking automata (Wadler, 1987; Augustsson, 1985),

the source of the compiler contains specific code for producing pattern matching

diagnostics. This code apparently proceeds exactly along the lines of compilation

to decision trees. Of course, no tree is produced, instead the analyzer computes

the leaves of the tree. This approach results in producing several examples of non-

matching values in the case of non-exhaustive matches. Unfortunately, it also results

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

418 L. Maranget

in exponential running times and excessive memory consumption in examples T, V

and S.

Those comparisons demonstrate that our algorithm, though inspired by compila-

tion to decision trees, is more efficient. Such efficiency stems from several causes. First,

our algorithm does not build any tree data-structure of potentially exponential size.

More significantly, the compilation scheme can be seen as the search of all matching

values, while, our algorithm only searches for one matching value. The benefits of

this approach are numerous: the search is stopped as soon as one matching value is

found; in some important and frequent case (inductive step 2-(b) in Section 3.1) our

algorithm performs one recursive call, where compilation performs two or more; and

finally, some simplification on the input patterns that we perform are inappropriate

to compilation.

In our opinion, pattern matching analysis has been somehow neglected. For

instance, although the Definition of Standard ML (Harper et al., 1991) requires

compliant implementation to flag “redundant” and “non-exhaustive” matches, the

Haskell Report (Hudak et al., 1998) does not mention any similar requirement. It

can certainly be considered that such a question is of minor importance in the

context of a language definition. But we believe that providing warnings against

statically checkable, common, programming errors is an important feature of any

mature compiler. And of course, we also believe useless clauses and non-exhaustive

matches to be such errors.

Finally, our approach of studying pattern matching anomalies on the semantical

level results in more adequate and precise warnings, tailored to various programming

situations. Additionally, our technique is applicable to both ML and Haskell; and

the cost of our implementation seems to be under control.

Acknowledgements

I thank Jean-Jacques Lévy and James Leifer for their comments. I also thank

Jacques Garrigue, whose work on the typing of polymorphic variant (Garrigue,

2004) makes use of exhaustiveness information. Jacques’ comments on my code and

ideas encouraged me to write this paper.

A Series of examples

Series I This series is simple matching by n constant constructors: For a given

integer n:

type t = A0 | A1 | · · · | An−1

let f = function

| A0 -> 0

| A1 -> 1

· · ·
| An−1 -> n − 1

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 419

Series S This series, taken from (Sestoft, 1996), is a variation of matching by a

diagonal matrix. For a given integer n, Sn is a (n+ 1) × 2n matrix P with, for all i

in [1 . . . n]:

si2i = si2i−1 = A, sij = otherwise.

And:

sn+1
2k+1 = A, sn+1

2k = B.

For instance, here is S4:

type t = A | B

let f = function

| A,A,_,_,_,_,_,_ -> 1

| _,_,A,A,_,_,_,_ -> 2

| _,_,_,_,A,A,_,_ -> 3

| _,_,_,_,_,_,A,A -> 4

| A,B,A,B,A,B,A,B -> 5

Series V This series is taken from (Sekar et al., 1992; Maranget, 1992). It is best

defined inductively. We first define Bn as a matrix whose only non-wildcard

patterns are the diagonal.

bii = B, bij = otherwise

Then, Vn is the (n + 1) × n(n+1)
2

matrix defined as follows.

V1 =

(
A

B

)
, Vn =

⎛
⎜⎜⎝

A A...A ...

Bn Vn−1

⎞
⎟⎟⎠

For instance, here is V3:

type t = A | B

let f = function

| A,A,A,_,_,_ -> 1

| B,_,_,A,A,_ -> 2

| _,B,_,B,_,A -> 3

| _,_,B,_,B,B -> 4

This series is a real challenge to pattern matching compilers, especially to those

that target decision trees: whatever column is selected, compilation will produce

code of exponential size.

Series T This series is made of triangular matrices. Tn is the 2n × n matrix defined

as follows.

t2k+1
j = (when j < 2k + 1), t2k+1

j = A (otherwise)

t2kj = (when j < 2k), t2kj = B (otherwise)

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

420 L. Maranget

For instance, here is T4:

type t = A | B

let f = function

| A,A,A,A -> 1

| B,B,B,B -> 1

| _,A,A,A -> 2

| _,B,B,B -> 2

| _,_,A,A -> 3

| _,_,B,B -> 3

| _,_,_,A -> 4

| _,_,_,B -> 4

This series yields exponential behavior of naive compilation (along first column)

to decisions trees.

References

Aitken, W. (1992) SML/NJ Match Compiler Notes. http://www.smlnj.org/compiler-

notes/matchcomp.ps.

Appel, A. W. and MacQueen, D. B. (1991) Standard ML of New Jersey. International

Symposium on Programming Language Implementation and Logic Programming. Springer-

Verlag. Lecture Notes in Computer Science 583.

Augustsson, L. (1985) Compiling Pattern Matching. Functional Programming Languages and

Computer Architecture. Springer-Verlag. Lecture Notes in Computer Science 201.

Baudinet, M. and MacQueen, D. B. (1985) Tree Pattern Matching for ML. http://www.

smlnj.org/compiler-notes/85-note-baudinet.ps.

Garrigue, J. (2004) Typing Deep Pattern-Matching in Presence of Polymorphic Variants.

JSSST Workshop on Programming and Programming Languages.

Harper, R. W., Milner, R. and Tofte, M. (1991) The Definition of Standard ML. The MIT Press.

Hudak, P., Peyton Jones, S. L. et al. (1998) Haskell 98, A Non-Strict, Purely Functionnal

Language. http://www.haskell.org/onlinereport/.

Huet, G. and Lévy, J.-J. (1991) Call by Need Computations in Non-Ambiguous Linear Term

Rewriting Systems. Lassez, J.-L., & Plotkin, G. D (eds), Computational Logic, Essays in

Honor of Alan Robinson. MIT Press.

Kahn, G. and Plotkin, G. D. (1978) Domaines concrets. Tech. rept. 336. IRIA Laboria. (In

French).

Laville, A. (1991) Comparison of Priority Rules in Pattern Matching and Term Rewriting.

Journal of Symbolic Computations, 11(4), 321–348.

Le Fessant, F. and Maranget, L. (2001) Optimizing Pattern Matching. International Conference

on Functional Programming. ACM press.

Leroy, X., Doligez, D. et al. (2003) The Objective Caml Language (version 3.07). http:

//caml.inria.fr.

Maranget, L. (1992) Compiling Lazy Pattern Matching. Lisp and Functional Programming.

ACM press.

Pettersson, M. (1992) A Term Pattern-Match Compiler Inspired by Finite Automata

Theory. Workshop on Compiler Construction. Springer-Verlag. Lecture Notes in Computer

Science 641.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

Warnings for pattern matching 421

Peyton Jones, S. L., Hall, C. V., Hammond, K., Partain, W. and Wadler, P. (1993) The Glasgow

Haskell Compiler: a Technical Overview. UK Joint Framework for Information Technology

(JFIT) Technical Conference. http://www.haskell.org/ghc/.

Sekar, R. C., Ramesh, R. and Ramakrishnan, I. V. (1992) Adaptive Pattern Matching.

International Colloquium on Automata Languages and Programming. Springer-Verlag.

Lecture Notes in Computer Science 623.

Sestoft, P. (1996) ML Pattern Match Compilation and Partial Evaluation. Dagstuhl Seminar

on Partial Evaluation. Springer-Verlag. Lecture Notes in Computer Science 1110.

Wadler, P. (1987) Efficient Compilation of Pattern Matching. In: Peyton Jones, S. L., editor,

The Implementation of Functional Programming Languages. Prentice-Hall.

https://doi.org/10.1017/S0956796807006223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006223

